gecko-dev/dom/plugins/ipc/FunctionBroker.h

1439 строки
51 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef dom_plugins_ipc_PluginHooksWin_h
#define dom_plugins_ipc_PluginHooksWin_h 1
#include <map>
#include <algorithm>
#include <utility>
#include "base/task.h"
#include "mozilla/ipc/ProcessChild.h"
#include "FunctionBrokerChild.h"
#include "mtransport/runnable_utils.h"
#include "PluginMessageUtils.h"
#include "mozilla/Logging.h"
#include "FunctionHook.h"
#include "FunctionBrokerIPCUtils.h"
#if defined(XP_WIN)
# define SECURITY_WIN32
# include <security.h>
# include <wininet.h>
# include <schnlsp.h>
# if defined(MOZ_SANDBOX)
# include "sandboxPermissions.h"
# endif
#endif // defined(XP_WIN)
/**
* This functionality supports automatic method hooking (FunctionHook) and
* brokering (FunctionBroker), which are used to intercept system calls
* (using the nsDllInterceptor) and replace them with new functionality (hook)
* or proxy them on another process (broker).
* There isn't much of a public interface to this (see FunctionHook
* for initialization functionality) since the majority of the behavior
* comes from intercepting calls to DLL methods (making those DLL methods the
* public interface). Generic RPC can be achieved without DLLs or function
* interception by directly calling the FunctionBroker::InterceptorStub.
*
* The system supports the most common logic surrounding brokering by allowing
* the client to supply strategies for them. Some examples of common tasks that
* are supported by automatic brokering:
*
* * Intercepting a new Win32 method:
*
* Step 1: Add a typedef or subclass of either FunctionHook (non-brokering) or
* FunctionBroker (automatic brokering) to FunctionBroker.cpp, using a new
* FunctionHookID (added to that enum).
* For example:
* typedef FunctionBroker<ID_GetKeyState, decltype(GetKeyState)> GetKeyStateFB
* Use a subclass instead of a typedef if you need to maintain data or state.
*
* Step 2: Add an instance of that object to the FunctionHookList in
* AddFunctionHook(FunctionHookList&) or
* AddBrokeredFunctionHook(FunctionHookList&).
* This typically just means calling the constructor with the correct info.
* At a minimum, this means supplying the names of the DLL and method to
* broker, and a pointer to the original version of the method.
* For example:
* aHooks[ID_GetKeyState] =
* new GetKeyStateFB("user32.dll", "GetKeyState", &GetKeyState);
*
* Step 3: If brokering, make sure the system can (un)marshal the parameters,
* either by the means below or by adding the type to IpdlTuple, which we use
* for type-safely (un)marshaling the parameter list.
*
* * Only brokering _some_ calls to the method:
*
* FunctionBroker's constructor allows the user to supply a ShouldBroker
* function, which takes the parameters of the method call and returns false
* if we should use the original method instead of brokering.
*
* * Only passing _some_ parameters to the brokering process / returning
* parameters to client:
*
* If a system call changes a parameter call-by-reference style then the
* parameter's value needs to be returned to the client. The FunctionBroker
* has "phase" (request/response) objects that it uses to determine which
* parameters are sent/returned. This example tells InternetWriteFileFB to
* return its third parameter:
* template<> template<>
* struct InternetWriteFileFB::Response::Info::ShouldMarshal<3> {
* static const bool value = true;
* };
* By default, all parameters have ShouldMarshal set in the request phase
* and only the return value (parameter -1) has it set in the response phase.
*
* * Marshalling special parameter/return types:
*
* The IPCTypeMap in FunctionBroker maps a parameter or return type
* to a type that IpdlTuple knows how to marshal. By default, the map is
* the identity but some types need special handling.
* The map is endpoint-specific (it is a member of the EndpointHandler),
* so a different type can be used
* for client -> server and for server -> client. Note that the
* types must be able to Copy() from one another -- the default Copy()
* implementation uses the type's assignment operator.
* The EndpointHandler itself is a template parameter of the FunctionBroker.
* The default EndpointHandler recognizes basic types.
* See e.g. FileDlgEndpointHandler<CLIENT>::IPCTypeMap<LPOPENFILENAMEW>
* for an example of specialization.
*
* * Anything more complex involving parameter transmission:
*
* Sometimes marshaling parameters can require something more complex. In
* those cases, you will need to specialize the Marshal and Unmarshal
* methods of the request or response handler and perform your complex logic
* there. A wise approach is to map your complex parameters into a simpler
* parameter list and delegate the Marshal/Unmarshal calls to them. For
* example, an API might take a void* and an int as a buffer and length.
* Obviously a void* cannot generally be marshaled. However, we can delegate
* this call to a parameter list that takes a string in place of the buffer and
* length. Something like:
*
* typedef RequestHandler<ID_HookedFunc,
* int HOOK_CALL (nsDependentCSubstring)>
* HookedFuncDelegateReq;
*
* template<>
* void HookedFuncFB::Request::Marshal(IpdlTuple& aTuple, const void*& aBuf,
* const int& aBufLen)
* {
* MOZ_ASSERT(nWritten);
* HookedFuncDelegateReq::Marshal(aTuple,
* nsDependentCSubstring(aBuf, aBufLen));
* }
*
* template<>
* bool HookedFuncFB::Request::Unmarshal(ServerCallData& aScd, const IpdlTuple&
* aTuple, void*& aBuf, int& aBufLen)
* {
* nsDependentCSubstring str;
* if (!HookedFuncDelegateReq::Unmarshal(aScd, aTuple, str)) {
* return false;
* }
*
* // Request phase unmarshal uses ServerCallData for dynamically-allocating
* // memory.
* aScd.AllocateString(str, aBuf, false);
* aBufLen = str.Length();
* return true;
* }
*
* See e.g. InternetWriteFileFB for a complete example of delegation.
*
* * Brokering but need the server to do more than just run the function:
*
* Specialize the FunctionBroker's RunFunction. By default, it just runs
* the function. See GetSaveFileNameWFB for an example that does more.
*
*/
namespace mozilla {
namespace plugins {
#if defined(XP_WIN)
// Currently, all methods we hook use the WINAPI calling convention.
# define HOOK_CALL WINAPI
typedef std::pair<ULONG_PTR, ULONG_PTR> UlongPair;
typedef std::map<UlongPair, uint64_t> UlongPairToIdMap;
extern UlongPairToIdMap sPairToIdMap;
typedef std::map<uint64_t, UlongPair> IdToUlongPairMap;
extern IdToUlongPairMap sIdToPairMap;
typedef std::map<void*, uint64_t> PtrToIdMap;
extern PtrToIdMap sPtrToIdMap;
typedef std::map<uint64_t, void*> IdToPtrMap;
extern IdToPtrMap sIdToPtrMap;
#else // defined(XP_WIN)
// Any methods we hook use the default calling convention.
