gecko-dev/dom/media/MediaDecoderStateMachine.cpp

2956 строки
94 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifdef XP_WIN
// Include Windows headers required for enabling high precision timers.
#include "windows.h"
#include "mmsystem.h"
#endif
#include <algorithm>
#include <stdint.h>
#include "gfx2DGlue.h"
#include "mediasink/AudioSinkWrapper.h"
#include "mediasink/DecodedAudioDataSink.h"
#include "mediasink/DecodedStream.h"
#include "mediasink/OutputStreamManager.h"
#include "mediasink/VideoSink.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Logging.h"
#include "mozilla/mozalloc.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/Preferences.h"
#include "mozilla/SharedThreadPool.h"
#include "mozilla/TaskQueue.h"
#include "nsComponentManagerUtils.h"
#include "nsContentUtils.h"
#include "nsIEventTarget.h"
#include "nsITimer.h"
#include "nsPrintfCString.h"
#include "nsTArray.h"
#include "nsDeque.h"
#include "prenv.h"
#include "AccurateSeekTask.h"
#include "AudioSegment.h"
#include "DOMMediaStream.h"
#include "ImageContainer.h"
#include "MediaDecoder.h"
#include "MediaDecoderReader.h"
#include "MediaDecoderReaderWrapper.h"
#include "MediaDecoderStateMachine.h"
#include "MediaShutdownManager.h"
#include "MediaPrefs.h"
#include "MediaTimer.h"
#include "NextFrameSeekTask.h"
#include "TimeUnits.h"
#include "VideoSegment.h"
#include "VideoUtils.h"
#include "gfxPrefs.h"
namespace mozilla {
using namespace mozilla::dom;
using namespace mozilla::layers;
using namespace mozilla::media;
#define NS_DispatchToMainThread(...) CompileError_UseAbstractThreadDispatchInstead
// avoid redefined macro in unified build
#undef LOG
#undef DECODER_LOG
#undef VERBOSE_LOG
#undef DUMP_LOG
#define LOG(m, l, x, ...) \
MOZ_LOG(m, l, ("Decoder=%p " x, mDecoderID, ##__VA_ARGS__))
#define DECODER_LOG(x, ...) \
LOG(gMediaDecoderLog, LogLevel::Debug, x, ##__VA_ARGS__)
#define VERBOSE_LOG(x, ...) \
LOG(gMediaDecoderLog, LogLevel::Verbose, x, ##__VA_ARGS__)
#define SAMPLE_LOG(x, ...) \
LOG(gMediaSampleLog, LogLevel::Debug, x, ##__VA_ARGS__)
// Somehow MSVC doesn't correctly delete the comma before ##__VA_ARGS__
// when __VA_ARGS__ expands to nothing. This is a workaround for it.
#define DECODER_WARN_HELPER(a, b) NS_WARNING b
#define DECODER_WARN(x, ...) \
DECODER_WARN_HELPER(0, (nsPrintfCString("Decoder=%p " x, mDecoderID, ##__VA_ARGS__).get()))
#define DUMP_LOG(x, ...) \
NS_DebugBreak(NS_DEBUG_WARNING, nsPrintfCString("Decoder=%p " x, mDecoderID, ##__VA_ARGS__).get(), nullptr, nullptr, -1)
// Certain constants get stored as member variables and then adjusted by various
// scale factors on a per-decoder basis. We want to make sure to avoid using these
// constants directly, so we put them in a namespace.
namespace detail {
// If audio queue has less than this many usecs of decoded audio, we won't risk
// trying to decode the video, we'll skip decoding video up to the next
// keyframe. We may increase this value for an individual decoder if we
// encounter video frames which take a long time to decode.
static const uint32_t LOW_AUDIO_USECS = 300000;
// If more than this many usecs of decoded audio is queued, we'll hold off
// decoding more audio. If we increase the low audio threshold (see
// LOW_AUDIO_USECS above) we'll also increase this value to ensure it's not
// less than the low audio threshold.
static const int64_t AMPLE_AUDIO_USECS = 2000000;
} // namespace detail
// If we have fewer than LOW_VIDEO_FRAMES decoded frames, and
// we're not "prerolling video", we'll skip the video up to the next keyframe
// which is at or after the current playback position.
static const uint32_t LOW_VIDEO_FRAMES = 2;
// Threshold in usecs that used to check if we are low on decoded video.
// If the last video frame's end time |mDecodedVideoEndTime| is more than
// |LOW_VIDEO_THRESHOLD_USECS*mPlaybackRate| after the current clock in
// Advanceframe(), the video decode is lagging, and we skip to next keyframe.
static const int32_t LOW_VIDEO_THRESHOLD_USECS = 60000;
// Arbitrary "frame duration" when playing only audio.
static const int AUDIO_DURATION_USECS = 40000;
// If we increase our "low audio threshold" (see LOW_AUDIO_USECS above), we
// use this as a factor in all our calculations. Increasing this will cause
// us to be more likely to increase our low audio threshold, and to
// increase it by more.
static const int THRESHOLD_FACTOR = 2;
namespace detail {
// If we have less than this much undecoded data available, we'll consider
// ourselves to be running low on undecoded data. We determine how much
// undecoded data we have remaining using the reader's GetBuffered()
// implementation.
static const int64_t LOW_DATA_THRESHOLD_USECS = 5000000;
// LOW_DATA_THRESHOLD_USECS needs to be greater than AMPLE_AUDIO_USECS, otherwise
// the skip-to-keyframe logic can activate when we're running low on data.
static_assert(LOW_DATA_THRESHOLD_USECS > AMPLE_AUDIO_USECS,
"LOW_DATA_THRESHOLD_USECS is too small");
} // namespace detail
// Amount of excess usecs of data to add in to the "should we buffer" calculation.
static const uint32_t EXHAUSTED_DATA_MARGIN_USECS = 100000;
// If we enter buffering within QUICK_BUFFER_THRESHOLD_USECS seconds of starting
// decoding, we'll enter "quick buffering" mode, which exits a lot sooner than
// normal buffering mode. This exists so that if the decode-ahead exhausts the
// downloaded data while decode/playback is just starting up (for example
// after a seek while the media is still playing, or when playing a media
// as soon as it's load started), we won't necessarily stop for 30s and wait
// for buffering. We may actually be able to playback in this case, so exit
// buffering early and try to play. If it turns out we can't play, we'll fall
// back to buffering normally.
static const uint32_t QUICK_BUFFER_THRESHOLD_USECS = 2000000;
namespace detail {
// If we're quick buffering, we'll remain in buffering mode while we have less than
// QUICK_BUFFERING_LOW_DATA_USECS of decoded data available.
static const uint32_t QUICK_BUFFERING_LOW_DATA_USECS = 1000000;
// If QUICK_BUFFERING_LOW_DATA_USECS is > AMPLE_AUDIO_USECS, we won't exit
// quick buffering in a timely fashion, as the decode pauses when it
// reaches AMPLE_AUDIO_USECS decoded data, and thus we'll never reach
// QUICK_BUFFERING_LOW_DATA_USECS.
static_assert(QUICK_BUFFERING_LOW_DATA_USECS <= AMPLE_AUDIO_USECS,
"QUICK_BUFFERING_LOW_DATA_USECS is too large");
} // namespace detail
static TimeDuration UsecsToDuration(int64_t aUsecs) {
return TimeDuration::FromMicroseconds(aUsecs);
}
static int64_t DurationToUsecs(TimeDuration aDuration) {
return static_cast<int64_t>(aDuration.ToSeconds() * USECS_PER_S);
}
static const uint32_t MIN_VIDEO_QUEUE_SIZE = 3;
static const uint32_t MAX_VIDEO_QUEUE_SIZE = 10;
#ifdef MOZ_APPLEMEDIA
static const uint32_t HW_VIDEO_QUEUE_SIZE = 10;
#else
static const uint32_t HW_VIDEO_QUEUE_SIZE = 3;
#endif
static const uint32_t VIDEO_QUEUE_SEND_TO_COMPOSITOR_SIZE = 9999;
static uint32_t sVideoQueueDefaultSize = MAX_VIDEO_QUEUE_SIZE;
static uint32_t sVideoQueueHWAccelSize = HW_VIDEO_QUEUE_SIZE;
static uint32_t sVideoQueueSendToCompositorSize = VIDEO_QUEUE_SEND_TO_COMPOSITOR_SIZE;
static void InitVideoQueuePrefs() {
MOZ_ASSERT(NS_IsMainThread());
static bool sPrefInit = false;
if (!sPrefInit) {
sPrefInit = true;
sVideoQueueDefaultSize = Preferences::GetUint(
"media.video-queue.default-size", MAX_VIDEO_QUEUE_SIZE);
sVideoQueueHWAccelSize = Preferences::GetUint(
"media.video-queue.hw-accel-size", HW_VIDEO_QUEUE_SIZE);
sVideoQueueSendToCompositorSize = Preferences::GetUint(
"media.video-queue.send-to-compositor-size", VIDEO_QUEUE_SEND_TO_COMPOSITOR_SIZE);
}
}
// Delay, in milliseconds, that tabs needs to be in background before video
// decoding is suspended.
