gecko-dev/dom/media/webrtc/MediaTrackConstraints.cpp

585 строки
18 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "MediaTrackConstraints.h"
#include <limits>
#include <algorithm>
#include <iterator>
#include "MediaEngineSource.h"
#include "nsIScriptError.h"
#include "mozilla/dom/MediaStreamTrackBinding.h"
#include "mozilla/MediaManager.h"
#ifdef MOZ_WEBRTC
extern mozilla::LazyLogModule gMediaManagerLog;
#else
static mozilla::LazyLogModule gMediaManagerLog("MediaManager");
#endif
#define LOG(...) MOZ_LOG(gMediaManagerLog, LogLevel::Debug, (__VA_ARGS__))
namespace mozilla {
using dom::ConstrainBooleanParameters;
template <class ValueType>
template <class ConstrainRange>
void NormalizedConstraintSet::Range<ValueType>::SetFrom(
const ConstrainRange& aOther) {
if (aOther.mIdeal.WasPassed()) {
mIdeal.emplace(aOther.mIdeal.Value());
}
if (aOther.mExact.WasPassed()) {
mMin = aOther.mExact.Value();
mMax = aOther.mExact.Value();
} else {
if (aOther.mMin.WasPassed()) {
mMin = aOther.mMin.Value();
}
if (aOther.mMax.WasPassed()) {
mMax = aOther.mMax.Value();
}
}
}
// The Range code works surprisingly well for bool, except when averaging
// ideals.
template <>
bool NormalizedConstraintSet::Range<bool>::Merge(const Range& aOther) {
if (!Intersects(aOther)) {
return false;
}
Intersect(aOther);
// To avoid "unsafe use of type 'bool'", we keep counter in mMergeDenominator
uint32_t counter = mMergeDenominator >> 16;
uint32_t denominator = mMergeDenominator & 0xffff;
if (aOther.mIdeal.isSome()) {
if (mIdeal.isNothing()) {
mIdeal.emplace(aOther.Get(false));
counter = aOther.Get(false);
denominator = 1;
} else {
if (!denominator) {
counter = Get(false);
denominator = 1;
}
counter += aOther.Get(false);
denominator++;
}
}
mMergeDenominator = ((counter & 0xffff) << 16) + (denominator & 0xffff);
return true;
}
template <>
void NormalizedConstraintSet::Range<bool>::FinalizeMerge() {
if (mMergeDenominator) {
uint32_t counter = mMergeDenominator >> 16;
uint32_t denominator = mMergeDenominator & 0xffff;
*mIdeal = !!(counter / denominator);
mMergeDenominator = 0;
}
}
NormalizedConstraintSet::LongRange::LongRange(
LongPtrType aMemberPtr, const char* aName,
const dom::Optional<dom::OwningLongOrConstrainLongRange>& aOther,
bool advanced, nsTArray<MemberPtrType>* aList)
: Range<int32_t>((MemberPtrType)aMemberPtr, aName, 1 + INT32_MIN,
INT32_MAX, // +1 avoids Windows compiler bug
aList) {
if (!aOther.WasPassed()) {
return;
}
auto& other = aOther.Value();
if (other.IsLong()) {
if (advanced) {
mMin = mMax = other.GetAsLong();
} else {
mIdeal.emplace(other.GetAsLong());
}
} else {
SetFrom(other.GetAsConstrainLongRange());
}
}
NormalizedConstraintSet::LongLongRange::LongLongRange(
LongLongPtrType aMemberPtr, const char* aName, const long long& aOther,
nsTArray<MemberPtrType>* aList)
: Range<int64_t>((MemberPtrType)aMemberPtr, aName, 1 + INT64_MIN,
INT64_MAX, // +1 avoids Windows compiler bug
aList) {
mIdeal.emplace(aOther);
}
NormalizedConstraintSet::DoubleRange::DoubleRange(
DoublePtrType aMemberPtr, const char* aName,
const dom::Optional<dom::OwningDoubleOrConstrainDoubleRange>& aOther,
bool advanced, nsTArray<MemberPtrType>* aList)
: Range<double>((MemberPtrType)aMemberPtr, aName,