# define HOOK_CALL
#endif // defined(XP_WIN)
inline bool IsOdd(uint64_t aVal) { return aVal & 1; }
// This enum is used to track if this process is currently running the client
// or server side of brokering.
enum Endpoint { SERVER, CLIENT };
inline const char* EndpointMsg(Endpoint aVal) {
return aVal == SERVER ? "SERVER" : "CLIENT";
}
template <typename ParamType>
inline void LogParameterValue(int aIndex, const ParamType& aParam) {
// To avoid overhead, don't do this in release.
#ifdef DEBUG
if (!MOZ_LOG_TEST(sPluginHooksLog, LogLevel::Verbose)) {
return;
}
std::wstring paramString;
IPC::LogParam(aParam, &paramString);
HOOK_LOG(LogLevel::Verbose,
("Parameter %d: %S", aIndex, paramString.c_str()));
#endif
}
// This specialization is needed to log the common pattern where null is used
// as a fixed value for a pointer-type that is unknown to IPC.
template <typename ParamType>
inline void LogParameterValue(int aIndex, ParamType* const& aParam) {
#ifdef DEBUG
HOOK_LOG(LogLevel::Verbose,
("Parameter %d: pointer value - %p", aIndex, aParam));
#endif
}
template <>
inline void LogParameterValue(int aIndex, const nsDependentCSubstring& aParam) {
#ifdef DEBUG
HOOK_LOG(LogLevel::Verbose,
("Parameter %d : %s", aIndex, FormatBlob(aParam).Data()));
#endif
}
template <>
inline void LogParameterValue(int aIndex, char* const& aParam) {
#ifdef DEBUG
// A char* can be a block of raw memory.
nsDependentCSubstring str;
if (aParam) {
str.Rebind(const_cast<char*>(aParam),
strnlen(aParam, MAX_BLOB_CHARS_TO_LOG));
} else {
str.SetIsVoid(true);
}
LogParameterValue(aIndex, str);
#endif
}
template <>
inline void LogParameterValue(int aIndex, const char* const& aParam) {
#ifdef DEBUG
LogParameterValue(aIndex, const_cast<char* const&>(aParam));
#endif
}
#if defined(XP_WIN)
template <>
inline void LogParameterValue(int aIndex, const SEC_GET_KEY_FN& aParam) {
# ifdef DEBUG
MOZ_ASSERT(aParam == nullptr);
HOOK_LOG(LogLevel::Verbose, ("Parameter %d: null function.", aIndex));
# endif
}
template <>
inline void LogParameterValue(int aIndex, LPVOID* const& aParam) {
# ifdef DEBUG
MOZ_ASSERT(aParam == nullptr);
HOOK_LOG(LogLevel::Verbose, ("Parameter %d: null void pointer.", aIndex));
# endif
}
#endif // defined(XP_WIN)
// Used to check if a fixed parameter value is equal to the parameter given
// in the original function call.
template <typename ParamType>
inline bool ParameterEquality(const ParamType& aParam1,
const ParamType& aParam2) {
return aParam1 == aParam2;
}
// Specialization: char* equality is string equality
template <>
inline bool ParameterEquality(char* const& aParam1, char* const& aParam2) {
return ((!aParam1 && !aParam2) ||
(aParam1 && aParam2 && !strcmp(aParam1, aParam2)));
}
// Specialization: const char* const equality is string equality
template <>
inline bool ParameterEquality(const char* const& aParam1,
const char* const& aParam2) {
return ParameterEquality(const_cast<char* const&>(aParam1),
const_cast<char* const&>(aParam2));
}
/**
* A type map _from_ the type of a parameter in the original function
* we are brokering _to_ a type that we can marshal. We must be able
* to Copy() the marshaled type using the parameter type.
* The default maps from type T back to type T.
*/
template <typename OrigType>
struct IPCTypeMap {
typedef OrigType ipc_type;
};
template <>
struct IPCTypeMap<char*> {
typedef nsDependentCSubstring ipc_type;
};
template <>
struct IPCTypeMap<const char*> {
typedef nsDependentCSubstring ipc_type;
};
template <>
struct IPCTypeMap<wchar_t*> {
typedef nsString ipc_type;
};
template <>
struct IPCTypeMap<const wchar_t*> {
typedef nsString ipc_type;
};
template <>
struct IPCTypeMap<long> {
typedef int32_t ipc_type;
};
template <>
struct IPCTypeMap<unsigned long> {
typedef uint32_t ipc_type;
};
#if defined(XP_WIN)
template <>
struct IPCTypeMap<PSecHandle> {
typedef uint64_t ipc_type;
};
template <>
struct IPCTypeMap<PTimeStamp> {
typedef uint64_t ipc_type;
};
template <>
struct IPCTypeMap<void*> {
typedef uint64_t ipc_type;
}; // HANDLEs
template <>
struct IPCTypeMap<HWND> {
typedef NativeWindowHandle ipc_type;
};
template <>
struct IPCTypeMap<PSCHANNEL_CRED> {
typedef IPCSchannelCred ipc_type;
};
template <>
struct IPCTypeMap<LPINTERNET_BUFFERSA> {
typedef IPCInternetBuffers ipc_type;
};
template <>
struct IPCTypeMap<LPDWORD> {
typedef uint32_t ipc_type;
};
#endif
template <typename AllocType>
static void DeleteDestructor(void* aObj) {
delete static_cast<AllocType*>(aObj);
}
extern void FreeDestructor(void* aObj);
// The ServerCallData is a list of ServerCallItems that should be freed when
// the server has completed a function call and marshaled a response.
class ServerCallData {
public:
typedef void(DestructorType)(void*);
// Allocate a certain type.
template <typename AllocType>
AllocType* Allocate(
DestructorType* aDestructor = &DeleteDestructor<AllocType>) {
AllocType* ret = new AllocType();
mList.AppendElement(FreeItem(ret, aDestructor));
return ret;
}
template <typename AllocType>
AllocType* Allocate(
const AllocType& aValueToCopy,
DestructorType* aDestructor = &DeleteDestructor<AllocType>) {
AllocType* ret = Allocate<AllocType>(aDestructor);
*ret = aValueToCopy;
return ret;
}
// Allocate memory, storing the pointer in buf.