static TimeDuration
SuspendBackgroundVideoDelay()
{
return TimeDuration::FromMilliseconds(
MediaPrefs::MDSMSuspendBackgroundVideoDelay());
}
#define INIT_WATCHABLE(name, val) \
name(val, "MediaDecoderStateMachine::" #name)
#define INIT_MIRROR(name, val) \
name(mTaskQueue, val, "MediaDecoderStateMachine::" #name " (Mirror)")
#define INIT_CANONICAL(name, val) \
name(mTaskQueue, val, "MediaDecoderStateMachine::" #name " (Canonical)")
MediaDecoderStateMachine::MediaDecoderStateMachine(MediaDecoder* aDecoder,
MediaDecoderReader* aReader,
bool aRealTime) :
mDecoderID(aDecoder),
mFrameStats(&aDecoder->GetFrameStatistics()),
mVideoFrameContainer(aDecoder->GetVideoFrameContainer()),
mAudioChannel(aDecoder->GetAudioChannel()),
mTaskQueue(new TaskQueue(GetMediaThreadPool(MediaThreadType::PLAYBACK),
/* aSupportsTailDispatch = */ true)),
mWatchManager(this, mTaskQueue),
mRealTime(aRealTime),
mDispatchedStateMachine(false),
mDelayedScheduler(mTaskQueue),
INIT_WATCHABLE(mState, DECODER_STATE_DECODING_METADATA),
mCurrentFrameID(0),
INIT_WATCHABLE(mObservedDuration, TimeUnit()),
mFragmentEndTime(-1),
mReader(new MediaDecoderReaderWrapper(aRealTime, mTaskQueue, aReader)),
mDecodedAudioEndTime(0),
mDecodedVideoEndTime(0),
mPlaybackRate(1.0),
mLowAudioThresholdUsecs(detail::LOW_AUDIO_USECS),
mAmpleAudioThresholdUsecs(detail::AMPLE_AUDIO_USECS),
mQuickBufferingLowDataThresholdUsecs(detail::QUICK_BUFFERING_LOW_DATA_USECS),
mIsAudioPrerolling(false),
mIsVideoPrerolling(false),
mAudioCaptured(false),
INIT_WATCHABLE(mAudioCompleted, false),
INIT_WATCHABLE(mVideoCompleted, false),
mNotifyMetadataBeforeFirstFrame(false),
mQuickBuffering(false),
mMinimizePreroll(false),
mDecodeThreadWaiting(false),
mDecodingFirstFrame(true),
mSentLoadedMetadataEvent(false),
mSentFirstFrameLoadedEvent(false),
mSentPlaybackEndedEvent(false),
mVideoDecodeSuspended(false),
mVideoDecodeSuspendTimer(mTaskQueue),
mOutputStreamManager(new OutputStreamManager()),
mResource(aDecoder->GetResource()),
mAudioOffloading(false),
INIT_MIRROR(mBuffered, TimeIntervals()),
INIT_MIRROR(mIsReaderSuspended, true),
INIT_MIRROR(mEstimatedDuration, NullableTimeUnit()),
INIT_MIRROR(mExplicitDuration, Maybe<double>()),
INIT_MIRROR(mPlayState, MediaDecoder::PLAY_STATE_LOADING),
INIT_MIRROR(mNextPlayState, MediaDecoder::PLAY_STATE_PAUSED),
INIT_MIRROR(mVolume, 1.0),
INIT_MIRROR(mLogicalPlaybackRate, 1.0),
INIT_MIRROR(mPreservesPitch, true),
INIT_MIRROR(mSameOriginMedia, false),
INIT_MIRROR(mMediaPrincipalHandle, PRINCIPAL_HANDLE_NONE),
INIT_MIRROR(mPlaybackBytesPerSecond, 0.0),
INIT_MIRROR(mPlaybackRateReliable, true),
INIT_MIRROR(mDecoderPosition, 0),
INIT_MIRROR(mMediaSeekable, true),
INIT_MIRROR(mMediaSeekableOnlyInBufferedRanges, false),
INIT_MIRROR(mIsVisible, true),
INIT_CANONICAL(mDuration, NullableTimeUnit()),
INIT_CANONICAL(mIsShutdown, false),
INIT_CANONICAL(mNextFrameStatus, MediaDecoderOwner::NEXT_FRAME_UNINITIALIZED),
INIT_CANONICAL(mCurrentPosition, 0),
INIT_CANONICAL(mPlaybackOffset, 0),
INIT_CANONICAL(mIsAudioDataAudible, false)
{
MOZ_COUNT_CTOR(MediaDecoderStateMachine);
NS_ASSERTION(NS_IsMainThread(), "Should be on main thread.");
InitVideoQueuePrefs();
mBufferingWait = IsRealTime() ? 0 : 15;
mLowDataThresholdUsecs = IsRealTime() ? 0 : detail::LOW_DATA_THRESHOLD_USECS;
#ifdef XP_WIN
// Ensure high precision timers are enabled on Windows, otherwise the state
// machine isn't woken up at reliable intervals to set the next frame,
// and we drop frames while painting. Note that multiple calls to this
// function per-process is OK, provided each call is matched by a corresponding
// timeEndPeriod() call.
timeBeginPeriod(1);
#endif
}
#undef INIT_WATCHABLE
#undef INIT_MIRROR
#undef INIT_CANONICAL
MediaDecoderStateMachine::~MediaDecoderStateMachine()
{
MOZ_ASSERT(NS_IsMainThread(), "Should be on main thread.");
MOZ_COUNT_DTOR(MediaDecoderStateMachine);
#ifdef XP_WIN
timeEndPeriod(1);
#endif
}
void
MediaDecoderStateMachine::InitializationTask(MediaDecoder* aDecoder)
{
MOZ_ASSERT(OnTaskQueue());
// Connect mirrors.
mBuffered.Connect(mReader->CanonicalBuffered());
mIsReaderSuspended.Connect(mReader->CanonicalIsSuspended());
mEstimatedDuration.Connect(aDecoder->CanonicalEstimatedDuration());
mExplicitDuration.Connect(aDecoder->CanonicalExplicitDuration());
mPlayState.Connect(aDecoder->CanonicalPlayState());
mNextPlayState.Connect(aDecoder->CanonicalNextPlayState());
mVolume.Connect(aDecoder->CanonicalVolume());
mLogicalPlaybackRate.Connect(aDecoder->CanonicalPlaybackRate());
mPreservesPitch.Connect(aDecoder->CanonicalPreservesPitch());
mSameOriginMedia.Connect(aDecoder->CanonicalSameOriginMedia());
mMediaPrincipalHandle.Connect(aDecoder->CanonicalMediaPrincipalHandle());
mPlaybackBytesPerSecond.Connect(aDecoder->CanonicalPlaybackBytesPerSecond());
mPlaybackRateReliable.Connect(aDecoder->CanonicalPlaybackRateReliable());
mDecoderPosition.Connect(aDecoder->CanonicalDecoderPosition());
mMediaSeekable.Connect(aDecoder->CanonicalMediaSeekable());
mMediaSeekableOnlyInBufferedRanges.Connect(aDecoder->CanonicalMediaSeekableOnlyInBufferedRanges());
// Initialize watchers.
mWatchManager.Watch(mBuffered, &MediaDecoderStateMachine::BufferedRangeUpdated);
mWatchManager.Watch(mIsReaderSuspended, &MediaDecoderStateMachine::ReaderSuspendedChanged);
mWatchManager.Watch(mState, &MediaDecoderStateMachine::UpdateNextFrameStatus);
mWatchManager.Watch(mAudioCompleted, &MediaDecoderStateMachine::UpdateNextFrameStatus);
mWatchManager.Watch(mVideoCompleted, &MediaDecoderStateMachine::UpdateNextFrameStatus);
mWatchManager.Watch(mVolume, &MediaDecoderStateMachine::VolumeChanged);
mWatchManager.Watch(mLogicalPlaybackRate, &MediaDecoderStateMachine::LogicalPlaybackRateChanged);
mWatchManager.Watch(mPreservesPitch, &MediaDecoderStateMachine::PreservesPitchChanged);
mWatchManager.Watch(mEstimatedDuration, &MediaDecoderStateMachine::RecomputeDuration);
mWatchManager.Watch(mExplicitDuration, &MediaDecoderStateMachine::RecomputeDuration);
mWatchManager.Watch(mObservedDuration, &MediaDecoderStateMachine::RecomputeDuration);
mWatchManager.Watch(mPlayState, &MediaDecoderStateMachine::PlayStateChanged);
if (MediaPrefs::MDSMSuspendBackgroundVideoEnabled()) {
mIsVisible.Connect(aDecoder->CanonicalIsVisible());
mWatchManager.Watch(mIsVisible, &MediaDecoderStateMachine::VisibilityChanged);
}
// Configure MediaDecoderReaderWrapper.
