зеркало из https://github.com/mozilla/gecko-dev.git
742 строки
22 KiB
C++
742 строки
22 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "nsThreadUtils.h"
|
|
|
|
#include "chrome/common/ipc_message.h" // for IPC::Message
|
|
#include "LeakRefPtr.h"
|
|
#include "mozilla/Attributes.h"
|
|
#include "mozilla/Likely.h"
|
|
#include "mozilla/TimeStamp.h"
|
|
#include "nsComponentManagerUtils.h"
|
|
#include "nsExceptionHandler.h"
|
|
#include "nsIEventTarget.h"
|
|
#include "nsITimer.h"
|
|
#include "nsTimerImpl.h"
|
|
#include "prsystem.h"
|
|
|
|
#include "nsThreadManager.h"
|
|
#include "nsThreadPool.h"
|
|
#include "TaskController.h"
|
|
|
|
#ifdef XP_WIN
|
|
# include <windows.h>
|
|
#elif defined(XP_MACOSX)
|
|
# include <sys/resource.h>
|
|
#endif
|
|
|
|
#if defined(ANDROID)
|
|
# include <sys/prctl.h>
|
|
#endif
|
|
|
|
static mozilla::LazyLogModule sEventDispatchAndRunLog("events");
|
|
#ifdef LOG1
|
|
# undef LOG1
|
|
#endif
|
|
#define LOG1(args) \
|
|
MOZ_LOG(sEventDispatchAndRunLog, mozilla::LogLevel::Error, args)
|
|
#define LOG1_ENABLED() \
|
|
MOZ_LOG_TEST(sEventDispatchAndRunLog, mozilla::LogLevel::Error)
|
|
|
|
using namespace mozilla;
|
|
|
|
#ifndef XPCOM_GLUE_AVOID_NSPR
|
|
|
|
NS_IMPL_ISUPPORTS(IdlePeriod, nsIIdlePeriod)
|
|
|
|
NS_IMETHODIMP
|
|
IdlePeriod::GetIdlePeriodHint(TimeStamp* aIdleDeadline) {
|
|
*aIdleDeadline = TimeStamp();
|
|
return NS_OK;
|
|
}
|
|
|
|
// NS_IMPL_NAMED_* relies on the mName field, which is not present on
|
|
// release or beta. Instead, fall back to using "Runnable" for all
|
|
// runnables.
|
|
# ifndef MOZ_COLLECTING_RUNNABLE_TELEMETRY
|
|
NS_IMPL_ISUPPORTS(Runnable, nsIRunnable)
|
|
# else
|
|
NS_IMPL_NAMED_ADDREF(Runnable, mName)
|
|
NS_IMPL_NAMED_RELEASE(Runnable, mName)
|
|
NS_IMPL_QUERY_INTERFACE(Runnable, nsIRunnable, nsINamed)
|
|
# endif
|
|
|
|
NS_IMETHODIMP
|
|
Runnable::Run() {
|
|
// Do nothing
|
|
return NS_OK;
|
|
}
|
|
|
|
# ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
|
|
NS_IMETHODIMP
|
|
Runnable::GetName(nsACString& aName) {
|
|
if (mName) {
|
|
aName.AssignASCII(mName);
|
|
} else {
|
|
aName.Truncate();
|
|
}
|
|
return NS_OK;
|
|
}
|
|
# endif
|
|
|
|
NS_IMPL_ISUPPORTS_INHERITED(DiscardableRunnable, Runnable,
|
|
nsIDiscardableRunnable)
|
|
|
|
NS_IMPL_ISUPPORTS_INHERITED(CancelableRunnable, DiscardableRunnable,
|
|
nsICancelableRunnable)
|
|
|
|
void CancelableRunnable::OnDiscard() {
|
|
// Tasks that implement Cancel() can be safely cleaned up if it turns out
|
|
// that the task will not run.
|
|
(void)NS_WARN_IF(NS_FAILED(Cancel()));
|
|
}
|
|
|
|
NS_IMPL_ISUPPORTS_INHERITED(IdleRunnable, DiscardableRunnable, nsIIdleRunnable)
|
|
|
|
NS_IMPL_ISUPPORTS_INHERITED(CancelableIdleRunnable, CancelableRunnable,
|
|
nsIIdleRunnable)
|
|
|
|
NS_IMPL_ISUPPORTS_INHERITED(PrioritizableRunnable, Runnable,
|
|
nsIRunnablePriority)
|
|
|
|
PrioritizableRunnable::PrioritizableRunnable(
|
|
already_AddRefed<nsIRunnable>&& aRunnable, uint32_t aPriority)
|
|
// Real runnable name is managed by overridding the GetName function.
