зеркало из https://github.com/mozilla/gecko-dev.git
791 строка
26 KiB
C++
791 строка
26 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "secdert.h"
|
|
#include "nspr.h"
|
|
#include "nsNSSComponent.h" // for PIPNSS string bundle calls.
|
|
#include "keyhi.h"
|
|
#include "secder.h"
|
|
#include "cryptohi.h"
|
|
#include "base64.h"
|
|
#include "secasn1.h"
|
|
#include "nsKeygenHandler.h"
|
|
#include "nsKeygenHandlerContent.h"
|
|
#include "nsIServiceManager.h"
|
|
#include "nsIDOMHTMLSelectElement.h"
|
|
#include "nsIContent.h"
|
|
#include "nsKeygenThread.h"
|
|
#include "nsNSSHelper.h"
|
|
#include "nsReadableUtils.h"
|
|
#include "nsUnicharUtils.h"
|
|
#include "nsCRT.h"
|
|
#include "nsITokenDialogs.h"
|
|
#include "nsIGenKeypairInfoDlg.h"
|
|
#include "nsNSSShutDown.h"
|
|
#include "nsXULAppAPI.h"
|
|
|
|
#include "mozilla/Telemetry.h"
|
|
|
|
//These defines are taken from the PKCS#11 spec
|
|
#define CKM_RSA_PKCS_KEY_PAIR_GEN 0x00000000
|
|
#define CKM_DH_PKCS_KEY_PAIR_GEN 0x00000020
|
|
|
|
DERTemplate SECAlgorithmIDTemplate[] = {
|
|
{ DER_SEQUENCE,
|
|
0, nullptr, sizeof(SECAlgorithmID) },
|
|
{ DER_OBJECT_ID,
|
|
offsetof(SECAlgorithmID,algorithm), },
|
|
{ DER_OPTIONAL | DER_ANY,
|
|
offsetof(SECAlgorithmID,parameters), },
|
|
{ 0, }
|
|
};
|
|
|
|
DERTemplate CERTSubjectPublicKeyInfoTemplate[] = {
|
|
{ DER_SEQUENCE,
|
|
0, nullptr, sizeof(CERTSubjectPublicKeyInfo) },
|
|
{ DER_INLINE,
|
|
offsetof(CERTSubjectPublicKeyInfo,algorithm),
|
|
SECAlgorithmIDTemplate, },
|
|
{ DER_BIT_STRING,
|
|
offsetof(CERTSubjectPublicKeyInfo,subjectPublicKey), },
|
|
{ 0, }
|
|
};
|
|
|
|
DERTemplate CERTPublicKeyAndChallengeTemplate[] =
|
|
{
|
|
{ DER_SEQUENCE, 0, nullptr, sizeof(CERTPublicKeyAndChallenge) },
|
|
{ DER_ANY, offsetof(CERTPublicKeyAndChallenge,spki), },
|
|
{ DER_IA5_STRING, offsetof(CERTPublicKeyAndChallenge,challenge), },
|
|
{ 0, }
|
|
};
|
|
|
|
typedef struct curveNameTagPairStr {
|
|
const char *curveName;
|
|
SECOidTag curveOidTag;
|
|
} CurveNameTagPair;
|
|
|
|
static CurveNameTagPair nameTagPair[] =
|
|
{
|
|
{ "prime192v1", SEC_OID_ANSIX962_EC_PRIME192V1 },
|
|
{ "prime192v2", SEC_OID_ANSIX962_EC_PRIME192V2 },
|
|
{ "prime192v3", SEC_OID_ANSIX962_EC_PRIME192V3 },
|
|
{ "prime239v1", SEC_OID_ANSIX962_EC_PRIME239V1 },
|
|
{ "prime239v2", SEC_OID_ANSIX962_EC_PRIME239V2 },
|
|
{ "prime239v3", SEC_OID_ANSIX962_EC_PRIME239V3 },
|
|
{ "prime256v1", SEC_OID_ANSIX962_EC_PRIME256V1 },
|
|
|
|
{ "secp112r1", SEC_OID_SECG_EC_SECP112R1},
|
|
{ "secp112r2", SEC_OID_SECG_EC_SECP112R2},
|
|
{ "secp128r1", SEC_OID_SECG_EC_SECP128R1},
|
|
{ "secp128r2", SEC_OID_SECG_EC_SECP128R2},
|
|
{ "secp160k1", SEC_OID_SECG_EC_SECP160K1},
|
|
{ "secp160r1", SEC_OID_SECG_EC_SECP160R1},
|
|
{ "secp160r2", SEC_OID_SECG_EC_SECP160R2},
|
|