SetMediaDecoderReaderWrapperCallback();
}
void
MediaDecoderStateMachine::AudioAudibleChanged(bool aAudible)
{
mIsAudioDataAudible = aAudible;
}
media::MediaSink*
MediaDecoderStateMachine::CreateAudioSink()
{
RefPtr<MediaDecoderStateMachine> self = this;
auto audioSinkCreator = [self] () {
MOZ_ASSERT(self->OnTaskQueue());
DecodedAudioDataSink* audioSink = new DecodedAudioDataSink(
self->mTaskQueue, self->mAudioQueue, self->GetMediaTime(),
self->mInfo.mAudio, self->mAudioChannel);
self->mAudibleListener = audioSink->AudibleEvent().Connect(
self->mTaskQueue, self.get(), &MediaDecoderStateMachine::AudioAudibleChanged);
return audioSink;
};
return new AudioSinkWrapper(mTaskQueue, audioSinkCreator);
}
already_AddRefed<media::MediaSink>
MediaDecoderStateMachine::CreateMediaSink(bool aAudioCaptured)
{
RefPtr<media::MediaSink> audioSink = aAudioCaptured
? new DecodedStream(mTaskQueue, mAudioQueue, mVideoQueue,
mOutputStreamManager, mSameOriginMedia.Ref(),
mMediaPrincipalHandle.Ref())
: CreateAudioSink();
RefPtr<media::MediaSink> mediaSink =
new VideoSink(mTaskQueue, audioSink, mVideoQueue,
mVideoFrameContainer, *mFrameStats,
sVideoQueueSendToCompositorSize);
return mediaSink.forget();
}
bool MediaDecoderStateMachine::HasFutureAudio()
{
MOZ_ASSERT(OnTaskQueue());
NS_ASSERTION(HasAudio(), "Should only call HasFutureAudio() when we have audio");
// We've got audio ready to play if:
// 1. We've not completed playback of audio, and
// 2. we either have more than the threshold of decoded audio available, or
// we've completely decoded all audio (but not finished playing it yet
// as per 1).
return !mAudioCompleted &&
(GetDecodedAudioDuration() >
mLowAudioThresholdUsecs * mPlaybackRate ||
AudioQueue().IsFinished());
}
bool MediaDecoderStateMachine::HaveNextFrameData()
{
MOZ_ASSERT(OnTaskQueue());
return (!HasAudio() || HasFutureAudio()) &&
(!HasVideo() || VideoQueue().GetSize() > 1);
}
int64_t
MediaDecoderStateMachine::GetDecodedAudioDuration()
{
MOZ_ASSERT(OnTaskQueue());
if (mMediaSink->IsStarted()) {
// mDecodedAudioEndTime might be smaller than GetClock() when there is
// overlap between 2 adjacent audio samples or when we are playing
// a chained ogg file.
return std::max<int64_t>(mDecodedAudioEndTime - GetClock(), 0);
}
// MediaSink not started. All audio samples are in the queue.
return AudioQueue().Duration();
}
void MediaDecoderStateMachine::DiscardStreamData()
{
MOZ_ASSERT(OnTaskQueue());
const auto clockTime = GetClock();
while (true) {
RefPtr<MediaData> a = AudioQueue().PeekFront();
// If we discard audio samples fed to the stream immediately, we will
// keep decoding audio samples till the end and consume a lot of memory.
// Therefore we only discard those behind the stream clock to throttle
// the decoding speed.
// Note we don't discard a sample when |a->mTime == clockTime| because that
// will discard the 1st sample when clockTime is still 0.
if (a && a->mTime < clockTime) {
RefPtr<MediaData> releaseMe = AudioQueue().PopFront();
continue;
}
break;
}
}
bool MediaDecoderStateMachine::HaveEnoughDecodedAudio()
{
MOZ_ASSERT(OnTaskQueue());
int64_t ampleAudioUSecs = mAmpleAudioThresholdUsecs * mPlaybackRate;
if (AudioQueue().GetSize() == 0 ||
GetDecodedAudioDuration() < ampleAudioUSecs) {
return false;
}
// MDSM will ensure buffering level is high enough for playback speed at 1x
// at which the DecodedStream is playing.
return true;
}
bool MediaDecoderStateMachine::HaveEnoughDecodedVideo()
{
MOZ_ASSERT(OnTaskQueue());
if (IsVideoDecodeSuspended()) {
return true;
}
if (VideoQueue().GetSize() == 0) {
return false;
}
if (VideoQueue().GetSize() - 1 < GetAmpleVideoFrames() * mPlaybackRate) {
return false;
}
return true;
}
bool
MediaDecoderStateMachine::NeedToDecodeVideo()
{
MOZ_ASSERT(OnTaskQueue());
SAMPLE_LOG("NeedToDecodeVideo() isDec=%d minPrl=%d enufVid=%d",
IsVideoDecoding(), mMinimizePreroll, HaveEnoughDecodedVideo());
return IsVideoDecoding() &&
mState != DECODER_STATE_SEEKING &&
((IsDecodingFirstFrame() && VideoQueue().GetSize() == 0) ||
(!mMinimizePreroll && !HaveEnoughDecodedVideo()));
}
bool
MediaDecoderStateMachine::NeedToSkipToNextKeyframe()
{
MOZ_ASSERT(OnTaskQueue());
if (IsDecodingFirstFrame()) {
return false;
}
MOZ_ASSERT(mState == DECODER_STATE_DECODING ||
mState == DECODER_STATE_BUFFERING ||
mState == DECODER_STATE_SEEKING);
// Since GetClock() can only be called after starting MediaSink, we return
// false quickly if it is not started because we won't fall behind playback
// when not consuming media data.
if (!mMediaSink->IsStarted()) {
return false;
}
// We are in seeking or buffering states, don't skip frame.
if (!IsVideoDecoding() || mState == DECODER_STATE_BUFFERING ||
mState == DECODER_STATE_SEEKING) {
return false;
}
// Don't skip frame for video-only decoded stream because the clock time of
// the stream relies on the video frame.
if (mAudioCaptured && !HasAudio()) {
return false;
}
// We'll skip the video decode to the next keyframe if we're low on
// audio, or if we're low on video, provided we're not running low on
// data to decode. If we're running low on downloaded data to decode,
// we won't start keyframe skipping, as we'll be pausing playback to buffer
// soon anyway and we'll want to be able to display frames immediately
// after buffering finishes. We ignore the low audio calculations for
// readers that are async, as since their audio decode runs on a different
// task queue it should never run low and skipping won't help their decode.
bool isLowOnDecodedAudio = !mReader->IsAsync() &&
!mIsAudioPrerolling && IsAudioDecoding() &&
(GetDecodedAudioDuration() <
mLowAudioThresholdUsecs * mPlaybackRate);
bool isLowOnDecodedVideo = !mIsVideoPrerolling &&
((GetClock() - mDecodedVideoEndTime) * mPlaybackRate >
LOW_VIDEO_THRESHOLD_USECS);
bool lowUndecoded = HasLowUndecodedData();
if ((isLowOnDecodedAudio || isLowOnDecodedVideo) && !lowUndecoded) {
DECODER_LOG("Skipping video decode to the next keyframe lowAudio=%d lowVideo=%d lowUndecoded=%d async=%d",
isLowOnDecodedAudio, isLowOnDecodedVideo, lowUndecoded, mReader->IsAsync());
return true;
}
return false;
}
bool
MediaDecoderStateMachine::NeedToDecodeAudio()
{
MOZ_ASSERT(OnTaskQueue());
SAMPLE_LOG("NeedToDecodeAudio() isDec=%d minPrl=%d enufAud=%d",
IsAudioDecoding(), mMinimizePreroll, HaveEnoughDecodedAudio());
return IsAudioDecoding() &&
mState != DECODER_STATE_SEEKING &&
((IsDecodingFirstFrame() && AudioQueue().GetSize() == 0) ||
(!mMinimizePreroll && !HaveEnoughDecodedAudio()));
}
void
MediaDecoderStateMachine::OnAudioDecoded(MediaData* aAudioSample)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mState != DECODER_STATE_SEEKING);
RefPtr<MediaData> audio(aAudioSample);
MOZ_ASSERT(audio);
// audio->GetEndTime() is not always mono-increasing in chained ogg.
mDecodedAudioEndTime = std::max(audio->GetEndTime(), mDecodedAudioEndTime);
SAMPLE_LOG("OnAudioDecoded [%lld,%lld] disc=%d",
audio->mTime, audio->GetEndTime(), audio->mDiscontinuity);
switch (mState) {
case DECODER_STATE_BUFFERING: {
// If we're buffering, this may be the sample we need to stop buffering.