|
|
: Runnable("PrioritizableRunnable"),
|
|
mRunnable(std::move(aRunnable)),
|
|
mPriority(aPriority) {
|
|
# if DEBUG
|
|
nsCOMPtr<nsIRunnablePriority> runnablePrio = do_QueryInterface(mRunnable);
|
|
MOZ_ASSERT(!runnablePrio);
|
|
# endif
|
|
}
|
|
|
|
# ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
|
|
NS_IMETHODIMP
|
|
PrioritizableRunnable::GetName(nsACString& aName) {
|
|
// Try to get a name from the underlying runnable.
|
|
nsCOMPtr<nsINamed> named = do_QueryInterface(mRunnable);
|
|
if (named) {
|
|
named->GetName(aName);
|
|
}
|
|
return NS_OK;
|
|
}
|
|
# endif
|
|
|
|
NS_IMETHODIMP
|
|
PrioritizableRunnable::Run() {
|
|
MOZ_RELEASE_ASSERT(NS_IsMainThread());
|
|
return mRunnable->Run();
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
PrioritizableRunnable::GetPriority(uint32_t* aPriority) {
|
|
*aPriority = mPriority;
|
|
return NS_OK;
|
|
}
|
|
|
|
already_AddRefed<nsIRunnable> mozilla::CreateRenderBlockingRunnable(
|
|
already_AddRefed<nsIRunnable>&& aRunnable) {
|
|
nsCOMPtr<nsIRunnable> runnable = new PrioritizableRunnable(
|
|
std::move(aRunnable), nsIRunnablePriority::PRIORITY_RENDER_BLOCKING);
|
|
return runnable.forget();
|
|
}
|
|
|
|
NS_IMPL_ISUPPORTS_INHERITED(PrioritizableCancelableRunnable, CancelableRunnable,
|
|
nsIRunnablePriority)
|
|
|
|
NS_IMETHODIMP
|
|
PrioritizableCancelableRunnable::GetPriority(uint32_t* aPriority) {
|
|
*aPriority = mPriority;
|
|
return NS_OK;
|
|
}
|
|
|
|
#endif // XPCOM_GLUE_AVOID_NSPR
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
nsresult NS_NewNamedThread(const nsACString& aName, nsIThread** aResult,
|
|
nsIRunnable* aInitialEvent,
|
|
nsIThreadManager::ThreadCreationOptions aOptions) {
|
|
nsCOMPtr<nsIRunnable> event = aInitialEvent;
|
|
return NS_NewNamedThread(aName, aResult, event.forget(), aOptions);
|
|
}
|
|
|
|
nsresult NS_NewNamedThread(const nsACString& aName, nsIThread** aResult,
|
|
already_AddRefed<nsIRunnable> aInitialEvent,
|
|
nsIThreadManager::ThreadCreationOptions aOptions) {
|
|
nsCOMPtr<nsIRunnable> event = std::move(aInitialEvent);
|
|
nsCOMPtr<nsIThread> thread;
|
|
nsresult rv = nsThreadManager::get().nsThreadManager::NewNamedThread(
|
|
aName, aOptions, getter_AddRefs(thread));
|
|
if (NS_WARN_IF(NS_FAILED(rv))) {
|
|
return rv;
|
|
}
|
|
|
|
if (event) {
|
|
rv = thread->Dispatch(event.forget(), NS_DISPATCH_IGNORE_BLOCK_DISPATCH);
|
|
if (NS_WARN_IF(NS_FAILED(rv))) {
|
|
return rv;
|
|
}
|
|
}
|
|
|
|
*aResult = nullptr;
|
|
thread.swap(*aResult);
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult NS_GetCurrentThread(nsIThread** aResult) {
|
|
return nsThreadManager::get().nsThreadManager::GetCurrentThread(aResult);
|
|
}
|
|
|
|
nsresult NS_GetMainThread(nsIThread** aResult) {
|
|
return nsThreadManager::get().nsThreadManager::GetMainThread(aResult);
|
|
}
|
|
|
|
nsresult NS_DispatchToCurrentThread(already_AddRefed<nsIRunnable>&& aEvent) {
|
|
nsresult rv;
|
|
nsCOMPtr<nsIRunnable> event(aEvent);
|
|
// XXX: Consider using GetCurrentSerialEventTarget() to support TaskQueues.