template <typename PtrType>
void AllocateMemory(unsigned long aBufLen, PtrType& aBuf) {
if (aBufLen) {
aBuf = static_cast<PtrType>(malloc(aBufLen));
mList.AppendElement(FreeItem(aBuf, FreeDestructor));
} else {
aBuf = nullptr;
}
}
template <typename PtrType>
void AllocateString(const nsACString& aStr, PtrType& aBuf,
bool aCopyNullTerminator = true) {
uint32_t nullByte = aCopyNullTerminator ? 1 : 0;
char* tempBuf = static_cast<char*>(malloc(aStr.Length() + nullByte));
memcpy(tempBuf, aStr.Data(), aStr.Length() + nullByte);
mList.AppendElement(FreeItem(tempBuf, FreeDestructor));
aBuf = tempBuf;
}
// Run the given destructor on the given memory, for special cases where
// memory is allocated elsewhere but must still be freed.
void PostDestructor(void* aMem, DestructorType* aDestructor) {
mList.AppendElement(FreeItem(aMem, aDestructor));
}
#if defined(XP_WIN)
// Allocate memory and a DWORD block-length, storing them in the
// corresponding parameters.
template <typename PtrType>
void AllocateMemory(DWORD aBufLen, PtrType& aBuf, LPDWORD& aBufLenCopy) {
aBufLenCopy = static_cast<LPDWORD>(malloc(sizeof(DWORD)));
*aBufLenCopy = aBufLen;
mList.AppendElement(FreeItem(aBufLenCopy, FreeDestructor));
AllocateMemory(aBufLen, aBuf);
}
#endif // defined(XP_WIN)
private:
// FreeItems are used to free objects that were temporarily needed for
// dispatch, such as buffers that are given as a parameter.
class FreeItem {
void* mPtr;
DestructorType* mDestructor;
FreeItem(FreeItem& aOther); // revoked
public:
explicit FreeItem(void* aPtr, DestructorType* aDestructor)
: mPtr(aPtr), mDestructor(aDestructor) {
MOZ_ASSERT(mDestructor || !aPtr);
}
FreeItem(FreeItem&& aOther)
: mPtr(aOther.mPtr), mDestructor(aOther.mDestructor) {
aOther.mPtr = nullptr;
aOther.mDestructor = nullptr;
}
~FreeItem() {
if (mDestructor) {
mDestructor(mPtr);
}
}
};
typedef nsTArray<FreeItem> FreeItemList;
FreeItemList mList;
};
// Holds an IpdlTuple and a ServerCallData. This is used by the phase handlers
// (RequestHandler and ResponseHandler) in the Unmarshaling phase.
// Server-side unmarshaling (during the request phase) uses a ServerCallData
// to keep track of allocated memory. In the client, ServerCallDatas are
// not used and that value will always be null.
class IpdlTupleContext {
public:
explicit IpdlTupleContext(const IpdlTuple* aTuple,
ServerCallData* aScd = nullptr)
: mTuple(aTuple), mScd(aScd) {
MOZ_ASSERT(aTuple);
}
ServerCallData* GetServerCallData() { return mScd; }
const IpdlTuple* GetIpdlTuple() { return mTuple; }
private:
const IpdlTuple* mTuple;
ServerCallData* mScd;
};
template <typename DestType, typename SrcType>
inline void Copy(DestType& aDest, const SrcType& aSrc) {
aDest = (DestType)aSrc;
}
template <>
inline void Copy(nsDependentCSubstring& aDest,
const nsDependentCSubstring& aSrc) {
if (aSrc.IsVoid()) {
aDest.SetIsVoid(true);
} else {
aDest.Rebind(aSrc.Data(), aSrc.Length());
}
}
#if defined(XP_WIN)
template <>
inline void Copy(uint64_t& aDest, const PTimeStamp& aSrc) {
aDest = static_cast<uint64_t>(aSrc->QuadPart);
}
template <>
inline void Copy(PTimeStamp& aDest, const uint64_t& aSrc) {
aDest->QuadPart = static_cast<LONGLONG>(aSrc);
}
#endif // defined(XP_WIN)
template <Endpoint e, typename SelfType>
struct BaseEndpointHandler;
template <typename SelfType>
struct BaseEndpointHandler<CLIENT, SelfType> {
static const Endpoint OtherSide = SERVER;
template <typename DestType, typename SrcType>
inline static void Copy(ServerCallData* aScd, DestType& aDest,
const SrcType& aSrc) {
MOZ_ASSERT(!aScd); // never used in the CLIENT
SelfType::Copy(aDest, aSrc);
}
template <typename DestType, typename SrcType>
inline static void Copy(DestType& aDest, const SrcType& aSrc) {
mozilla::plugins::Copy(aDest, aSrc);
}
// const char* should be null terminated but this is not always the case.
// In those cases, we must override this default behavior.
inline static void Copy(nsDependentCSubstring& aDest,
const char* const& aSrc) {
// In the client, we just bind to the caller's string
if (aSrc) {
aDest.Rebind(aSrc, strlen(aSrc));
} else {
aDest.SetIsVoid(true);
}
}
inline static void Copy(const char*& aDest,
const nsDependentCSubstring& aSrc) {
MOZ_ASSERT_UNREACHABLE("Cannot return const parameters.");
}
inline static void Copy(nsDependentCSubstring& aDest, char* const& aSrc) {
// In the client, we just bind to the caller's string
if (aSrc) {
aDest.Rebind(aSrc, strlen(aSrc));
} else {
aDest.SetIsVoid(true);
}
}
inline static void Copy(nsString& aDest, wchar_t* const& aSrc) {
if (aSrc) {
// We are using nsString as a "raw" container for a wchar_t string. We
// just use its data as a wchar_t* later (so the reinterpret_cast is
// safe).
aDest.Rebind(reinterpret_cast<char16_t*>(aSrc), wcslen(aSrc));
} else {
aDest.SetIsVoid(true);
}
}
inline static void Copy(char*& aDest, const nsDependentCSubstring& aSrc) {
MOZ_ASSERT_UNREACHABLE("Returning char* parameters is not yet suported.");
}
#if defined(XP_WIN)
inline static void Copy(uint32_t& aDest, const LPDWORD& aSrc) {
aDest = *aSrc;
}
inline static void Copy(LPDWORD& aDest, const uint32_t& aSrc) {
*aDest = aSrc;
}
#endif // #if defined(XP_WIN)
};
template <typename SelfType>
struct BaseEndpointHandler<SERVER, SelfType> {
static const Endpoint OtherSide = CLIENT;
// Specializations of this method may allocate memory for types that need it
// during Unmarshaling. They record the allocation in the ServerCallData.