{ "secp192k1", SEC_OID_SECG_EC_SECP192K1},
|
|
{ "secp192r1", SEC_OID_ANSIX962_EC_PRIME192V1 },
|
|
{ "nistp192", SEC_OID_ANSIX962_EC_PRIME192V1 },
|
|
{ "secp224k1", SEC_OID_SECG_EC_SECP224K1},
|
|
{ "secp224r1", SEC_OID_SECG_EC_SECP224R1},
|
|
{ "nistp224", SEC_OID_SECG_EC_SECP224R1},
|
|
{ "secp256k1", SEC_OID_SECG_EC_SECP256K1},
|
|
{ "secp256r1", SEC_OID_ANSIX962_EC_PRIME256V1 },
|
|
{ "nistp256", SEC_OID_ANSIX962_EC_PRIME256V1 },
|
|
{ "secp384r1", SEC_OID_SECG_EC_SECP384R1},
|
|
{ "nistp384", SEC_OID_SECG_EC_SECP384R1},
|
|
{ "secp521r1", SEC_OID_SECG_EC_SECP521R1},
|
|
{ "nistp521", SEC_OID_SECG_EC_SECP521R1},
|
|
|
|
{ "c2pnb163v1", SEC_OID_ANSIX962_EC_C2PNB163V1 },
|
|
{ "c2pnb163v2", SEC_OID_ANSIX962_EC_C2PNB163V2 },
|
|
{ "c2pnb163v3", SEC_OID_ANSIX962_EC_C2PNB163V3 },
|
|
{ "c2pnb176v1", SEC_OID_ANSIX962_EC_C2PNB176V1 },
|
|
{ "c2tnb191v1", SEC_OID_ANSIX962_EC_C2TNB191V1 },
|
|
{ "c2tnb191v2", SEC_OID_ANSIX962_EC_C2TNB191V2 },
|
|
{ "c2tnb191v3", SEC_OID_ANSIX962_EC_C2TNB191V3 },
|
|
{ "c2onb191v4", SEC_OID_ANSIX962_EC_C2ONB191V4 },
|
|
{ "c2onb191v5", SEC_OID_ANSIX962_EC_C2ONB191V5 },
|
|
{ "c2pnb208w1", SEC_OID_ANSIX962_EC_C2PNB208W1 },
|
|
{ "c2tnb239v1", SEC_OID_ANSIX962_EC_C2TNB239V1 },
|
|
{ "c2tnb239v2", SEC_OID_ANSIX962_EC_C2TNB239V2 },
|
|
{ "c2tnb239v3", SEC_OID_ANSIX962_EC_C2TNB239V3 },
|
|
{ "c2onb239v4", SEC_OID_ANSIX962_EC_C2ONB239V4 },
|
|
{ "c2onb239v5", SEC_OID_ANSIX962_EC_C2ONB239V5 },
|
|
{ "c2pnb272w1", SEC_OID_ANSIX962_EC_C2PNB272W1 },
|
|
{ "c2pnb304w1", SEC_OID_ANSIX962_EC_C2PNB304W1 },
|
|
{ "c2tnb359v1", SEC_OID_ANSIX962_EC_C2TNB359V1 },
|
|
{ "c2pnb368w1", SEC_OID_ANSIX962_EC_C2PNB368W1 },
|
|
{ "c2tnb431r1", SEC_OID_ANSIX962_EC_C2TNB431R1 },
|
|
|
|
{ "sect113r1", SEC_OID_SECG_EC_SECT113R1},
|
|
{ "sect113r2", SEC_OID_SECG_EC_SECT113R2},
|
|
{ "sect131r1", SEC_OID_SECG_EC_SECT131R1},
|
|
{ "sect131r2", SEC_OID_SECG_EC_SECT131R2},
|
|
{ "sect163k1", SEC_OID_SECG_EC_SECT163K1},
|
|
{ "nistk163", SEC_OID_SECG_EC_SECT163K1},
|
|
{ "sect163r1", SEC_OID_SECG_EC_SECT163R1},
|
|
{ "sect163r2", SEC_OID_SECG_EC_SECT163R2},
|
|
{ "nistb163", SEC_OID_SECG_EC_SECT163R2},
|
|
{ "sect193r1", SEC_OID_SECG_EC_SECT193R1},
|
|
{ "sect193r2", SEC_OID_SECG_EC_SECT193R2},
|
|
{ "sect233k1", SEC_OID_SECG_EC_SECT233K1},
|
|
{ "nistk233", SEC_OID_SECG_EC_SECT233K1},
|
|
{ "sect233r1", SEC_OID_SECG_EC_SECT233R1},
|
|
{ "nistb233", SEC_OID_SECG_EC_SECT233R1},
|
|
{ "sect239k1", SEC_OID_SECG_EC_SECT239K1},
|
|
{ "sect283k1", SEC_OID_SECG_EC_SECT283K1},
|
|
{ "nistk283", SEC_OID_SECG_EC_SECT283K1},
|
|
{ "sect283r1", SEC_OID_SECG_EC_SECT283R1},
|
|
{ "nistb283", SEC_OID_SECG_EC_SECT283R1},
|
|
{ "sect409k1", SEC_OID_SECG_EC_SECT409K1},
|
|
{ "nistk409", SEC_OID_SECG_EC_SECT409K1},
|
|
{ "sect409r1", SEC_OID_SECG_EC_SECT409R1},
|
|
