gecko-dev/media/mtransport/test/ice_unittest.cpp

3220 строки
98 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
// Original author: ekr@rtfm.com
#include <algorithm>
#include <deque>
#include <iostream>
#include <limits>
#include <map>
#include <string>
#include <vector>
#include "sigslot.h"
#include "logging.h"
#include "nspr.h"
#include "nss.h"
#include "ssl.h"
#include "mozilla/Scoped.h"
#include "nsThreadUtils.h"
#include "nsXPCOM.h"
#include "nricectx.h"
#include "nricemediastream.h"
#include "nriceresolverfake.h"
#include "nriceresolver.h"
#include "nrinterfaceprioritizer.h"
#include "mtransport_test_utils.h"
#include "gtest_ringbuffer_dumper.h"
#include "rlogringbuffer.h"
#include "runnable_utils.h"
#include "stunserver.h"
#include "nr_socket_prsock.h"
#include "test_nr_socket.h"
#include "ice_ctx.h"
// TODO(bcampen@mozilla.com): Big fat hack since the build system doesn't give
// us a clean way to add object files to a single executable.
#include "stunserver.cpp"
#include "stun_udp_socket_filter.h"
#include "mozilla/net/DNS.h"
#include "ice_ctx.h"
#include "ice_peer_ctx.h"
#include "ice_media_stream.h"
extern "C" {
#include "r_data.h"
#include "util.h"
}
#define GTEST_HAS_RTTI 0
#include "gtest/gtest.h"
#include "gtest_utils.h"
using namespace mozilla;
MtransportTestUtils *test_utils;
bool stream_added = false;
static unsigned int kDefaultTimeout = 7000;
//TODO(nils@mozilla.com): This should get replaced with some non-external
//solution like discussed in bug 860775.
const std::string kDefaultStunServerHostname(
(char *)"global.stun.twilio.com");
const std::string kBogusStunServerHostname(
(char *)"stun-server-nonexistent.invalid");
const uint16_t kDefaultStunServerPort=3478;
const std::string kBogusIceCandidate(
(char *)"candidate:0 2 UDP 2113601790 192.168.178.20 50769 typ");
const std::string kUnreachableHostIceCandidate(
(char *)"candidate:0 1 UDP 2113601790 192.168.178.20 50769 typ host");
std::string g_stun_server_address;
std::string g_stun_server_hostname(kDefaultStunServerHostname);
std::string g_turn_server;
std::string g_turn_user;
std::string g_turn_password;
namespace {
enum TrickleMode { TRICKLE_NONE, TRICKLE_SIMULATE, TRICKLE_REAL };
const unsigned int ICE_TEST_PEER_OFFERER = (1 << 0);
const unsigned int ICE_TEST_PEER_ALLOW_LOOPBACK = (1 << 1);
const unsigned int ICE_TEST_PEER_ENABLED_TCP = (1 << 2);
const unsigned int ICE_TEST_PEER_ALLOW_LINK_LOCAL = (1 << 3);
const unsigned int ICE_TEST_PEER_HIDE_NON_DEFAULT = (1 << 4);
typedef std::string (*CandidateFilter)(const std::string& candidate);
static std::string IsRelayCandidate(const std::string& candidate) {
if (candidate.find("typ relay") != std::string::npos) {
return candidate;
}
return std::string();
}
static std::string IsTcpCandidate(const std::string& candidate) {
if (candidate.find("TCP") != std::string::npos) {
return candidate;
}
return std::string();
}
static std::string IsTcpSoCandidate(const std::string& candidate) {
if (candidate.find("tcptype so") != std::string::npos) {
return candidate;
}
return std::string();
}
static std::string IsLoopbackCandidate(const std::string& candidate) {
if (candidate.find("127.0.0.") != std::string::npos) {
return candidate;
}
return std::string();
}
static std::string SabotageHostCandidateAndDropReflexive(
const std::string& candidate) {
if (candidate.find("typ srflx") != std::string::npos) {
return std::string();
}
if (candidate.find("typ host") != std::string::npos) {
return kUnreachableHostIceCandidate;
}
return candidate;
}
bool ContainsSucceededPair(const std::vector<NrIceCandidatePair>& pairs) {
for (size_t i = 0; i < pairs.size(); ++i) {
if (pairs[i].state == NrIceCandidatePair::STATE_SUCCEEDED) {
return true;
}
}
return false;
}
// Note: Does not correspond to any notion of prioritization; this is just
// so we can use stl containers/algorithms that need a comparator
bool operator<(const NrIceCandidate& lhs,
const NrIceCandidate& rhs) {
if (lhs.cand_addr.host == rhs.cand_addr.host) {
if (lhs.cand_addr.port == rhs.cand_addr.port) {
if (lhs.cand_addr.transport == rhs.cand_addr.transport) {
if (lhs.type == rhs.type) {
return lhs.tcp_type < rhs.tcp_type;
}
return lhs.type < rhs.type;
}
return lhs.cand_addr.transport < rhs.cand_addr.transport;
}
return lhs.cand_addr.port < rhs.cand_addr.port;
}
return lhs.cand_addr.host < rhs.cand_addr.host;
}
bool operator==(const NrIceCandidate& lhs,
const NrIceCandidate& rhs) {
return !((lhs < rhs) || (rhs < lhs));
}
class IceCandidatePairCompare {
public:
bool operator()(const NrIceCandidatePair& lhs,
const NrIceCandidatePair& rhs) const {
if (lhs.priority == rhs.priority) {
if (lhs.local == rhs.local) {
if (lhs.remote == rhs.remote) {
return lhs.codeword < rhs.codeword;
}
return lhs.remote < rhs.remote;
}
return lhs.local < rhs.local;
}
return lhs.priority < rhs.priority;
}
};
class IceTestPeer;
class SchedulableTrickleCandidate {
public:
SchedulableTrickleCandidate(IceTestPeer *peer,
size_t stream,
const std::string &candidate) :
peer_(peer),
stream_(stream),
candidate_(candidate),
timer_handle_(nullptr) {
}
~SchedulableTrickleCandidate() {
if (timer_handle_)
NR_async_timer_cancel(timer_handle_);
}
void Schedule(unsigned int ms) {
test_utils->sts_target()->Dispatch(
WrapRunnable(this, &SchedulableTrickleCandidate::Schedule_s, ms),
NS_DISPATCH_SYNC);
}
void Schedule_s(unsigned int ms) {
MOZ_ASSERT(!timer_handle_);
NR_ASYNC_TIMER_SET(ms, Trickle_cb, this, &timer_handle_);
}
static void Trickle_cb(NR_SOCKET s, int how, void *cb_arg) {
static_cast<SchedulableTrickleCandidate*>(cb_arg)->Trickle();
}
void Trickle();
std::string& Candidate() {
return candidate_;
}
const std::string& Candidate() const {
return candidate_;
}
size_t Stream() const {
return stream_;
}
bool IsHost() const {
return candidate_.find("typ host") != std::string::npos;
}
bool IsReflexive() const {
return candidate_.find("typ srflx") != std::string::npos;
}
bool IsRelay() const {
return candidate_.find("typ relay") != std::string::npos;
}
private:
IceTestPeer *peer_;
size_t stream_;
std::string candidate_;
void *timer_handle_;
DISALLOW_COPY_ASSIGN(SchedulableTrickleCandidate);
};
class IceTestPeer : public sigslot::has_slots<> {
public:
// TODO(ekr@rtfm.com): Convert to flags when NrIceCtx::Create() does.
// Bug 1193437.
IceTestPeer(const std::string& name, bool offerer,
bool allow_loopback = false, bool enable_tcp = true,
bool allow_link_local = false, bool hide_non_default = false) :
name_(name),
ice_ctx_(NrIceCtx::Create(name, offerer, allow_loopback,
enable_tcp, allow_link_local, hide_non_default)),
streams_(),
candidates_(),
gathering_complete_(false),
ready_ct_(0),
ice_complete_(false),
ice_reached_checking_(false),
received_(0),
sent_(0),
fake_resolver_(),
dns_resolver_(new NrIceResolver()),
remote_(nullptr),
candidate_filter_(nullptr),
expected_local_type_(NrIceCandidate::ICE_HOST),
expected_local_transport_(kNrIceTransportUdp),
expected_remote_type_(NrIceCandidate::ICE_HOST),
trickle_mode_(TRICKLE_NONE),
trickled_(0),
simulate_ice_lite_(false),
nat_(new TestNat) {
ice_ctx_->SignalGatheringStateChange.connect(
this,
&IceTestPeer::GatheringStateChange);
ice_ctx_->SignalConnectionStateChange.connect(
this,
&IceTestPeer::ConnectionStateChange);
nr_socket_factory *fac;
int r = nat_->create_socket_factory(&fac);
MOZ_ASSERT(!r);
if (!r) {
nr_ice_ctx_set_socket_factory(ice_ctx_->ctx(), fac);
}
}
~IceTestPeer() {
test_utils->sts_target()->Dispatch(WrapRunnable(this,
&IceTestPeer::Shutdown),
NS_DISPATCH_SYNC);
// Give the ICE destruction callback time to fire before
// we destroy the resolver.
PR_Sleep(1000);
}
void AddStream_s(int components) {
char name[100];
snprintf(name, sizeof(name), "%s:stream%d", name_.c_str(),
(int)streams_.size());
mozilla::RefPtr<NrIceMediaStream> stream =
ice_ctx_->CreateStream(static_cast<char *>(name), components);
ice_ctx_->SetStream(streams_.size(), stream);
ASSERT_TRUE(stream);
streams_.push_back(stream);
stream->SignalCandidate.connect(this, &IceTestPeer::CandidateInitialized);
stream->SignalReady.connect(this, &IceTestPeer::StreamReady);
stream->SignalFailed.connect(this, &IceTestPeer::StreamFailed);
stream->SignalPacketReceived.connect(this, &IceTestPeer::PacketReceived);
}
void AddStream(int components)
{
test_utils->sts_target()->Dispatch(
WrapRunnable(this, &IceTestPeer::AddStream_s, components),
NS_DISPATCH_SYNC);
}
void RemoveStream_s(size_t index) {
streams_[index] = nullptr;
ice_ctx_->SetStream(index, nullptr);
}
void RemoveStream(size_t index) {
test_utils->sts_target()->Dispatch(
WrapRunnable(this, &IceTestPeer::RemoveStream_s, index),
NS_DISPATCH_SYNC);
}
void SetStunServer(const std::string addr, uint16_t port,
const char* transport = kNrIceTransportUdp) {
if (addr.empty()) {
// Happens when MOZ_DISABLE_NONLOCAL_CONNECTIONS is set
return;
}
std::vector<NrIceStunServer> stun_servers;
ScopedDeletePtr<NrIceStunServer> server(NrIceStunServer::Create(
addr, port, transport));
stun_servers.push_back(*server);
SetStunServers(stun_servers);
}
void SetStunServers(const std::vector<NrIceStunServer> &servers) {
ASSERT_TRUE(NS_SUCCEEDED(ice_ctx_->SetStunServers(servers)));
}
void UseTestStunServer() {
SetStunServer(TestStunServer::GetInstance(AF_INET)->addr(),
TestStunServer::GetInstance(AF_INET)->port());
}
void SetTurnServer(const std::string addr, uint16_t port,
const std::string username,
const std::string password,
const char* transport) {
std::vector<unsigned char> password_vec(password.begin(), password.end());
SetTurnServer(addr, port, username, password_vec, transport);
}
void SetTurnServer(const std::string addr, uint16_t port,
const std::string username,
const std::vector<unsigned char> password,
const char* transport) {
std::vector<NrIceTurnServer> turn_servers;
ScopedDeletePtr<NrIceTurnServer> server(NrIceTurnServer::Create(
addr, port, username, password, transport));
turn_servers.push_back(*server);
ASSERT_TRUE(NS_SUCCEEDED(ice_ctx_->SetTurnServers(turn_servers)));
}
void SetTurnServers(const std::vector<NrIceTurnServer> servers) {
ASSERT_TRUE(NS_SUCCEEDED(ice_ctx_->SetTurnServers(servers)));
}
void SetFakeResolver(const std::string& ip = g_stun_server_address,
const std::string& fqdn = g_stun_server_hostname) {
ASSERT_TRUE(NS_SUCCEEDED(dns_resolver_->Init()));
if (!ip.empty() && !fqdn.empty()) {
PRNetAddr addr;
PRStatus status = PR_StringToNetAddr(ip.c_str(), &addr);
addr.inet.port = kDefaultStunServerPort;
ASSERT_EQ(PR_SUCCESS, status);
fake_resolver_.SetAddr(fqdn, addr);
}
ASSERT_TRUE(NS_SUCCEEDED(ice_ctx_->SetResolver(
fake_resolver_.AllocateResolver())));
}
void SetDNSResolver() {
ASSERT_TRUE(NS_SUCCEEDED(dns_resolver_->Init()));
ASSERT_TRUE(NS_SUCCEEDED(ice_ctx_->SetResolver(
dns_resolver_->AllocateResolver())));
}
void Gather() {
nsresult res;
test_utils->sts_target()->Dispatch(
WrapRunnableRet(&res, ice_ctx_, &NrIceCtx::StartGathering),
NS_DISPATCH_SYNC);
ASSERT_TRUE(NS_SUCCEEDED(res));
}
void UseNat() {
nat_->enabled_ = true;
}
void SetFilteringType(TestNat::NatBehavior type) {
MOZ_ASSERT(!nat_->has_port_mappings());
nat_->filtering_type_ = type;
}
void SetMappingType(TestNat::NatBehavior type) {
MOZ_ASSERT(!nat_->has_port_mappings());
nat_->mapping_type_ = type;
}
void SetBlockUdp(bool block) {
MOZ_ASSERT(!nat_->has_port_mappings());
nat_->block_udp_ = block;
}
// Get various pieces of state
std::vector<std::string> GetGlobalAttributes() {
std::vector<std::string> attrs(ice_ctx_->GetGlobalAttributes());
if (simulate_ice_lite_) {
attrs.push_back("ice-lite");
}
return attrs;
}
std::vector<std::string> GetCandidates(size_t stream) {
std::vector<std::string> v;
RUN_ON_THREAD(
test_utils->sts_target(),
WrapRunnableRet(&v, this, &IceTestPeer::GetCandidates_s, stream));
return v;
}
std::string FilterCandidate(const std::string& candidate) {
if (candidate_filter_) {
return candidate_filter_(candidate);
}
return candidate;
}
std::vector<std::string> GetCandidates_s(size_t stream) {
std::vector<std::string> candidates;
if (stream >= streams_.size() || !streams_[stream]) {
EXPECT_TRUE(false) << "No such stream " << stream;
return candidates;
}
std::vector<std::string> candidates_in =
streams_[stream]->GetCandidates();
for (size_t i=0; i < candidates_in.size(); i++) {
std::string candidate(FilterCandidate(candidates_in[i]));
if (!candidate.empty()) {
std::cerr << "Returning candidate: " << candidate << std::endl;
candidates.push_back(candidate);
}
}
return candidates;
}
void SetExpectedTypes(NrIceCandidate::Type local,
NrIceCandidate::Type remote,
std::string local_transport = kNrIceTransportUdp) {
expected_local_type_ = local;
expected_local_transport_ = local_transport;
expected_remote_type_ = remote;
}
void SetExpectedRemoteCandidateAddr(const std::string& addr) {
expected_remote_addr_ = addr;
}
bool gathering_complete() { return gathering_complete_; }
int ready_ct() { return ready_ct_; }
bool is_ready_s(size_t stream) {
if (!streams_[stream]) {
EXPECT_TRUE(false) << "No such stream " << stream;
return false;
}
return streams_[stream]->state() == NrIceMediaStream::ICE_OPEN;
}
bool is_ready(size_t stream)
{
bool result;
test_utils->sts_target()->Dispatch(
WrapRunnableRet(&result, this, &IceTestPeer::is_ready_s, stream),
NS_DISPATCH_SYNC);
return result;
}
bool ice_complete() { return ice_complete_; }
bool ice_reached_checking() { return ice_reached_checking_; }
size_t received() { return received_; }
size_t sent() { return sent_; }
// Start connecting to another peer
void Connect_s(IceTestPeer *remote, TrickleMode trickle_mode,
bool start = true) {
nsresult res;
remote_ = remote;
trickle_mode_ = trickle_mode;
ice_complete_ = false;
res = ice_ctx_->ParseGlobalAttributes(remote->GetGlobalAttributes());
ASSERT_TRUE(NS_SUCCEEDED(res));
if (trickle_mode == TRICKLE_NONE ||
trickle_mode == TRICKLE_REAL) {
for (size_t i=0; i<streams_.size(); ++i) {
if (!streams_[i] || streams_[i]->HasParsedAttributes()) {
continue;
}
std::vector<std::string> candidates =
remote->GetCandidates(i);
for (size_t j=0; j<candidates.size(); ++j) {
std::cerr << "Candidate: " + candidates[j] << std::endl;
}
res = streams_[i]->ParseAttributes(candidates);
ASSERT_TRUE(NS_SUCCEEDED(res));
}
} else {
// Parse empty attributes and then trickle them out later
for (size_t i=0; i<streams_.size(); ++i) {
if (!streams_[i] || streams_[i]->HasParsedAttributes()) {
continue;
}
std::vector<std::string> empty_attrs;
std::cout << "Calling ParseAttributes on stream " << i << std::endl;
res = streams_[i]->ParseAttributes(empty_attrs);
ASSERT_TRUE(NS_SUCCEEDED(res));
}
}
if (start) {
// Now start checks
res = ice_ctx_->StartChecks();
ASSERT_TRUE(NS_SUCCEEDED(res));
}
}
void Connect(IceTestPeer *remote, TrickleMode trickle_mode,
bool start = true) {
test_utils->sts_target()->Dispatch(
WrapRunnable(
this, &IceTestPeer::Connect_s, remote, trickle_mode, start),
NS_DISPATCH_SYNC);
}
void SimulateTrickle(size_t stream) {
std::cerr << "Doing trickle for stream " << stream << std::endl;
// If we are in trickle deferred mode, now trickle in the candidates
// for |stream|
// The size of streams_ is not going to change out from under us, so should
// be safe here.