|
|
nsISerialEventTarget* thread = NS_GetCurrentThread();
|
|
if (!thread) {
|
|
return NS_ERROR_UNEXPECTED;
|
|
}
|
|
// To keep us from leaking the runnable if dispatch method fails,
|
|
// we grab the reference on failures and release it.
|
|
nsIRunnable* temp = event.get();
|
|
rv = thread->Dispatch(event.forget(), NS_DISPATCH_NORMAL);
|
|
if (NS_WARN_IF(NS_FAILED(rv))) {
|
|
// Dispatch() leaked the reference to the event, but due to caller's
|
|
// assumptions, we shouldn't leak here. And given we are on the same
|
|
// thread as the dispatch target, it's mostly safe to do it here.
|
|
NS_RELEASE(temp);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
// It is common to call NS_DispatchToCurrentThread with a newly
|
|
// allocated runnable with a refcount of zero. To keep us from leaking
|
|
// the runnable if the dispatch method fails, we take a death grip.
|
|
nsresult NS_DispatchToCurrentThread(nsIRunnable* aEvent) {
|
|
nsCOMPtr<nsIRunnable> event(aEvent);
|
|
return NS_DispatchToCurrentThread(event.forget());
|
|
}
|
|
|
|
nsresult NS_DispatchToMainThread(already_AddRefed<nsIRunnable>&& aEvent,
|
|
uint32_t aDispatchFlags) {
|
|
LeakRefPtr<nsIRunnable> event(std::move(aEvent));
|
|
nsCOMPtr<nsIThread> thread;
|
|
nsresult rv = NS_GetMainThread(getter_AddRefs(thread));
|
|
if (NS_WARN_IF(NS_FAILED(rv))) {
|
|
NS_ASSERTION(false,
|
|
"Failed NS_DispatchToMainThread() in shutdown; leaking");
|
|
// NOTE: if you stop leaking here, adjust Promise::MaybeReportRejected(),
|
|
// which assumes a leak here, or split into leaks and no-leaks versions
|
|
return rv;
|
|
}
|
|
return thread->Dispatch(event.take(), aDispatchFlags);
|
|
}
|
|
|
|
// In the case of failure with a newly allocated runnable with a
|
|
// refcount of zero, we intentionally leak the runnable, because it is
|
|
// likely that the runnable is being dispatched to the main thread
|
|
// because it owns main thread only objects, so it is not safe to
|
|
// release them here.
|
|
nsresult NS_DispatchToMainThread(nsIRunnable* aEvent, uint32_t aDispatchFlags) {
|
|
nsCOMPtr<nsIRunnable> event(aEvent);
|
|
return NS_DispatchToMainThread(event.forget(), aDispatchFlags);
|
|
}
|
|
|
|
nsresult NS_DelayedDispatchToCurrentThread(
|
|
already_AddRefed<nsIRunnable>&& aEvent, uint32_t aDelayMs) {
|
|
nsCOMPtr<nsIRunnable> event(aEvent);
|
|
|
|
// XXX: Consider using GetCurrentSerialEventTarget() to support TaskQueues.
|
|
nsISerialEventTarget* thread = NS_GetCurrentThread();
|
|
if (!thread) {
|
|
return NS_ERROR_UNEXPECTED;
|
|
}
|
|
|
|
return thread->DelayedDispatch(event.forget(), aDelayMs);
|
|
}
|
|
|
|
nsresult NS_DispatchToThreadQueue(already_AddRefed<nsIRunnable>&& aEvent,
|
|
nsIThread* aThread,
|
|
EventQueuePriority aQueue) {
|
|
nsresult rv;
|
|
nsCOMPtr<nsIRunnable> event(aEvent);
|
|
NS_ENSURE_TRUE(event, NS_ERROR_INVALID_ARG);
|
|
if (!aThread) {
|
|
return NS_ERROR_UNEXPECTED;
|
|
}
|
|
// To keep us from leaking the runnable if dispatch method fails,
|
|
// we grab the reference on failures and release it.