{ "nistb409", SEC_OID_SECG_EC_SECT409R1},
|
|
{ "sect571k1", SEC_OID_SECG_EC_SECT571K1},
|
|
{ "nistk571", SEC_OID_SECG_EC_SECT571K1},
|
|
{ "sect571r1", SEC_OID_SECG_EC_SECT571R1},
|
|
{ "nistb571", SEC_OID_SECG_EC_SECT571R1},
|
|
|
|
};
|
|
|
|
SECKEYECParams *
|
|
decode_ec_params(const char *curve)
|
|
{
|
|
SECKEYECParams *ecparams;
|
|
SECOidData *oidData = nullptr;
|
|
SECOidTag curveOidTag = SEC_OID_UNKNOWN; /* default */
|
|
int i, numCurves;
|
|
|
|
if (curve && *curve) {
|
|
numCurves = sizeof(nameTagPair)/sizeof(CurveNameTagPair);
|
|
for (i = 0; ((i < numCurves) && (curveOidTag == SEC_OID_UNKNOWN));
|
|
i++) {
|
|
if (PL_strcmp(curve, nameTagPair[i].curveName) == 0)
|
|
curveOidTag = nameTagPair[i].curveOidTag;
|
|
}
|
|
}
|
|
|
|
/* Return nullptr if curve name is not recognized */
|
|
if ((curveOidTag == SEC_OID_UNKNOWN) ||
|
|
(oidData = SECOID_FindOIDByTag(curveOidTag)) == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
ecparams = SECITEM_AllocItem(nullptr, nullptr, (2 + oidData->oid.len));
|
|
|
|
if (!ecparams)
|
|
return nullptr;
|
|
|
|
/*
|
|
* ecparams->data needs to contain the ASN encoding of an object ID (OID)
|
|
* representing the named curve. The actual OID is in
|
|
* oidData->oid.data so we simply prepend 0x06 and OID length
|
|
*/
|
|
ecparams->data[0] = SEC_ASN1_OBJECT_ID;
|
|
ecparams->data[1] = oidData->oid.len;
|
|
memcpy(ecparams->data + 2, oidData->oid.data, oidData->oid.len);
|
|
|
|
return ecparams;
|
|
}
|
|
|
|
NS_IMPL_ISUPPORTS(nsKeygenFormProcessor, nsIFormProcessor)
|
|
|
|
nsKeygenFormProcessor::nsKeygenFormProcessor()
|
|
{
|
|
m_ctx = new PipUIContext();
|
|
}
|
|
|
|
nsKeygenFormProcessor::~nsKeygenFormProcessor()
|
|
{
|
|
nsNSSShutDownPreventionLock locker;
|
|
if (isAlreadyShutDown()) {
|
|
return;
|
|
}
|
|
|
|
shutdown(calledFromObject);
|
|
}
|
|
|
|
nsresult
|
|
nsKeygenFormProcessor::Create(nsISupports* aOuter, const nsIID& aIID, void* *aResult)
|
|
{
|
|
if (GeckoProcessType_Content == XRE_GetProcessType()) {
|
|
nsCOMPtr<nsISupports> contentProcessor = new nsKeygenFormProcessorContent();
|
|
return contentProcessor->QueryInterface(aIID, aResult);
|
|
}
|
|
|
|
nsresult rv;
|
|
NS_ENSURE_NO_AGGREGATION(aOuter);
|
|
nsKeygenFormProcessor* formProc = new nsKeygenFormProcessor();
|
|
|
|
nsCOMPtr<nsISupports> stabilize = formProc;
|
|
rv = formProc->Init();
|
|
if (NS_SUCCEEDED(rv)) {
|
|
rv = formProc->QueryInterface(aIID, aResult);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
nsresult
|
|
nsKeygenFormProcessor::Init()
|
|
{
|
|
static NS_DEFINE_CID(kNSSComponentCID, NS_NSSCOMPONENT_CID);
|
|
|
|
nsresult rv;
|
|
|
|
nsCOMPtr<nsINSSComponent> nssComponent;
|
|
nssComponent = do_GetService(kNSSComponentCID, &rv);
|
|
if (NS_FAILED(rv))
|
|
return rv;
|
|
|
|
// Init possible key size choices.
