зеркало из https://github.com/mozilla/gecko-dev.git
529 строки
16 KiB
C
529 строки
16 KiB
C
/*
|
|
* Copyright © 2013 Soren Sandmann Pedersen
|
|
* Copyright © 2013 Red Hat, Inc.
|
|
* Copyright © 2016 Mozilla Foundation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Author: Soren Sandmann (soren.sandmann@gmail.com)
|
|
* Jeff Muizelaar (jmuizelaar@mozilla.com)
|
|
*/
|
|
|
|
/* This has been adapted from the ssse3 code from pixman. It's currently
|
|
* a mess as I want to try it out in practice before finalizing the details.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <mmintrin.h>
|
|
#include <xmmintrin.h>
|
|
#include <emmintrin.h>
|
|
#include <tmmintrin.h>
|
|
#include <stdint.h>
|
|
#include <assert.h>
|
|
#include "ssse3-scaler.h"
|
|
|
|
typedef int32_t pixman_fixed_16_16_t;
|
|
typedef pixman_fixed_16_16_t pixman_fixed_t;
|
|
#define pixman_fixed_1 (pixman_int_to_fixed(1))
|
|
#define pixman_fixed_to_int(f) ((int)((f) >> 16))
|
|
#define pixman_int_to_fixed(i) ((pixman_fixed_t)((i) << 16))
|
|
#define pixman_double_to_fixed(d) ((pixman_fixed_t)((d)*65536.0))
|
|
#define PIXMAN_FIXED_INT_MAX 32767
|
|
#define PIXMAN_FIXED_INT_MIN -32768
|
|
typedef struct pixman_vector pixman_vector_t;
|
|
|
|
typedef int pixman_bool_t;
|
|
typedef int64_t pixman_fixed_32_32_t;
|
|
typedef pixman_fixed_32_32_t pixman_fixed_48_16_t;
|
|
typedef struct {
|
|
pixman_fixed_48_16_t v[3];
|
|
} pixman_vector_48_16_t;
|
|
|
|
struct pixman_vector {
|
|
pixman_fixed_t vector[3];
|
|
};
|
|
typedef struct pixman_transform pixman_transform_t;
|
|
|
|
struct pixman_transform {
|
|
pixman_fixed_t matrix[3][3];
|
|
};
|
|
|
|
#ifdef _MSC_VER
|
|
# define force_inline __forceinline
|
|
#else
|
|
# define force_inline __inline__ __attribute__((always_inline))
|
|
#endif
|
|
|
|
#define BILINEAR_INTERPOLATION_BITS 6
|
|
|
|
static force_inline int pixman_fixed_to_bilinear_weight(pixman_fixed_t x) {
|
|
return (x >> (16 - BILINEAR_INTERPOLATION_BITS)) &
|
|
((1 << BILINEAR_INTERPOLATION_BITS) - 1);
|
|
}
|
|
|
|
static void pixman_transform_point_31_16_3d(const pixman_transform_t* t,
|
|
const pixman_vector_48_16_t* v,
|
|
pixman_vector_48_16_t* result) {
|
|
int i;
|
|
int64_t tmp[3][2];
|
|
|
|
/* input vector values must have no more than 31 bits (including sign)
|
|
* in the integer part */
|
|
assert(v->v[0] < ((pixman_fixed_48_16_t)1 << (30 + 16)));
|
|
assert(v->v[0] >= -((pixman_fixed_48_16_t)1 << (30 + 16)));
|
|
assert(v->v[1] < ((pixman_fixed_48_16_t)1 << (30 + 16)));
|
|
assert(v->v[1] >= -((pixman_fixed_48_16_t)1 << (30 + 16)));