|
|
nsIRunnable* temp = event.get();
|
|
rv = aThread->DispatchToQueue(event.forget(), aQueue);
|
|
if (NS_WARN_IF(NS_FAILED(rv))) {
|
|
// Dispatch() leaked the reference to the event, but due to caller's
|
|
// assumptions, we shouldn't leak here. And given we are on the same
|
|
// thread as the dispatch target, it's mostly safe to do it here.
|
|
NS_RELEASE(temp);
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
nsresult NS_DispatchToCurrentThreadQueue(already_AddRefed<nsIRunnable>&& aEvent,
|
|
EventQueuePriority aQueue) {
|
|
return NS_DispatchToThreadQueue(std::move(aEvent), NS_GetCurrentThread(),
|
|
aQueue);
|
|
}
|
|
|
|
extern nsresult NS_DispatchToMainThreadQueue(
|
|
already_AddRefed<nsIRunnable>&& aEvent, EventQueuePriority aQueue) {
|
|
nsCOMPtr<nsIThread> mainThread;
|
|
nsresult rv = NS_GetMainThread(getter_AddRefs(mainThread));
|
|
if (NS_SUCCEEDED(rv)) {
|
|
return NS_DispatchToThreadQueue(std::move(aEvent), mainThread, aQueue);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
class IdleRunnableWrapper final : public Runnable,
|
|
public nsIDiscardableRunnable,
|
|
public nsIIdleRunnable {
|
|
public:
|
|
explicit IdleRunnableWrapper(already_AddRefed<nsIRunnable>&& aEvent)
|
|
: Runnable("IdleRunnableWrapper"),
|
|
mRunnable(std::move(aEvent)),
|
|
mDiscardable(do_QueryInterface(mRunnable)) {}
|
|
|
|
NS_DECL_ISUPPORTS_INHERITED
|
|
|
|
NS_IMETHOD Run() override {
|
|
if (!mRunnable) {
|
|
return NS_OK;
|
|
}
|
|
CancelTimer();
|
|
// Don't clear mDiscardable because that would cause QueryInterface to
|
|
// change behavior during the lifetime of an instance.
|
|
nsCOMPtr<nsIRunnable> runnable = std::move(mRunnable);
|
|
return runnable->Run();
|
|
}
|
|
|
|
// nsIDiscardableRunnable
|
|
void OnDiscard() override {
|
|
if (!mRunnable) {
|
|
// Run() was already called from TimedOut().
|
|
return;
|
|
}
|
|
mDiscardable->OnDiscard();
|
|
mRunnable = nullptr;
|
|
}
|
|
|
|
static void TimedOut(nsITimer* aTimer, void* aClosure) {
|
|
RefPtr<IdleRunnableWrapper> runnable =
|
|
static_cast<IdleRunnableWrapper*>(aClosure);
|
|
LogRunnable::Run log(runnable);
|
|
runnable->Run();
|
|
runnable = nullptr;
|
|
}
|
|
|
|
void SetTimer(uint32_t aDelay, nsIEventTarget* aTarget) override {
|
|
MOZ_ASSERT(aTarget);
|
|
MOZ_ASSERT(!mTimer);
|
|
NS_NewTimerWithFuncCallback(getter_AddRefs(mTimer), TimedOut, this, aDelay,
|
|
nsITimer::TYPE_ONE_SHOT,
|
|
"IdleRunnableWrapper::SetTimer", aTarget);
|
|
}
|
|
|
|
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
|
|
NS_IMETHOD GetName(nsACString& aName) override {
|
|
aName.AssignLiteral("IdleRunnableWrapper");
|
|
if (nsCOMPtr<nsINamed> named = do_QueryInterface(mRunnable)) {
|
|
nsAutoCString name;
|
|
named->GetName(name);
|
|
if (!name.IsEmpty()) {
|
|
aName.AppendLiteral(" for ");
|
|
aName.Append(name);
|
|
}
|
|
}
|
|
return NS_OK;
|
|
}
|
|
#endif
|
|
|
|
private:
|
|
~IdleRunnableWrapper() { CancelTimer(); }
|
|
|
|
void CancelTimer() {
|
|
if (mTimer) {
|
|
mTimer->Cancel();
|
|
}
|
|
}
|
|
|
|
nsCOMPtr<nsITimer> mTimer;
|
|
nsCOMPtr<nsIRunnable> mRunnable;
|
|
nsCOMPtr<nsIDiscardableRunnable> mDiscardable;
|
|
};
|
|
|
|