|
|
nssComponent->GetPIPNSSBundleString("HighGrade", mSECKeySizeChoiceList[0].name);
|
|
mSECKeySizeChoiceList[0].size = 2048;
|
|
|
|
nssComponent->GetPIPNSSBundleString("MediumGrade", mSECKeySizeChoiceList[1].name);
|
|
mSECKeySizeChoiceList[1].size = 1024;
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
nsKeygenFormProcessor::GetSlot(uint32_t aMechanism, PK11SlotInfo** aSlot)
|
|
{
|
|
nsNSSShutDownPreventionLock locker;
|
|
if (isAlreadyShutDown()) {
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
|
|
return GetSlotWithMechanism(aMechanism, m_ctx, aSlot, locker);
|
|
}
|
|
|
|
uint32_t MapGenMechToAlgoMech(uint32_t mechanism)
|
|
{
|
|
uint32_t searchMech;
|
|
|
|
/* We are interested in slots based on the ability to perform
|
|
a given algorithm, not on their ability to generate keys usable
|
|
by that algorithm. Therefore, map keygen-specific mechanism tags
|
|
to tags for the corresponding crypto algorithm. */
|
|
switch(mechanism)
|
|
{
|
|
case CKM_RSA_PKCS_KEY_PAIR_GEN:
|
|
searchMech = CKM_RSA_PKCS;
|
|
break;
|
|
case CKM_RC4_KEY_GEN:
|
|
searchMech = CKM_RC4;
|
|
break;
|
|
case CKM_DH_PKCS_KEY_PAIR_GEN:
|
|
searchMech = CKM_DH_PKCS_DERIVE; /* ### mwelch is this right? */
|
|
break;
|
|
case CKM_DES_KEY_GEN:
|
|
/* What do we do about DES keygen? Right now, we're just using
|
|
DES_KEY_GEN to look for tokens, because otherwise we'll have
|
|
to search the token list three times. */
|
|
case CKM_EC_KEY_PAIR_GEN:
|
|
/* The default should also work for EC key pair generation. */
|
|
default:
|
|
searchMech = mechanism;
|
|
break;
|
|
}
|
|
return searchMech;
|
|
}
|
|
|
|
|
|
nsresult
|
|
GetSlotWithMechanism(uint32_t aMechanism, nsIInterfaceRequestor* m_ctx,
|
|
PK11SlotInfo** aSlot, nsNSSShutDownPreventionLock& /*proofOfLock*/)
|
|
{
|
|
PK11SlotList * slotList = nullptr;
|
|
char16_t** tokenNameList = nullptr;
|
|
nsCOMPtr<nsITokenDialogs> dialogs;
|
|
char16_t *unicodeTokenChosen;
|
|
PK11SlotListElement *slotElement, *tmpSlot;
|
|
uint32_t numSlots = 0, i = 0;
|
|
bool canceled;
|
|
nsresult rv = NS_OK;
|
|
|
|
*aSlot = nullptr;
|
|
|
|
// Get the slot
|
|
slotList = PK11_GetAllTokens(MapGenMechToAlgoMech(aMechanism),
|
|
true, true, m_ctx);
|
|
if (!slotList || !slotList->head) {
|
|
rv = NS_ERROR_FAILURE;
|
|
goto loser;
|
|
}
|
|
|
|
if (!slotList->head->next) {
|
|
/* only one slot available, just return it */
|
|
*aSlot = slotList->head->slot;
|
|
} else {
|
|
// Gerenate a list of slots and ask the user to choose //
|
|
tmpSlot = slotList->head;
|
|
while (tmpSlot) {
|
|
numSlots++;
|
|
tmpSlot = tmpSlot->next;
|
|
}
|
|
|
|
// Allocate the slot name buffer //
|
|
tokenNameList = static_cast<char16_t**>(moz_xmalloc(sizeof(char16_t *) * numSlots));
|
|
if (!tokenNameList) {
|
|
rv = NS_ERROR_OUT_OF_MEMORY;
|
|
goto loser;
|
|
}
|
|
|
|
i = 0;
|
|
slotElement = PK11_GetFirstSafe(slotList);
|
|
while (slotElement) {
|
|
tokenNameList[i] = UTF8ToNewUnicode(nsDependentCString(PK11_GetTokenName(slotElement->slot)));
|
|
slotElement = PK11_GetNextSafe(slotList, slotElement, false);
|
|
if (tokenNameList[i])
|
|
i++;
|
|
else {
|
|
// OOM. adjust numSlots so we don't free unallocated memory.
|
|
numSlots = i;
|
|
PK11_FreeSlotListElement(slotList, slotElement);
|
|
rv = NS_ERROR_OUT_OF_MEMORY;
|
|
goto loser;
|
|
}
|
|
}
|
|
|
|
// Throw up the token list dialog and get back the token.
