gecko-dev/media/libvpx/vp8/decoder/threading.c

911 строки
32 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_config.h"
#include "vp8_rtcd.h"
#if !defined(WIN32) && CONFIG_OS_SUPPORT == 1
# include <unistd.h>
#endif
#include "onyxd_int.h"
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/threading.h"
#include "vp8/common/loopfilter.h"
#include "vp8/common/extend.h"
#include "vpx_ports/vpx_timer.h"
#include "detokenize.h"
#include "vp8/common/reconintra4x4.h"
#include "vp8/common/reconinter.h"
#include "vp8/common/setupintrarecon.h"
#if CONFIG_ERROR_CONCEALMENT
#include "error_concealment.h"
#endif
#define CALLOC_ARRAY(p, n) CHECK_MEM_ERROR((p), vpx_calloc(sizeof(*(p)), (n)))
#define CALLOC_ARRAY_ALIGNED(p, n, algn) do { \
CHECK_MEM_ERROR((p), vpx_memalign((algn), sizeof(*(p)) * (n))); \
memset((p), 0, (n) * sizeof(*(p))); \
} while (0)
void vp8_mb_init_dequantizer(VP8D_COMP *pbi, MACROBLOCKD *xd);
static void setup_decoding_thread_data(VP8D_COMP *pbi, MACROBLOCKD *xd, MB_ROW_DEC *mbrd, int count)
{
VP8_COMMON *const pc = & pbi->common;
int i;
for (i = 0; i < count; i++)
{
MACROBLOCKD *mbd = &mbrd[i].mbd;
mbd->subpixel_predict = xd->subpixel_predict;
mbd->subpixel_predict8x4 = xd->subpixel_predict8x4;
mbd->subpixel_predict8x8 = xd->subpixel_predict8x8;
mbd->subpixel_predict16x16 = xd->subpixel_predict16x16;
mbd->mode_info_context = pc->mi + pc->mode_info_stride * (i + 1);
mbd->mode_info_stride = pc->mode_info_stride;
mbd->frame_type = pc->frame_type;
mbd->pre = xd->pre;
mbd->dst = xd->dst;
mbd->segmentation_enabled = xd->segmentation_enabled;
mbd->mb_segement_abs_delta = xd->mb_segement_abs_delta;
vpx_memcpy(mbd->segment_feature_data, xd->segment_feature_data, sizeof(xd->segment_feature_data));
/*signed char ref_lf_deltas[MAX_REF_LF_DELTAS];*/
vpx_memcpy(mbd->ref_lf_deltas, xd->ref_lf_deltas, sizeof(xd->ref_lf_deltas));
/*signed char mode_lf_deltas[MAX_MODE_LF_DELTAS];*/
vpx_memcpy(mbd->mode_lf_deltas, xd->mode_lf_deltas, sizeof(xd->mode_lf_deltas));
/*unsigned char mode_ref_lf_delta_enabled;
unsigned char mode_ref_lf_delta_update;*/
mbd->mode_ref_lf_delta_enabled = xd->mode_ref_lf_delta_enabled;
mbd->mode_ref_lf_delta_update = xd->mode_ref_lf_delta_update;
mbd->current_bc = &pbi->mbc[0];
vpx_memcpy(mbd->dequant_y1_dc, xd->dequant_y1_dc, sizeof(xd->dequant_y1_dc));
vpx_memcpy(mbd->dequant_y1, xd->dequant_y1, sizeof(xd->dequant_y1));
vpx_memcpy(mbd->dequant_y2, xd->dequant_y2, sizeof(xd->dequant_y2));
vpx_memcpy(mbd->dequant_uv, xd->dequant_uv, sizeof(xd->dequant_uv));
mbd->fullpixel_mask = 0xffffffff;
if (pc->full_pixel)
mbd->fullpixel_mask = 0xfffffff8;
}
for (i = 0; i < pc->mb_rows; i++)
pbi->mt_current_mb_col[i] = -1;
}
static void mt_decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd,
unsigned int mb_idx)
{
MB_PREDICTION_MODE mode;
int i;
#if CONFIG_ERROR_CONCEALMENT
int corruption_detected = 0;
#endif
if (xd->mode_info_context->mbmi.mb_skip_coeff)
{
vp8_reset_mb_tokens_context(xd);
}
else if (!vp8dx_bool_error(xd->current_bc))
{
int eobtotal;
eobtotal = vp8_decode_mb_tokens(pbi, xd);
/* Special case: Force the loopfilter to skip when eobtotal is zero */
xd->mode_info_context->mbmi.mb_skip_coeff = (eobtotal==0);
}
mode = xd->mode_info_context->mbmi.mode;
if (xd->segmentation_enabled)
vp8_mb_init_dequantizer(pbi, xd);
#if CONFIG_ERROR_CONCEALMENT
if(pbi->ec_active)
{
int throw_residual;
/* When we have independent partitions we can apply residual even
* though other partitions within the frame are corrupt.