NS_IMPL_ADDREF_INHERITED(IdleRunnableWrapper, Runnable)
|
|
NS_IMPL_RELEASE_INHERITED(IdleRunnableWrapper, Runnable)
|
|
|
|
NS_INTERFACE_MAP_BEGIN(IdleRunnableWrapper)
|
|
NS_INTERFACE_MAP_ENTRY(nsIIdleRunnable)
|
|
NS_INTERFACE_MAP_ENTRY_CONDITIONAL(nsIDiscardableRunnable, mDiscardable)
|
|
NS_INTERFACE_MAP_END_INHERITING(Runnable)
|
|
|
|
extern nsresult NS_DispatchToThreadQueue(already_AddRefed<nsIRunnable>&& aEvent,
|
|
uint32_t aTimeout, nsIThread* aThread,
|
|
EventQueuePriority aQueue) {
|
|
nsCOMPtr<nsIRunnable> event(std::move(aEvent));
|
|
NS_ENSURE_TRUE(event, NS_ERROR_INVALID_ARG);
|
|
MOZ_ASSERT(aQueue == EventQueuePriority::Idle ||
|
|
aQueue == EventQueuePriority::DeferredTimers);
|
|
if (!aThread) {
|
|
return NS_ERROR_UNEXPECTED;
|
|
}
|
|
|
|
nsCOMPtr<nsIIdleRunnable> idleEvent = do_QueryInterface(event);
|
|
|
|
if (!idleEvent) {
|
|
idleEvent = new IdleRunnableWrapper(event.forget());
|
|
event = do_QueryInterface(idleEvent);
|
|
MOZ_DIAGNOSTIC_ASSERT(event);
|
|
}
|
|
idleEvent->SetTimer(aTimeout, aThread);
|
|
|
|
nsresult rv = NS_DispatchToThreadQueue(event.forget(), aThread, aQueue);
|
|
if (NS_SUCCEEDED(rv)) {
|
|
// This is intended to bind with the "DISP" log made from inside
|
|
// NS_DispatchToThreadQueue for the `event`. There is no possibly to inject
|
|
// another "DISP" for a different event on this thread.
|
|
LOG1(("TIMEOUT %u", aTimeout));
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
extern nsresult NS_DispatchToCurrentThreadQueue(
|
|
already_AddRefed<nsIRunnable>&& aEvent, uint32_t aTimeout,
|
|
EventQueuePriority aQueue) {
|
|
return NS_DispatchToThreadQueue(std::move(aEvent), aTimeout,
|
|
NS_GetCurrentThread(), aQueue);
|
|
}
|
|
|
|
#ifndef XPCOM_GLUE_AVOID_NSPR
|
|
nsresult NS_ProcessPendingEvents(nsIThread* aThread, PRIntervalTime aTimeout) {
|
|
nsresult rv = NS_OK;
|
|
|
|
if (!aThread) {
|
|
aThread = NS_GetCurrentThread();
|
|
if (NS_WARN_IF(!aThread)) {
|
|
return NS_ERROR_UNEXPECTED;
|
|
}
|
|
}
|
|
|
|
PRIntervalTime start = PR_IntervalNow();
|
|
for (;;) {
|
|
bool processedEvent;
|
|
rv = aThread->ProcessNextEvent(false, &processedEvent);
|
|
if (NS_FAILED(rv) || !processedEvent) {
|
|
break;
|
|
}
|
|
if (PR_IntervalNow() - start > aTimeout) {
|
|
break;
|
|
}
|
|
}
|
|
return rv;
|
|
}
|
|
#endif // XPCOM_GLUE_AVOID_NSPR
|
|
|
|
inline bool hasPendingEvents(nsIThread* aThread) {
|
|
bool val;
|
|
return NS_SUCCEEDED(aThread->HasPendingEvents(&val)) && val;
|
|
}
|
|
|
|
bool NS_HasPendingEvents(nsIThread* aThread) {
|
|
if (!aThread) {
|
|
aThread = NS_GetCurrentThread();
|
|
if (NS_WARN_IF(!aThread)) {
|
|
return false;
|
|
}
|
|
}
|
|
return hasPendingEvents(aThread);
|
|
}
|
|
|
|
bool NS_ProcessNextEvent(nsIThread* aThread, bool aMayWait) {
|
|
if (!aThread) {
|
|
aThread = NS_GetCurrentThread();
|
|
if (NS_WARN_IF(!aThread)) {
|
|
return false;
|
|
}
|
|
}
|
|
bool val;
|
|
return NS_SUCCEEDED(aThread->ProcessNextEvent(aMayWait, &val)) && val;
|
|
}
|
|
|
|
void NS_SetCurrentThreadName(const char* aName) {
|
|
#if defined(ANDROID)
|
|
// Workaround for Bug 1541216 - PR_SetCurrentThreadName() Fails to set the
|
|
// thread name on Android.
