gecko-dev/widget/windows/nsAppShell.cpp

345 строки
11 KiB
C++

/* -*- Mode: c++; tab-width: 2; indent-tabs-mode: nil; -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/ipc/RPCChannel.h"
#include "nsAppShell.h"
#include "nsToolkit.h"
#include "nsThreadUtils.h"
#include "WinTaskbar.h"
#include "WinMouseScrollHandler.h"
#include "nsWindowDefs.h"
#include "nsString.h"
#include "nsIMM32Handler.h"
#include "mozilla/widget/AudioSession.h"
#include "mozilla/HangMonitor.h"
// For skidmark code
#include <windows.h>
#include <tlhelp32.h>
const PRUnichar* kAppShellEventId = L"nsAppShell:EventID";
const PRUnichar* kTaskbarButtonEventId = L"TaskbarButtonCreated";
// The maximum time we allow before forcing a native event callback
#define NATIVE_EVENT_STARVATION_LIMIT mozilla::TimeDuration::FromSeconds(1)
static UINT sMsgId;
static UINT sTaskbarButtonCreatedMsg;
/* static */
UINT nsAppShell::GetTaskbarButtonCreatedMessage() {
return sTaskbarButtonCreatedMsg;
}
namespace mozilla {
namespace crashreporter {
void LSPAnnotate();
} // namespace crashreporter
} // namespace mozilla
using mozilla::crashreporter::LSPAnnotate;
//-------------------------------------------------------------------------
static bool PeekUIMessage(MSG* aMsg)
{
// For avoiding deadlock between our process and plugin process by
// mouse wheel messages, we're handling actually when we receive one of
// following internal messages which is posted by native mouse wheel message
// handler. Any other events, especially native modifier key events, should
// not be handled between native message and posted internal message because
// it may make different modifier key state or mouse cursor position between
// them.
if (mozilla::widget::MouseScrollHandler::IsWaitingInternalMessage() &&
::PeekMessageW(aMsg, NULL, MOZ_WM_MOUSEWHEEL_FIRST,
MOZ_WM_MOUSEWHEEL_LAST, PM_REMOVE)) {
return true;
}
MSG keyMsg, imeMsg, mouseMsg, *pMsg = 0;
bool haveKeyMsg, haveIMEMsg, haveMouseMsg;
haveKeyMsg = ::PeekMessageW(&keyMsg, NULL, WM_KEYFIRST, WM_IME_KEYLAST, PM_NOREMOVE);
haveIMEMsg = ::PeekMessageW(&imeMsg, NULL, NS_WM_IMEFIRST, NS_WM_IMELAST, PM_NOREMOVE);
haveMouseMsg = ::PeekMessageW(&mouseMsg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE);
if (haveKeyMsg) {
pMsg = &keyMsg;
}
if (haveIMEMsg && (!pMsg || imeMsg.time < pMsg->time)) {
pMsg = &imeMsg;
}
if (pMsg && !nsIMM32Handler::CanOptimizeKeyAndIMEMessages(pMsg)) {
return false;
}
if (haveMouseMsg && (!pMsg || mouseMsg.time < pMsg->time)) {
pMsg = &mouseMsg;
}
if (!pMsg) {
return false;
}
return ::PeekMessageW(aMsg, NULL, pMsg->message, pMsg->message, PM_REMOVE);
}
/*static*/ LRESULT CALLBACK
nsAppShell::EventWindowProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (uMsg == sMsgId) {
nsAppShell *as = reinterpret_cast<nsAppShell *>(lParam);
as->NativeEventCallback();
NS_RELEASE(as);
return TRUE;
}
return DefWindowProc(hwnd, uMsg, wParam, lParam);
}
nsAppShell::~nsAppShell()
{
if (mEventWnd) {
// DestroyWindow doesn't do anything when called from a non UI thread.
// Since mEventWnd was created on the UI thread, it must be destroyed on
// the UI thread.
