gecko-dev/dom/media/gtest/TestAudioSegment.cpp

304 строки
7.8 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "AudioSegment.h"
#include <iostream>
#include "gtest/gtest.h"
using namespace mozilla;
namespace audio_segment {
/* Helper function to give us the maximum and minimum value that don't clip,
* for a given sample format (integer or floating-point). */
template <typename T>
T GetLowValue();
template <typename T>
T GetHighValue();
template <typename T>
T GetSilentValue();
template <>
float GetLowValue<float>() {
return -1.0;
}
template <>
int16_t GetLowValue<short>() {
return -INT16_MAX;
}
template <>
float GetHighValue<float>() {
return 1.0;
}
template <>
int16_t GetHighValue<short>() {
return INT16_MAX;
}
template <>
float GetSilentValue() {
return 0.0;
}
template <>
int16_t GetSilentValue() {
return 0;
}
// Get an array of planar audio buffers that has the inverse of the index of the
// channel (1-indexed) as samples.
template <typename T>
const T* const* GetPlanarChannelArray(size_t aChannels, size_t aSize) {
T** channels = new T*[aChannels];
for (size_t c = 0; c < aChannels; c++) {
channels[c] = new T[aSize];
for (size_t i = 0; i < aSize; i++) {
channels[c][i] = FloatToAudioSample<T>(1. / (c + 1));
}
}
return channels;
}
template <typename T>
void DeletePlanarChannelsArray(const T* const* aArrays, size_t aChannels) {
for (size_t channel = 0; channel < aChannels; channel++) {
delete[] aArrays[channel];
}
delete[] aArrays;
}
template <typename T>
T** GetPlanarArray(size_t aChannels, size_t aSize) {
T** channels = new T*[aChannels];
for (size_t c = 0; c < aChannels; c++) {
channels[c] = new T[aSize];
for (size_t i = 0; i < aSize; i++) {
channels[c][i] = 0.0f;
}
}
return channels;
}
template <typename T>
void DeletePlanarArray(T** aArrays, size_t aChannels) {
for (size_t channel = 0; channel < aChannels; channel++) {
delete[] aArrays[channel];
}
delete[] aArrays;
}
// Get an array of audio samples that have the inverse of the index of the
// channel (1-indexed) as samples.
template <typename T>
const T* GetInterleavedChannelArray(size_t aChannels, size_t aSize) {
size_t sampleCount = aChannels * aSize;
T* samples = new T[sampleCount];
for (size_t i = 0; i < sampleCount; i++) {
uint32_t channel = (i % aChannels) + 1;
samples[i] = FloatToAudioSample<T>(1. / channel);
}
return samples;
}
template <typename T>
void DeleteInterleavedChannelArray(const T* aArray) {
delete[] aArray;
}
bool FuzzyEqual(float aLhs, float aRhs) { return std::abs(aLhs - aRhs) < 0.01; }
template <typename SrcT, typename DstT>
void TestInterleaveAndConvert() {
size_t arraySize = 1024;
size_t maxChannels = 8; // 7.1
for (uint32_t channels = 1; channels < maxChannels; channels++) {
const SrcT* const* src = GetPlanarChannelArray<SrcT>(channels, arraySize);
DstT* dst = new DstT[channels * arraySize];
InterleaveAndConvertBuffer(src, arraySize, 1.0, channels, dst);
uint32_t channelIndex = 0;
for (size_t i = 0; i < arraySize * channels; i++) {
ASSERT_TRUE(FuzzyEqual(
dst[i], FloatToAudioSample<DstT>(1. / (channelIndex + 1))));
channelIndex++;
channelIndex %= channels;
}
DeletePlanarChannelsArray(src, channels);
delete[] dst;
}
}
template <typename SrcT, typename DstT>
void TestDeinterleaveAndConvert() {
size_t arraySize = 1024;
size_t maxChannels = 8; // 7.1
for (uint32_t channels = 1; channels < maxChannels; channels++) {
const SrcT* src = GetInterleavedChannelArray<SrcT>(channels, arraySize);
DstT** dst = GetPlanarArray<DstT>(channels, arraySize);
DeinterleaveAndConvertBuffer(src, arraySize, channels, dst);
for (size_t channel = 0; channel < channels; channel++) {