|
|
prctl(PR_SET_NAME, reinterpret_cast<unsigned long>(aName));
|
|
#else
|
|
PR_SetCurrentThreadName(aName);
|
|
#endif
|
|
if (nsThreadManager::get().IsNSThread()) {
|
|
nsThread* thread = nsThreadManager::get().GetCurrentThread();
|
|
thread->SetThreadNameInternal(nsDependentCString(aName));
|
|
}
|
|
}
|
|
|
|
nsIThread* NS_GetCurrentThread() {
|
|
return nsThreadManager::get().GetCurrentThread();
|
|
}
|
|
|
|
nsIThread* NS_GetCurrentThreadNoCreate() {
|
|
if (nsThreadManager::get().IsNSThread()) {
|
|
return NS_GetCurrentThread();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// nsThreadPoolNaming
|
|
nsCString nsThreadPoolNaming::GetNextThreadName(const nsACString& aPoolName) {
|
|
nsCString name(aPoolName);
|
|
name.AppendLiteral(" #");
|
|
name.AppendInt(++mCounter, 10); // The counter is declared as atomic
|
|
return name;
|
|
}
|
|
|
|
nsresult NS_DispatchBackgroundTask(already_AddRefed<nsIRunnable> aEvent,
|
|
uint32_t aDispatchFlags) {
|
|
nsCOMPtr<nsIRunnable> event(aEvent);
|
|
return nsThreadManager::get().DispatchToBackgroundThread(event,
|
|
aDispatchFlags);
|
|
}
|
|
|
|
// nsAutoLowPriorityIO
|
|
nsAutoLowPriorityIO::nsAutoLowPriorityIO() {
|
|
#if defined(XP_WIN)
|
|
lowIOPrioritySet =
|
|
SetThreadPriority(GetCurrentThread(), THREAD_MODE_BACKGROUND_BEGIN);
|
|
#elif defined(XP_MACOSX)
|
|
oldPriority = getiopolicy_np(IOPOL_TYPE_DISK, IOPOL_SCOPE_THREAD);
|
|
lowIOPrioritySet =
|
|
oldPriority != -1 &&
|
|
setiopolicy_np(IOPOL_TYPE_DISK, IOPOL_SCOPE_THREAD, IOPOL_THROTTLE) != -1;
|
|
#else
|
|
lowIOPrioritySet = false;
|
|
#endif
|
|
}
|
|
|
|
nsAutoLowPriorityIO::~nsAutoLowPriorityIO() {
|
|
#if defined(XP_WIN)
|
|
if (MOZ_LIKELY(lowIOPrioritySet)) {
|
|
// On Windows the old thread priority is automatically restored
|
|
SetThreadPriority(GetCurrentThread(), THREAD_MODE_BACKGROUND_END);
|
|
}
|
|
#elif defined(XP_MACOSX)
|
|
if (MOZ_LIKELY(lowIOPrioritySet)) {
|
|
setiopolicy_np(IOPOL_TYPE_DISK, IOPOL_SCOPE_THREAD, oldPriority);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
namespace mozilla {
|
|
|
|
nsISerialEventTarget* GetCurrentSerialEventTarget() {
|
|
if (nsISerialEventTarget* current =
|
|
SerialEventTargetGuard::GetCurrentSerialEventTarget()) {
|
|
return current;
|
|
}
|
|
|
|
MOZ_DIAGNOSTIC_ASSERT(!nsThreadPool::GetCurrentThreadPool(),
|
|
"Call to GetCurrentSerialEventTarget() from thread "
|
|
"pool without an active TaskQueue");
|
|
|
|
nsCOMPtr<nsIThread> thread;
|
|
nsresult rv = NS_GetCurrentThread(getter_AddRefs(thread));
|
|
if (NS_FAILED(rv)) {
|
|
return nullptr;
|
|
}
|
|
|
|
return thread;
|
|
}
|
|
|
|
nsISerialEventTarget* GetMainThreadSerialEventTarget() {
|
|
