gecko-dev/image/AnimationSurfaceProvider.cpp

441 строка
14 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "AnimationSurfaceProvider.h"
#include "gfxPrefs.h"
#include "nsProxyRelease.h"
#include "DecodePool.h"
#include "Decoder.h"
using namespace mozilla::gfx;
namespace mozilla {
namespace image {
AnimationSurfaceProvider::AnimationSurfaceProvider(NotNull<RasterImage*> aImage,
const SurfaceKey& aSurfaceKey,
NotNull<Decoder*> aDecoder,
size_t aCurrentFrame)
: ISurfaceProvider(ImageKey(aImage.get()), aSurfaceKey,
AvailabilityState::StartAsPlaceholder())
, mImage(aImage.get())
, mDecodingMutex("AnimationSurfaceProvider::mDecoder")
, mDecoder(aDecoder.get())
, mFramesMutex("AnimationSurfaceProvider::mFrames")
{
MOZ_ASSERT(!mDecoder->IsMetadataDecode(),
"Use MetadataDecodingTask for metadata decodes");
MOZ_ASSERT(!mDecoder->IsFirstFrameDecode(),
"Use DecodedSurfaceProvider for single-frame image decodes");
// We still produce paletted surfaces for GIF which means the frames are
// smaller than one would expect for APNG. This may be removed if/when
// bug 1337111 lands and it is enabled by default.
size_t pixelSize = aDecoder->GetType() == DecoderType::GIF
? sizeof(uint8_t) : sizeof(uint32_t);
// Calculate how many frames we need to decode in this animation before we
// enter decode-on-demand mode.
IntSize frameSize = aSurfaceKey.Size();
size_t threshold =
(size_t(gfxPrefs::ImageAnimatedDecodeOnDemandThresholdKB()) * 1024) /
(pixelSize * frameSize.width * frameSize.height);
size_t batch = gfxPrefs::ImageAnimatedDecodeOnDemandBatchSize();
mFrames.Initialize(threshold, batch, aCurrentFrame);
}
AnimationSurfaceProvider::~AnimationSurfaceProvider()
{
DropImageReference();
}
void
AnimationSurfaceProvider::DropImageReference()
{
if (!mImage) {
return; // Nothing to do.
}
// RasterImage objects need to be destroyed on the main thread.
NS_ReleaseOnMainThreadSystemGroup("AnimationSurfaceProvider::mImage",
mImage.forget());
}
void
AnimationSurfaceProvider::Reset()
{
// We want to go back to the beginning.
bool mayDiscard;
bool restartDecoder;
{
MutexAutoLock lock(mFramesMutex);
// If we have not crossed the threshold, we know we haven't discarded any
// frames, and thus we know it is safe move our display index back to the
// very beginning. It would be cleaner to let the frame buffer make this
// decision inside the AnimationFrameBuffer::Reset method, but if we have
// crossed the threshold, we need to hold onto the decoding mutex too. We
// should avoid blocking the main thread on the decoder threads.
mayDiscard = mFrames.MayDiscard();
if (!mayDiscard) {
restartDecoder = mFrames.Reset();
}
}
if (mayDiscard) {
// We are over the threshold and have started discarding old frames. In
// that case we need to seize the decoding mutex. Thankfully we know that
// we are in the process of decoding at most the batch size frames, so
// this should not take too long to acquire.
MutexAutoLock lock(mDecodingMutex);
// Recreate the decoder so we can regenerate the frames again.
mDecoder = DecoderFactory::CloneAnimationDecoder(mDecoder);
MOZ_ASSERT(mDecoder);
MutexAutoLock lock2(mFramesMutex);
restartDecoder = mFrames.Reset();
}
if (restartDecoder) {
DecodePool::Singleton()->AsyncRun(this);
}
}
void
AnimationSurfaceProvider::Advance(size_t aFrame)
{
bool restartDecoder;
{
// Typical advancement of a frame.