// Save it and schedule the state machine.
Push(audio, MediaData::AUDIO_DATA);
ScheduleStateMachine();
return;
}
case DECODER_STATE_DECODING: {
Push(audio, MediaData::AUDIO_DATA);
if (MaybeFinishDecodeFirstFrame()) {
return;
}
if (mIsAudioPrerolling && DonePrerollingAudio()) {
StopPrerollingAudio();
}
return;
}
default: {
// Ignore other cases.
return;
}
}
}
void
MediaDecoderStateMachine::Push(MediaData* aSample, MediaData::Type aSampleType)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(aSample);
if (aSample->mType == MediaData::AUDIO_DATA) {
// TODO: Send aSample to MSG and recalculate readystate before pushing,
// otherwise AdvanceFrame may pop the sample before we have a chance
// to reach playing.
AudioQueue().Push(aSample);
} else if (aSample->mType == MediaData::VIDEO_DATA) {
// TODO: Send aSample to MSG and recalculate readystate before pushing,
// otherwise AdvanceFrame may pop the sample before we have a chance
// to reach playing.
aSample->As<VideoData>()->mFrameID = ++mCurrentFrameID;
VideoQueue().Push(aSample);
} else {
// TODO: Handle MediaRawData, determine which queue should be pushed.
}
UpdateNextFrameStatus();
DispatchDecodeTasksIfNeeded();
}
void
MediaDecoderStateMachine::OnAudioPopped(const RefPtr<MediaData>& aSample)
{
MOZ_ASSERT(OnTaskQueue());
mPlaybackOffset = std::max(mPlaybackOffset.Ref(), aSample->mOffset);
UpdateNextFrameStatus();
DispatchAudioDecodeTaskIfNeeded();
}
void
MediaDecoderStateMachine::OnVideoPopped(const RefPtr<MediaData>& aSample)
{
MOZ_ASSERT(OnTaskQueue());
mPlaybackOffset = std::max(mPlaybackOffset.Ref(), aSample->mOffset);
UpdateNextFrameStatus();
DispatchVideoDecodeTaskIfNeeded();
}
void
MediaDecoderStateMachine::OnNotDecoded(MediaData::Type aType,
MediaDecoderReader::NotDecodedReason aReason)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mState != DECODER_STATE_SEEKING);
SAMPLE_LOG("OnNotDecoded (aType=%u, aReason=%u)", aType, aReason);
bool isAudio = aType == MediaData::AUDIO_DATA;
MOZ_ASSERT_IF(!isAudio, aType == MediaData::VIDEO_DATA);
if (IsShutdown()) {
// Already shutdown;
return;
}
// If this is a decode error, delegate to the generic error path.
if (aReason == MediaDecoderReader::DECODE_ERROR) {
DecodeError();
return;
}
// If the decoder is waiting for data, we tell it to call us back when the
// data arrives.
if (aReason == MediaDecoderReader::WAITING_FOR_DATA) {
MOZ_ASSERT(mReader->IsWaitForDataSupported(),
"Readers that send WAITING_FOR_DATA need to implement WaitForData");
mReader->WaitForData(aType);
// We are out of data to decode and will enter buffering mode soon.
// We want to play the frames we have already decoded, so we stop pre-rolling
// and ensure that loadeddata is fired as required.
if (isAudio) {
StopPrerollingAudio();
} else {
StopPrerollingVideo();
}
if (mState == DECODER_STATE_BUFFERING || mState == DECODER_STATE_DECODING) {
MaybeFinishDecodeFirstFrame();
}
return;
}
if (aReason == MediaDecoderReader::CANCELED) {
if (isAudio) {
EnsureAudioDecodeTaskQueued();
} else {
EnsureVideoDecodeTaskQueued();
}
return;
}
// This is an EOS. Finish off the queue, and then handle things based on our
// state.
MOZ_ASSERT(aReason == MediaDecoderReader::END_OF_STREAM);
if (isAudio) {
AudioQueue().Finish();
StopPrerollingAudio();
} else {
VideoQueue().Finish();
StopPrerollingVideo();
}
switch (mState) {
case DECODER_STATE_BUFFERING:
case DECODER_STATE_DECODING: {
if (MaybeFinishDecodeFirstFrame()) {
return;
}
CheckIfDecodeComplete();
// Schedule next cycle to see if we can leave buffering state.
if (mState == DECODER_STATE_BUFFERING) {
ScheduleStateMachine();
}
return;
}
default: {
return;
}
}
}
bool
MediaDecoderStateMachine::MaybeFinishDecodeFirstFrame()
{
MOZ_ASSERT(OnTaskQueue());
if (!IsDecodingFirstFrame() ||
(IsAudioDecoding() && AudioQueue().GetSize() == 0) ||
(IsVideoDecoding() && VideoQueue().GetSize() == 0)) {
return false;
}
FinishDecodeFirstFrame();
if (!mQueuedSeek.Exists()) {
return false;
}
// We can now complete the pending seek.
InitiateSeek(Move(mQueuedSeek));
return true;
}
void
MediaDecoderStateMachine::OnVideoDecoded(MediaData* aVideoSample,
TimeStamp aDecodeStartTime)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mState != DECODER_STATE_SEEKING);
RefPtr<MediaData> video(aVideoSample);
MOZ_ASSERT(video);
// Handle abnormal or negative timestamps.
mDecodedVideoEndTime = std::max(mDecodedVideoEndTime, video->GetEndTime());
SAMPLE_LOG("OnVideoDecoded [%lld,%lld] disc=%d",
video->mTime, video->GetEndTime(), video->mDiscontinuity);
switch (mState) {
case DECODER_STATE_BUFFERING: {
// If we're buffering, this may be the sample we need to stop buffering.
// Save it and schedule the state machine.
Push(video, MediaData::VIDEO_DATA);
ScheduleStateMachine();
return;
}
case DECODER_STATE_DECODING: {
Push(video, MediaData::VIDEO_DATA);
if (MaybeFinishDecodeFirstFrame()) {
return;
}
if (mIsVideoPrerolling && DonePrerollingVideo()) {
StopPrerollingVideo();
}
// For non async readers, if the requested video sample was slow to
// arrive, increase the amount of audio we buffer to ensure that we
// don't run out of audio. This is unnecessary for async readers,
// since they decode audio and video on different threads so they
// are unlikely to run out of decoded audio.
if (mReader->IsAsync()) {
return;
}
TimeDuration decodeTime = TimeStamp::Now() - aDecodeStartTime;
if (!IsDecodingFirstFrame() &&
THRESHOLD_FACTOR * DurationToUsecs(decodeTime) > mLowAudioThresholdUsecs &&
!HasLowUndecodedData())
{
mLowAudioThresholdUsecs =
std::min(THRESHOLD_FACTOR * DurationToUsecs(decodeTime), mAmpleAudioThresholdUsecs);
mAmpleAudioThresholdUsecs = std::max(THRESHOLD_FACTOR * mLowAudioThresholdUsecs,
mAmpleAudioThresholdUsecs);
DECODER_LOG("Slow video decode, set mLowAudioThresholdUsecs=%lld mAmpleAudioThresholdUsecs=%lld",
mLowAudioThresholdUsecs, mAmpleAudioThresholdUsecs);
}
return;
}
default: {
// Ignore other cases.
return;
}
}
}
bool
MediaDecoderStateMachine::IsAudioDecoding()
{
MOZ_ASSERT(OnTaskQueue());
return HasAudio() && !AudioQueue().IsFinished();
}
bool
MediaDecoderStateMachine::IsVideoDecoding()
{
MOZ_ASSERT(OnTaskQueue());
return HasVideo() && !VideoQueue().IsFinished();
}
void
MediaDecoderStateMachine::CheckIfDecodeComplete()
{
MOZ_ASSERT(OnTaskQueue());
if (IsShutdown() ||
mState == DECODER_STATE_SEEKING ||
mState == DECODER_STATE_COMPLETED) {
// Don't change our state if we've already been shutdown, or we're seeking,
// since we don't want to abort the shutdown or seek processes.
return;
}
if (!IsVideoDecoding() && !IsAudioDecoding()) {
// We've finished decoding all active streams,
// so move to COMPLETED state.