for (size_t i = 0; i < arraySize; i++) {
ASSERT_TRUE(FuzzyEqual(dst[channel][i],
FloatToAudioSample<DstT>(1. / (channel + 1))));
}
}
DeleteInterleavedChannelArray(src);
DeletePlanarArray(dst, channels);
}
}
uint8_t gSilence[4096] = {0};
template <typename T>
T* SilentChannel() {
return reinterpret_cast<T*>(gSilence);
}
template <typename T>
void TestUpmixStereo() {
size_t arraySize = 1024;
nsTArray<T*> channels;
nsTArray<const T*> channelsptr;
channels.SetLength(1);
channelsptr.SetLength(1);
channels[0] = new T[arraySize];
for (size_t i = 0; i < arraySize; i++) {
channels[0][i] = GetHighValue<T>();
}
channelsptr[0] = channels[0];
AudioChannelsUpMix(&channelsptr, 2, SilentChannel<T>());
for (size_t channel = 0; channel < 2; channel++) {
for (size_t i = 0; i < arraySize; i++) {
ASSERT_TRUE(channelsptr[channel][i] == GetHighValue<T>());
}
}
delete[] channels[0];
}
template <typename T>
void TestDownmixStereo() {
const size_t arraySize = 1024;
nsTArray<const T*> inputptr;
nsTArray<T*> input;
T** output;
output = new T*[1];
output[0] = new T[arraySize];
input.SetLength(2);
inputptr.SetLength(2);
for (size_t channel = 0; channel < input.Length(); channel++) {
input[channel] = new T[arraySize];
for (size_t i = 0; i < arraySize; i++) {
input[channel][i] = channel == 0 ? GetLowValue<T>() : GetHighValue<T>();
}
inputptr[channel] = input[channel];
}
AudioChannelsDownMix(inputptr, output, 1, arraySize);
for (size_t i = 0; i < arraySize; i++) {
ASSERT_TRUE(output[0][i] == GetSilentValue<T>());
ASSERT_TRUE(output[0][i] == GetSilentValue<T>());
}
delete[] output[0];
delete[] output;
}
TEST(AudioSegment, Test)
{
TestInterleaveAndConvert<float, float>();
TestInterleaveAndConvert<float, int16_t>();
TestInterleaveAndConvert<int16_t, float>();
TestInterleaveAndConvert<int16_t, int16_t>();
TestDeinterleaveAndConvert<float, float>();
TestDeinterleaveAndConvert<float, int16_t>();
TestDeinterleaveAndConvert<int16_t, float>();
TestDeinterleaveAndConvert<int16_t, int16_t>();
TestUpmixStereo<float>();
TestUpmixStereo<int16_t>();
TestDownmixStereo<float>();
TestDownmixStereo<int16_t>();
}
template <class T>
void fillChunkWithStereo(AudioChunk* c, int duration) {
c->mDuration = duration;
AutoTArray<nsTArray<T>, 2> stereo;
stereo.SetLength(2);
T* ch1 = stereo[0].AppendElements(duration);
T* ch2 = stereo[1].AppendElements(duration);
for (int i = 0; i < duration; ++i) {
ch1[i] = GetHighValue<T>();
ch2[i] = GetHighValue<T>();
}
c->mBuffer = new mozilla::SharedChannelArrayBuffer<T>(&stereo);
c->mChannelData.SetLength(2);
c->mChannelData[0] = ch1;
c->mChannelData[1] = ch2;
c->mBufferFormat = AUDIO_FORMAT_FLOAT32;
}
TEST(AudioSegment, FlushAfter_ZeroDuration)
{
AudioChunk c;
fillChunkWithStereo<float>(&c, 10);
AudioSegment s;
s.AppendAndConsumeChunk(&c);
s.FlushAfter(0);
EXPECT_EQ(s.GetDuration(), 0);
}
TEST(AudioSegment, FlushAfter_SmallerDuration)
{
// It was crashing when the first chunk was silence (null) and FlushAfter
// was called for a duration, smaller or equal to the duration of the
// first chunk.
TrackTime duration = 10;
TrackTime smaller_duration = 8;
AudioChunk c1;
c1.SetNull(duration);
AudioChunk c2;
fillChunkWithStereo<float>(&c2, duration);
AudioSegment s;
s.AppendAndConsumeChunk(&c1);
s.AppendAndConsumeChunk(&c2);
s.FlushAfter(smaller_duration);
EXPECT_EQ(s.GetDuration(), smaller_duration) << "Check new duration";
TrackTime chunkByChunkDuration = 0;
for (AudioSegment::ChunkIterator iter(s); !iter.IsEnded(); iter.Next()) {
chunkByChunkDuration += iter->GetDuration();
}
EXPECT_EQ(s.GetDuration(), chunkByChunkDuration)
<< "Confirm duration chunk by chunk";
}
} // namespace audio_segment