*/
throw_residual = (!pbi->independent_partitions &&
pbi->frame_corrupt_residual);
throw_residual = (throw_residual || vp8dx_bool_error(xd->current_bc));
if ((mb_idx >= pbi->mvs_corrupt_from_mb || throw_residual))
{
/* MB with corrupt residuals or corrupt mode/motion vectors.
* Better to use the predictor as reconstruction.
*/
pbi->frame_corrupt_residual = 1;
vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff));
vp8_conceal_corrupt_mb(xd);
corruption_detected = 1;
/* force idct to be skipped for B_PRED and use the
* prediction only for reconstruction
* */
vpx_memset(xd->eobs, 0, 25);
}
}
#endif
/* do prediction */
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME)
{
vp8_build_intra_predictors_mbuv_s(xd,
xd->recon_above[1],
xd->recon_above[2],
xd->recon_left[1],
xd->recon_left[2],
xd->recon_left_stride[1],
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride);
if (mode != B_PRED)
{
vp8_build_intra_predictors_mby_s(xd,
xd->recon_above[0],
xd->recon_left[0],
xd->recon_left_stride[0],
xd->dst.y_buffer,
xd->dst.y_stride);
}
else
{
short *DQC = xd->dequant_y1;
int dst_stride = xd->dst.y_stride;
/* clear out residual eob info */
if(xd->mode_info_context->mbmi.mb_skip_coeff)
vpx_memset(xd->eobs, 0, 25);
intra_prediction_down_copy(xd, xd->recon_above[0] + 16);
for (i = 0; i < 16; i++)
{
BLOCKD *b = &xd->block[i];
unsigned char *dst = xd->dst.y_buffer + b->offset;
B_PREDICTION_MODE b_mode =
xd->mode_info_context->bmi[i].as_mode;
unsigned char *Above;
unsigned char *yleft;
int left_stride;
unsigned char top_left;
/*Caution: For some b_mode, it needs 8 pixels (4 above + 4 above-right).*/
if (i < 4 && pbi->common.filter_level)
Above = xd->recon_above[0] + b->offset;
else
Above = dst - dst_stride;
if (i%4==0 && pbi->common.filter_level)
{
yleft = xd->recon_left[0] + i;
left_stride = 1;
}
else
{
yleft = dst - 1;
left_stride = dst_stride;
}
if ((i==4 || i==8 || i==12) && pbi->common.filter_level)
top_left = *(xd->recon_left[0] + i - 1);
else
top_left = Above[-1];
vp8_intra4x4_predict(Above, yleft, left_stride,
b_mode, dst, dst_stride, top_left);
if (xd->eobs[i] )
{
if (xd->eobs[i] > 1)
{
vp8_dequant_idct_add(b->qcoeff, DQC, dst, dst_stride);
}
else
{
vp8_dc_only_idct_add(b->qcoeff[0] * DQC[0],
dst, dst_stride, dst, dst_stride);
vpx_memset(b->qcoeff, 0, 2 * sizeof(b->qcoeff[0]));
}
}
}
}
}
else
{
vp8_build_inter_predictors_mb(xd);
}
#if CONFIG_ERROR_CONCEALMENT
if (corruption_detected)
{
return;
}
#endif
if(!xd->mode_info_context->mbmi.mb_skip_coeff)
{
/* dequantization and idct */
if (mode != B_PRED)
{
short *DQC = xd->dequant_y1;
if (mode != SPLITMV)
{
BLOCKD *b = &xd->block[24];
/* do 2nd order transform on the dc block */
if (xd->eobs[24] > 1)
{
vp8_dequantize_b(b, xd->dequant_y2);
vp8_short_inv_walsh4x4(&b->dqcoeff[0],
xd->qcoeff);