SetState(DECODER_STATE_COMPLETED);
DispatchDecodeTasksIfNeeded();
ScheduleStateMachine();
}
DECODER_LOG("CheckIfDecodeComplete %scompleted",
((mState == DECODER_STATE_COMPLETED) ? "" : "NOT "));
}
bool MediaDecoderStateMachine::IsPlaying() const
{
MOZ_ASSERT(OnTaskQueue());
return mMediaSink->IsPlaying();
}
nsresult MediaDecoderStateMachine::Init(MediaDecoder* aDecoder)
{
MOZ_ASSERT(NS_IsMainThread());
// Dispatch initialization that needs to happen on that task queue.
nsCOMPtr<nsIRunnable> r = NewRunnableMethod<RefPtr<MediaDecoder>>(
this, &MediaDecoderStateMachine::InitializationTask, aDecoder);
mTaskQueue->Dispatch(r.forget());
mAudioQueueListener = AudioQueue().PopEvent().Connect(
mTaskQueue, this, &MediaDecoderStateMachine::OnAudioPopped);
mVideoQueueListener = VideoQueue().PopEvent().Connect(
mTaskQueue, this, &MediaDecoderStateMachine::OnVideoPopped);
mMetadataManager.Connect(mReader->TimedMetadataEvent(), OwnerThread());
mMediaSink = CreateMediaSink(mAudioCaptured);
#ifdef MOZ_EME
mCDMProxyPromise.Begin(aDecoder->RequestCDMProxy()->Then(
OwnerThread(), __func__, this,
&MediaDecoderStateMachine::OnCDMProxyReady,
&MediaDecoderStateMachine::OnCDMProxyNotReady));
#endif
nsresult rv = mReader->Init();
NS_ENSURE_SUCCESS(rv, rv);
OwnerThread()->Dispatch(NewRunnableMethod(this, &MediaDecoderStateMachine::ReadMetadata));
return NS_OK;
}
void
MediaDecoderStateMachine::SetMediaDecoderReaderWrapperCallback()
{
MOZ_ASSERT(OnTaskQueue());
mAudioCallback = mReader->AudioCallback().Connect(
mTaskQueue, [this] (AudioCallbackData aData) {
if (aData.is<MediaData*>()) {
OnAudioDecoded(aData.as<MediaData*>());
} else {
OnNotDecoded(MediaData::AUDIO_DATA, aData.as<MediaDecoderReader::NotDecodedReason>());
}
});
mVideoCallback = mReader->VideoCallback().Connect(
mTaskQueue, [this] (VideoCallbackData aData) {
typedef Tuple<MediaData*, TimeStamp> Type;
if (aData.is<Type>()) {
auto&& v = aData.as<Type>();
OnVideoDecoded(Get<0>(v), Get<1>(v));
} else {
OnNotDecoded(MediaData::VIDEO_DATA, aData.as<MediaDecoderReader::NotDecodedReason>());
}
});
mAudioWaitCallback = mReader->AudioWaitCallback().Connect(
mTaskQueue, [this] (WaitCallbackData aData) {
if (aData.is<MediaData::Type>()) {
EnsureAudioDecodeTaskQueued();
}
});
mVideoWaitCallback = mReader->VideoWaitCallback().Connect(
mTaskQueue, [this] (WaitCallbackData aData) {
if (aData.is<MediaData::Type>()) {
EnsureVideoDecodeTaskQueued();
}
});
}
void
MediaDecoderStateMachine::CancelMediaDecoderReaderWrapperCallback()
{
MOZ_ASSERT(OnTaskQueue());
mAudioCallback.Disconnect();
mVideoCallback.Disconnect();
mAudioWaitCallback.Disconnect();
mVideoWaitCallback.Disconnect();
}
void MediaDecoderStateMachine::StopPlayback()
{
MOZ_ASSERT(OnTaskQueue());
DECODER_LOG("StopPlayback()");
mOnPlaybackEvent.Notify(MediaEventType::PlaybackStopped);
if (IsPlaying()) {
mMediaSink->SetPlaying(false);
MOZ_ASSERT(!IsPlaying());
}
DispatchDecodeTasksIfNeeded();
}
void MediaDecoderStateMachine::MaybeStartPlayback()
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mState == DECODER_STATE_DECODING ||
mState == DECODER_STATE_COMPLETED);
if (IsPlaying()) {
// Logging this case is really spammy - don't do it.
return;
}
bool playStatePermits = mPlayState == MediaDecoder::PLAY_STATE_PLAYING;
if (!playStatePermits || mIsAudioPrerolling ||
mIsVideoPrerolling || mAudioOffloading) {
DECODER_LOG("Not starting playback [playStatePermits: %d, "
"mIsAudioPrerolling: %d, mIsVideoPrerolling: %d, "
"mAudioOffloading: %d]",
(int)playStatePermits, (int)mIsAudioPrerolling,
(int)mIsVideoPrerolling, (int)mAudioOffloading);
return;
}
DECODER_LOG("MaybeStartPlayback() starting playback");
mOnPlaybackEvent.Notify(MediaEventType::PlaybackStarted);
StartMediaSink();
if (!IsPlaying()) {
mMediaSink->SetPlaying(true);
MOZ_ASSERT(IsPlaying());
}
DispatchDecodeTasksIfNeeded();
}
void
MediaDecoderStateMachine::MaybeStartBuffering()
{
MOZ_ASSERT(OnTaskQueue());
if (mState == DECODER_STATE_DECODING &&
mPlayState == MediaDecoder::PLAY_STATE_PLAYING &&
mResource->IsExpectingMoreData()) {
bool shouldBuffer;
if (mReader->UseBufferingHeuristics()) {
shouldBuffer = HasLowDecodedData(EXHAUSTED_DATA_MARGIN_USECS) &&
(JustExitedQuickBuffering() || HasLowUndecodedData());
} else {
MOZ_ASSERT(mReader->IsWaitForDataSupported());
shouldBuffer = (OutOfDecodedAudio() && mReader->IsWaitingAudioData()) ||
(OutOfDecodedVideo() && mReader->IsWaitingVideoData());
}
if (shouldBuffer) {
StartBuffering();
// Don't go straight back to the state machine loop since that might
// cause us to start decoding again and we could flip-flop between
// decoding and quick-buffering.
ScheduleStateMachineIn(USECS_PER_S);
}
}
}
void MediaDecoderStateMachine::UpdatePlaybackPositionInternal(int64_t aTime)
{
MOZ_ASSERT(OnTaskQueue());
SAMPLE_LOG("UpdatePlaybackPositionInternal(%lld)", aTime);
mCurrentPosition = aTime;
NS_ASSERTION(mCurrentPosition >= 0, "CurrentTime should be positive!");
mObservedDuration = std::max(mObservedDuration.Ref(),
TimeUnit::FromMicroseconds(mCurrentPosition.Ref()));
}
void MediaDecoderStateMachine::UpdatePlaybackPosition(int64_t aTime)
{
MOZ_ASSERT(OnTaskQueue());
UpdatePlaybackPositionInternal(aTime);
bool fragmentEnded = mFragmentEndTime >= 0 && GetMediaTime() >= mFragmentEndTime;
mMetadataManager.DispatchMetadataIfNeeded(TimeUnit::FromMicroseconds(aTime));
if (fragmentEnded) {
StopPlayback();
}
}
static const char* const gMachineStateStr[] = {
"DECODING_METADATA",
"WAIT_FOR_CDM",
"DORMANT",
"DECODING",
"SEEKING",
"BUFFERING",
"COMPLETED",
"SHUTDOWN",
"ERROR"
};
void MediaDecoderStateMachine::SetState(State aState)
{
MOZ_ASSERT(OnTaskQueue());
if (mState == aState) {
return;
}
DECODER_LOG("Change machine state from %s to %s",
gMachineStateStr[mState], gMachineStateStr[aState]);
mState = aState;
mIsShutdown = mState == DECODER_STATE_ERROR || mState == DECODER_STATE_SHUTDOWN;
// Clear state-scoped state.
mSentPlaybackEndedEvent = false;
}
void MediaDecoderStateMachine::VolumeChanged()
{
MOZ_ASSERT(OnTaskQueue());
mMediaSink->SetVolume(mVolume);
}
void MediaDecoderStateMachine::RecomputeDuration()
{
MOZ_ASSERT(OnTaskQueue());
TimeUnit duration;
if (mExplicitDuration.Ref().isSome()) {
double d = mExplicitDuration.Ref().ref();
if (IsNaN(d)) {
// We have an explicit duration (which means that we shouldn't look at
// any other duration sources), but the duration isn't ready yet.