|
|
assert(v->v[2] < ((pixman_fixed_48_16_t)1 << (30 + 16)));
|
|
assert(v->v[2] >= -((pixman_fixed_48_16_t)1 << (30 + 16)));
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
tmp[i][0] = (int64_t)t->matrix[i][0] * (v->v[0] >> 16);
|
|
tmp[i][1] = (int64_t)t->matrix[i][0] * (v->v[0] & 0xFFFF);
|
|
tmp[i][0] += (int64_t)t->matrix[i][1] * (v->v[1] >> 16);
|
|
tmp[i][1] += (int64_t)t->matrix[i][1] * (v->v[1] & 0xFFFF);
|
|
tmp[i][0] += (int64_t)t->matrix[i][2] * (v->v[2] >> 16);
|
|
tmp[i][1] += (int64_t)t->matrix[i][2] * (v->v[2] & 0xFFFF);
|
|
}
|
|
|
|
result->v[0] = tmp[0][0] + ((tmp[0][1] + 0x8000) >> 16);
|
|
result->v[1] = tmp[1][0] + ((tmp[1][1] + 0x8000) >> 16);
|
|
result->v[2] = tmp[2][0] + ((tmp[2][1] + 0x8000) >> 16);
|
|
}
|
|
|
|
static pixman_bool_t pixman_transform_point_3d(
|
|
const struct pixman_transform* transform, struct pixman_vector* vector) {
|
|
pixman_vector_48_16_t tmp;
|
|
tmp.v[0] = vector->vector[0];
|
|
tmp.v[1] = vector->vector[1];
|
|
tmp.v[2] = vector->vector[2];
|
|
|
|
pixman_transform_point_31_16_3d(transform, &tmp, &tmp);
|
|
|
|
vector->vector[0] = tmp.v[0];
|
|
vector->vector[1] = tmp.v[1];
|
|
vector->vector[2] = tmp.v[2];
|
|
|
|
return vector->vector[0] == tmp.v[0] && vector->vector[1] == tmp.v[1] &&
|
|
vector->vector[2] == tmp.v[2];
|
|
}
|
|
|
|
struct bits_image_t {
|
|
uint32_t* bits;
|
|
int rowstride;
|
|
pixman_transform_t* transform;
|
|
};
|
|
|
|
typedef struct bits_image_t bits_image_t;
|
|
typedef struct {
|
|
int unused;
|
|
} pixman_iter_info_t;
|
|
|
|
typedef struct pixman_iter_t pixman_iter_t;
|
|
typedef void (*pixman_iter_fini_t)(pixman_iter_t* iter);
|
|
|
|
struct pixman_iter_t {
|
|
int x, y;
|
|
pixman_iter_fini_t fini;
|
|
bits_image_t* image;
|
|
uint32_t* buffer;
|
|
int width;
|
|
int height;
|
|
void* data;
|
|
};
|
|
|
|
typedef struct {
|
|
int y;
|
|
uint64_t* buffer;
|
|
} line_t;
|
|
|
|
typedef struct {
|
|
line_t lines[2];
|
|
pixman_fixed_t y;
|
|
pixman_fixed_t x;
|
|
uint64_t data[1];
|
|
} bilinear_info_t;
|
|
|
|
static void ssse3_fetch_horizontal(bits_image_t* image, line_t* line, int y,
|
|
pixman_fixed_t x, pixman_fixed_t ux, int n) {
|
|
uint32_t* bits = image->bits + y * image->rowstride;
|
|
__m128i vx = _mm_set_epi16(-(x + 1), x, -(x + 1), x, -(x + ux + 1), x + ux,
|
|
-(x + ux + 1), x + ux);
|
|
__m128i vux = _mm_set_epi16(-2 * ux, 2 * ux, -2 * ux, 2 * ux, -2 * ux, 2 * ux,
|
|
-2 * ux, 2 * ux);
|
|
__m128i vaddc = _mm_set_epi16(1, 0, 1, 0, 1, 0, 1, 0);
|
|
__m128i* b = (__m128i*)line->buffer;
|
|