vpx_memset(b->qcoeff, 0, 16 * sizeof(b->qcoeff[0]));
}
else
{
b->dqcoeff[0] = b->qcoeff[0] * xd->dequant_y2[0];
vp8_short_inv_walsh4x4_1(&b->dqcoeff[0],
xd->qcoeff);
vpx_memset(b->qcoeff, 0, 2 * sizeof(b->qcoeff[0]));
}
/* override the dc dequant constant in order to preserve the
* dc components
*/
DQC = xd->dequant_y1_dc;
}
vp8_dequant_idct_add_y_block
(xd->qcoeff, DQC,
xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs);
}
vp8_dequant_idct_add_uv_block
(xd->qcoeff+16*16, xd->dequant_uv,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs+16);
}
}
static void mt_decode_mb_rows(VP8D_COMP *pbi, MACROBLOCKD *xd, int start_mb_row)
{
volatile const int *last_row_current_mb_col;
volatile int *current_mb_col;
int mb_row;
VP8_COMMON *pc = &pbi->common;
const int nsync = pbi->sync_range;
const int first_row_no_sync_above = pc->mb_cols + nsync;
int num_part = 1 << pbi->common.multi_token_partition;
int last_mb_row = start_mb_row;
YV12_BUFFER_CONFIG *yv12_fb_new = pbi->dec_fb_ref[INTRA_FRAME];
YV12_BUFFER_CONFIG *yv12_fb_lst = pbi->dec_fb_ref[LAST_FRAME];
int recon_y_stride = yv12_fb_new->y_stride;
int recon_uv_stride = yv12_fb_new->uv_stride;
unsigned char *ref_buffer[MAX_REF_FRAMES][3];
unsigned char *dst_buffer[3];
int i;
int ref_fb_corrupted[MAX_REF_FRAMES];
ref_fb_corrupted[INTRA_FRAME] = 0;
for(i = 1; i < MAX_REF_FRAMES; i++)
{
YV12_BUFFER_CONFIG *this_fb = pbi->dec_fb_ref[i];
ref_buffer[i][0] = this_fb->y_buffer;
ref_buffer[i][1] = this_fb->u_buffer;
ref_buffer[i][2] = this_fb->v_buffer;
ref_fb_corrupted[i] = this_fb->corrupted;
}
dst_buffer[0] = yv12_fb_new->y_buffer;
dst_buffer[1] = yv12_fb_new->u_buffer;
dst_buffer[2] = yv12_fb_new->v_buffer;
xd->up_available = (start_mb_row != 0);
for (mb_row = start_mb_row; mb_row < pc->mb_rows; mb_row += (pbi->decoding_thread_count + 1))
{
int recon_yoffset, recon_uvoffset;
int mb_col;
int filter_level;
loop_filter_info_n *lfi_n = &pc->lf_info;
/* save last row processed by this thread */
last_mb_row = mb_row;
/* select bool coder for current partition */
xd->current_bc = &pbi->mbc[mb_row%num_part];
if (mb_row > 0)
last_row_current_mb_col = &pbi->mt_current_mb_col[mb_row -1];
else
last_row_current_mb_col = &first_row_no_sync_above;
current_mb_col = &pbi->mt_current_mb_col[mb_row];
recon_yoffset = mb_row * recon_y_stride * 16;
recon_uvoffset = mb_row * recon_uv_stride * 8;
/* reset contexts */
xd->above_context = pc->above_context;
vpx_memset(xd->left_context, 0, sizeof(ENTROPY_CONTEXT_PLANES));
xd->left_available = 0;
xd->mb_to_top_edge = -((mb_row * 16)) << 3;
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
if (pbi->common.filter_level)
{
xd->recon_above[0] = pbi->mt_yabove_row[mb_row] + 0*16 +32;
xd->recon_above[1] = pbi->mt_uabove_row[mb_row] + 0*8 +16;
xd->recon_above[2] = pbi->mt_vabove_row[mb_row] + 0*8 +16;