return;
}
// We don't fire duration changed for this case because it should have
// already been fired on the main thread when the explicit duration was set.
duration = TimeUnit::FromSeconds(d);
} else if (mEstimatedDuration.Ref().isSome()) {
duration = mEstimatedDuration.Ref().ref();
} else if (mInfo.mMetadataDuration.isSome()) {
duration = mInfo.mMetadataDuration.ref();
} else {
return;
}
if (duration < mObservedDuration.Ref()) {
duration = mObservedDuration;
}
MOZ_ASSERT(duration.ToMicroseconds() >= 0);
mDuration = Some(duration);
}
void
MediaDecoderStateMachine::DispatchSetDormant(bool aDormant)
{
nsCOMPtr<nsIRunnable> r = NewRunnableMethod<bool>(
this, &MediaDecoderStateMachine::SetDormant, aDormant);
OwnerThread()->Dispatch(r.forget());
}
void
MediaDecoderStateMachine::SetDormant(bool aDormant)
{
MOZ_ASSERT(OnTaskQueue());
if (IsShutdown()) {
return;
}
if (mMetadataRequest.Exists()) {
mPendingDormant = aDormant;
return;
}
DECODER_LOG("SetDormant=%d", aDormant);
if (aDormant) {
if (mState == DECODER_STATE_SEEKING) {
if (mQueuedSeek.Exists()) {
// Keep latest seek target
} else if (mCurrentSeek.Exists()) {
// Because both audio and video decoders are going to be reset in this
// method later, we treat a VideoOnly seek task as a normal Accurate
// seek task so that while it is resumed, both audio and video playback
// are handled.
if (mCurrentSeek.mTarget.IsVideoOnly()) {
mCurrentSeek.mTarget.SetType(SeekTarget::Accurate);
}
mQueuedSeek = Move(mCurrentSeek);
mSeekTaskRequest.DisconnectIfExists();
} else {
mQueuedSeek.mTarget = SeekTarget(mCurrentPosition,
SeekTarget::Accurate,
MediaDecoderEventVisibility::Suppressed);
// XXXbholley - Nobody is listening to this promise. Do we need to pass it
// back to MediaDecoder when we come out of dormant?
RefPtr<MediaDecoder::SeekPromise> unused = mQueuedSeek.mPromise.Ensure(__func__);
}
} else {
mQueuedSeek.mTarget = SeekTarget(mCurrentPosition,
SeekTarget::Accurate,
MediaDecoderEventVisibility::Suppressed);
// XXXbholley - Nobody is listening to this promise. Do we need to pass it
// back to MediaDecoder when we come out of dormant?
RefPtr<MediaDecoder::SeekPromise> unused = mQueuedSeek.mPromise.Ensure(__func__);
}
// Discard the current seek task.
DiscardSeekTaskIfExist();
SetState(DECODER_STATE_DORMANT);
if (IsPlaying()) {
StopPlayback();
}
Reset();
// Note that we do not wait for the decode task queue to go idle before
// queuing the ReleaseMediaResources task - instead, we disconnect promises,
// reset state, and put a ResetDecode in the decode task queue. Any tasks
// that run after ResetDecode are supposed to run with a clean slate. We rely
// on that in other places (i.e. seeking), so it seems reasonable to rely on
// it here as well.
mReader->ReleaseMediaResources();
} else if (mState == DECODER_STATE_DORMANT) {
mDecodingFirstFrame = true;
SetState(DECODER_STATE_DECODING_METADATA);
ReadMetadata();
}
}
RefPtr<ShutdownPromise>
MediaDecoderStateMachine::Shutdown()
{
MOZ_ASSERT(OnTaskQueue());
// Once we've entered the shutdown state here there's no going back.
// Change state before issuing shutdown request to threads so those
// threads can start exiting cleanly during the Shutdown call.
ScheduleStateMachine();
SetState(DECODER_STATE_SHUTDOWN);
mBufferedUpdateRequest.DisconnectIfExists();
mQueuedSeek.RejectIfExists(__func__);
DiscardSeekTaskIfExist();
// Shutdown happens will decode timer is active, we need to disconnect and
// dispose of the timer.
mVideoDecodeSuspendTimer.Reset();
#ifdef MOZ_EME
mCDMProxyPromise.DisconnectIfExists();
#endif
if (IsPlaying()) {
StopPlayback();
}
// To break the cycle-reference between MediaDecoderReaderWrapper and MDSM.
CancelMediaDecoderReaderWrapperCallback();
Reset();
mMediaSink->Shutdown();
DECODER_LOG("Shutdown started");
// Put a task in the decode queue to shutdown the reader.
// the queue to spin down.
return mReader->Shutdown()
->Then(OwnerThread(), __func__, this,
&MediaDecoderStateMachine::FinishShutdown,
&MediaDecoderStateMachine::FinishShutdown)
->CompletionPromise();
}
void MediaDecoderStateMachine::StartDecoding()
{
MOZ_ASSERT(OnTaskQueue());
if (mState == DECODER_STATE_DECODING && !mDecodingFirstFrame) {
return;
}
SetState(DECODER_STATE_DECODING);
if (mDecodingFirstFrame &&
(IsRealTime() || mSentFirstFrameLoadedEvent)) {
if (IsRealTime()) {
FinishDecodeFirstFrame();
} else {
// We're resuming from dormant state, so we don't need to request
// the first samples in order to determine the media start time,
// we have the start time from last time we loaded.
// FinishDecodeFirstFrame will be launched upon completion of the seek when
// we have data ready to play.
MOZ_ASSERT(mQueuedSeek.Exists() && mSentFirstFrameLoadedEvent,
"Return from dormant must have queued seek");
}
if (mQueuedSeek.Exists()) {
InitiateSeek(Move(mQueuedSeek));
return;
}
}
mDecodeStartTime = TimeStamp::Now();
CheckIfDecodeComplete();
if (mState == DECODER_STATE_COMPLETED) {
return;
}
// Reset other state to pristine values before starting decode.
mIsAudioPrerolling = !DonePrerollingAudio() && !mReader->IsWaitingAudioData();
mIsVideoPrerolling = !DonePrerollingVideo() && !mReader->IsWaitingVideoData();
// Ensure that we've got tasks enqueued to decode data if we need to.
DispatchDecodeTasksIfNeeded();
ScheduleStateMachine();
}
void MediaDecoderStateMachine::PlayStateChanged()
{
MOZ_ASSERT(OnTaskQueue());
if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING) {
mVideoDecodeSuspendTimer.Reset();
return;
}
// Once we start playing, we don't want to minimize our prerolling, as we
// assume the user is likely to want to keep playing in future. This needs to
// happen before we invoke StartDecoding().
if (mMinimizePreroll) {
mMinimizePreroll = false;
DispatchDecodeTasksIfNeeded();
}
// Some state transitions still happen synchronously on the main thread. So
// if the main thread invokes Play() and then Seek(), the seek will initiate
// synchronously on the main thread, and the asynchronous PlayInternal task
// will arrive when it's no longer valid. The proper thing to do is to move
// all state transitions to the state machine task queue, but for now we just
// make sure that none of the possible main-thread state transitions (Seek(),
// SetDormant(), and Shutdown()) have not occurred.
if (mState != DECODER_STATE_DECODING && mState != DECODER_STATE_BUFFERING &&
mState != DECODER_STATE_COMPLETED)
{
DECODER_LOG("Unexpected state - Bailing out of PlayInternal()");
return;
}
// When asked to play, switch to decoding state only if
// we are currently buffering. In other cases, we'll start playing anyway
// when the state machine notices the decoder's state change to PLAYING.
if (mState == DECODER_STATE_BUFFERING) {
StartDecoding();
}
ScheduleStateMachine();
}
void MediaDecoderStateMachine::VisibilityChanged()
{
MOZ_ASSERT(OnTaskQueue());
DECODER_LOG("VisibilityChanged: mIsVisible=%d, "
"mVideoDecodeSuspended=%d, mIsReaderSuspended=%d",
mIsVisible.Ref(), mVideoDecodeSuspended, mIsReaderSuspended.Ref());
if (!HasVideo()) {
return;
}
// If not playing then there's nothing to do.
if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING) {
return;
}
// Start timer to trigger suspended decoding state when going invisible.
if (!mIsVisible) {
TimeStamp target = TimeStamp::Now() + SuspendBackgroundVideoDelay();
RefPtr<MediaDecoderStateMachine> self = this;
mVideoDecodeSuspendTimer.Ensure(target,
[=]() { self->OnSuspendTimerResolved(); },
[=]() { self->OnSuspendTimerRejected(); });
return;
}
// Resuming from suspended decoding
// If suspend timer exists, destroy it.
mVideoDecodeSuspendTimer.Reset();
if (mVideoDecodeSuspended) {
mVideoDecodeSuspended = false;
if (mIsReaderSuspended) {
return;
}
// If an existing seek is in flight don't bother creating a new
// one to catch up.
if (mSeekTask || mQueuedSeek.Exists()) {
return;
}
// Start video-only seek to the current time...