ASSERT_GT(remote_->streams_.size(), stream);
ASSERT_TRUE(remote_->streams_[stream]);
std::vector<SchedulableTrickleCandidate*>& candidates =
ControlTrickle(stream);
for (auto i = candidates.begin(); i != candidates.end(); ++i) {
(*i)->Schedule(0);
}
}
// Allows test case to completely control when/if candidates are trickled
// (test could also do things like insert extra trickle candidates, or
// change existing ones, or insert duplicates, really anything is fair game)
std::vector<SchedulableTrickleCandidate*>& ControlTrickle(size_t stream) {
std::cerr << "Doing controlled trickle for stream " << stream << std::endl;
std::vector<std::string> candidates =
remote_->GetCandidates(stream);
for (size_t j=0; j<candidates.size(); j++) {
controlled_trickle_candidates_[stream].push_back(
new SchedulableTrickleCandidate(this, stream, candidates[j]));
}
return controlled_trickle_candidates_[stream];
}
nsresult TrickleCandidate_s(const std::string &candidate, size_t stream) {
if (!streams_[stream]) {
// stream might have gone away before the trickle timer popped
return NS_OK;
}
return streams_[stream]->ParseTrickleCandidate(candidate);
}
void DumpCandidate(std::string which, const NrIceCandidate& cand) {
std::string type;
std::string tcp_type;
std::string addr;
int port;
if (which.find("Remote") != std::string::npos) {
addr = cand.cand_addr.host;
port = cand.cand_addr.port;
}
else {
addr = cand.local_addr.host;
port = cand.local_addr.port;
}
switch(cand.type) {
case NrIceCandidate::ICE_HOST:
type = "host";
break;
case NrIceCandidate::ICE_SERVER_REFLEXIVE:
type = "srflx";
break;
case NrIceCandidate::ICE_PEER_REFLEXIVE:
type = "prflx";
break;
case NrIceCandidate::ICE_RELAYED:
type = "relay";
if (which.find("Local") != std::string::npos) {
type += "(" + cand.local_addr.transport + ")";
}
break;
default:
FAIL();
};
switch(cand.tcp_type) {
case NrIceCandidate::ICE_NONE:
break;
case NrIceCandidate::ICE_ACTIVE:
tcp_type = " tcptype=active";
break;
case NrIceCandidate::ICE_PASSIVE:
tcp_type = " tcptype=passive";
break;
case NrIceCandidate::ICE_SO:
tcp_type = " tcptype=so";
break;
default:
FAIL();
};
std::cerr << which
<< " --> "
<< type
<< " "
<< addr
<< ":"
<< port
<< "/"
<< cand.cand_addr.transport
<< tcp_type
<< " codeword="
<< cand.codeword
<< std::endl;
}
void DumpAndCheckActiveCandidates_s() {
std::cerr << "Active candidates:" << std::endl;
for (size_t i=0; i < streams_.size(); ++i) {
if (!streams_[i]) {
continue;
}
for (size_t j=0; j < streams_[i]->components(); ++j) {
std::cerr << "Stream " << i << " component " << j+1 << std::endl;
NrIceCandidate *local;
NrIceCandidate *remote;
nsresult res = streams_[i]->GetActivePair(j+1, &local, &remote);
if (res == NS_ERROR_NOT_AVAILABLE) {
std::cerr << "Component unpaired or disabled." << std::endl;
} else {
ASSERT_TRUE(NS_SUCCEEDED(res));
DumpCandidate("Local ", *local);
/* Depending on timing, and the whims of the network
* stack/configuration we're running on top of, prflx is always a
* possibility. */
if (expected_local_type_ == NrIceCandidate::ICE_HOST) {
ASSERT_NE(NrIceCandidate::ICE_SERVER_REFLEXIVE, local->type);
ASSERT_NE(NrIceCandidate::ICE_RELAYED, local->type);
} else {
ASSERT_EQ(expected_local_type_, local->type);
}
ASSERT_EQ(expected_local_transport_, local->local_addr.transport);
DumpCandidate("Remote ", *remote);
/* Depending on timing, and the whims of the network
* stack/configuration we're running on top of, prflx is always a
* possibility. */
if (expected_remote_type_ == NrIceCandidate::ICE_HOST) {
ASSERT_NE(NrIceCandidate::ICE_SERVER_REFLEXIVE, remote->type);
ASSERT_NE(NrIceCandidate::ICE_RELAYED, remote->type);
} else {
ASSERT_EQ(expected_remote_type_, remote->type);
}
if (!expected_remote_addr_.empty()) {
ASSERT_EQ(expected_remote_addr_, remote->cand_addr.host);
}
delete local;
delete remote;
}
}
}
}
void DumpAndCheckActiveCandidates() {
test_utils->sts_target()->Dispatch(
WrapRunnable(this, &IceTestPeer::DumpAndCheckActiveCandidates_s),
NS_DISPATCH_SYNC);
}
void Close() {
test_utils->sts_target()->Dispatch(
WrapRunnable(ice_ctx_, &NrIceCtx::destroy_peer_ctx),
NS_DISPATCH_SYNC);
}
void Shutdown() {
for (auto s = controlled_trickle_candidates_.begin();
s != controlled_trickle_candidates_.end();
++s) {
for (auto cand = s->second.begin(); cand != s->second.end(); ++cand) {
delete *cand;
}
}
ice_ctx_ = nullptr;
if (remote_) {
remote_->UnsetRemote();
remote_ = nullptr;
}
}
void UnsetRemote()
{
remote_ = nullptr;
}
void StartChecks() {
nsresult res;
// Now start checks
test_utils->sts_target()->Dispatch(
WrapRunnableRet(&res, ice_ctx_, &NrIceCtx::StartChecks),
NS_DISPATCH_SYNC);
ASSERT_TRUE(NS_SUCCEEDED(res));
}
// Handle events
void GatheringStateChange(NrIceCtx* ctx,
NrIceCtx::GatheringState state) {
(void)ctx;
if (state != NrIceCtx::ICE_CTX_GATHER_COMPLETE) {
return;
}
std::cerr << "Gathering complete for " << name_ << std::endl;
gathering_complete_ = true;
std::cerr << "CANDIDATES:" << std::endl;
for (size_t i=0; i<streams_.size(); ++i) {
std::cerr << "Stream " << name_ << std::endl;
if (!streams_[i]) {
std::cerr << "DISABLED" << std::endl;
continue;
}
std::vector<std::string> candidates =
streams_[i]->GetCandidates();
for(size_t j=0; j<candidates.size(); ++j) {
std::cerr << candidates[j] << std::endl;
}
}
std::cerr << std::endl;
}
void CandidateInitialized(NrIceMediaStream *stream, const std::string &raw_candidate) {
std::string candidate(FilterCandidate(raw_candidate));
if (candidate.empty()) {
return;
}
std::cerr << "Candidate for stream " << stream->name() << " initialized: "
<< candidate << std::endl;
candidates_[stream->name()].push_back(candidate);
// If we are connected, then try to trickle to the
// other side.
if (remote_ && remote_->remote_ && (trickle_mode_ != TRICKLE_SIMULATE)) {
std::vector<mozilla::RefPtr<NrIceMediaStream> >::iterator it =
std::find(streams_.begin(), streams_.end(), stream);
ASSERT_NE(streams_.end(), it);
size_t index = it - streams_.begin();
ASSERT_GT(remote_->streams_.size(), index);
nsresult res = remote_->streams_[index]->ParseTrickleCandidate(
candidate);
ASSERT_TRUE(NS_SUCCEEDED(res));
++trickled_;
}
}
nsresult GetCandidatePairs_s(size_t stream_index,
std::vector<NrIceCandidatePair>* pairs)
{
MOZ_ASSERT(pairs);
if (stream_index >= streams_.size() || !streams_[stream_index]) {
// Is there a better error for "no such index"?
ADD_FAILURE() << "No such media stream index: " << stream_index;
return NS_ERROR_INVALID_ARG;
}
return streams_[stream_index]->GetCandidatePairs(pairs);
}
nsresult GetCandidatePairs(size_t stream_index,
std::vector<NrIceCandidatePair>* pairs) {
nsresult v;
test_utils->sts_target()->Dispatch(
WrapRunnableRet(&v, this,
&IceTestPeer::GetCandidatePairs_s,
stream_index,
pairs),
NS_DISPATCH_SYNC);
return v;
}
void DumpCandidatePair(const NrIceCandidatePair& pair) {
std::cerr << std::endl;
DumpCandidate("Local", pair.local);
DumpCandidate("Remote", pair.remote);
std::cerr << "state = " << pair.state
<< " priority = " << pair.priority
<< " nominated = " << pair.nominated
<< " selected = " << pair.selected
<< " codeword = " << pair.codeword << std::endl;
}
void DumpCandidatePairs_s(NrIceMediaStream *stream) {
std::vector<NrIceCandidatePair> pairs;
nsresult res = stream->GetCandidatePairs(&pairs);
ASSERT_TRUE(NS_SUCCEEDED(res));
std::cerr << "Begin list of candidate pairs [" << std::endl;
for (std::vector<NrIceCandidatePair>::iterator p = pairs.begin();
p != pairs.end(); ++p) {
DumpCandidatePair(*p);
}
std::cerr << "]" << std::endl;
}
void DumpCandidatePairs_s() {
std::cerr << "Dumping candidate pairs for all streams [" << std::endl;
for (size_t s = 0; s < streams_.size(); ++s) {
if (!streams_[s]) {
continue;
}
DumpCandidatePairs_s(streams_[s]);
}
std::cerr << "]" << std::endl;
}
bool CandidatePairsPriorityDescending(const std::vector<NrIceCandidatePair>&
pairs) {
// Verify that priority is descending
uint64_t priority = std::numeric_limits<uint64_t>::max();
for (size_t p = 0; p < pairs.size(); ++p) {
if (priority < pairs[p].priority) {
std::cerr << "Priority increased in subsequent pairs:" << std::endl;
DumpCandidatePair(pairs[p-1]);
DumpCandidatePair(pairs[p]);
return false;
} else if (priority == pairs[p].priority) {
std::cerr << "Duplicate priority in subseqent pairs:" << std::endl;
DumpCandidatePair(pairs[p-1]);
DumpCandidatePair(pairs[p]);
return false;
}
priority = pairs[p].priority;
}
return true;
}
void UpdateAndValidateCandidatePairs(size_t stream_index,
std::vector<NrIceCandidatePair>*
new_pairs) {
std::vector<NrIceCandidatePair> old_pairs = *new_pairs;
GetCandidatePairs(stream_index, new_pairs);
ASSERT_TRUE(CandidatePairsPriorityDescending(*new_pairs)) << "New list of "
"candidate pairs is either not sorted in priority order, or has "
"duplicate priorities.";
ASSERT_TRUE(CandidatePairsPriorityDescending(old_pairs)) << "Old list of "
"candidate pairs is either not sorted in priority order, or has "
"duplicate priorities. This indicates some bug in the test case.";
std::vector<NrIceCandidatePair> added_pairs;
std::vector<NrIceCandidatePair> removed_pairs;
// set_difference computes the set of elements that are present in the
// first set, but not the second
// NrIceCandidatePair::operator< compares based on the priority, local
// candidate, and remote candidate in that order. This means this will
// catch cases where the priority has remained the same, but one of the
// candidates has changed.