xd->recon_left[0] = pbi->mt_yleft_col[mb_row];
xd->recon_left[1] = pbi->mt_uleft_col[mb_row];
xd->recon_left[2] = pbi->mt_vleft_col[mb_row];
/* TODO: move to outside row loop */
xd->recon_left_stride[0] = 1;
xd->recon_left_stride[1] = 1;
}
else
{
xd->recon_above[0] = dst_buffer[0] + recon_yoffset;
xd->recon_above[1] = dst_buffer[1] + recon_uvoffset;
xd->recon_above[2] = dst_buffer[2] + recon_uvoffset;
xd->recon_left[0] = xd->recon_above[0] - 1;
xd->recon_left[1] = xd->recon_above[1] - 1;
xd->recon_left[2] = xd->recon_above[2] - 1;
xd->recon_above[0] -= xd->dst.y_stride;
xd->recon_above[1] -= xd->dst.uv_stride;
xd->recon_above[2] -= xd->dst.uv_stride;
/* TODO: move to outside row loop */
xd->recon_left_stride[0] = xd->dst.y_stride;
xd->recon_left_stride[1] = xd->dst.uv_stride;
setup_intra_recon_left(xd->recon_left[0], xd->recon_left[1],
xd->recon_left[2], xd->dst.y_stride,
xd->dst.uv_stride);
}
for (mb_col = 0; mb_col < pc->mb_cols; mb_col++)
{
*current_mb_col = mb_col - 1;
if ((mb_col & (nsync - 1)) == 0)
{
while (mb_col > (*last_row_current_mb_col - nsync))
{
x86_pause_hint();
thread_sleep(0);
}
}
/* Distance of MB to the various image edges.
* These are specified to 8th pel as they are always
* compared to values that are in 1/8th pel units.
*/
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
#if CONFIG_ERROR_CONCEALMENT
{
int corrupt_residual =
(!pbi->independent_partitions &&
pbi->frame_corrupt_residual) ||
vp8dx_bool_error(xd->current_bc);
if (pbi->ec_active &&
(xd->mode_info_context->mbmi.ref_frame ==
INTRA_FRAME) &&
corrupt_residual)
{
/* We have an intra block with corrupt
* coefficients, better to conceal with an inter
* block.
* Interpolate MVs from neighboring MBs
*
* Note that for the first mb with corrupt
* residual in a frame, we might not discover
* that before decoding the residual. That
* happens after this check, and therefore no
* inter concealment will be done.
*/
vp8_interpolate_motion(xd,
mb_row, mb_col,
pc->mb_rows, pc->mb_cols,
pc->mode_info_stride);
}
}
#endif
xd->dst.y_buffer = dst_buffer[0] + recon_yoffset;
xd->dst.u_buffer = dst_buffer[1] + recon_uvoffset;
xd->dst.v_buffer = dst_buffer[2] + recon_uvoffset;
xd->pre.y_buffer = ref_buffer[xd->mode_info_context->mbmi.ref_frame][0] + recon_yoffset;
xd->pre.u_buffer = ref_buffer[xd->mode_info_context->mbmi.ref_frame][1] + recon_uvoffset;
xd->pre.v_buffer = ref_buffer[xd->mode_info_context->mbmi.ref_frame][2] + recon_uvoffset;
/* propagate errors from reference frames */
xd->corrupted |= ref_fb_corrupted[xd->mode_info_context->mbmi.ref_frame];
mt_decode_macroblock(pbi, xd, 0);
xd->left_available = 1;
/* check if the boolean decoder has suffered an error */
xd->corrupted |= vp8dx_bool_error(xd->current_bc);
xd->recon_above[0] += 16;
xd->recon_above[1] += 8;
xd->recon_above[2] += 8;
if (!pbi->common.filter_level)