-std::numeric_limits<double>::infinity(),
std::numeric_limits<double>::infinity(), aList) {
if (!aOther.WasPassed()) {
return;
}
auto& other = aOther.Value();
if (other.IsDouble()) {
if (advanced) {
mMin = mMax = other.GetAsDouble();
} else {
mIdeal.emplace(other.GetAsDouble());
}
} else {
SetFrom(other.GetAsConstrainDoubleRange());
}
}
NormalizedConstraintSet::BooleanRange::BooleanRange(
BooleanPtrType aMemberPtr, const char* aName,
const dom::Optional<dom::OwningBooleanOrConstrainBooleanParameters>& aOther,
bool advanced, nsTArray<MemberPtrType>* aList)
: Range<bool>((MemberPtrType)aMemberPtr, aName, false, true, aList) {
if (!aOther.WasPassed()) {
return;
}
auto& other = aOther.Value();
if (other.IsBoolean()) {
if (advanced) {
mMin = mMax = other.GetAsBoolean();
} else {
mIdeal.emplace(other.GetAsBoolean());
}
} else {
auto& r = other.GetAsConstrainBooleanParameters();
if (r.mIdeal.WasPassed()) {
mIdeal.emplace(r.mIdeal.Value());
}
if (r.mExact.WasPassed()) {
mMin = r.mExact.Value();
mMax = r.mExact.Value();
}
}
}
NormalizedConstraintSet::StringRange::StringRange(
StringPtrType aMemberPtr, const char* aName,
const dom::Optional<
dom::OwningStringOrStringSequenceOrConstrainDOMStringParameters>&
aOther,
bool advanced, nsTArray<MemberPtrType>* aList)
: BaseRange((MemberPtrType)aMemberPtr, aName, aList) {
if (!aOther.WasPassed()) {
return;
}
auto& other = aOther.Value();
if (other.IsString()) {
if (advanced) {
mExact.insert(other.GetAsString());
} else {
mIdeal.insert(other.GetAsString());
}
} else if (other.IsStringSequence()) {
if (advanced) {
mExact.clear();
for (auto& str : other.GetAsStringSequence()) {
mExact.insert(str);
}
} else {
mIdeal.clear();
for (auto& str : other.GetAsStringSequence()) {
mIdeal.insert(str);
}
}
} else {
SetFrom(other.GetAsConstrainDOMStringParameters());
}
}
void NormalizedConstraintSet::StringRange::SetFrom(
const dom::ConstrainDOMStringParameters& aOther) {
if (aOther.mIdeal.WasPassed()) {
mIdeal.clear();
if (aOther.mIdeal.Value().IsString()) {
mIdeal.insert(aOther.mIdeal.Value().GetAsString());
} else {
for (auto& str : aOther.mIdeal.Value().GetAsStringSequence()) {
mIdeal.insert(str);
}
}
}
if (aOther.mExact.WasPassed()) {
mExact.clear();
if (aOther.mExact.Value().IsString()) {
mExact.insert(aOther.mExact.Value().GetAsString());
} else {
for (auto& str : aOther.mExact.Value().GetAsStringSequence()) {
mExact.insert(str);
}
}
}
}
auto NormalizedConstraintSet::StringRange::Clamp(const ValueType& n) const
-> ValueType {
if (mExact.empty()) {
return n;
}
ValueType result;
for (auto& entry : n) {
if (mExact.find(entry) != mExact.end()) {
result.insert(entry);
}
}
return result;
}
bool NormalizedConstraintSet::StringRange::Intersects(
const StringRange& aOther) const {
if (mExact.empty() || aOther.mExact.empty()) {
return true;
}
ValueType intersection;
set_intersection(mExact.begin(), mExact.end(), aOther.mExact.begin(),
aOther.mExact.end(),
std::inserter(intersection, intersection.begin()));
return !intersection.empty();
}
void NormalizedConstraintSet::StringRange::Intersect(
const StringRange& aOther) {
if (aOther.mExact.empty()) {
return;
}
ValueType intersection;