__m128i vrl0, vrl1;
|
|
|
|
while ((n -= 2) >= 0) {
|
|
__m128i vw, vr, s;
|
|
#ifdef HACKY_PADDING
|
|
if (pixman_fixed_to_int(x + ux) >= image->rowstride) {
|
|
vrl1 = _mm_setzero_si128();
|
|
printf("overread 2loop\n");
|
|
} else {
|
|
if (pixman_fixed_to_int(x + ux) < 0) printf("underflow\n");
|
|
vrl1 = _mm_loadl_epi64(
|
|
(__m128i*)(bits + (pixman_fixed_to_int(x + ux) < 0
|
|
? 0
|
|
: pixman_fixed_to_int(x + ux))));
|
|
}
|
|
#else
|
|
vrl1 = _mm_loadl_epi64((__m128i*)(bits + pixman_fixed_to_int(x + ux)));
|
|
#endif
|
|
/* vrl1: R1, L1 */
|
|
|
|
final_pixel:
|
|
#ifdef HACKY_PADDING
|
|
vrl0 = _mm_loadl_epi64(
|
|
(__m128i*)(bits +
|
|
(pixman_fixed_to_int(x) < 0 ? 0 : pixman_fixed_to_int(x))));
|
|
#else
|
|
vrl0 = _mm_loadl_epi64((__m128i*)(bits + pixman_fixed_to_int(x)));
|
|
#endif
|
|
/* vrl0: R0, L0 */
|
|
|
|
/* The weights are based on vx which is a vector of
|
|
*
|
|
* - (x + 1), x, - (x + 1), x,
|
|
* - (x + ux + 1), x + ux, - (x + ux + 1), x + ux
|
|
*
|
|
* so the 16 bit weights end up like this:
|
|
*
|
|
* iw0, w0, iw0, w0, iw1, w1, iw1, w1
|
|
*
|
|
* and after shifting and packing, we get these bytes:
|
|
*
|
|
* iw0, w0, iw0, w0, iw1, w1, iw1, w1,
|
|
* iw0, w0, iw0, w0, iw1, w1, iw1, w1,
|
|
*
|
|
* which means the first and the second input pixel
|
|
* have to be interleaved like this:
|
|
*
|
|
* la0, ra0, lr0, rr0, la1, ra1, lr1, rr1,
|
|
* lg0, rg0, lb0, rb0, lg1, rg1, lb1, rb1
|
|
*
|
|
* before maddubsw can be used.
|
|
*/
|
|
|
|
vw = _mm_add_epi16(vaddc,
|
|
_mm_srli_epi16(vx, 16 - BILINEAR_INTERPOLATION_BITS));
|
|
/* vw: iw0, w0, iw0, w0, iw1, w1, iw1, w1
|
|
*/
|
|
|
|
vw = _mm_packus_epi16(vw, vw);
|
|
/* vw: iw0, w0, iw0, w0, iw1, w1, iw1, w1,
|
|
* iw0, w0, iw0, w0, iw1, w1, iw1, w1
|
|
*/
|
|
vx = _mm_add_epi16(vx, vux);
|
|
|
|
x += 2 * ux;
|
|
|
|
vr = _mm_unpacklo_epi16(vrl1, vrl0);
|
|
/* vr: rar0, rar1, rgb0, rgb1, lar0, lar1, lgb0, lgb1 */
|
|
|
|
s = _mm_shuffle_epi32(vr, _MM_SHUFFLE(1, 0, 3, 2));
|
|
/* s: lar0, lar1, lgb0, lgb1, rar0, rar1, rgb0, rgb1 */
|
|
|
|
vr = _mm_unpackhi_epi8(vr, s);
|
|
/* vr: la0, ra0, lr0, rr0, la1, ra1, lr1, rr1,
|
|
* lg0, rg0, lb0, rb0, lg1, rg1, lb1, rb1
|
|
*/
|
|
|
|
vr = _mm_maddubs_epi16(vr, vw);
|
|
|
|
/* When the weight is 0, the inverse weight is
|
|
* 128 which can't be represented in a signed byte.
|
|
* As a result maddubsw computes the following:
|
|
*
|
|
* r = l * -128 + r * 0
|
|
*
|
|
* rather than the desired
|
|
*
|
|
* r = l * 128 + r * 0
|
|
*
|
|
* We fix this by taking the absolute value of the
|
|
* result.