return static_cast<nsThread*>(nsThreadManager::get().GetMainThreadWeak());
|
|
}
|
|
|
|
size_t GetNumberOfProcessors() {
|
|
#if defined(XP_LINUX) && defined(MOZ_SANDBOX)
|
|
static const PRInt32 procs = PR_GetNumberOfProcessors();
|
|
#else
|
|
PRInt32 procs = PR_GetNumberOfProcessors();
|
|
#endif
|
|
MOZ_ASSERT(procs > 0);
|
|
return static_cast<size_t>(procs);
|
|
}
|
|
|
|
template <typename T>
|
|
void LogTaskBase<T>::LogDispatch(T* aEvent) {
|
|
LOG1(("DISP %p", aEvent));
|
|
}
|
|
template <typename T>
|
|
void LogTaskBase<T>::LogDispatch(T* aEvent, void* aContext) {
|
|
LOG1(("DISP %p (%p)", aEvent, aContext));
|
|
}
|
|
|
|
template <>
|
|
void LogTaskBase<IPC::Message>::LogDispatchWithPid(IPC::Message* aEvent,
|
|
int32_t aPid) {
|
|
if (aEvent->seqno() && aPid > 0) {
|
|
LOG1(("SEND %p %d %d", aEvent, aEvent->seqno(), aPid));
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
LogTaskBase<T>::Run::Run(T* aEvent, bool aWillRunAgain)
|
|
: mWillRunAgain(aWillRunAgain) {
|
|
// Logging address of this RAII so that we can use it to identify the DONE log
|
|
// while not keeping any ref to the event that could be invalid at the dtor
|
|
// time.
|
|
LOG1(("EXEC %p %p", aEvent, this));
|
|
}
|
|
template <typename T>
|
|
LogTaskBase<T>::Run::Run(T* aEvent, void* aContext, bool aWillRunAgain)
|
|
: mWillRunAgain(aWillRunAgain) {
|
|
LOG1(("EXEC %p (%p) %p", aEvent, aContext, this));
|
|
}
|
|
|
|
template <>
|
|
LogTaskBase<nsIRunnable>::Run::Run(nsIRunnable* aEvent, bool aWillRunAgain)
|
|
: mWillRunAgain(aWillRunAgain) {
|
|
if (!LOG1_ENABLED()) {
|
|
return;
|
|
}
|
|
|
|
nsCOMPtr<nsINamed> named(do_QueryInterface(aEvent));
|
|
if (!named) {
|
|
LOG1(("EXEC %p %p", aEvent, this));
|
|
return;
|
|
}
|
|
|
|
nsAutoCString name;
|
|
named->GetName(name);
|
|
LOG1(("EXEC %p %p [%s]", aEvent, this, name.BeginReading()));
|
|
}
|
|
|
|
template <>
|
|
LogTaskBase<Task>::Run::Run(Task* aTask, bool aWillRunAgain)
|
|
: mWillRunAgain(aWillRunAgain) {
|
|
if (!LOG1_ENABLED()) {
|
|
return;
|
|
}
|
|
|
|
nsAutoCString name;
|
|
if (!aTask->GetName(name)) {
|
|
LOG1(("EXEC %p %p", aTask, this));
|
|
return;
|
|
}
|
|
|
|
LOG1(("EXEC %p %p [%s]", aTask, this, name.BeginReading()));
|
|
}
|
|
|
|
template <>
|
|
LogTaskBase<IPC::Message>::Run::Run(IPC::Message* aMessage, bool aWillRunAgain)
|
|
: mWillRunAgain(aWillRunAgain) {
|
|
LOG1(("RECV %p %p %d [%s]", aMessage, this, aMessage->seqno(),
|
|
aMessage->name()));
|
|
}
|
|
|
|
template <>
|
|
LogTaskBase<nsTimerImpl>::Run::Run(nsTimerImpl* aEvent, bool aWillRunAgain)
|
|
: mWillRunAgain(aWillRunAgain) {
|
|
// The name of the timer will be logged when running it on the target thread.