MutexAutoLock lock(mFramesMutex);
restartDecoder = mFrames.AdvanceTo(aFrame);
}
if (restartDecoder) {
DecodePool::Singleton()->AsyncRun(this);
}
}
DrawableFrameRef
AnimationSurfaceProvider::DrawableRef(size_t aFrame)
{
MutexAutoLock lock(mFramesMutex);
if (Availability().IsPlaceholder()) {
MOZ_ASSERT_UNREACHABLE("Calling DrawableRef() on a placeholder");
return DrawableFrameRef();
}
imgFrame* frame = mFrames.Get(aFrame);
if (!frame) {
return DrawableFrameRef();
}
return frame->DrawableRef();
}
RawAccessFrameRef
AnimationSurfaceProvider::RawAccessRef(size_t aFrame)
{
MutexAutoLock lock(mFramesMutex);
if (Availability().IsPlaceholder()) {
MOZ_ASSERT_UNREACHABLE("Calling RawAccessRef() on a placeholder");
return RawAccessFrameRef();
}
imgFrame* frame = mFrames.Get(aFrame);
if (!frame) {
return RawAccessFrameRef();
}
return frame->RawAccessRef(/* aOnlyFinished */ true);
}
bool
AnimationSurfaceProvider::IsFinished() const
{
MutexAutoLock lock(mFramesMutex);
if (Availability().IsPlaceholder()) {
MOZ_ASSERT_UNREACHABLE("Calling IsFinished() on a placeholder");
return false;
}
if (mFrames.Frames().IsEmpty()) {
MOZ_ASSERT_UNREACHABLE("Calling IsFinished() when we have no frames");
return false;
}
// As long as we have at least one finished frame, we're finished.
return mFrames.Frames()[0]->IsFinished();
}
bool
AnimationSurfaceProvider::IsFullyDecoded() const
{
MutexAutoLock lock(mFramesMutex);
return mFrames.SizeKnown() && !mFrames.MayDiscard();
}
size_t
AnimationSurfaceProvider::LogicalSizeInBytes() const
{
// When decoding animated images, we need at most three live surfaces: the
// composited surface, the previous composited surface for
// DisposalMethod::RESTORE_PREVIOUS, and the surface we're currently decoding
// into. The composited surfaces are always BGRA. Although the surface we're
// decoding into may be paletted, and may be smaller than the real size of the
// image, we assume the worst case here.
// XXX(seth): Note that this is actually not accurate yet; we're storing the
// full sequence of frames, not just the three live surfaces mentioned above.
// Unfortunately there's no way to know in advance how many frames an
// animation has, so we really can't do better here. This will become correct
// once bug 1289954 is complete.
IntSize size = GetSurfaceKey().Size();
return 3 * size.width * size.height * sizeof(uint32_t);
}
void
AnimationSurfaceProvider::AddSizeOfExcludingThis(MallocSizeOf aMallocSizeOf,
size_t& aHeapSizeOut,
size_t& aNonHeapSizeOut,
size_t& aExtHandlesOut)
{
// Note that the surface cache lock is already held here, and then we acquire
// mFramesMutex. For this method, this ordering is unavoidable, which means
// that we must be careful to always use the same ordering elsewhere.
MutexAutoLock lock(mFramesMutex);
for (const RawAccessFrameRef& frame : mFrames.Frames()) {
if (frame) {
frame->AddSizeOfExcludingThis(aMallocSizeOf, aHeapSizeOut,
aNonHeapSizeOut, aExtHandlesOut);
}
}
}
void
AnimationSurfaceProvider::Run()
{
MutexAutoLock lock(mDecodingMutex);
if (!mDecoder) {
MOZ_ASSERT_UNREACHABLE("Running after decoding finished?");
return;
}
while (true) {
// Run the decoder.
LexerResult result = mDecoder->Decode(WrapNotNull(this));
if (result.is<TerminalState>()) {
// We may have a new frame now, but it's not guaranteed - a decoding
// failure or truncated data may mean that no new frame got produced.
// Since we're not sure, rather than call CheckForNewFrameAtYield() here
// we call CheckForNewFrameAtTerminalState(), which handles both of these
// possibilities.
bool continueDecoding = CheckForNewFrameAtTerminalState();
FinishDecoding();
// Even if it is the last frame, we may not have enough frames buffered
// ahead of the current. If we are shutting down, we want to ensure we
// release the thread as soon as possible. The animation may advance even
// during shutdown, which keeps us decoding, and thus blocking the decode
// pool during teardown.
if (!mDecoder || !continueDecoding ||
DecodePool::Singleton()->IsShuttingDown()) {
return;
}
// Restart from the very beginning because the decoder was recreated.
continue;
}
// Notify for the progress we've made so far.
if (mImage && mDecoder->HasProgress()) {
NotifyProgress(WrapNotNull(mImage), WrapNotNull(mDecoder));
}
if (result == LexerResult(Yield::NEED_MORE_DATA)) {
// We can't make any more progress right now. The decoder itself will ensure
// that we get reenqueued when more data is available; just return for now.
return;
}
// There's new output available - a new frame! Grab it. If we don't need any
// more for the moment we can break out of the loop. If we are shutting
// down, we want to ensure we release the thread as soon as possible. The
// animation may advance even during shutdown, which keeps us decoding, and
// thus blocking the decode pool during teardown.