set_intersection(mExact.begin(), mExact.end(), aOther.mExact.begin(),
aOther.mExact.end(),
std::inserter(intersection, intersection.begin()));
mExact = intersection;
}
bool NormalizedConstraintSet::StringRange::Merge(const StringRange& aOther) {
if (!Intersects(aOther)) {
return false;
}
Intersect(aOther);
ValueType unioned;
set_union(mIdeal.begin(), mIdeal.end(), aOther.mIdeal.begin(),
aOther.mIdeal.end(), std::inserter(unioned, unioned.begin()));
mIdeal = unioned;
return true;
}
NormalizedConstraints::NormalizedConstraints(
const dom::MediaTrackConstraints& aOther, nsTArray<MemberPtrType>* aList)
: NormalizedConstraintSet(aOther, false, aList), mBadConstraint(nullptr) {
if (aOther.mAdvanced.WasPassed()) {
for (auto& entry : aOther.mAdvanced.Value()) {
mAdvanced.push_back(NormalizedConstraintSet(entry, true));
}
}
}
FlattenedConstraints::FlattenedConstraints(const NormalizedConstraints& aOther)
: NormalizedConstraintSet(aOther) {
for (auto& set : aOther.mAdvanced) {
// Must only apply compatible i.e. inherently non-overconstraining sets
// This rule is pretty much why this code is centralized here.
if (mWidth.Intersects(set.mWidth) && mHeight.Intersects(set.mHeight) &&
mFrameRate.Intersects(set.mFrameRate)) {
mWidth.Intersect(set.mWidth);
mHeight.Intersect(set.mHeight);
mFrameRate.Intersect(set.mFrameRate);
}
if (mEchoCancellation.Intersects(set.mEchoCancellation)) {
mEchoCancellation.Intersect(set.mEchoCancellation);
}
if (mNoiseSuppression.Intersects(set.mNoiseSuppression)) {
mNoiseSuppression.Intersect(set.mNoiseSuppression);
}
if (mAutoGainControl.Intersects(set.mAutoGainControl)) {
mAutoGainControl.Intersect(set.mAutoGainControl);
}
if (mChannelCount.Intersects(set.mChannelCount)) {
mChannelCount.Intersect(set.mChannelCount);
}
}
}
// MediaEngine helper
//
// The full algorithm for all devices. Sources that don't list capabilities
// need to fake it and hardcode some by populating mHardcodedCapabilities above.
//
// Fitness distance returned as integer math * 1000. Infinity = UINT32_MAX
// First, all devices have a minimum distance based on their deviceId.
// If you have no other constraints, use this one. Reused by all device types.
/* static */ bool MediaConstraintsHelper::SomeSettingsFit(
const NormalizedConstraints& aConstraints,
const nsTArray<RefPtr<MediaDevice>>& aDevices) {
nsTArray<const NormalizedConstraintSet*> sets;
sets.AppendElement(&aConstraints);
MOZ_ASSERT(!aDevices.IsEmpty());
for (auto& device : aDevices) {
if (device->GetBestFitnessDistance(sets, false) != UINT32_MAX) {
return true;
}
}
return false;
}
/* static */ uint32_t MediaConstraintsHelper::GetMinimumFitnessDistance(
const NormalizedConstraintSet& aConstraints, const nsString& aDeviceId) {
return FitnessDistance(aDeviceId, aConstraints.mDeviceId);
}
template <class ValueType, class NormalizedRange>
/* static */ uint32_t MediaConstraintsHelper::FitnessDistance(
ValueType aN, const NormalizedRange& aRange) {
if (aRange.mMin > aN || aRange.mMax < aN) {
return UINT32_MAX;
}
if (aN == aRange.mIdeal.valueOr(aN)) {
return 0;
}
return uint32_t(
ValueType((std::abs(aN - aRange.mIdeal.value()) * 1000) /
std::max(std::abs(aN), std::abs(aRange.mIdeal.value()))));
}