|
|
// Logging it here (on the `Timer` thread) would be redundant.
|
|
LOG1(("EXEC %p %p [nsTimerImpl]", aEvent, this));
|
|
}
|
|
|
|
template <typename T>
|
|
LogTaskBase<T>::Run::~Run() {
|
|
LOG1((mWillRunAgain ? "INTERRUPTED %p" : "DONE %p", this));
|
|
}
|
|
|
|
template class LogTaskBase<nsIRunnable>;
|
|
template class LogTaskBase<MicroTaskRunnable>;
|
|
template class LogTaskBase<IPC::Message>;
|
|
template class LogTaskBase<nsTimerImpl>;
|
|
template class LogTaskBase<Task>;
|
|
template class LogTaskBase<PresShell>;
|
|
template class LogTaskBase<dom::FrameRequestCallback>;
|
|
|
|
MOZ_THREAD_LOCAL(nsISerialEventTarget*)
|
|
SerialEventTargetGuard::sCurrentThreadTLS;
|
|
void SerialEventTargetGuard::InitTLS() {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
if (!sCurrentThreadTLS.init()) {
|
|
MOZ_CRASH();
|
|
}
|
|
}
|
|
|
|
} // namespace mozilla
|
|
|
|
bool nsIEventTarget::IsOnCurrentThread() {
|
|
if (mThread) {
|
|
return mThread == PR_GetCurrentThread();
|
|
}
|
|
return IsOnCurrentThreadInfallible();
|
|
}
|
|
|
|
extern "C" {
|
|
// These functions use the C language linkage because they're exposed to Rust
|
|
// via the xpcom/rust/moz_task crate, which wraps them in safe Rust functions
|
|
// that enable Rust code to get/create threads and dispatch runnables on them.
|
|
|
|
nsresult NS_GetCurrentThreadRust(nsIThread** aResult) {
|
|
return NS_GetCurrentThread(aResult);
|
|
}
|
|
|
|
nsresult NS_GetMainThreadRust(nsIThread** aResult) {
|
|
return NS_GetMainThread(aResult);
|
|
}
|
|
|
|
// NS_NewNamedThread's aStackSize parameter has the default argument
|
|
// nsIThreadManager::DEFAULT_STACK_SIZE, but we can't omit default arguments
|
|
// when calling a C++ function from Rust, and we can't access
|
|
// nsIThreadManager::DEFAULT_STACK_SIZE in Rust to pass it explicitly,
|
|
// since it is defined in a %{C++ ... %} block within nsIThreadManager.idl.
|
|
// So we indirect through this function.
|
|
nsresult NS_NewNamedThreadWithDefaultStackSize(const nsACString& aName,
|
|
nsIThread** aResult,
|
|
nsIRunnable* aEvent) {
|
|
return NS_NewNamedThread(aName, aResult, aEvent);
|
|
}
|
|
|
|
bool NS_IsOnCurrentThread(nsIEventTarget* aTarget) {
|
|
return aTarget->IsOnCurrentThread();
|
|
}
|
|
|
|
nsresult NS_DispatchBackgroundTask(nsIRunnable* aEvent,
|
|
uint32_t aDispatchFlags) {
|
|
return nsThreadManager::get().DispatchToBackgroundThread(aEvent,
|
|
aDispatchFlags);
|
|
}
|
|
|
|
nsresult NS_CreateBackgroundTaskQueue(const char* aName,
|
|
nsISerialEventTarget** aTarget) {
|
|
nsCOMPtr<nsISerialEventTarget> target =
|
|
nsThreadManager::get().CreateBackgroundTaskQueue(aName);
|
|
if (!target) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
target.forget(aTarget);
|
|
return NS_OK;
|
|
}
|
|
|
|
} // extern "C"
|