std::set_difference((*new_pairs).begin(),
(*new_pairs).end(),
old_pairs.begin(),
old_pairs.end(),
std::inserter(added_pairs, added_pairs.begin()),
IceCandidatePairCompare());
std::set_difference(old_pairs.begin(),
old_pairs.end(),
(*new_pairs).begin(),
(*new_pairs).end(),
std::inserter(removed_pairs, removed_pairs.begin()),
IceCandidatePairCompare());
for (std::vector<NrIceCandidatePair>::iterator a = added_pairs.begin();
a != added_pairs.end(); ++a) {
std::cerr << "Found new candidate pair." << std::endl;
DumpCandidatePair(*a);
}
for (std::vector<NrIceCandidatePair>::iterator r = removed_pairs.begin();
r != removed_pairs.end(); ++r) {
std::cerr << "Pre-existing candidate pair is now missing:" << std::endl;
DumpCandidatePair(*r);
}
ASSERT_TRUE(removed_pairs.empty()) << "At least one candidate pair has "
"gone missing.";
}
void StreamReady(NrIceMediaStream *stream) {
++ready_ct_;
std::cerr << "Stream ready " << stream->name() << " ct=" << ready_ct_ << std::endl;
DumpCandidatePairs_s(stream);
}
void StreamFailed(NrIceMediaStream *stream) {
std::cerr << "Stream failed " << stream->name() << " ct=" << ready_ct_ << std::endl;
DumpCandidatePairs_s(stream);
}
void ConnectionStateChange(NrIceCtx* ctx,
NrIceCtx::ConnectionState state) {
(void)ctx;
switch (state) {
case NrIceCtx::ICE_CTX_INIT:
break;
case NrIceCtx::ICE_CTX_CHECKING:
std::cerr << "ICE checking " << name_ << std::endl;
ice_reached_checking_ = true;
break;
case NrIceCtx::ICE_CTX_OPEN:
std::cerr << "ICE completed " << name_ << std::endl;
ice_complete_ = true;
break;
case NrIceCtx::ICE_CTX_FAILED:
break;
}
}
void PacketReceived(NrIceMediaStream *stream, int component, const unsigned char *data,
int len) {
std::cerr << "Received " << len << " bytes" << std::endl;
++received_;
}
void SendPacket(int stream, int component, const unsigned char *data,
int len) {
if (!streams_[stream]) {
ADD_FAILURE() << "No such stream " << stream;
return;
}
ASSERT_TRUE(NS_SUCCEEDED(streams_[stream]->SendPacket(component, data, len)));
++sent_;
std::cerr << "Sent " << len << " bytes" << std::endl;
}
void SetCandidateFilter(CandidateFilter filter) {
candidate_filter_ = filter;
}
void ParseCandidate_s(size_t i, const std::string& candidate) {
ASSERT_TRUE(streams_[i]) << "No such stream " << i;
std::vector<std::string> attributes;
attributes.push_back(candidate);
streams_[i]->ParseAttributes(attributes);
}
void ParseCandidate(size_t i, const std::string& candidate)
{
test_utils->sts_target()->Dispatch(
WrapRunnable(this,
&IceTestPeer::ParseCandidate_s,
i,
candidate),
NS_DISPATCH_SYNC);
}
void DisableComponent_s(size_t stream, int component_id) {
ASSERT_LT(stream, streams_.size());
ASSERT_TRUE(streams_[stream]) << "No such stream " << stream;
nsresult res = streams_[stream]->DisableComponent(component_id);
ASSERT_TRUE(NS_SUCCEEDED(res));
}
void DisableComponent(size_t stream, int component_id)
{
test_utils->sts_target()->Dispatch(
WrapRunnable(this,
&IceTestPeer::DisableComponent_s,
stream,
component_id),
NS_DISPATCH_SYNC);
}
int trickled() { return trickled_; }
void SetControlling(NrIceCtx::Controlling controlling) {
nsresult res;
test_utils->sts_target()->Dispatch(
WrapRunnableRet(&res, ice_ctx_,
&NrIceCtx::SetControlling,
controlling),
NS_DISPATCH_SYNC);
ASSERT_TRUE(NS_SUCCEEDED(res));
}
void SetTiebreaker(uint64_t tiebreaker) {
test_utils->sts_target()->Dispatch(
WrapRunnable(this,
&IceTestPeer::SetTiebreaker_s,
tiebreaker),
NS_DISPATCH_SYNC);
}
void SetTiebreaker_s(uint64_t tiebreaker) {
ice_ctx_->peer()->tiebreaker = tiebreaker;
}
void SimulateIceLite() {
simulate_ice_lite_ = true;
SetControlling(NrIceCtx::ICE_CONTROLLED);
}
nsresult GetDefaultCandidate(unsigned int stream, NrIceCandidate* cand) {
nsresult rv;
test_utils->sts_target()->Dispatch(
WrapRunnableRet(&rv, this,
&IceTestPeer::GetDefaultCandidate_s,
stream, cand),
NS_DISPATCH_SYNC);
return rv;
}
nsresult GetDefaultCandidate_s(unsigned int stream, NrIceCandidate* cand) {
return streams_[stream]->GetDefaultCandidate(1, cand);
}
private:
std::string name_;
nsRefPtr<NrIceCtx> ice_ctx_;
std::vector<mozilla::RefPtr<NrIceMediaStream> > streams_;
std::map<std::string, std::vector<std::string> > candidates_;
// Maps from stream id to list of remote trickle candidates
std::map<size_t, std::vector<SchedulableTrickleCandidate*> >
controlled_trickle_candidates_;
bool gathering_complete_;
int ready_ct_;
bool ice_complete_;
bool ice_reached_checking_;
size_t received_;
size_t sent_;
NrIceResolverFake fake_resolver_;
nsRefPtr<NrIceResolver> dns_resolver_;
IceTestPeer *remote_;
CandidateFilter candidate_filter_;
NrIceCandidate::Type expected_local_type_;
std::string expected_local_transport_;
NrIceCandidate::Type expected_remote_type_;
std::string expected_remote_addr_;
TrickleMode trickle_mode_;
int trickled_;
bool simulate_ice_lite_;
nsRefPtr<mozilla::TestNat> nat_;
};
void SchedulableTrickleCandidate::Trickle() {
timer_handle_ = nullptr;
nsresult res = peer_->TrickleCandidate_s(candidate_, stream_);
ASSERT_TRUE(NS_SUCCEEDED(res));
}
class IceGatherTest : public ::testing::Test {
public:
void SetUp() {
test_utils->sts_target()->Dispatch(
WrapRunnable(TestStunServer::GetInstance(AF_INET),
&TestStunServer::Reset),
NS_DISPATCH_SYNC);
if (TestStunServer::GetInstance(AF_INET6)) {
test_utils->sts_target()->Dispatch(
WrapRunnable(TestStunServer::GetInstance(AF_INET6),
&TestStunServer::Reset),
NS_DISPATCH_SYNC);
}
}
void TearDown() {
peer_ = nullptr;
test_utils->sts_target()->Dispatch(WrapRunnable(this,
&IceGatherTest::TearDown_s),
NS_DISPATCH_SYNC);
}
void TearDown_s() {
NrIceCtx::internal_DeinitializeGlobal();
}
void EnsurePeer(const unsigned int flags = ICE_TEST_PEER_OFFERER) {
if (!peer_) {
peer_ = new IceTestPeer("P1",
flags & ICE_TEST_PEER_OFFERER,
flags & ICE_TEST_PEER_ALLOW_LOOPBACK,
flags & ICE_TEST_PEER_ENABLED_TCP,
flags & ICE_TEST_PEER_ALLOW_LINK_LOCAL,
flags & ICE_TEST_PEER_HIDE_NON_DEFAULT);
peer_->AddStream(1);
}
}
void Gather(unsigned int waitTime = kDefaultTimeout) {
EnsurePeer();
peer_->Gather();
if (waitTime) {
WaitForGather(waitTime);
}
}
void WaitForGather(unsigned int waitTime = kDefaultTimeout) {
ASSERT_TRUE_WAIT(peer_->gathering_complete(), waitTime);
}
void AddStunServerWithResponse(
const std::string& fake_addr,
uint16_t fake_port,
const std::string& fqdn,
const std::string& proto,
std::vector<NrIceStunServer>* stun_servers) {
int family;
if (fake_addr.find(':') != std::string::npos) {
family = AF_INET6;
} else {
family = AF_INET;
}
std::string stun_addr;
uint16_t stun_port;
if (proto == kNrIceTransportUdp) {
TestStunServer::GetInstance(family)->SetResponseAddr(fake_addr,
fake_port);
stun_addr = TestStunServer::GetInstance(family)->addr();
stun_port = TestStunServer::GetInstance(family)->port();
} else if (proto == kNrIceTransportTcp) {
TestStunTcpServer::GetInstance(family)->SetResponseAddr(fake_addr,
fake_port);
stun_addr = TestStunTcpServer::GetInstance(family)->addr();
stun_port = TestStunTcpServer::GetInstance(family)->port();
} else {
MOZ_CRASH();
}
if (!fqdn.empty()) {
peer_->SetFakeResolver(stun_addr, fqdn);
stun_addr = fqdn;
}
stun_servers->push_back(*NrIceStunServer::Create(stun_addr,
stun_port,
proto.c_str()));
}
void UseFakeStunUdpServerWithResponse(
const std::string& fake_addr,
uint16_t fake_port,
const std::string& fqdn = std::string()) {
EnsurePeer();
std::vector<NrIceStunServer> stun_servers;
AddStunServerWithResponse(fake_addr, fake_port, fqdn, "udp", &stun_servers);
peer_->SetStunServers(stun_servers);
}
void UseFakeStunTcpServerWithResponse(
const std::string& fake_addr,
uint16_t fake_port,
const std::string& fqdn = std::string()) {
EnsurePeer(ICE_TEST_PEER_OFFERER | ICE_TEST_PEER_ENABLED_TCP);
std::vector<NrIceStunServer> stun_servers;
AddStunServerWithResponse(fake_addr, fake_port, fqdn, "tcp", &stun_servers);
peer_->SetStunServers(stun_servers);
}
void UseFakeStunUdpTcpServersWithResponse(
const std::string& fake_udp_addr,
uint16_t fake_udp_port,
const std::string& fake_tcp_addr,
uint16_t fake_tcp_port) {
EnsurePeer(ICE_TEST_PEER_OFFERER | ICE_TEST_PEER_ENABLED_TCP);
std::vector<NrIceStunServer> stun_servers;
AddStunServerWithResponse(fake_udp_addr,
fake_udp_port,
"", // no fqdn
"udp",
&stun_servers);
AddStunServerWithResponse(fake_tcp_addr,
fake_tcp_port,
"", // no fqdn
"tcp",
&stun_servers);
peer_->SetStunServers(stun_servers);
}
void UseTestStunServer() {
TestStunServer::GetInstance(AF_INET)->Reset();
peer_->SetStunServer(TestStunServer::GetInstance(AF_INET)->addr(),
TestStunServer::GetInstance(AF_INET)->port());
}
// NB: Only does substring matching, watch out for stuff like "1.2.3.4"
// matching "21.2.3.47". " 1.2.3.4 " should not have false positives.
bool StreamHasMatchingCandidate(unsigned int stream,
const std::string& match,
const std::string& match2 = "") {
std::vector<std::string> candidates = peer_->GetCandidates(stream);
for (size_t c = 0; c < candidates.size(); ++c) {
if (std::string::npos != candidates[c].find(match)) {
if (!match2.length() ||
std::string::npos != candidates[c].find(match2)) {
return true;
}
}
}
return false;
}
void DumpCandidates(unsigned int stream) {
std::vector<std::string> candidates = peer_->GetCandidates(stream);
std::cerr << "Candidates for stream " << stream << "->"
<< candidates.size() << std::endl;
for (auto c : candidates) {
std::cerr << "Candidate: " << c << std::endl;
}
}
protected:
mozilla::ScopedDeletePtr<IceTestPeer> peer_;
};
class IceConnectTest : public ::testing::Test {
public:
IceConnectTest() :
initted_(false),
use_nat_(false),
filtering_type_(TestNat::ENDPOINT_INDEPENDENT),
mapping_type_(TestNat::ENDPOINT_INDEPENDENT),
block_udp_(false) {}
void SetUp() {
nsresult rv;
target_ = do_GetService(NS_SOCKETTRANSPORTSERVICE_CONTRACTID, &rv);
ASSERT_TRUE(NS_SUCCEEDED(rv));
}
void TearDown() {
p1_ = nullptr;
p2_ = nullptr;
test_utils->sts_target()->Dispatch(WrapRunnable(this,
&IceConnectTest::TearDown_s),
NS_DISPATCH_SYNC);
}
void TearDown_s() {
NrIceCtx::internal_DeinitializeGlobal();
}
void AddStream(const std::string& name, int components) {
Init(false, false);
p1_->AddStream(components);
p2_->AddStream(components);
}
void RemoveStream(size_t index) {
p1_->RemoveStream(index);
p2_->RemoveStream(index);
}
void Init(bool allow_loopback, bool enable_tcp, bool default_only = false) {
if (!initted_) {
p1_ = new IceTestPeer("P1", true, allow_loopback,
enable_tcp, false, default_only);
p2_ = new IceTestPeer("P2", false, allow_loopback,
enable_tcp, false, default_only);
}
initted_ = true;
}
bool Gather(unsigned int waitTime = kDefaultTimeout,
bool setupStunServers = true) {
Init(false, false);
if (use_nat_) {
// If we enable nat simulation, but still use a real STUN server somewhere
// on the internet, we will see failures if there is a real NAT in
// addition to our simulated one, particularly if it disallows
// hairpinning.