|
|
*/
|
|
// we can drop this if we use lower precision
|
|
|
|
vr = _mm_shuffle_epi32(vr, _MM_SHUFFLE(2, 0, 3, 1));
|
|
/* vr: A0, R0, A1, R1, G0, B0, G1, B1 */
|
|
_mm_store_si128(b++, vr);
|
|
}
|
|
|
|
if (n == -1) {
|
|
vrl1 = _mm_setzero_si128();
|
|
goto final_pixel;
|
|
}
|
|
|
|
line->y = y;
|
|
}
|
|
|
|
// scale a line of destination pixels
|
|
static uint32_t* ssse3_fetch_bilinear_cover(pixman_iter_t* iter,
|
|
const uint32_t* mask) {
|
|
pixman_fixed_t fx, ux;
|
|
bilinear_info_t* info = iter->data;
|
|
line_t *line0, *line1;
|
|
int y0, y1;
|
|
int32_t dist_y;
|
|
__m128i vw, uvw;
|
|
int i;
|
|
|
|
fx = info->x;
|
|
ux = iter->image->transform->matrix[0][0];
|
|
|
|
y0 = pixman_fixed_to_int(info->y);
|
|
if (y0 < 0) *(volatile char*)0 = 9;
|
|
y1 = y0 + 1;
|
|
|
|
// clamping in y direction
|
|
if (y1 >= iter->height) {
|
|
y1 = iter->height - 1;
|
|
}
|
|
|
|
line0 = &info->lines[y0 & 0x01];
|
|
line1 = &info->lines[y1 & 0x01];
|
|
|
|
if (line0->y != y0) {
|
|
ssse3_fetch_horizontal(iter->image, line0, y0, fx, ux, iter->width);
|
|
}
|
|
|
|
if (line1->y != y1) {
|
|
ssse3_fetch_horizontal(iter->image, line1, y1, fx, ux, iter->width);
|
|
}
|
|
|
|
#ifdef PIXMAN_STYLE_INTERPOLATION
|
|
dist_y = pixman_fixed_to_bilinear_weight(info->y);
|
|
dist_y <<= (16 - BILINEAR_INTERPOLATION_BITS);
|
|
|
|
vw = _mm_set_epi16(dist_y, dist_y, dist_y, dist_y, dist_y, dist_y, dist_y,
|
|
dist_y);
|
|
|
|
#else
|
|
// setup the weights for the top (vw) and bottom (uvw) lines
|
|
dist_y = pixman_fixed_to_bilinear_weight(info->y);
|
|
// we use 15 instead of 16 because we need an extra bit to handle when the
|
|
// weights are 0 and 1
|
|
dist_y <<= (15 - BILINEAR_INTERPOLATION_BITS);
|
|
|
|
vw = _mm_set_epi16(dist_y, dist_y, dist_y, dist_y, dist_y, dist_y, dist_y,
|
|
dist_y);
|
|
|
|
dist_y = (1 << BILINEAR_INTERPOLATION_BITS) -
|
|
pixman_fixed_to_bilinear_weight(info->y);
|
|
dist_y <<= (15 - BILINEAR_INTERPOLATION_BITS);
|
|
uvw = _mm_set_epi16(dist_y, dist_y, dist_y, dist_y, dist_y, dist_y, dist_y,
|
|
dist_y);
|
|
#endif
|
|
|
|
for (i = 0; i + 3 < iter->width; i += 4) {
|
|
__m128i top0 = _mm_load_si128((__m128i*)(line0->buffer + i));
|
|
__m128i bot0 = _mm_load_si128((__m128i*)(line1->buffer + i));
|
|
__m128i top1 = _mm_load_si128((__m128i*)(line0->buffer + i + 2));
|
|
__m128i bot1 = _mm_load_si128((__m128i*)(line1->buffer + i + 2));
|
|
#ifdef PIXMAN_STYLE_INTERPOLATION
|
|
__m128i r0, r1, tmp, p;
|
|
|
|
r0 = _mm_mulhi_epu16(_mm_sub_epi16(bot0, top0), vw);
|
|
tmp = _mm_cmplt_epi16(bot0, top0);
|
|
tmp = _mm_and_si128(tmp, vw);
|
|
r0 = _mm_sub_epi16(r0, tmp);
|
|
r0 = _mm_add_epi16(r0, top0);
|
|
r0 = _mm_srli_epi16(r0, BILINEAR_INTERPOLATION_BITS);
|
|
/* r0: A0 R0 A1 R1 G0 B0 G1 B1 */
|
|
// r0 = _mm_shuffle_epi32 (r0, _MM_SHUFFLE (2, 0, 3, 1));
|
|
/* r0: A1 R1 G1 B1 A0 R0 G0 B0 */
|
|
|
|
// tmp = bot1 < top1 ? vw : 0;