InitiateDecodeRecoverySeek(TrackSet(TrackInfo::kVideoTrack));
}
}
// InitiateDecodeRecoverySeek is responsible for setting up a seek using the
// seek task for the following situations:
// 1. When suspension of decoding for videos that are in
// background tabs (ie. invisible) is enabled, the audio keeps playing and when
// switching back to decoding video, it is highly desirable to not cause the
// audio to pause as the video is seeked else there be a noticeable audio glitch
// as the tab becomes visible.
// 2. When there is a decoder limit set, suspended videos may be resumed and
// require the seek to recover the original seek position for both audio and
// video.
void MediaDecoderStateMachine::InitiateDecodeRecoverySeek(TrackSet aTracks)
{
MOZ_ASSERT(OnTaskQueue());
DECODER_LOG("InitiateDecodeRecoverySeek");
SeekJob seekJob;
SeekTarget::Type seekTargetType = aTracks.contains(TrackInfo::kAudioTrack)
? SeekTarget::Type::Accurate
: SeekTarget::Type::AccurateVideoOnly;
seekJob.mTarget = SeekTarget(GetMediaTime(), seekTargetType,
MediaDecoderEventVisibility::Suppressed);
SetState(DECODER_STATE_SEEKING);
// Discard the existing seek task.
DiscardSeekTaskIfExist();
mSeekTaskRequest.DisconnectIfExists();
// SeekTask will register its callbacks to MediaDecoderReaderWrapper.
CancelMediaDecoderReaderWrapperCallback();
MOZ_ASSERT(!mCurrentSeek.Exists());
mCurrentSeek = Move(seekJob);
// Create a new SeekTask instance for the incoming seek task.
mSeekTask = new AccurateSeekTask(mDecoderID, OwnerThread(),
mReader.get(), mCurrentSeek.mTarget,
mInfo, Duration(), GetMediaTime());
mOnSeekingStart.Notify(MediaDecoderEventVisibility::Suppressed);
// Reset our state machine and decoding pipeline before seeking.
if (mSeekTask->NeedToResetMDSM()) {
Reset(aTracks);
}
// Do the seek.
mSeekTaskRequest.Begin(
mSeekTask->Seek(Duration())->Then(OwnerThread(), __func__, this,
&MediaDecoderStateMachine::OnSeekTaskResolved,
&MediaDecoderStateMachine::OnSeekTaskRejected));
// Nobody is listening to this as OnSeekTaskResolved handles what is
// required but the promise needs to exist or SeekJob::Exists() will
// assert.
RefPtr<MediaDecoder::SeekPromise> unused = mCurrentSeek.mPromise.Ensure(__func__);
}
void MediaDecoderStateMachine::BufferedRangeUpdated()
{
MOZ_ASSERT(OnTaskQueue());
// While playing an unseekable stream of unknown duration, mObservedDuration
// is updated (in AdvanceFrame()) as we play. But if data is being downloaded
// faster than played, mObserved won't reflect the end of playable data
// since we haven't played the frame at the end of buffered data. So update
// mObservedDuration here as new data is downloaded to prevent such a lag.
if (!mBuffered.Ref().IsInvalid()) {
bool exists;
media::TimeUnit end{mBuffered.Ref().GetEnd(&exists)};
if (exists) {
mObservedDuration = std::max(mObservedDuration.Ref(), end);
}
}
}
void MediaDecoderStateMachine::ReaderSuspendedChanged()
{
MOZ_ASSERT(OnTaskQueue());
DECODER_LOG("ReaderSuspendedChanged: suspended = %d", mIsReaderSuspended.Ref());
if (IsShutdown() || !HasVideo() || mIsReaderSuspended || IsDecodingFirstFrame()) {
return;
}
InitiateDecodeRecoverySeek(TrackSet(TrackInfo::kAudioTrack,
TrackInfo::kVideoTrack));
}
void
MediaDecoderStateMachine::ReadMetadata()
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(!IsShutdown());
MOZ_ASSERT(mState == DECODER_STATE_DECODING_METADATA);
MOZ_ASSERT(!mMetadataRequest.Exists());
DECODER_LOG("Dispatching AsyncReadMetadata");
// Set mode to METADATA since we are about to read metadata.
mResource->SetReadMode(MediaCacheStream::MODE_METADATA);
mMetadataRequest.Begin(mReader->ReadMetadata()
->Then(OwnerThread(), __func__, this,
&MediaDecoderStateMachine::OnMetadataRead,
&MediaDecoderStateMachine::OnMetadataNotRead));
}
RefPtr<MediaDecoder::SeekPromise>
MediaDecoderStateMachine::Seek(SeekTarget aTarget)
{
MOZ_ASSERT(OnTaskQueue());
if (IsShutdown()) {
return MediaDecoder::SeekPromise::CreateAndReject(/* aIgnored = */ true, __func__);
}
// We need to be able to seek in some way
if (!mMediaSeekable && !mMediaSeekableOnlyInBufferedRanges) {
DECODER_WARN("Seek() function should not be called on a non-seekable state machine");
return MediaDecoder::SeekPromise::CreateAndReject(/* aIgnored = */ true, __func__);
}
if (aTarget.IsNextFrame() && !HasVideo()) {
DECODER_WARN("Ignore a NextFrameSeekTask on a media file without video track.");
return MediaDecoder::SeekPromise::CreateAndReject(/* aIgnored = */ true, __func__);
}
MOZ_ASSERT(mState > DECODER_STATE_DECODING_METADATA,
"We should have got duration already");
if (mState < DECODER_STATE_DECODING ||
(IsDecodingFirstFrame() && !mReader->ForceZeroStartTime())) {
DECODER_LOG("Seek() Not Enough Data to continue at this stage, queuing seek");
mQueuedSeek.RejectIfExists(__func__);
mQueuedSeek.mTarget = aTarget;
return mQueuedSeek.mPromise.Ensure(__func__);
}
mQueuedSeek.RejectIfExists(__func__);
DECODER_LOG("Changed state to SEEKING (to %lld)", aTarget.GetTime().ToMicroseconds());
SeekJob seekJob;
seekJob.mTarget = aTarget;
return InitiateSeek(Move(seekJob));
}
RefPtr<MediaDecoder::SeekPromise>
MediaDecoderStateMachine::InvokeSeek(SeekTarget aTarget)
{
return InvokeAsync(OwnerThread(), this, __func__,
&MediaDecoderStateMachine::Seek, aTarget);
}
void MediaDecoderStateMachine::StopMediaSink()
{
MOZ_ASSERT(OnTaskQueue());
if (mMediaSink->IsStarted()) {
DECODER_LOG("Stop MediaSink");
mAudibleListener.DisconnectIfExists();
mMediaSink->Stop();
mMediaSinkAudioPromise.DisconnectIfExists();
mMediaSinkVideoPromise.DisconnectIfExists();
}
}
void
MediaDecoderStateMachine::DispatchDecodeTasksIfNeeded()
{
MOZ_ASSERT(OnTaskQueue());
if (mState != DECODER_STATE_DECODING &&
mState != DECODER_STATE_BUFFERING &&
mState != DECODER_STATE_SEEKING) {
return;
}
// NeedToDecodeAudio() can go from false to true while we hold the
// monitor, but it can't go from true to false. This can happen because
// NeedToDecodeAudio() takes into account the amount of decoded audio
// that's been written to the AudioStream but not played yet. So if we
// were calling NeedToDecodeAudio() twice and we thread-context switch
// between the calls, audio can play, which can affect the return value
// of NeedToDecodeAudio() giving inconsistent results. So we cache the
// value returned by NeedToDecodeAudio(), and make decisions
// based on the cached value. If NeedToDecodeAudio() has
// returned false, and then subsequently returns true and we're not
// playing, it will probably be OK since we don't need to consume data
// anyway.
const bool needToDecodeAudio = NeedToDecodeAudio();
const bool needToDecodeVideo = NeedToDecodeVideo();
// If we're in completed state, we should not need to decode anything else.