if (setupStunServers) {
UseTestStunServer();
}
p1_->UseNat();
p2_->UseNat();
p1_->SetFilteringType(filtering_type_);
p2_->SetFilteringType(filtering_type_);
p1_->SetMappingType(mapping_type_);
p2_->SetMappingType(mapping_type_);
p1_->SetBlockUdp(block_udp_);
p2_->SetBlockUdp(block_udp_);
} else if (setupStunServers) {
std::vector<NrIceStunServer> stun_servers;
stun_servers.push_back(*NrIceStunServer::Create(g_stun_server_address,
kDefaultStunServerPort, kNrIceTransportUdp));
stun_servers.push_back(*NrIceStunServer::Create(g_stun_server_address,
kDefaultStunServerPort, kNrIceTransportTcp));
p1_->SetStunServers(stun_servers);
p2_->SetStunServers(stun_servers);
}
p1_->Gather();
p2_->Gather();
if (waitTime) {
EXPECT_TRUE_WAIT(p1_->gathering_complete(), waitTime);
if (!p1_->gathering_complete())
return false;
EXPECT_TRUE_WAIT(p2_->gathering_complete(), waitTime);
if (!p2_->gathering_complete())
return false;
}
return true;
}
void UseNat() {
use_nat_ = true;
}
void SetFilteringType(TestNat::NatBehavior type) {
filtering_type_ = type;
}
void SetMappingType(TestNat::NatBehavior type) {
mapping_type_ = type;
}
void BlockUdp() {
block_udp_ = true;
}
void UseTestStunServer() {
TestStunServer::GetInstance(AF_INET)->Reset();
p1_->UseTestStunServer();
p2_->UseTestStunServer();
}
void SetTurnServer(const std::string addr, uint16_t port,
const std::string username,
const std::string password,
const char* transport = kNrIceTransportUdp) {
p1_->SetTurnServer(addr, port, username, password, transport);
p2_->SetTurnServer(addr, port, username, password, transport);
}
void SetTurnServers(const std::vector<NrIceTurnServer>& servers) {
p1_->SetTurnServers(servers);
p2_->SetTurnServers(servers);
}
void SetCandidateFilter(CandidateFilter filter, bool both=true) {
p1_->SetCandidateFilter(filter);
if (both) {
p2_->SetCandidateFilter(filter);
}
}
void Connect() {
// IceTestPeer::Connect grabs attributes from the first arg, and gives them
// to |this|, meaning that p2_->Connect(p1_, ...) simulates p1 sending an
// offer to p2. Order matters here because it determines which peer is
// controlling.
p2_->Connect(p1_, TRICKLE_NONE);
p1_->Connect(p2_, TRICKLE_NONE);
ASSERT_TRUE_WAIT(p1_->ready_ct() == 1 && p2_->ready_ct() == 1,
kDefaultTimeout);
ASSERT_TRUE_WAIT(p1_->ice_complete() && p2_->ice_complete(),
kDefaultTimeout);
AssertCheckingReached();
p1_->DumpAndCheckActiveCandidates();
p2_->DumpAndCheckActiveCandidates();
}
void SetExpectedTypes(NrIceCandidate::Type local, NrIceCandidate::Type remote,
std::string transport = kNrIceTransportUdp) {
p1_->SetExpectedTypes(local, remote, transport);
p2_->SetExpectedTypes(local, remote, transport);
}
void SetExpectedTypes(NrIceCandidate::Type local1, NrIceCandidate::Type remote1,
NrIceCandidate::Type local2, NrIceCandidate::Type remote2) {
p1_->SetExpectedTypes(local1, remote1);
p2_->SetExpectedTypes(local2, remote2);
}
void SetExpectedRemoteCandidateAddr(const std::string& addr) {
p1_->SetExpectedRemoteCandidateAddr(addr);
p2_->SetExpectedRemoteCandidateAddr(addr);
}
void ConnectP1(TrickleMode mode = TRICKLE_NONE) {
p1_->Connect(p2_, mode);
}
void ConnectP2(TrickleMode mode = TRICKLE_NONE) {
p2_->Connect(p1_, mode);
}
void WaitForComplete(int expected_streams = 1) {
ASSERT_TRUE_WAIT(p1_->ready_ct() == expected_streams &&
p2_->ready_ct() == expected_streams, kDefaultTimeout);
ASSERT_TRUE_WAIT(p1_->ice_complete() && p2_->ice_complete(),
kDefaultTimeout);
}
void AssertCheckingReached() {
ASSERT_TRUE(p1_->ice_reached_checking());
ASSERT_TRUE(p2_->ice_reached_checking());
}
void WaitForGather() {
ASSERT_TRUE_WAIT(p1_->gathering_complete(), kDefaultTimeout);
ASSERT_TRUE_WAIT(p2_->gathering_complete(), kDefaultTimeout);
}
void ConnectTrickle(TrickleMode trickle = TRICKLE_SIMULATE) {
p2_->Connect(p1_, trickle);
p1_->Connect(p2_, trickle);
}
void SimulateTrickle(size_t stream) {
p1_->SimulateTrickle(stream);
p2_->SimulateTrickle(stream);
ASSERT_TRUE_WAIT(p1_->is_ready(stream), kDefaultTimeout);
ASSERT_TRUE_WAIT(p2_->is_ready(stream), kDefaultTimeout);
}
void SimulateTrickleP1(size_t stream) {
p1_->SimulateTrickle(stream);
}
void SimulateTrickleP2(size_t stream) {
p2_->SimulateTrickle(stream);
}
void VerifyConnected() {
}
void CloseP1() {
p1_->Close();
}
void ConnectThenDelete() {
p2_->Connect(p1_, TRICKLE_NONE, false);
p1_->Connect(p2_, TRICKLE_NONE, true);
test_utils->sts_target()->Dispatch(WrapRunnable(this,
&IceConnectTest::CloseP1),
NS_DISPATCH_SYNC);
p2_->StartChecks();
// Wait to see if we crash
PR_Sleep(PR_MillisecondsToInterval(kDefaultTimeout));
}
void SendReceive() {
// p1_->Send(2);
test_utils->sts_target()->Dispatch(
WrapRunnable(p1_.get(),
&IceTestPeer::SendPacket, 0, 1,
reinterpret_cast<const unsigned char *>("TEST"), 4),
NS_DISPATCH_SYNC);
ASSERT_EQ(1u, p1_->sent());
ASSERT_TRUE_WAIT(p2_->received() == 1, 1000);
}
protected:
bool initted_;
nsCOMPtr<nsIEventTarget> target_;
mozilla::ScopedDeletePtr<IceTestPeer> p1_;
mozilla::ScopedDeletePtr<IceTestPeer> p2_;
bool use_nat_;
TestNat::NatBehavior filtering_type_;
TestNat::NatBehavior mapping_type_;
bool block_udp_;
};
class PrioritizerTest : public ::testing::Test {
public:
PrioritizerTest():
prioritizer_(nullptr) {}
~PrioritizerTest() {
if (prioritizer_) {
nr_interface_prioritizer_destroy(&prioritizer_);
}
}
void SetPriorizer(nr_interface_prioritizer *prioritizer) {
prioritizer_ = prioritizer;
}
void AddInterface(const std::string& num, int type, int estimated_speed) {
std::string str_addr = "10.0.0." + num;
std::string ifname = "eth" + num;
nr_local_addr local_addr;
local_addr.interface.type = type;
local_addr.interface.estimated_speed = estimated_speed;
int r = nr_str_port_to_transport_addr(str_addr.c_str(), 0,
IPPROTO_UDP, &(local_addr.addr));
ASSERT_EQ(0, r);
strncpy(local_addr.addr.ifname, ifname.c_str(), MAXIFNAME);
r = nr_interface_prioritizer_add_interface(prioritizer_, &local_addr);
ASSERT_EQ(0, r);
r = nr_interface_prioritizer_sort_preference(prioritizer_);
ASSERT_EQ(0, r);
}
void HasLowerPreference(const std::string& num1, const std::string& num2) {
std::string key1 = "eth" + num1 + ":10.0.0." + num1;
std::string key2 = "eth" + num2 + ":10.0.0." + num2;
UCHAR pref1, pref2;
int r = nr_interface_prioritizer_get_priority(prioritizer_, key1.c_str(), &pref1);
ASSERT_EQ(0, r);
r = nr_interface_prioritizer_get_priority(prioritizer_, key2.c_str(), &pref2);
ASSERT_EQ(0, r);
ASSERT_LE(pref1, pref2);
}
private:
nr_interface_prioritizer *prioritizer_;
};
class PacketFilterTest : public ::testing::Test {
public:
PacketFilterTest(): filter_(nullptr) {}
void SetUp() {
// Set up enough of the ICE ctx to allow the packet filter to work
ice_ctx_ = NrIceCtx::Create("test", true);
nsCOMPtr<nsIUDPSocketFilterHandler> handler =
do_GetService(NS_STUN_UDP_SOCKET_FILTER_HANDLER_CONTRACTID);
handler->NewFilter(getter_AddRefs(filter_));
}
void TearDown() {
test_utils->sts_target()->Dispatch(WrapRunnable(this,
&PacketFilterTest::TearDown_s),
NS_DISPATCH_SYNC);
}
void TearDown_s() {
ice_ctx_ = nullptr;
}
void TestIncoming(const uint8_t* data, uint32_t len,
uint8_t from_addr, int from_port,
bool expected_result) {
mozilla::net::NetAddr addr;
MakeNetAddr(&addr, from_addr, from_port);
bool result;
nsresult rv = filter_->FilterPacket(&addr, data, len,
nsIUDPSocketFilter::SF_INCOMING,
&result);
ASSERT_EQ(NS_OK, rv);
ASSERT_EQ(expected_result, result);
}
void TestOutgoing(const uint8_t* data, uint32_t len,
uint8_t to_addr, int to_port,
bool expected_result) {
mozilla::net::NetAddr addr;
MakeNetAddr(&addr, to_addr, to_port);
bool result;
nsresult rv = filter_->FilterPacket(&addr, data, len,
nsIUDPSocketFilter::SF_OUTGOING,
&result);
ASSERT_EQ(NS_OK, rv);
ASSERT_EQ(expected_result, result);
}
private:
void MakeNetAddr(mozilla::net::NetAddr* net_addr,
uint8_t last_digit, uint16_t port) {
net_addr->inet.family = AF_INET;
net_addr->inet.ip = 192 << 24 | 168 << 16 | 1 << 8 | last_digit;
net_addr->inet.port = port;
}
nsCOMPtr<nsIUDPSocketFilter> filter_;
RefPtr<NrIceCtx> ice_ctx_;
};
} // end namespace
TEST_F(IceGatherTest, TestGatherFakeStunServerHostnameNoResolver) {
if (g_stun_server_hostname.empty()) {
return;
}
EnsurePeer();
peer_->SetStunServer(g_stun_server_hostname, kDefaultStunServerPort);
Gather();
}
TEST_F(IceGatherTest, TestGatherFakeStunServerTcpHostnameNoResolver) {
if (g_stun_server_hostname.empty()) {
return;
}
EnsurePeer(ICE_TEST_PEER_OFFERER | ICE_TEST_PEER_ENABLED_TCP);
peer_->SetStunServer(g_stun_server_hostname, kDefaultStunServerPort,
kNrIceTransportTcp);
Gather();
ASSERT_TRUE(StreamHasMatchingCandidate(0, " TCP "));
}
TEST_F(IceGatherTest, TestGatherFakeStunServerIpAddress) {
if (g_stun_server_address.empty()) {
return;
}
EnsurePeer();
peer_->SetStunServer(g_stun_server_address, kDefaultStunServerPort);
peer_->SetFakeResolver();
Gather();
}
TEST_F(IceGatherTest, TestGatherStunServerIpAddressDefaultRouteOnly) {
if (g_stun_server_address.empty()) {
return;
}
peer_ = new IceTestPeer("P1", true, false, false, false, true);
peer_->AddStream(1);
peer_->SetStunServer(g_stun_server_address, kDefaultStunServerPort);
peer_->SetFakeResolver();
Gather();
ASSERT_FALSE(StreamHasMatchingCandidate(0, " host "));
}
TEST_F(IceGatherTest, TestGatherFakeStunServerHostname) {
if (g_stun_server_hostname.empty()) {
return;
}
EnsurePeer();
peer_->SetStunServer(g_stun_server_hostname, kDefaultStunServerPort);
peer_->SetFakeResolver();
Gather();
}
TEST_F(IceGatherTest, TestGatherFakeStunBogusHostname) {
EnsurePeer();
peer_->SetStunServer(kBogusStunServerHostname, kDefaultStunServerPort);
peer_->SetFakeResolver();
Gather();
}
TEST_F(IceGatherTest, TestGatherDNSStunServerIpAddress) {
if (g_stun_server_address.empty()) {
return;
}
EnsurePeer();
peer_->SetStunServer(g_stun_server_address, kDefaultStunServerPort);
peer_->SetDNSResolver();
Gather();
ASSERT_TRUE(StreamHasMatchingCandidate(0, " UDP "));
ASSERT_TRUE(StreamHasMatchingCandidate(0, "typ srflx raddr"));
}
TEST_F(IceGatherTest, TestGatherDNSStunServerIpAddressTcp) {
if (g_stun_server_address.empty()) {
return;
}
EnsurePeer(ICE_TEST_PEER_OFFERER | ICE_TEST_PEER_ENABLED_TCP);
peer_->SetStunServer(g_stun_server_address, kDefaultStunServerPort,
kNrIceTransportTcp);
peer_->SetDNSResolver();
Gather();
ASSERT_TRUE(StreamHasMatchingCandidate(0, "tcptype passive"));
ASSERT_FALSE(StreamHasMatchingCandidate(0, "tcptype passive", " 9 "));
ASSERT_TRUE(StreamHasMatchingCandidate(0, "tcptype so"));
ASSERT_FALSE(StreamHasMatchingCandidate(0, "tcptype so", " 9 "));
ASSERT_TRUE(StreamHasMatchingCandidate(0, "tcptype active", " 9 "));