|
|
rv = getNSSDialogs(getter_AddRefs(dialogs), NS_GET_IID(nsITokenDialogs),
|
|
NS_TOKENDIALOGS_CONTRACTID);
|
|
|
|
if (NS_FAILED(rv)) {
|
|
goto loser;
|
|
}
|
|
|
|
if (!tokenNameList || !*tokenNameList) {
|
|
rv = NS_ERROR_OUT_OF_MEMORY;
|
|
} else {
|
|
rv = dialogs->ChooseToken(m_ctx, (const char16_t**)tokenNameList,
|
|
numSlots, &unicodeTokenChosen, &canceled);
|
|
}
|
|
if (NS_FAILED(rv)) goto loser;
|
|
|
|
if (canceled) { rv = NS_ERROR_NOT_AVAILABLE; goto loser; }
|
|
|
|
// Get the slot //
|
|
slotElement = PK11_GetFirstSafe(slotList);
|
|
nsAutoString tokenStr(unicodeTokenChosen);
|
|
while (slotElement) {
|
|
if (tokenStr.Equals(NS_ConvertUTF8toUTF16(PK11_GetTokenName(slotElement->slot)))) {
|
|
*aSlot = slotElement->slot;
|
|
PK11_FreeSlotListElement(slotList, slotElement);
|
|
break;
|
|
}
|
|
slotElement = PK11_GetNextSafe(slotList, slotElement, false);
|
|
}
|
|
if(!(*aSlot)) {
|
|
rv = NS_ERROR_FAILURE;
|
|
goto loser;
|
|
}
|
|
}
|
|
|
|
// Get a reference to the slot //
|
|
PK11_ReferenceSlot(*aSlot);
|
|
loser:
|
|
if (slotList) {
|
|
PK11_FreeSlotList(slotList);
|
|
}
|
|
if (tokenNameList) {
|
|
NS_FREE_XPCOM_ALLOCATED_POINTER_ARRAY(numSlots, tokenNameList);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
|
|
void
|
|
GatherKeygenTelemetry(uint32_t keyGenMechanism, int keysize, char* curve)
|
|
{
|
|
if (keyGenMechanism == CKM_RSA_PKCS_KEY_PAIR_GEN) {
|
|
if (keysize > 8196 || keysize < 0) {
|
|
return;
|
|
}
|
|
|
|
nsCString telemetryValue("rsa");
|
|
telemetryValue.AppendPrintf("%d", keysize);
|
|
mozilla::Telemetry::Accumulate(
|
|
mozilla::Telemetry::KEYGEN_GENERATED_KEY_TYPE, telemetryValue);
|
|
} else if (keyGenMechanism == CKM_EC_KEY_PAIR_GEN) {
|
|
nsCString secp384r1 = NS_LITERAL_CSTRING("secp384r1");
|
|
nsCString secp256r1 = NS_LITERAL_CSTRING("secp256r1");
|
|
|
|
SECKEYECParams* decoded = decode_ec_params(curve);
|
|
if (!decoded) {
|
|
switch (keysize) {
|
|
case 2048:
|
|
mozilla::Telemetry::Accumulate(
|
|
mozilla::Telemetry::KEYGEN_GENERATED_KEY_TYPE, secp384r1);
|
|
break;
|
|
case 1024:
|
|
case 512:
|
|
mozilla::Telemetry::Accumulate(
|
|
mozilla::Telemetry::KEYGEN_GENERATED_KEY_TYPE, secp256r1);
|
|
break;
|
|
}
|
|
} else {
|
|
SECITEM_FreeItem(decoded, true);
|
|
if (secp384r1.EqualsIgnoreCase(curve, secp384r1.Length())) {
|
|
mozilla::Telemetry::Accumulate(
|
|
mozilla::Telemetry::KEYGEN_GENERATED_KEY_TYPE, secp384r1);
|
|
} else if (secp256r1.EqualsIgnoreCase(curve, secp256r1.Length())) {
|
|
mozilla::Telemetry::Accumulate(
|
|
mozilla::Telemetry::KEYGEN_GENERATED_KEY_TYPE, secp256r1);
|
|
} else {
|
|
mozilla::Telemetry::Accumulate(
|
|
mozilla::Telemetry::KEYGEN_GENERATED_KEY_TYPE, NS_LITERAL_CSTRING("other_ec"));
|
|
}
|
|
}
|
|
} else {
|
|
MOZ_CRASH("Unknown keygen algorithm");
|
|
return;
|
|
}
|
|
}
|
|
|
|
nsresult
|
|
nsKeygenFormProcessor::GetPublicKey(const nsAString& aValue,
|
|
const nsAString& aChallenge,
|
|
const nsAFlatString& aKeyType,
|
|
nsAString& aOutPublicKey,
|
|
const nsAString& aKeyParams)
|
|
{
|
|
nsNSSShutDownPreventionLock locker;
|
|
if (isAlreadyShutDown()) {
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
|
|