template <class ValueType, class NormalizedRange>
/* static */ uint32_t MediaConstraintsHelper::FeasibilityDistance(
ValueType aN, const NormalizedRange& aRange) {
if (aRange.mMin > aN) {
return UINT32_MAX;
}
// We prefer larger resolution because now we support downscaling
if (aN == aRange.mIdeal.valueOr(aN)) {
return 0;
}
if (aN > aRange.mIdeal.value()) {
return uint32_t(
ValueType((std::abs(aN - aRange.mIdeal.value()) * 1000) /
std::max(std::abs(aN), std::abs(aRange.mIdeal.value()))));
}
return 10000 + uint32_t(ValueType(
(std::abs(aN - aRange.mIdeal.value()) * 1000) /
std::max(std::abs(aN), std::abs(aRange.mIdeal.value()))));
}
// Fitness distance returned as integer math * 1000. Infinity = UINT32_MAX
/* static */ uint32_t MediaConstraintsHelper::FitnessDistance(
nsString aN, const NormalizedConstraintSet::StringRange& aParams) {
if (!aParams.mExact.empty() &&
aParams.mExact.find(aN) == aParams.mExact.end()) {
return UINT32_MAX;
}
if (!aParams.mIdeal.empty() &&
aParams.mIdeal.find(aN) == aParams.mIdeal.end()) {
return 1000;
}
return 0;
}
/* static */ const char* MediaConstraintsHelper::SelectSettings(
const NormalizedConstraints& aConstraints,
nsTArray<RefPtr<MediaDevice>>& aDevices, bool aIsChrome) {
auto& c = aConstraints;
LogConstraints(c);
// First apply top-level constraints.
// Stack constraintSets that pass, starting with the required one, because the
// whole stack must be re-satisfied each time a capability-set is ruled out
// (this avoids storing state or pushing algorithm into the lower-level code).
nsTArray<RefPtr<MediaDevice>> unsatisfactory;
nsTArray<const NormalizedConstraintSet*> aggregateConstraints;
aggregateConstraints.AppendElement(&c);
std::multimap<uint32_t, RefPtr<MediaDevice>> ordered;
for (uint32_t i = 0; i < aDevices.Length();) {
uint32_t distance =
aDevices[i]->GetBestFitnessDistance(aggregateConstraints, aIsChrome);
if (distance == UINT32_MAX) {
unsatisfactory.AppendElement(std::move(aDevices[i]));
aDevices.RemoveElementAt(i);
} else {
ordered.insert(std::make_pair(distance, aDevices[i]));
++i;
}
}
if (aDevices.IsEmpty()) {
return FindBadConstraint(c, unsatisfactory);
}
// Order devices by shortest distance
for (auto& ordinal : ordered) {
aDevices.RemoveElement(ordinal.second);
aDevices.AppendElement(ordinal.second);
}
// Then apply advanced constraints.
for (int i = 0; i < int(c.mAdvanced.size()); i++) {
aggregateConstraints.AppendElement(&c.mAdvanced[i]);
nsTArray<RefPtr<MediaDevice>> rejects;
for (uint32_t j = 0; j < aDevices.Length();) {
uint32_t distance =
aDevices[j]->GetBestFitnessDistance(aggregateConstraints, aIsChrome);
if (distance == UINT32_MAX) {
rejects.AppendElement(std::move(aDevices[j]));
aDevices.RemoveElementAt(j);
} else {
++j;
}
}
if (aDevices.IsEmpty()) {
aDevices.AppendElements(std::move(rejects));
aggregateConstraints.RemoveLastElement();
}
}
return nullptr;
}
/* static */ const char* MediaConstraintsHelper::FindBadConstraint(
const NormalizedConstraints& aConstraints,
const nsTArray<RefPtr<MediaDevice>>& aDevices) {
// The spec says to report a constraint that satisfies NONE
// of the sources. Unfortunately, this is a bit laborious to find out, and
// requires updating as new constraints are added!