}
TEST_F(IceGatherTest, TestGatherDNSStunServerHostname) {
if (g_stun_server_hostname.empty()) {
return;
}
EnsurePeer();
peer_->SetStunServer(g_stun_server_hostname, kDefaultStunServerPort);
peer_->SetDNSResolver();
Gather();
ASSERT_TRUE(StreamHasMatchingCandidate(0, " UDP "));
ASSERT_TRUE(StreamHasMatchingCandidate(0, "typ srflx raddr"));
}
TEST_F(IceGatherTest, TestGatherDNSStunServerHostnameTcp) {
EnsurePeer(ICE_TEST_PEER_OFFERER | ICE_TEST_PEER_ENABLED_TCP);
peer_->SetStunServer(g_stun_server_hostname, kDefaultStunServerPort,
kNrIceTransportTcp);
peer_->SetDNSResolver();
Gather();
ASSERT_TRUE(StreamHasMatchingCandidate(0, "tcptype passive"));
ASSERT_FALSE(StreamHasMatchingCandidate(0, "tcptype passive", " 9 "));
ASSERT_TRUE(StreamHasMatchingCandidate(0, "tcptype so"));
ASSERT_FALSE(StreamHasMatchingCandidate(0, "tcptype so", " 9 "));
ASSERT_TRUE(StreamHasMatchingCandidate(0, "tcptype active", " 9 "));
}
TEST_F(IceGatherTest, TestGatherDNSStunServerHostnameBothUdpTcp) {
if (g_stun_server_hostname.empty()) {
return;
}
std::vector<NrIceStunServer> stun_servers;
EnsurePeer(ICE_TEST_PEER_OFFERER | ICE_TEST_PEER_ENABLED_TCP);
stun_servers.push_back(*NrIceStunServer::Create(g_stun_server_hostname,
kDefaultStunServerPort, kNrIceTransportUdp));
stun_servers.push_back(*NrIceStunServer::Create(g_stun_server_hostname,
kDefaultStunServerPort, kNrIceTransportTcp));
peer_->SetStunServers(stun_servers);
peer_->SetDNSResolver();
Gather();
ASSERT_TRUE(StreamHasMatchingCandidate(0, " UDP "));
ASSERT_TRUE(StreamHasMatchingCandidate(0, " TCP "));
}
TEST_F(IceGatherTest, TestGatherDNSStunServerIpAddressBothUdpTcp) {
if (g_stun_server_address.empty()) {
return;
}
std::vector<NrIceStunServer> stun_servers;
EnsurePeer(ICE_TEST_PEER_OFFERER | ICE_TEST_PEER_ENABLED_TCP);
stun_servers.push_back(*NrIceStunServer::Create(g_stun_server_address,
kDefaultStunServerPort, kNrIceTransportUdp));
stun_servers.push_back(*NrIceStunServer::Create(g_stun_server_address,
kDefaultStunServerPort, kNrIceTransportTcp));
peer_->SetStunServers(stun_servers);
peer_->SetDNSResolver();
Gather();
ASSERT_TRUE(StreamHasMatchingCandidate(0, " UDP "));
ASSERT_TRUE(StreamHasMatchingCandidate(0, " TCP "));
}
TEST_F(IceGatherTest, TestGatherDNSStunBogusHostname) {
EnsurePeer();
peer_->SetStunServer(kBogusStunServerHostname, kDefaultStunServerPort);
peer_->SetDNSResolver();
Gather();
ASSERT_TRUE(StreamHasMatchingCandidate(0, " UDP "));
}
TEST_F(IceGatherTest, TestGatherDNSStunBogusHostnameTcp) {
EnsurePeer(ICE_TEST_PEER_OFFERER | ICE_TEST_PEER_ENABLED_TCP);
peer_->SetStunServer(kBogusStunServerHostname, kDefaultStunServerPort,
kNrIceTransportTcp);
peer_->SetDNSResolver();
Gather();
ASSERT_TRUE(StreamHasMatchingCandidate(0, " TCP "));
}
TEST_F(IceGatherTest, TestDefaultCandidate) {
EnsurePeer();
peer_->SetStunServer(g_stun_server_hostname, kDefaultStunServerPort);
Gather();
NrIceCandidate default_candidate;
ASSERT_TRUE(NS_SUCCEEDED(peer_->GetDefaultCandidate(0, &default_candidate)));
}
TEST_F(IceGatherTest, TestGatherTurn) {
EnsurePeer();
if (g_turn_server.empty())
return;
peer_->SetTurnServer(g_turn_server, kDefaultStunServerPort,
g_turn_user, g_turn_password, kNrIceTransportUdp);
Gather();
}
TEST_F(IceGatherTest, TestGatherTurnTcp) {
EnsurePeer();
if (g_turn_server.empty())
return;
peer_->SetTurnServer(g_turn_server, kDefaultStunServerPort,
g_turn_user, g_turn_password, kNrIceTransportTcp);
Gather();
}
TEST_F(IceGatherTest, TestGatherDisableComponent) {
if (g_stun_server_hostname.empty()) {
return;
}
EnsurePeer();
peer_->SetStunServer(g_stun_server_hostname, kDefaultStunServerPort);
peer_->AddStream(2);
peer_->DisableComponent(1, 2);
Gather();
std::vector<std::string> candidates =
peer_->GetCandidates(1);
for (size_t i=0; i<candidates.size(); ++i) {
size_t sp1 = candidates[i].find(' ');
ASSERT_EQ(0, candidates[i].compare(sp1+1, 1, "1", 1));
}
}
TEST_F(IceGatherTest, TestGatherVerifyNoLoopback) {
Gather();
ASSERT_FALSE(StreamHasMatchingCandidate(0, "127.0.0.1"));
}
TEST_F(IceGatherTest, TestGatherAllowLoopback) {
// Set up peer with loopback allowed.
peer_ = new IceTestPeer("P1", true, true);
peer_->AddStream(1);
Gather();
ASSERT_TRUE(StreamHasMatchingCandidate(0, "127.0.0.1"));
}
TEST_F(IceGatherTest, TestGatherTcpDisabled) {
// Set up peer with tcp disabled.
peer_ = new IceTestPeer("P1", true, false, false);
peer_->AddStream(1);
Gather();
ASSERT_FALSE(StreamHasMatchingCandidate(0, " TCP "));
ASSERT_TRUE(StreamHasMatchingCandidate(0, " UDP "));
}
// Verify that a bogus candidate doesn't cause crashes on the
// main thread. See bug 856433.
TEST_F(IceGatherTest, TestBogusCandidate) {
Gather();
peer_->ParseCandidate(0, kBogusIceCandidate);
}
TEST_F(IceGatherTest, VerifyTestStunServer) {
UseFakeStunUdpServerWithResponse("192.0.2.133", 3333);
Gather();
ASSERT_TRUE(StreamHasMatchingCandidate(0, " 192.0.2.133 3333 "));
}
TEST_F(IceGatherTest, VerifyTestStunTcpServer) {
UseFakeStunTcpServerWithResponse("192.0.2.233", 3333);
Gather();
ASSERT_TRUE(StreamHasMatchingCandidate(0, " 192.0.2.233 3333 typ srflx",
" tcptype "));
}
TEST_F(IceGatherTest, VerifyTestStunServerV6) {
if (!TestStunServer::GetInstance(AF_INET6)) {
// No V6 addresses
return;
}
UseFakeStunUdpServerWithResponse("beef::", 3333);
Gather();
ASSERT_TRUE(StreamHasMatchingCandidate(0, " beef:: 3333 "));
}
TEST_F(IceGatherTest, VerifyTestStunServerFQDN) {
UseFakeStunUdpServerWithResponse("192.0.2.133", 3333, "stun.example.com");
Gather();
ASSERT_TRUE(StreamHasMatchingCandidate(0, " 192.0.2.133 3333 "));
}
TEST_F(IceGatherTest, VerifyTestStunServerV6FQDN) {
if (!TestStunServer::GetInstance(AF_INET6)) {
// No V6 addresses
return;
}
UseFakeStunUdpServerWithResponse("beef::", 3333, "stun.example.com");
Gather();
ASSERT_TRUE(StreamHasMatchingCandidate(0, " beef:: 3333 "));
}
TEST_F(IceGatherTest, TestStunServerReturnsWildcardAddr) {
UseFakeStunUdpServerWithResponse("0.0.0.0", 3333);
Gather(kDefaultTimeout * 3);
ASSERT_FALSE(StreamHasMatchingCandidate(0, " 0.0.0.0 "));
}
TEST_F(IceGatherTest, TestStunServerReturnsWildcardAddrV6) {
if (!TestStunServer::GetInstance(AF_INET6)) {
// No V6 addresses
return;
}
UseFakeStunUdpServerWithResponse("::", 3333);
Gather(kDefaultTimeout * 3);
ASSERT_FALSE(StreamHasMatchingCandidate(0, " :: "));
}
TEST_F(IceGatherTest, TestStunServerReturnsPort0) {
UseFakeStunUdpServerWithResponse("192.0.2.133", 0);
Gather(kDefaultTimeout * 3);
ASSERT_FALSE(StreamHasMatchingCandidate(0, " 192.0.2.133 0 "));
}
TEST_F(IceGatherTest, TestStunServerReturnsLoopbackAddr) {
UseFakeStunUdpServerWithResponse("127.0.0.133", 3333);
Gather(kDefaultTimeout * 3);
ASSERT_FALSE(StreamHasMatchingCandidate(0, " 127.0.0.133 "));
}
TEST_F(IceGatherTest, TestStunServerReturnsLoopbackAddrV6) {
if (!TestStunServer::GetInstance(AF_INET6)) {
// No V6 addresses
return;
}
UseFakeStunUdpServerWithResponse("::1", 3333);
Gather(kDefaultTimeout * 3);
ASSERT_FALSE(StreamHasMatchingCandidate(0, " ::1 "));
}
TEST_F(IceGatherTest, TestStunServerTrickle) {
UseFakeStunUdpServerWithResponse("192.0.2.1", 3333);
TestStunServer::GetInstance(AF_INET)->SetActive(false);
Gather(0);
ASSERT_FALSE(StreamHasMatchingCandidate(0, "192.0.2.1"));
TestStunServer::GetInstance(AF_INET)->SetActive(true);
WaitForGather();
ASSERT_TRUE(StreamHasMatchingCandidate(0, "192.0.2.1"));
}
// Test default route only with our fake STUN server and
// apparently NATted.
TEST_F(IceGatherTest, TestFakeStunServerNatedDefaultRouteOnly) {
peer_ = new IceTestPeer("P1", true, false, false, false, true);
peer_->AddStream(1);
UseFakeStunUdpServerWithResponse("192.0.2.1", 3333);
Gather(0);
WaitForGather();
DumpCandidates(0);
ASSERT_FALSE(StreamHasMatchingCandidate(0, "host"));
ASSERT_TRUE(StreamHasMatchingCandidate(0, "srflx"));
NrIceCandidate default_candidate;
nsresult rv = peer_->GetDefaultCandidate(0, &default_candidate);
if (NS_SUCCEEDED(rv)) {
ASSERT_NE(NrIceCandidate::ICE_HOST, default_candidate.type);
}
}
// Test default route only with our fake STUN server and
// apparently non-NATted.
TEST_F(IceGatherTest, TestFakeStunServerNoNatDefaultRouteOnly) {
peer_ = new IceTestPeer("P1", true, false, false, false, true);
peer_->AddStream(1);
UseTestStunServer();
Gather(0);
WaitForGather();
DumpCandidates(0);
ASSERT_FALSE(StreamHasMatchingCandidate(0, "host"));
ASSERT_TRUE(StreamHasMatchingCandidate(0, "srflx"));
}
TEST_F(IceGatherTest, TestStunTcpServerTrickle) {
UseFakeStunTcpServerWithResponse("192.0.3.1", 3333);
TestStunTcpServer::GetInstance(AF_INET)->SetActive(false);
Gather(0);
ASSERT_FALSE(StreamHasMatchingCandidate(0, " 192.0.3.1 ", " tcptype "));
TestStunTcpServer::GetInstance(AF_INET)->SetActive(true);
WaitForGather();
ASSERT_TRUE(StreamHasMatchingCandidate(0, " 192.0.3.1 ", " tcptype "));
}
TEST_F(IceGatherTest, TestStunTcpAndUdpServerTrickle) {
UseFakeStunUdpTcpServersWithResponse("192.0.2.1", 3333, "192.0.3.1", 3333);
TestStunServer::GetInstance(AF_INET)->SetActive(false);
TestStunTcpServer::GetInstance(AF_INET)->SetActive(false);
Gather(0);
ASSERT_FALSE(StreamHasMatchingCandidate(0, "192.0.2.1", "UDP"));
ASSERT_FALSE(StreamHasMatchingCandidate(0, " 192.0.3.1 ", " tcptype "));
TestStunServer::GetInstance(AF_INET)->SetActive(true);
TestStunTcpServer::GetInstance(AF_INET)->SetActive(true);
WaitForGather();
ASSERT_TRUE(StreamHasMatchingCandidate(0, "192.0.2.1", "UDP"));
ASSERT_TRUE(StreamHasMatchingCandidate(0, " 192.0.3.1 ", " tcptype "));
}
TEST_F(IceConnectTest, TestGather) {
AddStream("first", 1);
ASSERT_TRUE(Gather());
}
TEST_F(IceConnectTest, TestGatherTcp) {
Init(false, true);
AddStream("first", 1);
ASSERT_TRUE(Gather());
}
TEST_F(IceConnectTest, TestGatherAutoPrioritize) {
Init(false, false);
AddStream("first", 1);
ASSERT_TRUE(Gather());
}
TEST_F(IceConnectTest, TestConnect) {
AddStream("first", 1);
ASSERT_TRUE(Gather());
Connect();
}
TEST_F(IceConnectTest, TestConnectTcp) {
Init(false, true);
AddStream("first", 1);
ASSERT_TRUE(Gather());
SetCandidateFilter(IsTcpCandidate);
SetExpectedTypes(NrIceCandidate::Type::ICE_HOST,
NrIceCandidate::Type::ICE_HOST, kNrIceTransportTcp);
Connect();
}
//TCP SO tests works on localhost only with delay applied:
// tc qdisc add dev lo root netem delay 10ms
TEST_F(IceConnectTest, DISABLED_TestConnectTcpSo) {
Init(false, true);
AddStream("first", 1);
ASSERT_TRUE(Gather());
SetCandidateFilter(IsTcpSoCandidate);
SetExpectedTypes(NrIceCandidate::Type::ICE_HOST,
NrIceCandidate::Type::ICE_HOST, kNrIceTransportTcp);
Connect();
}
// Disabled because this breaks with hairpinning.