// When copying values in the SERVER, we should be sure to carefully validate
// the information that came from the client as the client may be compromised
// by malicious code.
template <typename DestType, typename SrcType>
inline static void Copy(ServerCallData* aScd, DestType& aDest,
const SrcType& aSrc) {
SelfType::Copy(aDest, aSrc);
}
template <typename DestType, typename SrcType>
inline static void Copy(DestType& aDest, const SrcType& aSrc) {
mozilla::plugins::Copy(aDest, aSrc);
}
inline static void Copy(nsDependentCSubstring& aDest,
const nsDependentCSubstring& aSrc) {
aDest.Rebind(aSrc.Data(), aSrc.Length());
aDest.SetIsVoid(aSrc.IsVoid());
}
// const char* should be null terminated but this is not always the case.
// In those cases, we override this default behavior.
inline static void Copy(nsDependentCSubstring& aDest,
const char* const& aSrc) {
MOZ_ASSERT_UNREACHABLE(
"Const parameter cannot be returned by brokering process.");
}
inline static void Copy(nsDependentCSubstring& aDest, char* const& aSrc) {
MOZ_ASSERT_UNREACHABLE("Returning char* parameters is not yet suported.");
}
inline static void Copy(ServerCallData* aScd, char*& aDest,
const nsDependentCSubstring& aSrc) {
// In the parent, we must allocate the string.
MOZ_ASSERT(aScd);
if (aSrc.IsVoid()) {
aDest = nullptr;
return;
}
aScd->AllocateMemory(aSrc.Length() + 1, aDest);
memcpy(aDest, aSrc.Data(), aSrc.Length());
aDest[aSrc.Length()] = '\0';
}
inline static void Copy(ServerCallData* aScd, const char*& aDest,
const nsDependentCSubstring& aSrc) {
char* nonConstDest;
Copy(aScd, nonConstDest, aSrc);
aDest = nonConstDest;
}
inline static void Copy(ServerCallData* aScd, wchar_t*& aDest,
const nsString& aSrc) {
// Allocating the string with aScd means it will last during the server call
// and be freed when the call is complete.
MOZ_ASSERT(aScd);
if (aSrc.IsVoid()) {
aDest = nullptr;
return;
}
aScd->AllocateMemory((aSrc.Length() + 1) * sizeof(wchar_t), aDest);
memcpy(aDest, aSrc.Data(), aSrc.Length() * sizeof(wchar_t));
aDest[aSrc.Length()] = L'\0';
}
inline static void Copy(ServerCallData* aScd, const wchar_t*& aDest,
const nsString& aSrc) {
wchar_t* nonConstDest;
Copy(aScd, nonConstDest, aSrc);
aDest = nonConstDest;
}
#if defined(XP_WIN)
inline static void Copy(uint32_t& aDest, const LPDWORD& aSrc) {
aDest = *aSrc;
}
inline static void Copy(LPDWORD& aDest, const uint32_t& aSrc) {
MOZ_RELEASE_ASSERT(aDest);
*aDest = aSrc;
}
inline static void Copy(ServerCallData* aScd, PTimeStamp& aDest,
const uint64_t& aSrc) {
MOZ_ASSERT(!aDest);
aDest = aScd->Allocate<::TimeStamp>();
Copy(aDest, aSrc);
}
#endif // defined(XP_WIN)
};
// PhaseHandler is a RequestHandler or a ResponseHandler.
template <Endpoint endpoint, typename PhaseHandler>
struct Marshaler {
// Driver
template <int firstIndex = 0, typename... VarParams>
static void Marshal(IpdlTuple& aMarshaledTuple, const VarParams&... aParams) {
MarshalParameters<firstIndex>(aMarshaledTuple, aParams...);
}
// Driver
template <int firstIndex = 0, typename... VarParams>
static bool Unmarshal(IpdlTupleContext& aUnmarshaledTuple,
VarParams&... aParams) {
return UnmarshalParameters<firstIndex>(aUnmarshaledTuple, 0, aParams...);
}
template <int paramIndex, typename OrigType,
bool shouldMarshal =
PhaseHandler::Info::template ShouldMarshal<paramIndex>::value>
struct MaybeMarshalParameter {};
/**
* shouldMarshal = true case
*/
template <int paramIndex, typename OrigType>
struct MaybeMarshalParameter<paramIndex, OrigType, true> {
template <typename IPCType = typename PhaseHandler::template IPCTypeMap<
OrigType>::ipc_type>
static void MarshalParameter(IpdlTuple& aMarshaledTuple,
const OrigType& aParam) {
HOOK_LOG(LogLevel::Verbose, ("%s marshaling parameter %d.",
EndpointMsg(endpoint), paramIndex));
IPCType ipcObject;
// EndpointHandler must be able to Copy() from OrigType to IPCType
PhaseHandler::EHContainer::template EndpointHandler<endpoint>::Copy(
ipcObject, aParam);
LogParameterValue(paramIndex, ipcObject);
aMarshaledTuple.AddElement(ipcObject);
}
};
/**
* shouldMarshal = false case
*/
template <int paramIndex, typename OrigType>
struct MaybeMarshalParameter<paramIndex, OrigType, false> {
static void MarshalParameter(IpdlTuple& aMarshaledTuple,
const OrigType& aParam) {
HOOK_LOG(LogLevel::Verbose, ("%s not marshaling parameter %d.",
EndpointMsg(endpoint), paramIndex));
}
};
/**
* Recursive case: marshals aFirstParam to aMarshaledTuple (if desired),
* then marshals the aRemainingParams.
*/
template <int paramIndex, typename VarParam, typename... VarParams>
static void MarshalParameters(IpdlTuple& aMarshaledTuple,
const VarParam& aFirstParam,
const VarParams&... aRemainingParams) {
MaybeMarshalParameter<paramIndex, VarParam>::MarshalParameter(
aMarshaledTuple, aFirstParam);
MarshalParameters<paramIndex + 1, VarParams...>(aMarshaledTuple,
aRemainingParams...);
}
/**
* Base case: empty parameter list -- nothing to marshal.
*/
template <int paramIndex>
static void MarshalParameters(IpdlTuple& aMarshaledTuple) {}
template <int tupleIndex, typename OrigType,
bool shouldMarshal =
PhaseHandler::Info::template ShouldMarshal<tupleIndex>::value,
bool hasFixedValue =
PhaseHandler::Info::template HasFixedValue<tupleIndex>::value>
struct MaybeUnmarshalParameter {};
/**
* ShouldMarshal = true case. HasFixedValue must be false in that case.