nsresult rv = NS_ERROR_FAILURE;
|
|
char *keystring = nullptr;
|
|
char *keyparamsString = nullptr;
|
|
uint32_t keyGenMechanism;
|
|
PK11SlotInfo *slot = nullptr;
|
|
PK11RSAGenParams rsaParams;
|
|
SECOidTag algTag;
|
|
int keysize = 0;
|
|
void *params = nullptr;
|
|
SECKEYPrivateKey *privateKey = nullptr;
|
|
SECKEYPublicKey *publicKey = nullptr;
|
|
CERTSubjectPublicKeyInfo *spkInfo = nullptr;
|
|
SECStatus srv = SECFailure;
|
|
SECItem spkiItem;
|
|
SECItem pkacItem;
|
|
SECItem signedItem;
|
|
CERTPublicKeyAndChallenge pkac;
|
|
pkac.challenge.data = nullptr;
|
|
nsCOMPtr<nsIGeneratingKeypairInfoDialogs> dialogs;
|
|
nsKeygenThread *KeygenRunnable = 0;
|
|
nsCOMPtr<nsIKeygenThread> runnable;
|
|
|
|
// permanent and sensitive flags for keygen
|
|
PK11AttrFlags attrFlags = PK11_ATTR_TOKEN | PK11_ATTR_SENSITIVE | PK11_ATTR_PRIVATE;
|
|
|
|
UniquePLArenaPool arena(PORT_NewArena(DER_DEFAULT_CHUNKSIZE));
|
|
if (!arena) {
|
|
goto loser;
|
|
}
|
|
|
|
// Get the key size //
|
|
for (size_t i = 0; i < number_of_key_size_choices; ++i) {
|
|
if (aValue.Equals(mSECKeySizeChoiceList[i].name)) {
|
|
keysize = mSECKeySizeChoiceList[i].size;
|
|
break;
|
|
}
|
|
}
|
|
if (!keysize) {
|
|
goto loser;
|
|
}
|
|
|
|
// Set the keygen mechanism
|
|
if (aKeyType.IsEmpty() || aKeyType.LowerCaseEqualsLiteral("rsa")) {
|
|
keyGenMechanism = CKM_RSA_PKCS_KEY_PAIR_GEN;
|
|
} else if (aKeyType.LowerCaseEqualsLiteral("ec")) {
|
|
keyparamsString = ToNewCString(aKeyParams);
|
|
if (!keyparamsString) {
|
|
rv = NS_ERROR_OUT_OF_MEMORY;
|
|
goto loser;
|
|
}
|
|
|
|
keyGenMechanism = CKM_EC_KEY_PAIR_GEN;
|
|
/* ecParams are initialized later */
|
|
} else {
|
|
goto loser;
|
|
}
|
|
|
|
// Get the slot
|
|
rv = GetSlot(keyGenMechanism, &slot);
|
|
if (NS_FAILED(rv)) {
|
|
goto loser;
|
|
}
|
|
switch (keyGenMechanism) {
|
|
case CKM_RSA_PKCS_KEY_PAIR_GEN:
|
|
rsaParams.keySizeInBits = keysize;
|
|
rsaParams.pe = DEFAULT_RSA_KEYGEN_PE;
|
|
algTag = DEFAULT_RSA_KEYGEN_ALG;
|
|
params = &rsaParams;
|
|
break;
|
|
case CKM_EC_KEY_PAIR_GEN:
|
|
/* XXX We ought to rethink how the KEYGEN tag is
|
|
* displayed. The pulldown selections presented
|
|
* to the user must depend on the keytype.
|
|
* The displayed selection could be picked
|
|
* from the keyparams attribute (this is currently called
|
|
* the pqg attribute).
|
|
* For now, we pick ecparams from the keyparams field
|
|
* if it specifies a valid supported curve, or else
|
|
* we pick one of secp384r1, secp256r1 or secp192r1
|
|
* respectively depending on the user's selection
|
|
* (High, Medium, Low).
|
|
* (RSA uses RSA-2048, RSA-1024 and RSA-512 for historical
|
|
* reasons, while ECC choices represent a stronger mapping)
|
|
* NOTE: The user's selection
|
|
* is silently ignored when a valid curve is presented
|
|
* in keyparams.
|
|
*/
|
|
if ((params = decode_ec_params(keyparamsString)) == nullptr) {
|
|
/* The keyparams attribute did not specify a valid
|
|
* curve name so use a curve based on the keysize.
|
|
* NOTE: Here keysize is used only as an indication of
|
|
* High/Medium/Low strength; elliptic curve
|
|
* cryptography uses smaller keys than RSA to provide
|
|
* equivalent security.