TEST_F(IceConnectTest, DISABLED_TestConnectDefaultRouteOnly) {
Init(false, false, true);
AddStream("first", 1);
ASSERT_TRUE(Gather());
SetExpectedTypes(NrIceCandidate::Type::ICE_SERVER_REFLEXIVE,
NrIceCandidate::Type::ICE_SERVER_REFLEXIVE, kNrIceTransportTcp);
Connect();
}
TEST_F(IceConnectTest, TestLoopbackOnlySortOf) {
Init(true, false);
AddStream("first", 1);
SetCandidateFilter(IsLoopbackCandidate);
ASSERT_TRUE(Gather());
SetExpectedRemoteCandidateAddr("127.0.0.1");
Connect();
}
TEST_F(IceConnectTest, TestConnectBothControllingP1Wins) {
AddStream("first", 1);
p1_->SetTiebreaker(1);
p2_->SetTiebreaker(0);
ASSERT_TRUE(Gather());
p1_->SetControlling(NrIceCtx::ICE_CONTROLLING);
p2_->SetControlling(NrIceCtx::ICE_CONTROLLING);
Connect();
}
TEST_F(IceConnectTest, TestConnectBothControllingP2Wins) {
AddStream("first", 1);
p1_->SetTiebreaker(0);
p2_->SetTiebreaker(1);
ASSERT_TRUE(Gather());
p1_->SetControlling(NrIceCtx::ICE_CONTROLLING);
p2_->SetControlling(NrIceCtx::ICE_CONTROLLING);
Connect();
}
TEST_F(IceConnectTest, TestConnectIceLiteOfferer) {
AddStream("first", 1);
ASSERT_TRUE(Gather());
p1_->SimulateIceLite();
Connect();
}
TEST_F(IceConnectTest, TestTrickleBothControllingP1Wins) {
AddStream("first", 1);
p1_->SetTiebreaker(1);
p2_->SetTiebreaker(0);
ASSERT_TRUE(Gather());
p1_->SetControlling(NrIceCtx::ICE_CONTROLLING);
p2_->SetControlling(NrIceCtx::ICE_CONTROLLING);
ConnectTrickle();
SimulateTrickle(0);
ASSERT_TRUE_WAIT(p1_->ice_complete(), 1000);
ASSERT_TRUE_WAIT(p2_->ice_complete(), 1000);
AssertCheckingReached();
}
TEST_F(IceConnectTest, TestTrickleBothControllingP2Wins) {
AddStream("first", 1);
p1_->SetTiebreaker(0);
p2_->SetTiebreaker(1);
ASSERT_TRUE(Gather());
p1_->SetControlling(NrIceCtx::ICE_CONTROLLING);
p2_->SetControlling(NrIceCtx::ICE_CONTROLLING);
ConnectTrickle();
SimulateTrickle(0);
ASSERT_TRUE_WAIT(p1_->ice_complete(), 1000);
ASSERT_TRUE_WAIT(p2_->ice_complete(), 1000);
AssertCheckingReached();
}
TEST_F(IceConnectTest, TestTrickleIceLiteOfferer) {
AddStream("first", 1);
ASSERT_TRUE(Gather());
p1_->SimulateIceLite();
ConnectTrickle();
SimulateTrickle(0);
ASSERT_TRUE_WAIT(p1_->ice_complete(), 1000);
ASSERT_TRUE_WAIT(p2_->ice_complete(), 1000);
AssertCheckingReached();
}
TEST_F(IceConnectTest, TestGatherFullCone) {
AddStream("first", 1);
UseNat();
SetFilteringType(TestNat::ENDPOINT_INDEPENDENT);
SetMappingType(TestNat::ENDPOINT_INDEPENDENT);
ASSERT_TRUE(Gather());
}
TEST_F(IceConnectTest, TestGatherFullConeAutoPrioritize) {
Init(true, false);
AddStream("first", 1);
UseNat();
SetFilteringType(TestNat::ENDPOINT_INDEPENDENT);
SetMappingType(TestNat::ENDPOINT_INDEPENDENT);
ASSERT_TRUE(Gather());
}
TEST_F(IceConnectTest, TestConnectFullCone) {
AddStream("first", 1);
UseNat();
SetFilteringType(TestNat::ENDPOINT_INDEPENDENT);
SetMappingType(TestNat::ENDPOINT_INDEPENDENT);
SetExpectedTypes(NrIceCandidate::Type::ICE_SERVER_REFLEXIVE,
NrIceCandidate::Type::ICE_SERVER_REFLEXIVE);
ASSERT_TRUE(Gather());
Connect();
}
TEST_F(IceConnectTest, TestConnectNoNatRouteOnly) {
Init(false, false, true);
AddStream("first", 1);
UseTestStunServer();
// Because we are connecting from our host candidate to the
// other side's apparent srflx (which is also their host)
// we see a host/srflx pair.
SetExpectedTypes(NrIceCandidate::Type::ICE_HOST,
NrIceCandidate::Type::ICE_SERVER_REFLEXIVE);
ASSERT_TRUE(Gather(kDefaultTimeout, false));
Connect();
}
TEST_F(IceConnectTest, TestConnectFullConeDefaultRouteOnly) {
Init(false, false, true);
AddStream("first", 1);
UseNat();
SetFilteringType(TestNat::ENDPOINT_INDEPENDENT);
SetMappingType(TestNat::ENDPOINT_INDEPENDENT);
SetExpectedTypes(NrIceCandidate::Type::ICE_SERVER_REFLEXIVE,
NrIceCandidate::Type::ICE_SERVER_REFLEXIVE);
ASSERT_TRUE(Gather());
Connect();
}
TEST_F(IceConnectTest, TestGatherAddressRestrictedCone) {
AddStream("first", 1);
UseNat();
SetFilteringType(TestNat::ADDRESS_DEPENDENT);
SetMappingType(TestNat::ENDPOINT_INDEPENDENT);
ASSERT_TRUE(Gather());
}
TEST_F(IceConnectTest, TestConnectAddressRestrictedCone) {
AddStream("first", 1);
UseNat();
SetFilteringType(TestNat::ADDRESS_DEPENDENT);
SetMappingType(TestNat::ENDPOINT_INDEPENDENT);
SetExpectedTypes(NrIceCandidate::Type::ICE_SERVER_REFLEXIVE,
NrIceCandidate::Type::ICE_SERVER_REFLEXIVE);
ASSERT_TRUE(Gather());
Connect();
}
TEST_F(IceConnectTest, TestGatherPortRestrictedCone) {
AddStream("first", 1);
UseNat();
SetFilteringType(TestNat::PORT_DEPENDENT);
SetMappingType(TestNat::ENDPOINT_INDEPENDENT);
ASSERT_TRUE(Gather());
}
TEST_F(IceConnectTest, TestConnectPortRestrictedCone) {
AddStream("first", 1);
UseNat();
SetFilteringType(TestNat::PORT_DEPENDENT);
SetMappingType(TestNat::ENDPOINT_INDEPENDENT);
SetExpectedTypes(NrIceCandidate::Type::ICE_SERVER_REFLEXIVE,
NrIceCandidate::Type::ICE_SERVER_REFLEXIVE);
ASSERT_TRUE(Gather());
Connect();
}
TEST_F(IceConnectTest, TestGatherSymmetricNat) {
AddStream("first", 1);
UseNat();
SetFilteringType(TestNat::PORT_DEPENDENT);
SetMappingType(TestNat::PORT_DEPENDENT);
ASSERT_TRUE(Gather());
}
TEST_F(IceConnectTest, TestConnectSymmetricNat) {
if (g_turn_server.empty())
return;
AddStream("first", 1);
UseNat();
SetFilteringType(TestNat::PORT_DEPENDENT);
SetMappingType(TestNat::PORT_DEPENDENT);
p1_->SetExpectedTypes(NrIceCandidate::Type::ICE_RELAYED,
NrIceCandidate::Type::ICE_RELAYED);
p2_->SetExpectedTypes(NrIceCandidate::Type::ICE_RELAYED,
NrIceCandidate::Type::ICE_RELAYED);
SetTurnServer(g_turn_server, kDefaultStunServerPort,
g_turn_user, g_turn_password);
ASSERT_TRUE(Gather());
Connect();
}
TEST_F(IceConnectTest, TestGatherNatBlocksUDP) {
if (g_turn_server.empty())
return;
AddStream("first", 1);
UseNat();
BlockUdp();
std::vector<NrIceTurnServer> turn_servers;
std::vector<unsigned char> password_vec(g_turn_password.begin(),
g_turn_password.end());
turn_servers.push_back(
*NrIceTurnServer::Create(g_turn_server, kDefaultStunServerPort,
g_turn_user, password_vec, kNrIceTransportTcp));
turn_servers.push_back(
*NrIceTurnServer::Create(g_turn_server, kDefaultStunServerPort,
g_turn_user, password_vec, kNrIceTransportUdp));
SetTurnServers(turn_servers);
// We have to wait for the UDP-based stuff to time out.
ASSERT_TRUE(Gather(kDefaultTimeout * 3));
}
TEST_F(IceConnectTest, TestConnectNatBlocksUDP) {
if (g_turn_server.empty())
return;
AddStream("first", 1);
UseNat();
BlockUdp();
std::vector<NrIceTurnServer> turn_servers;
std::vector<unsigned char> password_vec(g_turn_password.begin(),
g_turn_password.end());
turn_servers.push_back(
*NrIceTurnServer::Create(g_turn_server, kDefaultStunServerPort,
g_turn_user, password_vec, kNrIceTransportTcp));
turn_servers.push_back(
*NrIceTurnServer::Create(g_turn_server, kDefaultStunServerPort,
g_turn_user, password_vec, kNrIceTransportUdp));
SetTurnServers(turn_servers);
p1_->SetExpectedTypes(NrIceCandidate::Type::ICE_RELAYED,
NrIceCandidate::Type::ICE_RELAYED,
kNrIceTransportTcp);
p2_->SetExpectedTypes(NrIceCandidate::Type::ICE_RELAYED,
NrIceCandidate::Type::ICE_RELAYED,
kNrIceTransportTcp);
ASSERT_TRUE(Gather(kDefaultTimeout * 3));
Connect();
}
TEST_F(IceConnectTest, TestConnectTwoComponents) {
AddStream("first", 2);
ASSERT_TRUE(Gather());
Connect();
}
TEST_F(IceConnectTest, TestConnectTwoComponentsDisableSecond) {
AddStream("first", 2);
ASSERT_TRUE(Gather());
p1_->DisableComponent(0, 2);
p2_->DisableComponent(0, 2);
Connect();
}
TEST_F(IceConnectTest, TestConnectP2ThenP1) {
AddStream("first", 1);
ASSERT_TRUE(Gather());
ConnectP2();
PR_Sleep(1000);
ConnectP1();
WaitForComplete();
}
TEST_F(IceConnectTest, TestConnectP2ThenP1Trickle) {
AddStream("first", 1);
ASSERT_TRUE(Gather());
ConnectP2();
PR_Sleep(1000);
ConnectP1(TRICKLE_SIMULATE);
SimulateTrickleP1(0);
WaitForComplete();
}
TEST_F(IceConnectTest, TestConnectP2ThenP1TrickleTwoComponents) {
AddStream("first", 1);
AddStream("second", 2);
ASSERT_TRUE(Gather());
ConnectP2();
PR_Sleep(1000);
ConnectP1(TRICKLE_SIMULATE);
SimulateTrickleP1(0);
std::cerr << "Sleeping between trickle streams" << std::endl;
PR_Sleep(1000); // Give this some time to settle but not complete
// all of ICE.