*/
template <int tupleIndex, typename VarParam>
struct MaybeUnmarshalParameter<tupleIndex, VarParam, true, false> {
template <typename IPCType = typename PhaseHandler::template IPCTypeMap<
VarParam>::ipc_type>
static inline bool UnmarshalParameter(IpdlTupleContext& aUnmarshaledTuple,
int& aNextTupleIdx,
VarParam& aParam) {
const IPCType* ipcObject =
aUnmarshaledTuple.GetIpdlTuple()->Element<IPCType>(aNextTupleIdx);
if (!ipcObject) {
HOOK_LOG(LogLevel::Error, ("%s failed to unmarshal parameter %d.",
EndpointMsg(endpoint), tupleIndex));
return false;
}
HOOK_LOG(LogLevel::Verbose, ("%s unmarshaled parameter %d.",
EndpointMsg(endpoint), tupleIndex));
LogParameterValue(tupleIndex, *ipcObject);
PhaseHandler::EHContainer::template EndpointHandler<endpoint>::Copy(
aUnmarshaledTuple.GetServerCallData(), aParam, *ipcObject);
++aNextTupleIdx;
return true;
}
};
/**
* ShouldMarshal = true : nsDependentCSubstring specialization
*/
template <int tupleIndex>
struct MaybeUnmarshalParameter<tupleIndex, nsDependentCSubstring, true,
false> {
static inline bool UnmarshalParameter(IpdlTupleContext& aUnmarshaledTuple,
int& aNextTupleIdx,
nsDependentCSubstring& aParam) {
// Deserialize as an nsCString and then copy the info into the
// nsDependentCSubstring
const nsCString* ipcObject =
aUnmarshaledTuple.GetIpdlTuple()->Element<nsCString>(aNextTupleIdx);
if (!ipcObject) {
HOOK_LOG(LogLevel::Error, ("%s failed to unmarshal parameter %d.",
EndpointMsg(endpoint), tupleIndex));
return false;
}
HOOK_LOG(LogLevel::Verbose, ("%s unmarshaled parameter %d.",
EndpointMsg(endpoint), tupleIndex));
aParam.Rebind(ipcObject->Data(), ipcObject->Length());
aParam.SetIsVoid(ipcObject->IsVoid());
LogParameterValue(tupleIndex, aParam);
++aNextTupleIdx;
return true;
}
};
/**
* ShouldMarshal = true : char* specialization
*/
template <int tupleIndex>
struct MaybeUnmarshalParameter<tupleIndex, char*, true, false> {
static inline bool UnmarshalParameter(IpdlTupleContext& aUnmarshaledTuple,
int& aNextTupleIdx, char*& aParam) {
nsDependentCSubstring tempStr;
bool ret =
MaybeUnmarshalParameter<tupleIndex, nsDependentCSubstring, true,
false>::UnmarshalParameter(aUnmarshaledTuple,
aNextTupleIdx,
tempStr);
PhaseHandler::EHContainer::template EndpointHandler<endpoint>::Copy(
aUnmarshaledTuple.GetServerCallData(), aParam, tempStr);
return ret;
}
};
/**
* ShouldMarshal = true : const char* specialization
*/
template <int tupleIndex>
struct MaybeUnmarshalParameter<tupleIndex, const char*, true, false> {
static inline bool UnmarshalParameter(IpdlTupleContext& aUnmarshaledTuple,
int& aNextTupleIdx,
const char*& aParam) {
char* tempStr;
bool ret =
MaybeUnmarshalParameter<tupleIndex, char*, true,
false>::UnmarshalParameter(aUnmarshaledTuple,
aNextTupleIdx,
tempStr);
aParam = tempStr;
return ret;
}
};
/**
* ShouldMarshal = false, fixed parameter case
*/
template <int tupleIndex, typename VarParam>
struct MaybeUnmarshalParameter<tupleIndex, VarParam, false, true> {
static inline bool UnmarshalParameter(IpdlTupleContext& aUnmarshaledTuple,
int& aNextTupleIdx,
VarParam& aParam) {
// Copy default value if this is client->server communication (and if it
// exists)
PhaseHandler::template CopyFixedParam<tupleIndex, VarParam>(aParam);
HOOK_LOG(LogLevel::Verbose,
("%s parameter %d not unmarshaling -- using fixed value.",
EndpointMsg(endpoint), tupleIndex));
LogParameterValue(tupleIndex, aParam);
return true;
}
};
/**
* ShouldMarshal = false, unfixed parameter case. Assume user has done
* special handling.
*/
template <int tupleIndex, typename VarParam>
struct MaybeUnmarshalParameter<tupleIndex, VarParam, false, false> {
static inline bool UnmarshalParameter(IpdlTupleContext& aUnmarshaledTuple,
int& aNextTupleIdx,
VarParam& aParam) {
HOOK_LOG(LogLevel::Verbose,
("%s parameter %d not automatically unmarshaling.",
EndpointMsg(endpoint), tupleIndex));
// DLP: TODO: specializations fail LogParameterValue(tupleIndex, aParam);
return true;
}
};
/**
* Recursive case: unmarshals aFirstParam to aUnmarshaledTuple (if desired),
* then unmarshals the aRemainingParams.
* The endpoint specifies the side this process is on: client or server.
*/
template <int tupleIndex, typename VarParam, typename... VarParams>
static bool UnmarshalParameters(IpdlTupleContext& aUnmarshaledTuple,
int aNextTupleIdx, VarParam& aFirstParam,
VarParams&... aRemainingParams) {
// TODO: DLP: I currently increment aNextTupleIdx in the method (its a
// reference). This is awful.
if (!MaybeUnmarshalParameter<tupleIndex, VarParam>::UnmarshalParameter(
aUnmarshaledTuple, aNextTupleIdx, aFirstParam)) {
return false;
}
return UnmarshalParameters<tupleIndex + 1, VarParams...>(
aUnmarshaledTuple, aNextTupleIdx, aRemainingParams...);
}
/**
* Base case: empty parameter list -- nothing to unmarshal.
*/
template <int>
static bool UnmarshalParameters(IpdlTupleContext& aUnmarshaledTuple,
int aNextTupleIdx) {
return true;
}
};
// The default marshals all parameters.
template <FunctionHookId functionId>
struct RequestInfo {
template <int paramIndex>
struct FixedValue;
template <int paramIndex, typename = int>
struct HasFixedValue {
static const bool value = false;
};
template <int paramIndex>
struct HasFixedValue<paramIndex, decltype(FixedValue<paramIndex>::value, 0)> {
static const bool value = true;
};
// By default we the request should marshal any non-fixed parameters.
template <int paramIndex>
struct ShouldMarshal {
static const bool value = !HasFixedValue<paramIndex>::value;
};
};
/**
* This base stores the RequestHandler's IPCTypeMap. It really only
* exists to circumvent the arbitrary C++ rule (enforced by mingw) forbidding
* full class specialization of a class (IPCTypeMap<T>) inside of an
* unspecialized template class (RequestHandler<T>).