|
|
// r1 = (bot1 - top1)*vw + top1 - tmp
|
|
// r1 = bot1*vw - vw*top1 + top1 - tmp
|
|
// r1 = bot1*vw + top1 - vw*top1 - tmp
|
|
// r1 = bot1*vw + top1*(1 - vw) - tmp
|
|
r1 = _mm_mulhi_epu16(_mm_sub_epi16(bot1, top1), vw);
|
|
tmp = _mm_cmplt_epi16(bot1, top1);
|
|
tmp = _mm_and_si128(tmp, vw);
|
|
r1 = _mm_sub_epi16(r1, tmp);
|
|
r1 = _mm_add_epi16(r1, top1);
|
|
r1 = _mm_srli_epi16(r1, BILINEAR_INTERPOLATION_BITS);
|
|
// r1 = _mm_shuffle_epi32 (r1, _MM_SHUFFLE (2, 0, 3, 1));
|
|
/* r1: A3 R3 G3 B3 A2 R2 G2 B2 */
|
|
#else
|
|
__m128i r0, r1, p;
|
|
top0 = _mm_mulhi_epu16(top0, uvw);
|
|
bot0 = _mm_mulhi_epu16(bot0, vw);
|
|
r0 = _mm_add_epi16(top0, bot0);
|
|
r0 = _mm_srli_epi16(r0, BILINEAR_INTERPOLATION_BITS - 1);
|
|
|
|
top1 = _mm_mulhi_epu16(top1, uvw);
|
|
bot1 = _mm_mulhi_epu16(bot1, vw);
|
|
r1 = _mm_add_epi16(top1, bot1);
|
|
r1 = _mm_srli_epi16(r1, BILINEAR_INTERPOLATION_BITS - 1);
|
|
#endif
|
|
|
|
p = _mm_packus_epi16(r0, r1);
|
|
_mm_storeu_si128((__m128i*)(iter->buffer + i), p);
|
|
}
|
|
|
|
while (i < iter->width) {
|
|
__m128i top0 = _mm_load_si128((__m128i*)(line0->buffer + i));
|
|
__m128i bot0 = _mm_load_si128((__m128i*)(line1->buffer + i));
|
|
|
|
#ifdef PIXMAN_STYLE_INTERPOLATION
|
|
__m128i r0, tmp, p;
|
|
r0 = _mm_mulhi_epu16(_mm_sub_epi16(bot0, top0), vw);
|
|
tmp = _mm_cmplt_epi16(bot0, top0);
|
|
tmp = _mm_and_si128(tmp, vw);
|
|
r0 = _mm_sub_epi16(r0, tmp);
|
|
r0 = _mm_add_epi16(r0, top0);
|
|
r0 = _mm_srli_epi16(r0, BILINEAR_INTERPOLATION_BITS);
|
|
/* r0: A0 R0 A1 R1 G0 B0 G1 B1 */
|
|
r0 = _mm_shuffle_epi32(r0, _MM_SHUFFLE(2, 0, 3, 1));
|
|
/* r0: A1 R1 G1 B1 A0 R0 G0 B0 */
|
|
#else
|
|
__m128i r0, p;
|
|
top0 = _mm_mulhi_epu16(top0, uvw);
|
|
bot0 = _mm_mulhi_epu16(bot0, vw);
|
|
r0 = _mm_add_epi16(top0, bot0);
|
|
r0 = _mm_srli_epi16(r0, BILINEAR_INTERPOLATION_BITS - 1);
|
|
#endif
|
|
|
|
p = _mm_packus_epi16(r0, r0);
|
|
|
|
if (iter->width - i == 1) {
|
|
*(uint32_t*)(iter->buffer + i) = _mm_cvtsi128_si32(p);
|
|
i++;
|
|
} else {
|
|
_mm_storel_epi64((__m128i*)(iter->buffer + i), p);
|
|
i += 2;
|
|
}
|
|
}
|
|
|
|
info->y += iter->image->transform->matrix[1][1];
|
|
|
|
return iter->buffer;
|
|
}
|
|
|
|
static void ssse3_bilinear_cover_iter_fini(pixman_iter_t* iter) {
|
|
free(iter->data);
|
|
}
|
|
|
|
static void ssse3_bilinear_cover_iter_init(pixman_iter_t* iter) {
|
|
int width = iter->width;
|
|
bilinear_info_t* info;
|
|
pixman_vector_t v;
|
|
|
|
if (iter->x > PIXMAN_FIXED_INT_MAX || iter->x < PIXMAN_FIXED_INT_MIN ||
|
|
iter->y > PIXMAN_FIXED_INT_MAX || iter->y < PIXMAN_FIXED_INT_MIN)
|
|
goto fail;
|
|
|
|
/* Reference point is the center of the pixel */
|
|
v.vector[0] = pixman_int_to_fixed(iter->x) + pixman_fixed_1 / 2;
|
|
v.vector[1] = pixman_int_to_fixed(iter->y) + pixman_fixed_1 / 2;
|
|
v.vector[2] = pixman_fixed_1;
|
|
|
|