SendMessage(mEventWnd, WM_CLOSE, 0, 0);
}
}
nsresult
nsAppShell::Init()
{
#ifdef MOZ_CRASHREPORTER
LSPAnnotate();
#endif
mLastNativeEventScheduled = TimeStamp::Now();
if (!sMsgId)
sMsgId = RegisterWindowMessageW(kAppShellEventId);
sTaskbarButtonCreatedMsg = ::RegisterWindowMessageW(kTaskbarButtonEventId);
NS_ASSERTION(sTaskbarButtonCreatedMsg, "Could not register taskbar button creation message");
WNDCLASSW wc;
HINSTANCE module = GetModuleHandle(NULL);
const PRUnichar *const kWindowClass = L"nsAppShell:EventWindowClass";
if (!GetClassInfoW(module, kWindowClass, &wc)) {
wc.style = 0;
wc.lpfnWndProc = EventWindowProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = module;
wc.hIcon = NULL;
wc.hCursor = NULL;
wc.hbrBackground = (HBRUSH) NULL;
wc.lpszMenuName = (LPCWSTR) NULL;
wc.lpszClassName = kWindowClass;
RegisterClassW(&wc);
}
mEventWnd = CreateWindowW(kWindowClass, L"nsAppShell:EventWindow",
0, 0, 0, 10, 10, NULL, NULL, module, NULL);
NS_ENSURE_STATE(mEventWnd);
return nsBaseAppShell::Init();
}
/**
* This is some temporary code to keep track of where in memory dlls are
* loaded. This is useful in case someone calls into a dll that has been
* unloaded. This code lets us see which dll used to be loaded at the given
* called address.
*/
#if defined(_MSC_VER) && defined(_M_IX86)
#define LOADEDMODULEINFO_STRSIZE 23
#define NUM_LOADEDMODULEINFO 250
struct LoadedModuleInfo {
void* mStartAddr;
void* mEndAddr;
char mName[LOADEDMODULEINFO_STRSIZE + 1];
};
static LoadedModuleInfo* sLoadedModules = 0;
static void
CollectNewLoadedModules()
{
HANDLE hModuleSnap = INVALID_HANDLE_VALUE;
MODULEENTRY32W module;
// Take a snapshot of all modules in our process.
hModuleSnap = CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, 0);
if (hModuleSnap == INVALID_HANDLE_VALUE)
return;
// Set the size of the structure before using it.
module.dwSize = sizeof(MODULEENTRY32W);
// Now walk the module list of the process,
// and display information about each module
bool done = !Module32FirstW(hModuleSnap, &module);
while (!done) {
NS_LossyConvertUTF16toASCII moduleName(module.szModule);
bool found = false;
uint32_t i;
for (i = 0; i < NUM_LOADEDMODULEINFO &&
sLoadedModules[i].mStartAddr; ++i) {
if (sLoadedModules[i].mStartAddr == module.modBaseAddr &&
!strcmp(moduleName.get(),
sLoadedModules[i].mName)) {
found = true;
break;
}
}
if (!found && i < NUM_LOADEDMODULEINFO) {
sLoadedModules[i].mStartAddr = module.modBaseAddr;
sLoadedModules[i].mEndAddr = module.modBaseAddr + module.modBaseSize;
strncpy(sLoadedModules[i].mName, moduleName.get(),
LOADEDMODULEINFO_STRSIZE);
sLoadedModules[i].mName[LOADEDMODULEINFO_STRSIZE] = 0;
}
done = !Module32NextW(hModuleSnap, &module);
}
uint32_t i;
for (i = 0; i < NUM_LOADEDMODULEINFO &&
sLoadedModules[i].mStartAddr; ++i) {}
CloseHandle(hModuleSnap);
}
NS_IMETHODIMP
nsAppShell::Run(void)
{
LoadedModuleInfo modules[NUM_LOADEDMODULEINFO];
memset(modules, 0, sizeof(modules));
sLoadedModules = modules;
// Ignore failure; failing to start the application is not exactly an
// appropriate response to failing to start an audio session.
mozilla::widget::StartAudioSession();
nsresult rv = nsBaseAppShell::Run();
mozilla::widget::StopAudioSession();
// Don't forget to null this out!
sLoadedModules = nullptr;
return rv;
}
#endif
void
nsAppShell::DoProcessMoreGeckoEvents()
{
// Called by nsBaseAppShell's NativeEventCallback() after it has finished
// processing pending gecko events and there are still gecko events pending
// for the thread. (This can happen if NS_ProcessPendingEvents reached it's
// starvation timeout limit.) The default behavior in nsBaseAppShell is to
// call ScheduleNativeEventCallback to post a follow up native event callback
// message. This triggers an additional call to NativeEventCallback for more
// gecko event processing.