auto& c = aConstraints;
dom::MediaTrackConstraints empty;
if (aDevices.IsEmpty() ||
!SomeSettingsFit(NormalizedConstraints(empty), aDevices)) {
return "";
}
{
NormalizedConstraints fresh(empty);
fresh.mDeviceId = c.mDeviceId;
if (!SomeSettingsFit(fresh, aDevices)) {
return "deviceId";
}
}
{
NormalizedConstraints fresh(empty);
fresh.mWidth = c.mWidth;
if (!SomeSettingsFit(fresh, aDevices)) {
return "width";
}
}
{
NormalizedConstraints fresh(empty);
fresh.mHeight = c.mHeight;
if (!SomeSettingsFit(fresh, aDevices)) {
return "height";
}
}
{
NormalizedConstraints fresh(empty);
fresh.mFrameRate = c.mFrameRate;
if (!SomeSettingsFit(fresh, aDevices)) {
return "frameRate";
}
}
{
NormalizedConstraints fresh(empty);
fresh.mFacingMode = c.mFacingMode;
if (!SomeSettingsFit(fresh, aDevices)) {
return "facingMode";
}
}
return "";
}
/* static */ const char* MediaConstraintsHelper::FindBadConstraint(
const NormalizedConstraints& aConstraints,
const RefPtr<MediaEngineSource>& aMediaEngineSource,
const nsString& aDeviceId) {
AutoTArray<RefPtr<MediaDevice>, 1> devices;
devices.AppendElement(
MakeRefPtr<MediaDevice>(aMediaEngineSource, aMediaEngineSource->GetName(),
aDeviceId, NS_LITERAL_STRING("")));
return FindBadConstraint(aConstraints, devices);
}
static void LogConstraintStringRange(
const NormalizedConstraintSet::StringRange& aRange) {
if (aRange.mExact.size() <= 1 && aRange.mIdeal.size() <= 1) {
LOG(" %s: { exact: [%s], ideal: [%s] }", aRange.mName,
(aRange.mExact.size()
? NS_ConvertUTF16toUTF8(*aRange.mExact.begin()).get()
: ""),
(aRange.mIdeal.size()
? NS_ConvertUTF16toUTF8(*aRange.mIdeal.begin()).get()
: ""));
} else {
LOG(" %s: { exact: [", aRange.mName);
for (auto& entry : aRange.mExact) {
LOG(" %s,", NS_ConvertUTF16toUTF8(entry).get());
}
LOG(" ], ideal: [");
for (auto& entry : aRange.mIdeal) {
LOG(" %s,", NS_ConvertUTF16toUTF8(entry).get());
}
LOG(" ]}");
}
}
template <typename T>
static void LogConstraintRange(
const NormalizedConstraintSet::Range<T>& aRange) {
if (aRange.mIdeal.isSome()) {
LOG(" %s: { min: %d, max: %d, ideal: %d }", aRange.mName, aRange.mMin,
aRange.mMax, aRange.mIdeal.valueOr(0));
} else {
LOG(" %s: { min: %d, max: %d }", aRange.mName, aRange.mMin, aRange.mMax);
}
}
template <>
void LogConstraintRange(const NormalizedConstraintSet::Range<double>& aRange) {
if (aRange.mIdeal.isSome()) {
LOG(" %s: { min: %f, max: %f, ideal: %f }", aRange.mName, aRange.mMin,
aRange.mMax, aRange.mIdeal.valueOr(0));
} else {
LOG(" %s: { min: %f, max: %f }", aRange.mName, aRange.mMin, aRange.mMax);
}
}
/* static */ void MediaConstraintsHelper::LogConstraints(
const NormalizedConstraintSet& aConstraints) {
auto& c = aConstraints;
LOG("Constraints: {");
LOG("%s", [&]() {
LogConstraintRange(c.mWidth);
LogConstraintRange(c.mHeight);
LogConstraintRange(c.mFrameRate);
LogConstraintStringRange(c.mMediaSource);
LogConstraintStringRange(c.mFacingMode);
LogConstraintStringRange(c.mDeviceId);
LogConstraintRange(c.mEchoCancellation);
LogConstraintRange(c.mAutoGainControl);
LogConstraintRange(c.mNoiseSuppression);
LogConstraintRange(c.mChannelCount);
return "}";
}());
}
} // namespace mozilla