{
xd->recon_left[0] += 16;
xd->recon_left[1] += 8;
xd->recon_left[2] += 8;
}
if (pbi->common.filter_level)
{
int skip_lf = (xd->mode_info_context->mbmi.mode != B_PRED &&
xd->mode_info_context->mbmi.mode != SPLITMV &&
xd->mode_info_context->mbmi.mb_skip_coeff);
const int mode_index = lfi_n->mode_lf_lut[xd->mode_info_context->mbmi.mode];
const int seg = xd->mode_info_context->mbmi.segment_id;
const int ref_frame = xd->mode_info_context->mbmi.ref_frame;
filter_level = lfi_n->lvl[seg][ref_frame][mode_index];
if( mb_row != pc->mb_rows-1 )
{
/* Save decoded MB last row data for next-row decoding */
vpx_memcpy((pbi->mt_yabove_row[mb_row + 1] + 32 + mb_col*16), (xd->dst.y_buffer + 15 * recon_y_stride), 16);
vpx_memcpy((pbi->mt_uabove_row[mb_row + 1] + 16 + mb_col*8), (xd->dst.u_buffer + 7 * recon_uv_stride), 8);
vpx_memcpy((pbi->mt_vabove_row[mb_row + 1] + 16 + mb_col*8), (xd->dst.v_buffer + 7 * recon_uv_stride), 8);
}
/* save left_col for next MB decoding */
if(mb_col != pc->mb_cols-1)
{
MODE_INFO *next = xd->mode_info_context +1;
if (next->mbmi.ref_frame == INTRA_FRAME)
{
for (i = 0; i < 16; i++)
pbi->mt_yleft_col[mb_row][i] = xd->dst.y_buffer [i* recon_y_stride + 15];
for (i = 0; i < 8; i++)
{
pbi->mt_uleft_col[mb_row][i] = xd->dst.u_buffer [i* recon_uv_stride + 7];
pbi->mt_vleft_col[mb_row][i] = xd->dst.v_buffer [i* recon_uv_stride + 7];
}
}
}
/* loopfilter on this macroblock. */
if (filter_level)
{
if(pc->filter_type == NORMAL_LOOPFILTER)
{
loop_filter_info lfi;
FRAME_TYPE frame_type = pc->frame_type;
const int hev_index = lfi_n->hev_thr_lut[frame_type][filter_level];
lfi.mblim = lfi_n->mblim[filter_level];
lfi.blim = lfi_n->blim[filter_level];
lfi.lim = lfi_n->lim[filter_level];
lfi.hev_thr = lfi_n->hev_thr[hev_index];
if (mb_col > 0)
vp8_loop_filter_mbv
(xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, recon_y_stride, recon_uv_stride, &lfi);
if (!skip_lf)
vp8_loop_filter_bv
(xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, recon_y_stride, recon_uv_stride, &lfi);
/* don't apply across umv border */
if (mb_row > 0)
vp8_loop_filter_mbh
(xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, recon_y_stride, recon_uv_stride, &lfi);
if (!skip_lf)
vp8_loop_filter_bh
(xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, recon_y_stride, recon_uv_stride, &lfi);
}
else
{
if (mb_col > 0)
vp8_loop_filter_simple_mbv
(xd->dst.y_buffer, recon_y_stride, lfi_n->mblim[filter_level]);
if (!skip_lf)
vp8_loop_filter_simple_bv
(xd->dst.y_buffer, recon_y_stride, lfi_n->blim[filter_level]);
/* don't apply across umv border */
if (mb_row > 0)
vp8_loop_filter_simple_mbh
(xd->dst.y_buffer, recon_y_stride, lfi_n->mblim[filter_level]);
if (!skip_lf)
vp8_loop_filter_simple_bh
(xd->dst.y_buffer, recon_y_stride, lfi_n->blim[filter_level]);
}
}
}
recon_yoffset += 16;