*/
struct RequestHandlerBase {
// Default to the namespace-level IPCTypeMap
template <typename OrigType>
struct IPCTypeMap {
typedef typename mozilla::plugins::IPCTypeMap<OrigType>::ipc_type ipc_type;
};
};
#if defined(XP_WIN)
// Request phase uses OpenFileNameIPC for an LPOPENFILENAMEW parameter.
template <>
struct RequestHandlerBase::IPCTypeMap<LPOPENFILENAMEW> {
typedef OpenFileNameIPC ipc_type;
};
#endif // defined(XP_WIN)
struct BaseEHContainer {
template <Endpoint e>
struct EndpointHandler : public BaseEndpointHandler<e, EndpointHandler<e>> {};
};
template <FunctionHookId functionId, typename FunctionType,
typename EHContainer>
struct RequestHandler;
template <FunctionHookId functionId, typename EHContainerType,
typename ResultType, typename... ParamTypes>
struct RequestHandler<functionId, ResultType HOOK_CALL(ParamTypes...),
EHContainerType> : public RequestHandlerBase {
typedef ResultType(HOOK_CALL FunctionType)(ParamTypes...);
typedef RequestHandler<functionId, FunctionType, EHContainerType> SelfType;
typedef RequestInfo<functionId> Info;
typedef EHContainerType EHContainer;
static void Marshal(IpdlTuple& aTuple, const ParamTypes&... aParams) {
ReqMarshaler::Marshal(aTuple, aParams...);
}
static bool Unmarshal(ServerCallData& aScd, const IpdlTuple& aTuple,
ParamTypes&... aParams) {
IpdlTupleContext cxt(&aTuple, &aScd);
return ReqUnmarshaler::Unmarshal(cxt, aParams...);
}
typedef Marshaler<CLIENT, SelfType> ReqMarshaler;
typedef Marshaler<SERVER, SelfType> ReqUnmarshaler;
/**
* Returns true if a call made with the given parameters should be
* brokered (vs. passed-through to the original function).
*/
static bool ShouldBroker(Endpoint aEndpoint, const ParamTypes&... aParams) {
// True if all filtered parameters match their filter value.
return CheckFixedParams(aParams...);
}
template <int paramIndex, typename VarParam>
static void CopyFixedParam(VarParam& aParam) {
aParam = Info::template FixedValue<paramIndex>::value;
}
protected:
// Returns true if filtered parameters match their filter value.
static bool CheckFixedParams(const ParamTypes&... aParams) {
return CheckFixedParamsHelper<0>(aParams...);
}
// If no FixedValue<paramIndex> is defined and equal to FixedType then always
// pass.
template <int paramIndex, typename = int>
struct CheckFixedParam {
template <typename ParamType>
static inline bool Check(const ParamType& aParam) {
return true;
}
};
// If FixedValue<paramIndex> is defined then check equality.
template <int paramIndex>
struct CheckFixedParam<
paramIndex, decltype(Info::template FixedValue<paramIndex>::value, 0)> {
template <typename ParamType>
static inline bool Check(ParamType& aParam) {
return ParameterEquality(aParam,
Info::template FixedValue<paramIndex>::value);
}
};
// Recursive case: Chcek head parameter, then tail parameters.
template <int index, typename VarParam, typename... VarParams>
static bool CheckFixedParamsHelper(const VarParam& aParam,
const VarParams&... aParams) {
if (!CheckFixedParam<index>::Check(aParam)) {
return false; // didn't match a fixed parameter
}
return CheckFixedParamsHelper<index + 1>(aParams...);
}
// Base case: All fixed parameters matched.
template <int>
static bool CheckFixedParamsHelper() {
return true;
}
};
// The default returns no parameters -- only the return value.
template <FunctionHookId functionId>
struct ResponseInfo {
template <int paramIndex>
struct HasFixedValue {
static const bool value =
RequestInfo<functionId>::template HasFixedValue<paramIndex>::value;
};
// Only the return value (index -1) is sent by default.
template <int paramIndex>
struct ShouldMarshal {
static const bool value = (paramIndex == -1);
};
// This is the condition on the function result that we use to determine if
// the windows thread-local error state should be sent to the client. The
// error is typically only relevant if the function did not succeed.
template <typename ResultType>
static bool ShouldTransmitError(const ResultType& aResult) {
return !static_cast<bool>(aResult);
}
};
/**
* Same rationale as for RequestHandlerBase.
*/
struct ResponseHandlerBase {
// Default to the namespace-level IPCTypeMap
template <typename OrigType>
struct IPCTypeMap {
typedef typename mozilla::plugins::IPCTypeMap<OrigType>::ipc_type ipc_type;
};
};
#if defined(XP_WIN)
// Response phase uses OpenFileNameRetIPC for an LPOPENFILENAMEW parameter.
template <>
struct ResponseHandlerBase::IPCTypeMap<LPOPENFILENAMEW> {
typedef OpenFileNameRetIPC ipc_type;
};
#endif
template <FunctionHookId functionId, typename FunctionType,
typename EHContainer>
struct ResponseHandler;
template <FunctionHookId functionId, typename EHContainerType,
typename ResultType, typename... ParamTypes>
struct ResponseHandler<functionId, ResultType HOOK_CALL(ParamTypes...),
EHContainerType> : public ResponseHandlerBase {
typedef ResultType(HOOK_CALL FunctionType)(ParamTypes...);
typedef ResponseHandler<functionId, FunctionType, EHContainerType> SelfType;
typedef ResponseInfo<functionId> Info;
typedef EHContainerType EHContainer;
static void Marshal(IpdlTuple& aTuple, const ResultType& aResult,
const ParamTypes&... aParams) {
// Note that this "trick" means that the first parameter we marshal is
// considered to be parameter #-1 when checking the ResponseInfo.
// The parameters in the list therefore start at index 0.