// There's a deadlock risk here with certain internal Windows modal loops. In
// our dispatch code, we prioritize messages so that input is handled first.
// However Windows modal dispatch loops often prioritize posted messages. If
// we find ourselves in a tight gecko timer loop where NS_ProcessPendingEvents
// takes longer than the timer duration, NS_HasPendingEvents(thread) will
// always be true. ScheduleNativeEventCallback will be called on every
// NativeEventCallback callback, and in a Windows modal dispatch loop, the
// callback message will be processed first -> input gets starved, dead lock.
// To avoid, don't post native callback messages from NativeEventCallback
// when we're in a modal loop. This gets us back into the Windows modal
// dispatch loop dispatching input messages. Once we drop out of the modal
// loop, we use mNativeCallbackPending to fire off a final NativeEventCallback
// if we need it, which insures NS_ProcessPendingEvents gets called and all
// gecko events get processed.
if (mEventloopNestingLevel < 2) {
OnDispatchedEvent(nullptr);
mNativeCallbackPending = false;
} else {
mNativeCallbackPending = true;
}
}
void
nsAppShell::ScheduleNativeEventCallback()
{
// Post a message to the hidden message window
NS_ADDREF_THIS(); // will be released when the event is processed
// Time stamp this event so we can detect cases where the event gets
// dropping in sub classes / modal loops we do not control.
mLastNativeEventScheduled = TimeStamp::Now();
::PostMessage(mEventWnd, sMsgId, 0, reinterpret_cast<LPARAM>(this));
}
bool
nsAppShell::ProcessNextNativeEvent(bool mayWait)
{
#if defined(_MSC_VER) && defined(_M_IX86)
if (sXPCOMHasLoadedNewDLLs && sLoadedModules) {
sXPCOMHasLoadedNewDLLs = false;
CollectNewLoadedModules();
}
#endif
// Notify ipc we are spinning a (possibly nested) gecko event loop.
mozilla::ipc::RPCChannel::NotifyGeckoEventDispatch();
bool gotMessage = false;
do {
MSG msg;
bool uiMessage = PeekUIMessage(&msg);
// Give priority to keyboard and mouse messages.
if (uiMessage ||
PeekMessageW(&msg, NULL, 0, 0, PM_REMOVE)) {
gotMessage = true;
if (msg.message == WM_QUIT) {
::PostQuitMessage(msg.wParam);
Exit();
} else {
// If we had UI activity we would be processing it now so we know we
// have either kUIActivity or kActivityNoUIAVail.
mozilla::HangMonitor::NotifyActivity(
uiMessage ? mozilla::HangMonitor::kUIActivity :
mozilla::HangMonitor::kActivityNoUIAVail);
::TranslateMessage(&msg);
::DispatchMessageW(&msg);
}
} else if (mayWait) {
// Block and wait for any posted application message
mozilla::HangMonitor::Suspend();
::WaitMessage();
}
} while (!gotMessage && mayWait);
// See DoProcessNextNativeEvent, mEventloopNestingLevel will be
// one when a modal loop unwinds.
if (mNativeCallbackPending && mEventloopNestingLevel == 1)
DoProcessMoreGeckoEvents();
// Check for starved native callbacks. If we haven't processed one
// of these events in NATIVE_EVENT_STARVATION_LIMIT, fire one off.
if ((TimeStamp::Now() - mLastNativeEventScheduled) >
NATIVE_EVENT_STARVATION_LIMIT) {
ScheduleNativeEventCallback();
}
return gotMessage;
}