recon_uvoffset += 8;
++xd->mode_info_context; /* next mb */
xd->above_context++;
}
/* adjust to the next row of mbs */
if (pbi->common.filter_level)
{
if(mb_row != pc->mb_rows-1)
{
int lasty = yv12_fb_lst->y_width + VP8BORDERINPIXELS;
int lastuv = (yv12_fb_lst->y_width>>1) + (VP8BORDERINPIXELS>>1);
for (i = 0; i < 4; i++)
{
pbi->mt_yabove_row[mb_row +1][lasty + i] = pbi->mt_yabove_row[mb_row +1][lasty -1];
pbi->mt_uabove_row[mb_row +1][lastuv + i] = pbi->mt_uabove_row[mb_row +1][lastuv -1];
pbi->mt_vabove_row[mb_row +1][lastuv + i] = pbi->mt_vabove_row[mb_row +1][lastuv -1];
}
}
}
else
vp8_extend_mb_row(yv12_fb_new, xd->dst.y_buffer + 16,
xd->dst.u_buffer + 8, xd->dst.v_buffer + 8);
/* last MB of row is ready just after extension is done */
*current_mb_col = mb_col + nsync;
++xd->mode_info_context; /* skip prediction column */
xd->up_available = 1;
/* since we have multithread */
xd->mode_info_context += xd->mode_info_stride * pbi->decoding_thread_count;
}
/* signal end of frame decoding if this thread processed the last mb_row */
if (last_mb_row == (pc->mb_rows - 1))
sem_post(&pbi->h_event_end_decoding);
}
static THREAD_FUNCTION thread_decoding_proc(void *p_data)
{
int ithread = ((DECODETHREAD_DATA *)p_data)->ithread;
VP8D_COMP *pbi = (VP8D_COMP *)(((DECODETHREAD_DATA *)p_data)->ptr1);
MB_ROW_DEC *mbrd = (MB_ROW_DEC *)(((DECODETHREAD_DATA *)p_data)->ptr2);
ENTROPY_CONTEXT_PLANES mb_row_left_context;
while (1)
{
if (pbi->b_multithreaded_rd == 0)
break;
if (sem_wait(&pbi->h_event_start_decoding[ithread]) == 0)
{
if (pbi->b_multithreaded_rd == 0)
break;
else
{
MACROBLOCKD *xd = &mbrd->mbd;
xd->left_context = &mb_row_left_context;
mt_decode_mb_rows(pbi, xd, ithread+1);
}
}
}
return 0 ;
}
void vp8_decoder_create_threads(VP8D_COMP *pbi)
{
int core_count = 0;
unsigned int ithread;
pbi->b_multithreaded_rd = 0;
pbi->allocated_decoding_thread_count = 0;
/* limit decoding threads to the max number of token partitions */
core_count = (pbi->max_threads > 8) ? 8 : pbi->max_threads;
/* limit decoding threads to the available cores */
if (core_count > pbi->common.processor_core_count)
core_count = pbi->common.processor_core_count;
if (core_count > 1)
{
pbi->b_multithreaded_rd = 1;
pbi->decoding_thread_count = core_count - 1;
CALLOC_ARRAY(pbi->h_decoding_thread, pbi->decoding_thread_count);
CALLOC_ARRAY(pbi->h_event_start_decoding, pbi->decoding_thread_count);
CALLOC_ARRAY_ALIGNED(pbi->mb_row_di, pbi->decoding_thread_count, 32);
CALLOC_ARRAY(pbi->de_thread_data, pbi->decoding_thread_count);
for (ithread = 0; ithread < pbi->decoding_thread_count; ithread++)
{
sem_init(&pbi->h_event_start_decoding[ithread], 0, 0);
vp8_setup_block_dptrs(&pbi->mb_row_di[ithread].mbd);
pbi->de_thread_data[ithread].ithread = ithread;
pbi->de_thread_data[ithread].ptr1 = (void *)pbi;