SimulateTrickleP1(1);
WaitForComplete(2);
}
TEST_F(IceConnectTest, TestConnectAutoPrioritize) {
Init(false, false);
AddStream("first", 1);
ASSERT_TRUE(Gather());
Connect();
}
TEST_F(IceConnectTest, TestConnectTrickleOneStreamOneComponent) {
AddStream("first", 1);
ASSERT_TRUE(Gather());
ConnectTrickle();
SimulateTrickle(0);
ASSERT_TRUE_WAIT(p1_->ice_complete(), 1000);
ASSERT_TRUE_WAIT(p2_->ice_complete(), 1000);
AssertCheckingReached();
}
TEST_F(IceConnectTest, TestConnectTrickleTwoStreamsOneComponent) {
AddStream("first", 1);
AddStream("second", 1);
ASSERT_TRUE(Gather());
ConnectTrickle();
SimulateTrickle(0);
SimulateTrickle(1);
ASSERT_TRUE_WAIT(p1_->ice_complete(), 1000);
ASSERT_TRUE_WAIT(p2_->ice_complete(), 1000);
AssertCheckingReached();
}
void RealisticTrickleDelay(
std::vector<SchedulableTrickleCandidate*>& candidates) {
for (size_t i = 0; i < candidates.size(); ++i) {
SchedulableTrickleCandidate* cand = candidates[i];
if (cand->IsHost()) {
cand->Schedule(i*10);
} else if (cand->IsReflexive()) {
cand->Schedule(i*10 + 100);
} else if (cand->IsRelay()) {
cand->Schedule(i*10 + 200);
}
}
}
void DelayRelayCandidates(
std::vector<SchedulableTrickleCandidate*>& candidates,
unsigned int ms) {
for (auto i = candidates.begin(); i != candidates.end(); ++i) {
if ((*i)->IsRelay()) {
(*i)->Schedule(ms);
} else {
(*i)->Schedule(0);
}
}
}
void DropTrickleCandidates(
std::vector<SchedulableTrickleCandidate*>& candidates) {
}
TEST_F(IceConnectTest, TestConnectTrickleAddStreamDuringICE) {
AddStream("first", 1);
ASSERT_TRUE(Gather());
ConnectTrickle();
RealisticTrickleDelay(p1_->ControlTrickle(0));
RealisticTrickleDelay(p2_->ControlTrickle(0));
AddStream("second", 1);
RealisticTrickleDelay(p1_->ControlTrickle(1));
RealisticTrickleDelay(p2_->ControlTrickle(1));
ASSERT_TRUE_WAIT(p1_->ice_complete(), 1000);
ASSERT_TRUE_WAIT(p2_->ice_complete(), 1000);
AssertCheckingReached();
}
TEST_F(IceConnectTest, TestConnectTrickleAddStreamAfterICE) {
AddStream("first", 1);
ASSERT_TRUE(Gather());
ConnectTrickle();
RealisticTrickleDelay(p1_->ControlTrickle(0));
RealisticTrickleDelay(p2_->ControlTrickle(0));
ASSERT_TRUE_WAIT(p1_->ice_complete(), 1000);
ASSERT_TRUE_WAIT(p2_->ice_complete(), 1000);
AddStream("second", 1);
ASSERT_TRUE(Gather());
ConnectTrickle();
RealisticTrickleDelay(p1_->ControlTrickle(1));
RealisticTrickleDelay(p2_->ControlTrickle(1));
ASSERT_TRUE_WAIT(p1_->ice_complete(), 1000);
ASSERT_TRUE_WAIT(p2_->ice_complete(), 1000);
AssertCheckingReached();
}
TEST_F(IceConnectTest, RemoveStream) {
AddStream("first", 1);
AddStream("second", 1);
ASSERT_TRUE(Gather());
ConnectTrickle();
RealisticTrickleDelay(p1_->ControlTrickle(0));
RealisticTrickleDelay(p2_->ControlTrickle(0));
RealisticTrickleDelay(p1_->ControlTrickle(1));
RealisticTrickleDelay(p2_->ControlTrickle(1));
ASSERT_TRUE_WAIT(p1_->ice_complete(), 1000);
ASSERT_TRUE_WAIT(p2_->ice_complete(), 1000);
RemoveStream(0);
ASSERT_TRUE(Gather());
ConnectTrickle();
}
TEST_F(IceConnectTest, P1NoTrickle) {
AddStream("first", 1);
ASSERT_TRUE(Gather());
ConnectTrickle();
DropTrickleCandidates(p1_->ControlTrickle(0));
RealisticTrickleDelay(p2_->ControlTrickle(0));
ASSERT_TRUE_WAIT(p1_->ice_complete(), 1000);
ASSERT_TRUE_WAIT(p2_->ice_complete(), 1000);
}
TEST_F(IceConnectTest, P2NoTrickle) {
AddStream("first", 1);
ASSERT_TRUE(Gather());
ConnectTrickle();
RealisticTrickleDelay(p1_->ControlTrickle(0));
DropTrickleCandidates(p2_->ControlTrickle(0));
ASSERT_TRUE_WAIT(p1_->ice_complete(), 1000);
ASSERT_TRUE_WAIT(p2_->ice_complete(), 1000);
}
TEST_F(IceConnectTest, RemoveAndAddStream) {
AddStream("first", 1);
AddStream("second", 1);
ASSERT_TRUE(Gather());
ConnectTrickle();
RealisticTrickleDelay(p1_->ControlTrickle(0));
RealisticTrickleDelay(p2_->ControlTrickle(0));
RealisticTrickleDelay(p1_->ControlTrickle(1));
RealisticTrickleDelay(p2_->ControlTrickle(1));
ASSERT_TRUE_WAIT(p1_->ice_complete(), 1000);
ASSERT_TRUE_WAIT(p2_->ice_complete(), 1000);
RemoveStream(0);
AddStream("third", 1);
ASSERT_TRUE(Gather());
ConnectTrickle();
RealisticTrickleDelay(p1_->ControlTrickle(2));
RealisticTrickleDelay(p2_->ControlTrickle(2));
ASSERT_TRUE_WAIT(p1_->ice_complete(), 1000);
ASSERT_TRUE_WAIT(p2_->ice_complete(), 1000);
}
TEST_F(IceConnectTest, RemoveStreamBeforeGather) {
AddStream("first", 1);
AddStream("second", 1);
ASSERT_TRUE(Gather(0));
RemoveStream(0);
WaitForGather();
ConnectTrickle();
RealisticTrickleDelay(p1_->ControlTrickle(1));
RealisticTrickleDelay(p2_->ControlTrickle(1));
ASSERT_TRUE_WAIT(p1_->ice_complete(), 1000);
ASSERT_TRUE_WAIT(p2_->ice_complete(), 1000);
}
TEST_F(IceConnectTest, RemoveStreamDuringGather) {
AddStream("first", 1);
AddStream("second", 1);
RemoveStream(0);
ASSERT_TRUE(Gather());
ConnectTrickle();
RealisticTrickleDelay(p1_->ControlTrickle(1));
RealisticTrickleDelay(p2_->ControlTrickle(1));
ASSERT_TRUE_WAIT(p1_->ice_complete(), 1000);
ASSERT_TRUE_WAIT(p2_->ice_complete(), 1000);
}
TEST_F(IceConnectTest, RemoveStreamDuringConnect) {
AddStream("first", 1);
AddStream("second", 1);
ASSERT_TRUE(Gather());
ConnectTrickle();
RealisticTrickleDelay(p1_->ControlTrickle(0));
RealisticTrickleDelay(p2_->ControlTrickle(0));
RealisticTrickleDelay(p1_->ControlTrickle(1));
RealisticTrickleDelay(p2_->ControlTrickle(1));
RemoveStream(0);
ASSERT_TRUE_WAIT(p1_->ice_complete(), 1000);
ASSERT_TRUE_WAIT(p2_->ice_complete(), 1000);
}
TEST_F(IceConnectTest, TestConnectRealTrickleOneStreamOneComponent) {
AddStream("first", 1);
AddStream("second", 1);
ASSERT_TRUE(Gather(0));
ConnectTrickle(TRICKLE_REAL);
ASSERT_TRUE_WAIT(p1_->ice_complete(), kDefaultTimeout);
ASSERT_TRUE_WAIT(p2_->ice_complete(), kDefaultTimeout);
WaitForGather(); // ICE can complete before we finish gathering.
AssertCheckingReached();
}
TEST_F(IceConnectTest, TestSendReceive) {
AddStream("first", 1);
ASSERT_TRUE(Gather());
Connect();
SendReceive();
}
TEST_F(IceConnectTest, TestSendReceiveTcp) {
Init(false, true);
AddStream("first", 1);
ASSERT_TRUE(Gather());
SetCandidateFilter(IsTcpCandidate);
SetExpectedTypes(NrIceCandidate::Type::ICE_HOST,
NrIceCandidate::Type::ICE_HOST, kNrIceTransportTcp);
Connect();
SendReceive();
}
//TCP SO tests works on localhost only with delay applied:
// tc qdisc add dev lo root netem delay 10ms
TEST_F(IceConnectTest, DISABLED_TestSendReceiveTcpSo) {
Init(false, true);
AddStream("first", 1);
ASSERT_TRUE(Gather());
SetCandidateFilter(IsTcpSoCandidate);
SetExpectedTypes(NrIceCandidate::Type::ICE_HOST,
NrIceCandidate::Type::ICE_HOST, kNrIceTransportTcp);
Connect();
SendReceive();
}
TEST_F(IceConnectTest, TestConnectTurn) {
if (g_turn_server.empty())
return;
AddStream("first", 1);
SetTurnServer(g_turn_server, kDefaultStunServerPort,
g_turn_user, g_turn_password);
ASSERT_TRUE(Gather());
Connect();
}
TEST_F(IceConnectTest, TestConnectTurnWithDelay) {
if (g_turn_server.empty())
return;
AddStream("first", 1);
SetTurnServer(g_turn_server, kDefaultStunServerPort,
g_turn_user, g_turn_password);
SetCandidateFilter(SabotageHostCandidateAndDropReflexive);
p1_->Gather();
PR_Sleep(500);
p2_->Gather();
ConnectTrickle(TRICKLE_REAL);
WaitForGather();
WaitForComplete();
}
TEST_F(IceConnectTest, TestConnectTurnWithNormalTrickleDelay) {
if (g_turn_server.empty())
return;
AddStream("first", 1);
SetTurnServer(g_turn_server, kDefaultStunServerPort,
g_turn_user, g_turn_password);
ASSERT_TRUE(Gather());
ConnectTrickle();
RealisticTrickleDelay(p1_->ControlTrickle(0));
RealisticTrickleDelay(p2_->ControlTrickle(0));
ASSERT_TRUE_WAIT(p1_->ice_complete(), kDefaultTimeout);
ASSERT_TRUE_WAIT(p2_->ice_complete(), kDefaultTimeout);
AssertCheckingReached();
}
TEST_F(IceConnectTest, TestConnectTurnWithNormalTrickleDelayOneSided) {
if (g_turn_server.empty())
return;
AddStream("first", 1);
SetTurnServer(g_turn_server, kDefaultStunServerPort,
g_turn_user, g_turn_password);
ASSERT_TRUE(Gather());
ConnectTrickle();
RealisticTrickleDelay(p1_->ControlTrickle(0));
p2_->SimulateTrickle(0);
ASSERT_TRUE_WAIT(p1_->ice_complete(), kDefaultTimeout);
ASSERT_TRUE_WAIT(p2_->ice_complete(), kDefaultTimeout);
AssertCheckingReached();
}
TEST_F(IceConnectTest, TestConnectTurnWithLargeTrickleDelay) {
if (g_turn_server.empty())
return;
AddStream("first", 1);
SetTurnServer(g_turn_server, kDefaultStunServerPort,
g_turn_user, g_turn_password);
SetCandidateFilter(SabotageHostCandidateAndDropReflexive);
ASSERT_TRUE(Gather());
ConnectTrickle();
// Trickle host candidates immediately, but delay relay candidates
DelayRelayCandidates(p1_->ControlTrickle(0), 3700);
DelayRelayCandidates(p2_->ControlTrickle(0), 3700);
ASSERT_TRUE_WAIT(p1_->ice_complete(), kDefaultTimeout);
ASSERT_TRUE_WAIT(p2_->ice_complete(), kDefaultTimeout);
AssertCheckingReached();
}
TEST_F(IceConnectTest, TestConnectTurnTcp) {
if (g_turn_server.empty())
return;
AddStream("first", 1);
SetTurnServer(g_turn_server, kDefaultStunServerPort,
g_turn_user, g_turn_password, kNrIceTransportTcp);
ASSERT_TRUE(Gather());
Connect();
}
TEST_F(IceConnectTest, TestConnectTurnOnly) {
if (g_turn_server.empty())
return;
AddStream("first", 1);
SetTurnServer(g_turn_server, kDefaultStunServerPort,
g_turn_user, g_turn_password);
ASSERT_TRUE(Gather());
SetCandidateFilter(IsRelayCandidate);
SetExpectedTypes(NrIceCandidate::Type::ICE_RELAYED,
NrIceCandidate::Type::ICE_RELAYED);
Connect();
}
TEST_F(IceConnectTest, TestConnectTurnTcpOnly) {
if (g_turn_server.empty())
return;
AddStream("first", 1);
SetTurnServer(g_turn_server, kDefaultStunServerPort,
g_turn_user, g_turn_password, kNrIceTransportTcp);
ASSERT_TRUE(Gather());
SetCandidateFilter(IsRelayCandidate);
SetExpectedTypes(NrIceCandidate::Type::ICE_RELAYED,
NrIceCandidate::Type::ICE_RELAYED,
kNrIceTransportTcp);
Connect();
}
TEST_F(IceConnectTest, TestSendReceiveTurnOnly) {
if (g_turn_server.empty())
return;
AddStream("first", 1);
SetTurnServer(g_turn_server, kDefaultStunServerPort,
g_turn_user, g_turn_password);
ASSERT_TRUE(Gather());
SetCandidateFilter(IsRelayCandidate);
SetExpectedTypes(NrIceCandidate::Type::ICE_RELAYED,
NrIceCandidate::Type::ICE_RELAYED);
Connect();
SendReceive();
}
TEST_F(IceConnectTest, TestSendReceiveTurnTcpOnly) {
if (g_turn_server.empty())
return;
AddStream("first", 1);
SetTurnServer(g_turn_server, kDefaultStunServerPort,
g_turn_user, g_turn_password, kNrIceTransportTcp);
ASSERT_TRUE(Gather());
SetCandidateFilter(IsRelayCandidate);
SetExpectedTypes(NrIceCandidate::Type::ICE_RELAYED,
NrIceCandidate::Type::ICE_RELAYED,
kNrIceTransportTcp);
Connect();
SendReceive();
}
TEST_F(IceConnectTest, TestSendReceiveTurnBothOnly) {
if (g_turn_server.empty())
return;
AddStream("first", 1);
std::vector<NrIceTurnServer> turn_servers;
std::vector<unsigned char> password_vec(g_turn_password.begin(),
g_turn_password.end());
turn_servers.push_back(*NrIceTurnServer::Create(
g_turn_server, kDefaultStunServerPort,
g_turn_user, password_vec, kNrIceTransportTcp));
turn_servers.push_back(*NrIceTurnServer::Create(
g_turn_server, kDefaultStunServerPort,
g_turn_user, password_vec, kNrIceTransportUdp));
SetTurnServers(turn_servers);
ASSERT_TRUE(Gather());
SetCandidateFilter(IsRelayCandidate);
// UDP is preferred.
SetExpectedTypes(NrIceCandidate::Type::ICE_RELAYED,
NrIceCandidate::Type::ICE_RELAYED,
kNrIceTransportUdp);
Connect();
SendReceive();
}
TEST_F(IceConnectTest, TestConnectShutdownOneSide) {
AddStream("first", 1);
ASSERT_TRUE(Gather());
ConnectThenDelete();
}
TEST_F(IceConnectTest, TestPollCandPairsBeforeConnect) {
AddStream("first", 1);
ASSERT_TRUE(Gather());
std::vector<NrIceCandidatePair> pairs;
nsresult res = p1_->GetCandidatePairs(0, &pairs);
// There should be no candidate pairs prior to calling Connect()
ASSERT_TRUE(NS_FAILED(res));
ASSERT_EQ(0U, pairs.size());
res = p2_->GetCandidatePairs(0, &pairs);
ASSERT_TRUE(NS_FAILED(res));
ASSERT_EQ(0U, pairs.size());
}
TEST_F(IceConnectTest, TestPollCandPairsAfterConnect) {
AddStream("first", 1);
ASSERT_TRUE(Gather());
Connect();
std::vector<NrIceCandidatePair> pairs;
nsresult r = p1_->GetCandidatePairs(0, &pairs);
ASSERT_EQ(NS_OK, r);
// How detailed of a check do we want to do here? If the turn server is
// functioning, we'll get at least two pairs, but this is probably not
// something we should assume.