|
|
*/
|
|
switch (keysize) {
|
|
case 2048:
|
|
params = decode_ec_params("secp384r1");
|
|
break;
|
|
case 1024:
|
|
case 512:
|
|
params = decode_ec_params("secp256r1");
|
|
break;
|
|
}
|
|
}
|
|
/* XXX The signature algorithm ought to choose the hashing
|
|
* algorithm based on key size once ECDSA variations based
|
|
* on SHA256 SHA384 and SHA512 are standardized.
|
|
*/
|
|
algTag = SEC_OID_ANSIX962_ECDSA_SIGNATURE_WITH_SHA1_DIGEST;
|
|
break;
|
|
default:
|
|
goto loser;
|
|
}
|
|
|
|
/* Make sure token is initialized. */
|
|
rv = setPassword(slot, m_ctx, locker);
|
|
if (NS_FAILED(rv))
|
|
goto loser;
|
|
|
|
srv = PK11_Authenticate(slot, true, m_ctx);
|
|
if (srv != SECSuccess) {
|
|
goto loser;
|
|
}
|
|
|
|
rv = getNSSDialogs(getter_AddRefs(dialogs),
|
|
NS_GET_IID(nsIGeneratingKeypairInfoDialogs),
|
|
NS_GENERATINGKEYPAIRINFODIALOGS_CONTRACTID);
|
|
|
|
if (NS_SUCCEEDED(rv)) {
|
|
KeygenRunnable = new nsKeygenThread();
|
|
NS_IF_ADDREF(KeygenRunnable);
|
|
}
|
|
|
|
if (NS_FAILED(rv) || !KeygenRunnable) {
|
|
rv = NS_OK;
|
|
privateKey = PK11_GenerateKeyPairWithFlags(slot, keyGenMechanism, params,
|
|
&publicKey, attrFlags, m_ctx);
|
|
} else {
|
|
KeygenRunnable->SetParams( slot, attrFlags, nullptr, 0,
|
|
keyGenMechanism, params, m_ctx );
|
|
|
|
runnable = do_QueryInterface(KeygenRunnable);
|
|
if (runnable) {
|
|
rv = dialogs->DisplayGeneratingKeypairInfo(m_ctx, runnable);
|
|
// We call join on the thread so we can be sure that no
|
|
// simultaneous access to the passed parameters will happen.
|
|
KeygenRunnable->Join();
|
|
|
|
if (NS_SUCCEEDED(rv)) {
|
|
PK11SlotInfo *used_slot = nullptr;
|
|
rv = KeygenRunnable->ConsumeResult(&used_slot, &privateKey, &publicKey);
|
|
if (NS_SUCCEEDED(rv) && used_slot) {
|
|
PK11_FreeSlot(used_slot);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (NS_FAILED(rv) || !privateKey) {
|
|
goto loser;
|
|
}
|
|
// just in case we'll need to authenticate to the db -jp //
|
|
privateKey->wincx = m_ctx;
|
|
|
|
/*
|
|
* Create a subject public key info from the public key.
|
|
*/
|
|
spkInfo = SECKEY_CreateSubjectPublicKeyInfo(publicKey);
|
|
if ( !spkInfo ) {
|
|
goto loser;
|
|
}
|
|
|
|
/*
|
|
* Now DER encode the whole subjectPublicKeyInfo.
|
|
*/
|
|
srv = DER_Encode(arena.get(), &spkiItem, CERTSubjectPublicKeyInfoTemplate,
|
|
spkInfo);
|
|
if (srv != SECSuccess) {
|
|
goto loser;
|
|
}
|
|
|
|
/*
|
|
* set up the PublicKeyAndChallenge data structure, then DER encode it
|
|
*/
|
|
pkac.spki = spkiItem;
|
|
pkac.challenge.len = aChallenge.Length();
|
|
pkac.challenge.data = (unsigned char *)ToNewCString(aChallenge);
|
|
if (!pkac.challenge.data) {
|
|
rv = NS_ERROR_OUT_OF_MEMORY;
|
|
goto loser;
|
|
}
|
|
|
|
srv = DER_Encode(arena.get(), &pkacItem, CERTPublicKeyAndChallengeTemplate,
|
|
&pkac);
|
|
if (srv != SECSuccess) {
|
|
goto loser;
|
|
}
|
|
|
|
/*
|
|
* now sign the DER encoded PublicKeyAndChallenge
|
|
*/
|
|
srv = SEC_DerSignData(arena.get(), &signedItem, pkacItem.data, pkacItem.len,
|
|
privateKey, algTag);
|
|
if (srv != SECSuccess) {
|
|
goto loser;
|
|
}
|
|
|
|
/*
|
|
* Convert the signed public key and challenge into base64/ascii.