MOZ_ASSERT(result == LexerResult(Yield::OUTPUT_AVAILABLE));
if (!CheckForNewFrameAtYield() ||
DecodePool::Singleton()->IsShuttingDown()) {
return;
}
}
}
bool
AnimationSurfaceProvider::CheckForNewFrameAtYield()
{
mDecodingMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(mDecoder);
bool justGotFirstFrame = false;
bool continueDecoding;
{
MutexAutoLock lock(mFramesMutex);
// Try to get the new frame from the decoder.
RawAccessFrameRef frame = mDecoder->GetCurrentFrameRef();
MOZ_ASSERT(mDecoder->HasFrameToTake());
mDecoder->ClearHasFrameToTake();
if (!frame) {
MOZ_ASSERT_UNREACHABLE("Decoder yielded but didn't produce a frame?");
return true;
}
// We should've gotten a different frame than last time.
MOZ_ASSERT_IF(!mFrames.Frames().IsEmpty(),
mFrames.Frames().LastElement().get() != frame.get());
// Append the new frame to the list.
continueDecoding = mFrames.Insert(std::move(frame));
// We only want to handle the first frame if it is the first pass for the
// animation decoder. The owning image will be cleared after that.
size_t frameCount = mFrames.Frames().Length();
if (frameCount == 1 && mImage) {
justGotFirstFrame = true;
}
}
if (justGotFirstFrame) {
AnnounceSurfaceAvailable();
}
return continueDecoding;
}
bool
AnimationSurfaceProvider::CheckForNewFrameAtTerminalState()
{
mDecodingMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(mDecoder);
bool justGotFirstFrame = false;
bool continueDecoding;
{
MutexAutoLock lock(mFramesMutex);
// The decoder may or may not have a new frame for us at this point. Avoid
// reinserting the same frame again.
RawAccessFrameRef frame = mDecoder->GetCurrentFrameRef();
// If the decoder didn't finish a new frame (ie if, after starting the
// frame, it got an error and aborted the frame and the rest of the decode)
// that means it won't be reporting it to the image or FrameAnimator so we
// should ignore it too, that's what HasFrameToTake tracks basically.
if (!mDecoder->HasFrameToTake()) {
frame = RawAccessFrameRef();
} else {
MOZ_ASSERT(frame);
mDecoder->ClearHasFrameToTake();
}
if (!frame || (!mFrames.Frames().IsEmpty() &&
mFrames.Frames().LastElement().get() == frame.get())) {
return mFrames.MarkComplete();
}
// Append the new frame to the list.
mFrames.Insert(std::move(frame));
continueDecoding = mFrames.MarkComplete();
// We only want to handle the first frame if it is the first pass for the
// animation decoder. The owning image will be cleared after that.
if (mFrames.Frames().Length() == 1 && mImage) {
justGotFirstFrame = true;
}
}
if (justGotFirstFrame) {
AnnounceSurfaceAvailable();
}
return continueDecoding;
}
void
AnimationSurfaceProvider::AnnounceSurfaceAvailable()
{
mFramesMutex.AssertNotCurrentThreadOwns();
MOZ_ASSERT(mImage);
// We just got the first frame; let the surface cache know. We deliberately do
// this outside of mFramesMutex to avoid a potential deadlock with
// AddSizeOfExcludingThis(), since otherwise we'd be acquiring mFramesMutex
// and then the surface cache lock, while the memory reporting code would
// acquire the surface cache lock and then mFramesMutex.
SurfaceCache::SurfaceAvailable(WrapNotNull(this));
}
void
AnimationSurfaceProvider::FinishDecoding()
{
mDecodingMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(mDecoder);
if (mImage) {
// Send notifications.
NotifyDecodeComplete(WrapNotNull(mImage), WrapNotNull(mDecoder));
}
// Determine if we need to recreate the decoder, in case we are discarding
// frames and need to loop back to the beginning.
bool recreateDecoder;
{
MutexAutoLock lock(mFramesMutex);
recreateDecoder = !mFrames.HasRedecodeError() && mFrames.MayDiscard();
}
if (recreateDecoder) {
mDecoder = DecoderFactory::CloneAnimationDecoder(mDecoder);
MOZ_ASSERT(mDecoder);
} else {
mDecoder = nullptr;
}
// We don't need a reference to our image anymore, either, and we don't want
// one. We may be stored in the surface cache for a long time after decoding
// finishes. If we don't drop our reference to the image, we'll end up
// keeping it alive as long as we remain in the surface cache, which could
// greatly extend the image's lifetime - in fact, if the image isn't
// discardable, it'd result in a leak!
DropImageReference();
}
bool
AnimationSurfaceProvider::ShouldPreferSyncRun() const
{
MutexAutoLock lock(mDecodingMutex);
MOZ_ASSERT(mDecoder);
return mDecoder->ShouldSyncDecode(gfxPrefs::ImageMemDecodeBytesAtATime());
}
} // namespace image
} // namespace mozilla