RspMarshaler::template Marshal<-1>(aTuple, aResult, aParams...);
}
static bool Unmarshal(const IpdlTuple& aTuple, ResultType& aResult,
ParamTypes&... aParams) {
IpdlTupleContext cxt(&aTuple);
return RspUnmarshaler::template Unmarshal<-1>(cxt, aResult, aParams...);
}
typedef Marshaler<SERVER, SelfType> RspMarshaler;
typedef Marshaler<CLIENT, SelfType> RspUnmarshaler;
// Fixed parameters are not used in the response phase.
template <int tupleIndex, typename VarParam>
static void CopyFixedParam(VarParam& aParam) {}
};
/**
* Reference-counted monitor, used to synchronize communication between a
* thread using a brokered API and the FunctionDispatch thread.
*/
class FDMonitor : public Monitor {
public:
FDMonitor() : Monitor("FunctionDispatchThread lock") {}
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(FDMonitor)
private:
~FDMonitor() {}
};
/**
* Data for hooking a function that we automatically broker in a remote
* process.
*/
template <FunctionHookId functionId, typename FunctionType,
typename EHContainer = BaseEHContainer>
class FunctionBroker;
template <FunctionHookId functionId, typename EHContainer, typename ResultType,
typename... ParamTypes>
class FunctionBroker<functionId, ResultType HOOK_CALL(ParamTypes...),
EHContainer>
: public BasicFunctionHook<functionId,
ResultType HOOK_CALL(ParamTypes...)> {
public:
typedef Tuple<ParamTypes...> TupleParamTypes;
typedef Tuple<mozilla::Maybe<ParamTypes>...> TupleMaybeParamTypes;
typedef Tuple<ParamTypes*...> TupleParamPtrTypes;
typedef Tuple<ParamTypes&...> TupleParamRefTypes;
static const size_t numParams = sizeof...(ParamTypes);
typedef ResultType(HOOK_CALL FunctionType)(ParamTypes...);
typedef FunctionBroker<functionId, FunctionType, EHContainer> SelfType;
typedef BasicFunctionHook<functionId, FunctionType> FunctionHookInfoType;
typedef FunctionHookInfoType BaseType;
typedef RequestHandler<functionId, FunctionType, EHContainer> Request;
typedef ResponseHandler<functionId, FunctionType, EHContainer> Response;
template <typename DelegateFcnType>
using RequestDelegate =
RequestHandler<functionId, DelegateFcnType, EHContainer>;
template <typename DelegateFcnType>
using ResponseDelegate =
ResponseHandler<functionId, DelegateFcnType, EHContainer>;
FunctionBroker(const char* aModuleName, const char* aMethodName,
FunctionType* aOriginalFunction)
: BasicFunctionHook<functionId, FunctionType>(
aModuleName, aMethodName, aOriginalFunction, InterceptorStub) {}
// This is the function used to replace the original DLL-intercepted function.
static ResultType HOOK_CALL InterceptorStub(ParamTypes... aParams) {
MOZ_ASSERT(functionId < FunctionHook::GetHooks()->Length());
FunctionHook* self = FunctionHook::GetHooks()->ElementAt(functionId);
MOZ_ASSERT(self && self->FunctionId() == functionId);
const SelfType* broker = static_cast<const SelfType*>(self);
return broker->MaybeBrokerCallClient(aParams...);
}
/**
* Handle a call by running the original version or brokering, depending on
* ShouldBroker. All parameter types (including the result type)
* must have IPDL ParamTraits specializations or appear in this object's
* IPCTypeMap. If brokering fails for any reason then this falls back to
* calling the original version of the function.
*/
ResultType MaybeBrokerCallClient(ParamTypes&... aParameters) const;
/**
* Called server-side to run the original function using aInTuple
* as parameter values. The return value and returned parameters
* (in that order) are added to aOutTuple.
*/
bool RunOriginalFunction(base::ProcessId aClientId,
const IPC::IpdlTuple& aInTuple,
IPC::IpdlTuple* aOutTuple) const override {
return BrokerCallServer(aClientId, aInTuple, aOutTuple);
}
protected:
bool BrokerCallServer(base::ProcessId aClientId, const IpdlTuple& aInTuple,
IpdlTuple* aOutTuple) const {
return BrokerCallServer(aClientId, aInTuple, aOutTuple,
std::index_sequence_for<ParamTypes...>{});
}
bool BrokerCallClient(uint32_t& aWinError, ResultType& aResult,
ParamTypes&... aParameters) const;
bool PostToDispatchThread(uint32_t& aWinError, ResultType& aRet,
ParamTypes&... aParameters) const;
static void PostToDispatchHelper(const SelfType* bmhi,
RefPtr<FDMonitor> monitor, bool* notified,
bool* ok, uint32_t* winErr, ResultType* r,
ParamTypes*... p) {
// Note: p is also non-null... its just hard to assert that.
MOZ_ASSERT(bmhi && monitor && notified && ok && winErr && r);
MOZ_ASSERT(*notified == false);
*ok = bmhi->BrokerCallClient(*winErr, *r, *p...);
{
// We need to grab the lock to make sure that Wait() has been
// called in PostToDispatchThread. We need that since we wake it with
// Notify().
MonitorAutoLock lock(*monitor);
*notified = true;
}
monitor->Notify();
};
template <typename... VarParams>
ResultType RunFunction(FunctionType* aFunction, base::ProcessId aClientId,
VarParams&... aParams) const {
return aFunction(aParams...);
};
bool BrokerCallServer(base::ProcessId aClientId, const IpdlTuple& aInTuple,
IpdlTuple* aOutTuple, ParamTypes&... aParams) const;
template <size_t... Indices>
bool BrokerCallServer(base::ProcessId aClientId, const IpdlTuple& aInTuple,
IpdlTuple* aOutTuple,
std::index_sequence<Indices...>) const {
TupleParamTypes paramTuple;
return BrokerCallServer(aClientId, aInTuple, aOutTuple,
Get<Indices>(paramTuple)...);
}
};
template <FunctionHookId functionId, typename EHContainer, typename ResultType,
typename... ParamTypes>
ResultType FunctionBroker<
functionId, ResultType HOOK_CALL(ParamTypes...),
EHContainer>::MaybeBrokerCallClient(ParamTypes&... aParameters) const {
MOZ_ASSERT(FunctionBrokerChild::GetInstance());
// Broker the call if ShouldBroker says to. Otherwise, or if brokering
// fails, then call the original implementation.