|
|
*/
|
|
keystring = BTOA_DataToAscii(signedItem.data, signedItem.len);
|
|
if (!keystring) {
|
|
rv = NS_ERROR_OUT_OF_MEMORY;
|
|
goto loser;
|
|
}
|
|
|
|
CopyASCIItoUTF16(keystring, aOutPublicKey);
|
|
free(keystring);
|
|
|
|
rv = NS_OK;
|
|
|
|
GatherKeygenTelemetry(keyGenMechanism, keysize, keyparamsString);
|
|
loser:
|
|
if (srv != SECSuccess) {
|
|
if ( privateKey ) {
|
|
PK11_DestroyTokenObject(privateKey->pkcs11Slot,privateKey->pkcs11ID);
|
|
}
|
|
if ( publicKey ) {
|
|
PK11_DestroyTokenObject(publicKey->pkcs11Slot,publicKey->pkcs11ID);
|
|
}
|
|
}
|
|
if ( spkInfo ) {
|
|
SECKEY_DestroySubjectPublicKeyInfo(spkInfo);
|
|
}
|
|
if ( publicKey ) {
|
|
SECKEY_DestroyPublicKey(publicKey);
|
|
}
|
|
if ( privateKey ) {
|
|
SECKEY_DestroyPrivateKey(privateKey);
|
|
}
|
|
if (slot) {
|
|
PK11_FreeSlot(slot);
|
|
}
|
|
if (KeygenRunnable) {
|
|
NS_RELEASE(KeygenRunnable);
|
|
}
|
|
if (keyparamsString) {
|
|
free(keyparamsString);
|
|
}
|
|
if (pkac.challenge.data) {
|
|
free(pkac.challenge.data);
|
|
}
|
|
// If params is non-null and doesn't point to rsaParams, it was allocated
|
|
// in decode_ec_params. We have to free this memory.
|
|
if (params && params != &rsaParams) {
|
|
SECITEM_FreeItem(static_cast<SECItem*>(params), true);
|
|
params = nullptr;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
// static
|
|
void
|
|
nsKeygenFormProcessor::ExtractParams(nsIDOMHTMLElement* aElement,
|
|
nsAString& challengeValue,
|
|
nsAString& keyTypeValue,
|
|
nsAString& keyParamsValue)
|
|
{
|
|
aElement->GetAttribute(NS_LITERAL_STRING("keytype"), keyTypeValue);
|
|
if (keyTypeValue.IsEmpty()) {
|
|
// If this field is not present, we default to rsa.
|
|
keyTypeValue.AssignLiteral("rsa");
|
|
}
|
|
|
|
aElement->GetAttribute(NS_LITERAL_STRING("pqg"),
|
|
keyParamsValue);
|
|
/* XXX We can still support the pqg attribute in the keygen
|
|
* tag for backward compatibility while introducing a more
|
|
* general attribute named keyparams.
|
|
*/
|
|
if (keyParamsValue.IsEmpty()) {
|
|
aElement->GetAttribute(NS_LITERAL_STRING("keyparams"),
|
|
keyParamsValue);
|
|
}
|
|
|
|
aElement->GetAttribute(NS_LITERAL_STRING("challenge"), challengeValue);
|
|
}
|
|
|
|
nsresult
|
|
nsKeygenFormProcessor::ProcessValue(nsIDOMHTMLElement* aElement,
|
|
const nsAString& aName,
|
|
nsAString& aValue)
|
|
{
|
|
nsAutoString challengeValue;
|
|
nsAutoString keyTypeValue;
|
|
nsAutoString keyParamsValue;
|
|
ExtractParams(aElement, challengeValue, keyTypeValue, keyParamsValue);
|
|
|
|
return GetPublicKey(aValue, challengeValue, keyTypeValue,
|
|
aValue, keyParamsValue);
|
|
}
|
|
|
|
nsresult
|
|
nsKeygenFormProcessor::ProcessValueIPC(const nsAString& aOldValue,
|
|
const nsAString& aChallenge,
|
|
const nsAString& aKeyType,
|
|
const nsAString& aKeyParams,
|
|
nsAString& newValue)
|
|
{
|
|
return GetPublicKey(aOldValue, aChallenge, PromiseFlatString(aKeyType),
|
|
newValue, aKeyParams);
|
|
}
|
|
|
|
nsresult
|
|
nsKeygenFormProcessor::ProvideContent(const nsAString& aFormType,
|
|
nsTArray<nsString>& aContent,
|
|
nsAString& aAttribute)
|
|
{
|
|
if (Compare(aFormType, NS_LITERAL_STRING("SELECT"),
|
|
nsCaseInsensitiveStringComparator()) == 0) {
|
|
|
|
for (size_t i = 0; i < number_of_key_size_choices; ++i) {
|
|
aContent.AppendElement(mSECKeySizeChoiceList[i].name);
|
|
}
|
|
aAttribute.AssignLiteral("-mozilla-keygen");
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|