ASSERT_NE(0U, pairs.size());
ASSERT_TRUE(p1_->CandidatePairsPriorityDescending(pairs));
ASSERT_TRUE(ContainsSucceededPair(pairs));
pairs.clear();
r = p2_->GetCandidatePairs(0, &pairs);
ASSERT_EQ(NS_OK, r);
ASSERT_NE(0U, pairs.size());
ASSERT_TRUE(p2_->CandidatePairsPriorityDescending(pairs));
ASSERT_TRUE(ContainsSucceededPair(pairs));
}
TEST_F(IceConnectTest, TestPollCandPairsDuringConnect) {
AddStream("first", 1);
ASSERT_TRUE(Gather());
p2_->Connect(p1_, TRICKLE_NONE, false);
p1_->Connect(p2_, TRICKLE_NONE, false);
std::vector<NrIceCandidatePair> pairs1;
std::vector<NrIceCandidatePair> pairs2;
p1_->StartChecks();
p1_->UpdateAndValidateCandidatePairs(0, &pairs1);
p2_->UpdateAndValidateCandidatePairs(0, &pairs2);
p2_->StartChecks();
p1_->UpdateAndValidateCandidatePairs(0, &pairs1);
p2_->UpdateAndValidateCandidatePairs(0, &pairs2);
WaitForComplete();
p1_->UpdateAndValidateCandidatePairs(0, &pairs1);
p2_->UpdateAndValidateCandidatePairs(0, &pairs2);
ASSERT_TRUE(ContainsSucceededPair(pairs1));
ASSERT_TRUE(ContainsSucceededPair(pairs2));
}
TEST_F(IceConnectTest, TestRLogRingBuffer) {
AddStream("first", 1);
ASSERT_TRUE(Gather());
p2_->Connect(p1_, TRICKLE_NONE, false);
p1_->Connect(p2_, TRICKLE_NONE, false);
std::vector<NrIceCandidatePair> pairs1;
std::vector<NrIceCandidatePair> pairs2;
p1_->StartChecks();
p1_->UpdateAndValidateCandidatePairs(0, &pairs1);
p2_->UpdateAndValidateCandidatePairs(0, &pairs2);
p2_->StartChecks();
p1_->UpdateAndValidateCandidatePairs(0, &pairs1);
p2_->UpdateAndValidateCandidatePairs(0, &pairs2);
WaitForComplete();
p1_->UpdateAndValidateCandidatePairs(0, &pairs1);
p2_->UpdateAndValidateCandidatePairs(0, &pairs2);
ASSERT_TRUE(ContainsSucceededPair(pairs1));
ASSERT_TRUE(ContainsSucceededPair(pairs2));
for (auto p = pairs1.begin(); p != pairs1.end(); ++p) {
std::deque<std::string> logs;
std::string substring("CAND-PAIR(");
substring += p->codeword;
RLogRingBuffer::GetInstance()->Filter(substring, 0, &logs);
ASSERT_NE(0U, logs.size());
}
for (auto p = pairs2.begin(); p != pairs2.end(); ++p) {
std::deque<std::string> logs;
std::string substring("CAND-PAIR(");
substring += p->codeword;
RLogRingBuffer::GetInstance()->Filter(substring, 0, &logs);
ASSERT_NE(0U, logs.size());
}
}
TEST_F(PrioritizerTest, TestPrioritizer) {
SetPriorizer(::mozilla::CreateInterfacePrioritizer());
AddInterface("0", NR_INTERFACE_TYPE_VPN, 100); // unknown vpn
AddInterface("1", NR_INTERFACE_TYPE_VPN | NR_INTERFACE_TYPE_WIRED, 100); // wired vpn
AddInterface("2", NR_INTERFACE_TYPE_VPN | NR_INTERFACE_TYPE_WIFI, 100); // wifi vpn
AddInterface("3", NR_INTERFACE_TYPE_VPN | NR_INTERFACE_TYPE_MOBILE, 100); // wifi vpn
AddInterface("4", NR_INTERFACE_TYPE_WIRED, 1000); // wired, high speed
AddInterface("5", NR_INTERFACE_TYPE_WIRED, 10); // wired, low speed
AddInterface("6", NR_INTERFACE_TYPE_WIFI, 10); // wifi, low speed
AddInterface("7", NR_INTERFACE_TYPE_WIFI, 1000); // wifi, high speed
AddInterface("8", NR_INTERFACE_TYPE_MOBILE, 10); // mobile, low speed
AddInterface("9", NR_INTERFACE_TYPE_MOBILE, 1000); // mobile, high speed
AddInterface("10", NR_INTERFACE_TYPE_UNKNOWN, 10); // unknown, low speed
AddInterface("11", NR_INTERFACE_TYPE_UNKNOWN, 1000); // unknown, high speed
// expected preference "4" > "5" > "1" > "7" > "6" > "2" > "9" > "8" > "3" > "11" > "10" > "0"
HasLowerPreference("0", "10");
HasLowerPreference("10", "11");
HasLowerPreference("11", "3");
HasLowerPreference("3", "8");
HasLowerPreference("8", "9");
HasLowerPreference("9", "2");
HasLowerPreference("2", "6");
HasLowerPreference("6", "7");
HasLowerPreference("7", "1");
HasLowerPreference("1", "5");
HasLowerPreference("5", "4");
}
TEST_F(PacketFilterTest, TestSendNonStunPacket) {
const unsigned char data[] = "12345abcde";
TestOutgoing(data, sizeof(data), 123, 45, false);
}
TEST_F(PacketFilterTest, TestRecvNonStunPacket) {
const unsigned char data[] = "12345abcde";
TestIncoming(data, sizeof(data), 123, 45, false);
}
TEST_F(PacketFilterTest, TestSendStunPacket) {
nr_stun_message *msg;
ASSERT_EQ(0, nr_stun_build_req_no_auth(NULL, &msg));
msg->header.type = NR_STUN_MSG_BINDING_REQUEST;
ASSERT_EQ(0, nr_stun_encode_message(msg));
TestOutgoing(msg->buffer, msg->length, 123, 45, true);
ASSERT_EQ(0, nr_stun_message_destroy(&msg));
}
TEST_F(PacketFilterTest, TestRecvStunPacketWithoutAPendingId) {
nr_stun_message *msg;
ASSERT_EQ(0, nr_stun_build_req_no_auth(NULL, &msg));
msg->header.id.octet[0] = 1;
msg->header.type = NR_STUN_MSG_BINDING_REQUEST;
ASSERT_EQ(0, nr_stun_encode_message(msg));
TestOutgoing(msg->buffer, msg->length, 123, 45, true);
msg->header.id.octet[0] = 0;
msg->header.type = NR_STUN_MSG_BINDING_RESPONSE;
ASSERT_EQ(0, nr_stun_encode_message(msg));
TestIncoming(msg->buffer, msg->length, 123, 45, true);
ASSERT_EQ(0, nr_stun_message_destroy(&msg));
}
TEST_F(PacketFilterTest, TestRecvStunPacketWithoutAPendingAddress) {
nr_stun_message *msg;
ASSERT_EQ(0, nr_stun_build_req_no_auth(NULL, &msg));
msg->header.type = NR_STUN_MSG_BINDING_REQUEST;
ASSERT_EQ(0, nr_stun_encode_message(msg));
TestOutgoing(msg->buffer, msg->length, 123, 45, true);
msg->header.type = NR_STUN_MSG_BINDING_RESPONSE;
ASSERT_EQ(0, nr_stun_encode_message(msg));
TestIncoming(msg->buffer, msg->length, 123, 46, false);
TestIncoming(msg->buffer, msg->length, 124, 45, false);
ASSERT_EQ(0, nr_stun_message_destroy(&msg));
}
TEST_F(PacketFilterTest, TestRecvStunPacketWithPendingIdAndAddress) {
nr_stun_message *msg;
ASSERT_EQ(0, nr_stun_build_req_no_auth(NULL, &msg));
msg->header.type = NR_STUN_MSG_BINDING_REQUEST;
ASSERT_EQ(0, nr_stun_encode_message(msg));
TestOutgoing(msg->buffer, msg->length, 123, 45, true);
msg->header.type = NR_STUN_MSG_BINDING_RESPONSE;
ASSERT_EQ(0, nr_stun_encode_message(msg));
TestIncoming(msg->buffer, msg->length, 123, 45, true);
// Test whitelist by filtering non-stun packets.
const unsigned char data[] = "12345abcde";
// 123:45 is white-listed.
TestOutgoing(data, sizeof(data), 123, 45, true);
TestIncoming(data, sizeof(data), 123, 45, true);
// Indications pass as well.
msg->header.type = NR_STUN_MSG_BINDING_INDICATION;
ASSERT_EQ(0, nr_stun_encode_message(msg));
TestOutgoing(msg->buffer, msg->length, 123, 45, true);
TestIncoming(msg->buffer, msg->length, 123, 45, true);
// Packets from and to other address are still disallowed.
TestOutgoing(data, sizeof(data), 123, 46, false);
TestIncoming(data, sizeof(data), 123, 46, false);
TestOutgoing(data, sizeof(data), 124, 45, false);
TestIncoming(data, sizeof(data), 124, 45, false);
ASSERT_EQ(0, nr_stun_message_destroy(&msg));
}
TEST_F(PacketFilterTest, TestSendNonRequestStunPacket) {
nr_stun_message *msg;
ASSERT_EQ(0, nr_stun_build_req_no_auth(NULL, &msg));
msg->header.type = NR_STUN_MSG_BINDING_RESPONSE;
ASSERT_EQ(0, nr_stun_encode_message(msg));
TestOutgoing(msg->buffer, msg->length, 123, 45, false);
// Send a packet so we allow the incoming request.
msg->header.type = NR_STUN_MSG_BINDING_REQUEST;
ASSERT_EQ(0, nr_stun_encode_message(msg));
TestOutgoing(msg->buffer, msg->length, 123, 45, true);
// This packet makes us able to send a response.
msg->header.type = NR_STUN_MSG_BINDING_REQUEST;
ASSERT_EQ(0, nr_stun_encode_message(msg));
TestIncoming(msg->buffer, msg->length, 123, 45, true);
msg->header.type = NR_STUN_MSG_BINDING_RESPONSE;
ASSERT_EQ(0, nr_stun_encode_message(msg));
TestOutgoing(msg->buffer, msg->length, 123, 45, true);
ASSERT_EQ(0, nr_stun_message_destroy(&msg));
}
TEST(InternalsTest, TestAddBogusAttribute) {
nr_stun_message *req;
ASSERT_EQ(0, nr_stun_message_create(&req));
Data *data;
ASSERT_EQ(0, r_data_alloc(&data, 3000));
memset(data->data, 'A', data->len);
ASSERT_TRUE(nr_stun_message_add_message_integrity_attribute(req, data));
ASSERT_EQ(0, r_data_destroy(&data));
ASSERT_EQ(0, nr_stun_message_destroy(&req));
}
static std::string get_environment(const char *name) {
char *value = getenv(name);
if (!value)
return "";
return value;
}
// DNS resolution helper code
static std::string
Resolve(const std::string& fqdn, int address_family)
{
struct addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = address_family;
hints.ai_protocol = IPPROTO_UDP;
struct addrinfo *res;
int err = getaddrinfo(fqdn.c_str(), nullptr, &hints, &res);
if (err) {
std::cerr << "Error in getaddrinfo: " << err << std::endl;
return "";
}
char str_addr[64] = {0};
switch (res->ai_family) {
case AF_INET:
inet_ntop(
AF_INET,
&reinterpret_cast<struct sockaddr_in*>(res->ai_addr)->sin_addr,
str_addr,
sizeof(str_addr));
break;
case AF_INET6:
inet_ntop(
AF_INET6,
&reinterpret_cast<struct sockaddr_in6*>(res->ai_addr)->sin6_addr,
str_addr,
sizeof(str_addr));
break;
default:
std::cerr << "Got unexpected address family in DNS lookup: "
<< res->ai_family << std::endl;
return "";
}
if (!strlen(str_addr)) {
std::cerr << "inet_ntop failed" << std::endl;
}
return str_addr;
}
int main(int argc, char **argv)
{
#ifdef ANDROID
// This test can cause intermittent oranges on the builders on Linux
CHECK_ENVIRONMENT_FLAG("MOZ_WEBRTC_TESTS")
#endif
g_turn_server = get_environment("TURN_SERVER_ADDRESS");
g_turn_user = get_environment("TURN_SERVER_USER");
g_turn_password = get_environment("TURN_SERVER_PASSWORD");
if (g_turn_server.empty() ||
g_turn_user.empty(),
g_turn_password.empty()) {
printf(
"Set TURN_SERVER_ADDRESS, TURN_SERVER_USER, and TURN_SERVER_PASSWORD\n"
"environment variables to run this test\n");
g_turn_server="";
}
std::string tmp = get_environment("STUN_SERVER_ADDRESS");
if (tmp != "")
g_stun_server_address = tmp;
tmp = get_environment("STUN_SERVER_HOSTNAME");
if (tmp != "")
g_stun_server_hostname = tmp;
tmp = get_environment("MOZ_DISABLE_NONLOCAL_CONNECTIONS");
if ((tmp != "" && tmp != "0") || getenv("MOZ_UPLOAD_DIR")) {
// We're assuming that MOZ_UPLOAD_DIR is only set on tbpl;
// MOZ_DISABLE_NONLOCAL_CONNECTIONS probably should be set when running the
// cpp unit-tests, but is not presently.
g_stun_server_address = "";
g_stun_server_hostname = "";
g_turn_server = "";
}
test_utils = new MtransportTestUtils();
NSS_NoDB_Init(nullptr);
NSS_SetDomesticPolicy();
// If only a STUN server FQDN was provided, look up its IP address for the
// address-only tests.
if (g_stun_server_address.empty() && !g_stun_server_hostname.empty()) {
g_stun_server_address = Resolve(g_stun_server_hostname, AF_INET);
}
// Start the tests
::testing::InitGoogleTest(&argc, argv);
::testing::TestEventListeners& listeners =
::testing::UnitTest::GetInstance()->listeners();
// Adds a listener to the end. Google Test takes the ownership.
listeners.Append(new test::RingbufferDumper(test_utils));
test_utils->sts_target()->Dispatch(
WrapRunnableNM(&TestStunServer::GetInstance, AF_INET),
NS_DISPATCH_SYNC);
test_utils->sts_target()->Dispatch(
WrapRunnableNM(&TestStunServer::GetInstance, AF_INET6),
NS_DISPATCH_SYNC);
test_utils->sts_target()->Dispatch(
WrapRunnableNM(&TestStunTcpServer::GetInstance, AF_INET),
NS_DISPATCH_SYNC);
test_utils->sts_target()->Dispatch(
WrapRunnableNM(&TestStunTcpServer::GetInstance, AF_INET6),
NS_DISPATCH_SYNC);
int rv = RUN_ALL_TESTS();
test_utils->sts_target()->Dispatch(
WrapRunnableNM(&TestStunServer::ShutdownInstance), NS_DISPATCH_SYNC);
test_utils->sts_target()->Dispatch(
WrapRunnableNM(&TestStunTcpServer::ShutdownInstance), NS_DISPATCH_SYNC);
delete test_utils;
return rv;
}