pbi->de_thread_data[ithread].ptr2 = (void *) &pbi->mb_row_di[ithread];
pthread_create(&pbi->h_decoding_thread[ithread], 0, thread_decoding_proc, (&pbi->de_thread_data[ithread]));
}
sem_init(&pbi->h_event_end_decoding, 0, 0);
pbi->allocated_decoding_thread_count = pbi->decoding_thread_count;
}
}
void vp8mt_de_alloc_temp_buffers(VP8D_COMP *pbi, int mb_rows)
{
int i;
if (pbi->b_multithreaded_rd)
{
vpx_free(pbi->mt_current_mb_col);
pbi->mt_current_mb_col = NULL ;
/* Free above_row buffers. */
if (pbi->mt_yabove_row)
{
for (i=0; i< mb_rows; i++)
{
vpx_free(pbi->mt_yabove_row[i]);
pbi->mt_yabove_row[i] = NULL ;
}
vpx_free(pbi->mt_yabove_row);
pbi->mt_yabove_row = NULL ;
}
if (pbi->mt_uabove_row)
{
for (i=0; i< mb_rows; i++)
{
vpx_free(pbi->mt_uabove_row[i]);
pbi->mt_uabove_row[i] = NULL ;
}
vpx_free(pbi->mt_uabove_row);
pbi->mt_uabove_row = NULL ;
}
if (pbi->mt_vabove_row)
{
for (i=0; i< mb_rows; i++)
{
vpx_free(pbi->mt_vabove_row[i]);
pbi->mt_vabove_row[i] = NULL ;
}
vpx_free(pbi->mt_vabove_row);
pbi->mt_vabove_row = NULL ;
}
/* Free left_col buffers. */
if (pbi->mt_yleft_col)
{
for (i=0; i< mb_rows; i++)
{
vpx_free(pbi->mt_yleft_col[i]);
pbi->mt_yleft_col[i] = NULL ;
}
vpx_free(pbi->mt_yleft_col);
pbi->mt_yleft_col = NULL ;
}
if (pbi->mt_uleft_col)
{
for (i=0; i< mb_rows; i++)
{
vpx_free(pbi->mt_uleft_col[i]);
pbi->mt_uleft_col[i] = NULL ;
}
vpx_free(pbi->mt_uleft_col);
pbi->mt_uleft_col = NULL ;
}
if (pbi->mt_vleft_col)
{
for (i=0; i< mb_rows; i++)
{
vpx_free(pbi->mt_vleft_col[i]);
pbi->mt_vleft_col[i] = NULL ;
}
vpx_free(pbi->mt_vleft_col);
pbi->mt_vleft_col = NULL ;
}
}
}
void vp8mt_alloc_temp_buffers(VP8D_COMP *pbi, int width, int prev_mb_rows)
{
VP8_COMMON *const pc = & pbi->common;
int i;
int uv_width;
if (pbi->b_multithreaded_rd)
{
vp8mt_de_alloc_temp_buffers(pbi, prev_mb_rows);
/* our internal buffers are always multiples of 16 */
if ((width & 0xf) != 0)
width += 16 - (width & 0xf);
if (width < 640) pbi->sync_range = 1;
else if (width <= 1280) pbi->sync_range = 8;
else if (width <= 2560) pbi->sync_range =16;
else pbi->sync_range = 32;
uv_width = width >>1;
/* Allocate an int for each mb row. */
CALLOC_ARRAY(pbi->mt_current_mb_col, pc->mb_rows);
/* Allocate memory for above_row buffers. */
CALLOC_ARRAY(pbi->mt_yabove_row, pc->mb_rows);
for (i = 0; i < pc->mb_rows; i++)
CHECK_MEM_ERROR(pbi->mt_yabove_row[i], vpx_memalign(16,sizeof(unsigned char) * (width + (VP8BORDERINPIXELS<<1))));
CALLOC_ARRAY(pbi->mt_uabove_row, pc->mb_rows);
for (i = 0; i < pc->mb_rows; i++)
CHECK_MEM_ERROR(pbi->mt_uabove_row[i], vpx_memalign(16,sizeof(unsigned char) * (uv_width + VP8BORDERINPIXELS)));
CALLOC_ARRAY(pbi->mt_vabove_row, pc->mb_rows);
for (i = 0; i < pc->mb_rows; i++)
CHECK_MEM_ERROR(pbi->mt_vabove_row[i], vpx_memalign(16,sizeof(unsigned char) * (uv_width + VP8BORDERINPIXELS)));