if (!pixman_transform_point_3d(iter->image->transform, &v)) goto fail;
|
|
|
|
info = malloc(sizeof(*info) + (2 * width - 1) * sizeof(uint64_t) + 64);
|
|
if (!info) goto fail;
|
|
|
|
info->x = v.vector[0] - pixman_fixed_1 / 2;
|
|
info->y = v.vector[1] - pixman_fixed_1 / 2;
|
|
|
|
#define ALIGN(addr) ((void*)((((uintptr_t)(addr)) + 15) & (~15)))
|
|
|
|
/* It is safe to set the y coordinates to -1 initially
|
|
* because COVER_CLIP_BILINEAR ensures that we will only
|
|
* be asked to fetch lines in the [0, height) interval
|
|
*/
|
|
info->lines[0].y = -1;
|
|
info->lines[0].buffer = ALIGN(&(info->data[0]));
|
|
info->lines[1].y = -1;
|
|
info->lines[1].buffer = ALIGN(info->lines[0].buffer + width);
|
|
|
|
iter->fini = ssse3_bilinear_cover_iter_fini;
|
|
|
|
iter->data = info;
|
|
return;
|
|
|
|
fail:
|
|
/* Something went wrong, either a bad matrix or OOM; in such cases,
|
|
* we don't guarantee any particular rendering.
|
|
*/
|
|
iter->fini = NULL;
|
|
}
|
|
|
|
/* scale the src from src_width/height to dest_width/height drawn
|
|
* into the rectangle x,y width,height
|
|
* src_stride and dst_stride are 4 byte units */
|
|
bool ssse3_scale_data(uint32_t* src, int src_width, int src_height,
|
|
int src_stride, uint32_t* dest, int dest_width,
|
|
int dest_height, int dest_stride, int x, int y, int width,
|
|
int height) {
|
|
// XXX: assert(src_width > 1)
|
|
pixman_transform_t transform = {
|
|
{{pixman_fixed_1, 0, 0}, {0, pixman_fixed_1, 0}, {0, 0, pixman_fixed_1}}};
|
|
double width_scale = ((double)src_width) / dest_width;
|
|
double height_scale = ((double)src_height) / dest_height;
|
|
#define AVOID_PADDING
|
|
#ifdef AVOID_PADDING
|
|
// scale up by enough that we don't read outside of the bounds of the source
|
|
// surface currently this is required to avoid reading out of bounds.
|
|
if (width_scale < 1) {
|
|
width_scale = (double)(src_width - 1) / dest_width;
|
|
transform.matrix[0][2] = pixman_fixed_1 / 2;
|
|
}
|
|
if (height_scale < 1) {
|
|
height_scale = (double)(src_height - 1) / dest_height;
|
|
transform.matrix[1][2] = pixman_fixed_1 / 2;
|
|
}
|
|
#endif
|
|
transform.matrix[0][0] = pixman_double_to_fixed(width_scale);
|
|
transform.matrix[1][1] = pixman_double_to_fixed(height_scale);
|
|
transform.matrix[2][2] = pixman_fixed_1;
|
|
|
|
bits_image_t image;
|
|
image.bits = src;
|
|
image.transform = &transform;
|
|
image.rowstride = src_stride;
|
|
|
|
pixman_iter_t iter;
|
|
iter.image = ℑ
|
|
iter.x = x;
|
|
iter.y = y;
|
|
iter.width = width;
|
|
iter.height = src_height;
|
|
iter.buffer = dest;
|
|
iter.data = NULL;
|
|
|
|
ssse3_bilinear_cover_iter_init(&iter);
|
|
|
|
if (!iter.fini) return false;
|
|
|
|
if (iter.data) {
|
|
for (int iy = 0; iy < height; iy++) {
|
|
ssse3_fetch_bilinear_cover(&iter, NULL);
|
|
iter.buffer += dest_stride;
|
|
}
|
|
ssse3_bilinear_cover_iter_fini(&iter);
|
|
}
|
|
return true;
|
|
}
|