if (!FunctionBrokerChild::GetInstance()) {
HOOK_LOG(LogLevel::Error,
("[%s] Client attempted to broker call without actor.",
FunctionHookInfoType::mFunctionName.Data()));
} else if (Request::ShouldBroker(CLIENT, aParameters...)) {
HOOK_LOG(LogLevel::Debug, ("[%s] Client attempting to broker call.",
FunctionHookInfoType::mFunctionName.Data()));
uint32_t winError;
ResultType ret;
bool success = BrokerCallClient(winError, ret, aParameters...);
HOOK_LOG(LogLevel::Info,
("[%s] Client brokering %s.",
FunctionHookInfoType::mFunctionName.Data(), SuccessMsg(success)));
if (success) {
#if defined(XP_WIN)
if (Response::Info::ShouldTransmitError(ret)) {
HOOK_LOG(LogLevel::Debug,
("[%s] Client setting thread error code: %08x.",
FunctionHookInfoType::mFunctionName.Data(), winError));
::SetLastError(winError);
}
#endif
return ret;
}
}
HOOK_LOG(LogLevel::Info,
("[%s] Client could not broker. Running original version.",
FunctionHookInfoType::mFunctionName.Data()));
return FunctionHookInfoType::mOldFunction(aParameters...);
}
template <FunctionHookId functionId, typename EHContainer, typename ResultType,
typename... ParamTypes>
bool FunctionBroker<functionId, ResultType HOOK_CALL(ParamTypes...),
EHContainer>::BrokerCallClient(uint32_t& aWinError,
ResultType& aResult,
ParamTypes&... aParameters)
const {
if (!FunctionBrokerChild::GetInstance()->IsDispatchThread()) {
return PostToDispatchThread(aWinError, aResult, aParameters...);
}
if (FunctionBrokerChild::GetInstance()) {
IpdlTuple sending, returned;
HOOK_LOG(LogLevel::Debug, ("[%s] Client marshaling parameters.",
FunctionHookInfoType::mFunctionName.Data()));
Request::Marshal(sending, aParameters...);
HOOK_LOG(LogLevel::Info, ("[%s] Client sending broker message.",
FunctionHookInfoType::mFunctionName.Data()));
if (FunctionBrokerChild::GetInstance()->SendBrokerFunction(
FunctionHookInfoType::FunctionId(), sending, &returned)) {
HOOK_LOG(LogLevel::Debug,
("[%s] Client received broker message response.",
FunctionHookInfoType::mFunctionName.Data()));
bool success = Response::Unmarshal(returned, aResult, aParameters...);
HOOK_LOG(LogLevel::Info, ("[%s] Client response unmarshaling: %s.",
FunctionHookInfoType::mFunctionName.Data(),
SuccessMsg(success)));
#if defined(XP_WIN)
if (success && Response::Info::ShouldTransmitError(aResult)) {
uint32_t* winError =
returned.Element<UINT32>(returned.NumElements() - 1);
if (!winError) {
HOOK_LOG(LogLevel::Error,
("[%s] Client failed to unmarshal error code.",
FunctionHookInfoType::mFunctionName.Data()));
return false;
}
HOOK_LOG(LogLevel::Debug,
("[%s] Client response unmarshaled error code: %08x.",
FunctionHookInfoType::mFunctionName.Data(), *winError));
aWinError = *winError;
}
#endif
return success;
}
}
HOOK_LOG(LogLevel::Error, ("[%s] Client failed to broker call.",
FunctionHookInfoType::mFunctionName.Data()));
return false;
}
template <FunctionHookId functionId, typename EHContainer, typename ResultType,
typename... ParamTypes>
bool FunctionBroker<functionId, ResultType HOOK_CALL(ParamTypes...),
EHContainer>::BrokerCallServer(base::ProcessId aClientId,
const IpdlTuple& aInTuple,
IpdlTuple* aOutTuple,
ParamTypes&... aParams)
const {
HOOK_LOG(LogLevel::Info, ("[%s] Server brokering function.",
FunctionHookInfoType::mFunctionName.Data()));
ServerCallData scd;
if (!Request::Unmarshal(scd, aInTuple, aParams...)) {
HOOK_LOG(LogLevel::Info, ("[%s] Server failed to unmarshal.",
FunctionHookInfoType::mFunctionName.Data()));
return false;
}
// Make sure that this call was legal -- do not execute a call that
// shouldn't have been brokered in the first place.
if (!Request::ShouldBroker(SERVER, aParams...)) {
HOOK_LOG(LogLevel::Error, ("[%s] Server rejected brokering request.",
FunctionHookInfoType::mFunctionName.Data()));
return false;
}
// Run the function we are brokering.
HOOK_LOG(LogLevel::Info, ("[%s] Server broker running function.",
FunctionHookInfoType::mFunctionName.Data()));
ResultType ret =
RunFunction(FunctionHookInfoType::mOldFunction, aClientId, aParams...);
#if defined(XP_WIN)
// Record the thread-local error state (before it is changed) if needed.
uint32_t err = UINT_MAX;
bool transmitError = Response::Info::ShouldTransmitError(ret);
if (transmitError) {
err = ::GetLastError();
HOOK_LOG(LogLevel::Info, ("[%s] Server returning thread error code: %08x.",
FunctionHookInfoType::mFunctionName.Data(), err));
}
#endif
// Add the result, win thread error and any returned parameters to the
// returned tuple.
Response::Marshal(*aOutTuple, ret, aParams...);
#if defined(XP_WIN)
if (transmitError) {
aOutTuple->AddElement(err);
}
#endif
return true;
}
template <FunctionHookId functionId, typename EHContainer, typename ResultType,
typename... ParamTypes>
bool FunctionBroker<
functionId, ResultType HOOK_CALL(ParamTypes...),
EHContainer>::PostToDispatchThread(uint32_t& aWinError, ResultType& aRet,
ParamTypes&... aParameters) const {
MOZ_ASSERT(!FunctionBrokerChild::GetInstance()->IsDispatchThread());
HOOK_LOG(LogLevel::Debug, ("Posting broker task '%s' to dispatch thread",
FunctionHookInfoType::mFunctionName.Data()));
// Run PostToDispatchHelper on the dispatch thread. It will notify our
// waiting monitor when it is done.
RefPtr<FDMonitor> monitor(new FDMonitor());
MonitorAutoLock lock(*monitor);
bool success = false;
bool notified = false;
FunctionBrokerChild::GetInstance()->PostToDispatchThread(NewRunnableFunction(
"FunctionDispatchThreadRunnable", &PostToDispatchHelper, this, monitor,
&notified, &success, &aWinError, &aRet, &aParameters...));
// We wait to be notified, testing that notified was actually set to make
// sure this isn't a spurious wakeup.
while (!notified) {
monitor->Wait();
}
return success;
}
void AddBrokeredFunctionHooks(FunctionHookArray& aHooks);
} // namespace plugins
} // namespace mozilla
#endif // dom_plugins_ipc_PluginHooksWin_h