/* Allocate memory for left_col buffers. */
CALLOC_ARRAY(pbi->mt_yleft_col, pc->mb_rows);
for (i = 0; i < pc->mb_rows; i++)
CHECK_MEM_ERROR(pbi->mt_yleft_col[i], vpx_calloc(sizeof(unsigned char) * 16, 1));
CALLOC_ARRAY(pbi->mt_uleft_col, pc->mb_rows);
for (i = 0; i < pc->mb_rows; i++)
CHECK_MEM_ERROR(pbi->mt_uleft_col[i], vpx_calloc(sizeof(unsigned char) * 8, 1));
CALLOC_ARRAY(pbi->mt_vleft_col, pc->mb_rows);
for (i = 0; i < pc->mb_rows; i++)
CHECK_MEM_ERROR(pbi->mt_vleft_col[i], vpx_calloc(sizeof(unsigned char) * 8, 1));
}
}
void vp8_decoder_remove_threads(VP8D_COMP *pbi)
{
/* shutdown MB Decoding thread; */
if (pbi->b_multithreaded_rd)
{
int i;
pbi->b_multithreaded_rd = 0;
/* allow all threads to exit */
for (i = 0; i < pbi->allocated_decoding_thread_count; i++)
{
sem_post(&pbi->h_event_start_decoding[i]);
pthread_join(pbi->h_decoding_thread[i], NULL);
}
for (i = 0; i < pbi->allocated_decoding_thread_count; i++)
{
sem_destroy(&pbi->h_event_start_decoding[i]);
}
sem_destroy(&pbi->h_event_end_decoding);
vpx_free(pbi->h_decoding_thread);
pbi->h_decoding_thread = NULL;
vpx_free(pbi->h_event_start_decoding);
pbi->h_event_start_decoding = NULL;
vpx_free(pbi->mb_row_di);
pbi->mb_row_di = NULL ;
vpx_free(pbi->de_thread_data);
pbi->de_thread_data = NULL;
}
}
void vp8mt_decode_mb_rows( VP8D_COMP *pbi, MACROBLOCKD *xd)
{
VP8_COMMON *pc = &pbi->common;
unsigned int i;
int j;
int filter_level = pc->filter_level;
YV12_BUFFER_CONFIG *yv12_fb_new = pbi->dec_fb_ref[INTRA_FRAME];
if (filter_level)
{
/* Set above_row buffer to 127 for decoding first MB row */
vpx_memset(pbi->mt_yabove_row[0] + VP8BORDERINPIXELS-1, 127, yv12_fb_new->y_width + 5);
vpx_memset(pbi->mt_uabove_row[0] + (VP8BORDERINPIXELS>>1)-1, 127, (yv12_fb_new->y_width>>1) +5);
vpx_memset(pbi->mt_vabove_row[0] + (VP8BORDERINPIXELS>>1)-1, 127, (yv12_fb_new->y_width>>1) +5);
for (j=1; j<pc->mb_rows; j++)
{
vpx_memset(pbi->mt_yabove_row[j] + VP8BORDERINPIXELS-1, (unsigned char)129, 1);
vpx_memset(pbi->mt_uabove_row[j] + (VP8BORDERINPIXELS>>1)-1, (unsigned char)129, 1);
vpx_memset(pbi->mt_vabove_row[j] + (VP8BORDERINPIXELS>>1)-1, (unsigned char)129, 1);
}
/* Set left_col to 129 initially */
for (j=0; j<pc->mb_rows; j++)
{
vpx_memset(pbi->mt_yleft_col[j], (unsigned char)129, 16);
vpx_memset(pbi->mt_uleft_col[j], (unsigned char)129, 8);
vpx_memset(pbi->mt_vleft_col[j], (unsigned char)129, 8);
}
/* Initialize the loop filter for this frame. */
vp8_loop_filter_frame_init(pc, &pbi->mb, filter_level);
}
else
vp8_setup_intra_recon_top_line(yv12_fb_new);
setup_decoding_thread_data(pbi, xd, pbi->mb_row_di, pbi->decoding_thread_count);
for (i = 0; i < pbi->decoding_thread_count; i++)
sem_post(&pbi->h_event_start_decoding[i]);
mt_decode_mb_rows(pbi, xd, 0);
sem_wait(&pbi->h_event_end_decoding); /* add back for each frame */
}