MOZ_ASSERT(mState != DECODER_STATE_COMPLETED ||
(!needToDecodeAudio && !needToDecodeVideo));
bool needIdle = !IsLogicallyPlaying() &&
mState != DECODER_STATE_SEEKING &&
!needToDecodeAudio &&
!needToDecodeVideo &&
!IsPlaying();
SAMPLE_LOG("DispatchDecodeTasksIfNeeded needAudio=%d audioStatus=%s needVideo=%d videoStatus=%s needIdle=%d",
needToDecodeAudio, AudioRequestStatus(),
needToDecodeVideo, VideoRequestStatus(),
needIdle);
if (needToDecodeAudio) {
EnsureAudioDecodeTaskQueued();
}
if (needToDecodeVideo) {
EnsureVideoDecodeTaskQueued();
}
if (needIdle) {
DECODER_LOG("Dispatching SetIdle() audioQueue=%lld videoQueue=%lld",
GetDecodedAudioDuration(),
VideoQueue().Duration());
mReader->SetIdle();
}
}
RefPtr<MediaDecoder::SeekPromise>
MediaDecoderStateMachine::InitiateSeek(SeekJob aSeekJob)
{
MOZ_ASSERT(OnTaskQueue());
SetState(DECODER_STATE_SEEKING);
// Discard the existing seek task.
DiscardSeekTaskIfExist();
mSeekTaskRequest.DisconnectIfExists();
// SeekTask will register its callbacks to MediaDecoderReaderWrapper.
CancelMediaDecoderReaderWrapperCallback();
// Create a new SeekTask instance for the incoming seek task.
if (aSeekJob.mTarget.IsAccurate() || aSeekJob.mTarget.IsFast()) {
mSeekTask = new AccurateSeekTask(mDecoderID, OwnerThread(),
mReader.get(), aSeekJob.mTarget,
mInfo, Duration(), GetMediaTime());
} else if (aSeekJob.mTarget.IsNextFrame()) {
mSeekTask = new NextFrameSeekTask(mDecoderID, OwnerThread(), mReader.get(),
aSeekJob.mTarget, mInfo, Duration(),
GetMediaTime(), AudioQueue(), VideoQueue());
} else {
MOZ_DIAGNOSTIC_ASSERT(false, "Cannot handle this seek task.");
}
// Stop playback now to ensure that while we're outside the monitor
// dispatching SeekingStarted, playback doesn't advance and mess with
// mCurrentPosition that we've setting to seekTime here.
StopPlayback();
// aSeekJob.mTarget.mTime might be different from
// mSeekTask->GetSeekTarget().mTime because the seek task might clamp the seek
// target to [0, duration]. We want to update the playback position to the
// clamped value.
UpdatePlaybackPositionInternal(mSeekTask->GetSeekTarget().GetTime().ToMicroseconds());
mOnSeekingStart.Notify(aSeekJob.mTarget.mEventVisibility);
// Reset our state machine and decoding pipeline before seeking.
if (mSeekTask->NeedToResetMDSM()) { Reset(); }
// Do the seek.
mSeekTaskRequest.Begin(mSeekTask->Seek(Duration())
->Then(OwnerThread(), __func__, this,
&MediaDecoderStateMachine::OnSeekTaskResolved,
&MediaDecoderStateMachine::OnSeekTaskRejected));
MOZ_ASSERT(!mCurrentSeek.Exists());
mCurrentSeek = Move(aSeekJob);
return mCurrentSeek.mPromise.Ensure(__func__);
}
void
MediaDecoderStateMachine::OnSeekTaskResolved(SeekTaskResolveValue aValue)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mState == DECODER_STATE_SEEKING);
mSeekTaskRequest.Complete();
if (aValue.mSeekedAudioData) {
Push(aValue.mSeekedAudioData.get(), MediaData::AUDIO_DATA);
mDecodedAudioEndTime =
std::max(aValue.mSeekedAudioData->GetEndTime(), mDecodedAudioEndTime);
}
if (aValue.mSeekedVideoData) {
Push(aValue.mSeekedVideoData.get(), MediaData::VIDEO_DATA);
mDecodedVideoEndTime =
std::max(aValue.mSeekedVideoData->GetEndTime(), mDecodedVideoEndTime);
}
if (aValue.mIsAudioQueueFinished) {
AudioQueue().Finish();
StopPrerollingAudio();
}
if (aValue.mIsVideoQueueFinished) {
VideoQueue().Finish();
StopPrerollingVideo();
}
SeekCompleted();
}
void
MediaDecoderStateMachine::OnSeekTaskRejected(SeekTaskRejectValue aValue)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mState == DECODER_STATE_SEEKING);
mSeekTaskRequest.Complete();
if (aValue.mIsAudioQueueFinished) {
AudioQueue().Finish();
StopPrerollingAudio();
}
if (aValue.mIsVideoQueueFinished) {
VideoQueue().Finish();
StopPrerollingVideo();
}
DecodeError();
DiscardSeekTaskIfExist();
}
void
MediaDecoderStateMachine::DiscardSeekTaskIfExist()
{
if (mSeekTask) {
mCurrentSeek.RejectIfExists(__func__);
mSeekTask->Discard();
mSeekTask = nullptr;
// Reset the MediaDecoderReaderWrapper's callbask.
SetMediaDecoderReaderWrapperCallback();
}
}
nsresult
MediaDecoderStateMachine::DispatchAudioDecodeTaskIfNeeded()
{
MOZ_ASSERT(OnTaskQueue());
if (IsShutdown()) {
return NS_ERROR_FAILURE;
}
if (NeedToDecodeAudio()) {
return EnsureAudioDecodeTaskQueued();
}
return NS_OK;
}
nsresult
MediaDecoderStateMachine::EnsureAudioDecodeTaskQueued()
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mState != DECODER_STATE_SEEKING);
SAMPLE_LOG("EnsureAudioDecodeTaskQueued isDecoding=%d status=%s",
IsAudioDecoding(), AudioRequestStatus());
if (mState != DECODER_STATE_DECODING &&
mState != DECODER_STATE_BUFFERING) {
return NS_OK;
}
if (!IsAudioDecoding() || mReader->IsRequestingAudioData() ||
mReader->IsWaitingAudioData()) {
return NS_OK;
}
RequestAudioData();
return NS_OK;
}
void
MediaDecoderStateMachine::RequestAudioData()
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mState != DECODER_STATE_SEEKING);
SAMPLE_LOG("Queueing audio task - queued=%i, decoder-queued=%o",
AudioQueue().GetSize(), mReader->SizeOfAudioQueueInFrames());
mReader->RequestAudioData();
}
nsresult
MediaDecoderStateMachine::DispatchVideoDecodeTaskIfNeeded()
{
MOZ_ASSERT(OnTaskQueue());
if (IsShutdown()) {
return NS_ERROR_FAILURE;
}
if (NeedToDecodeVideo()) {
return EnsureVideoDecodeTaskQueued();
}
return NS_OK;
}
nsresult
MediaDecoderStateMachine::EnsureVideoDecodeTaskQueued()
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mState != DECODER_STATE_SEEKING);
SAMPLE_LOG("EnsureVideoDecodeTaskQueued isDecoding=%d status=%s",
IsVideoDecoding(), VideoRequestStatus());
if (mState != DECODER_STATE_DECODING &&
mState != DECODER_STATE_BUFFERING) {
return NS_OK;
}
if (IsVideoDecodeSuspended() && !IsDecodingFirstFrame()) {
// The element is invisible and background videos should be suspended.
// If the first frame has already been decoded, don't request anymore video
// frames.
return NS_OK;
}
if (!IsVideoDecoding() || mReader->IsRequestingVideoData() ||
mReader->IsWaitingVideoData()) {
return NS_OK;
}
RequestVideoData();
return NS_OK;
}
void
MediaDecoderStateMachine::RequestVideoData()
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mState != DECODER_STATE_SEEKING);
bool skipToNextKeyFrame = mSentFirstFrameLoadedEvent &&
NeedToSkipToNextKeyframe();
media::TimeUnit currentTime = media::TimeUnit::FromMicroseconds(GetMediaTime());
SAMPLE_LOG("Queueing video task - queued=%i, decoder-queued=%o, skip=%i, time=%lld",
VideoQueue().GetSize(), mReader->SizeOfVideoQueueInFrames(), skipToNextKeyFrame,
currentTime.ToMicroseconds());
// MediaDecoderReaderWrapper::RequestVideoData() records the decoding start
// time and sent it back to MDSM::OnVideoDecoded() so that if the decoding is
// slow, we can increase our low audio threshold to reduce the chance of an
// audio underrun while we're waiting for a video decode to complete.
mReader->RequestVideoData(skipToNextKeyFrame, currentTime);
}
void
MediaDecoderStateMachine::StartMediaSink()
{
MOZ_ASSERT(OnTaskQueue());
if (!mMediaSink->IsStarted()) {
mAudioCompleted = false;
mMediaSink->Start(GetMediaTime(), mInfo);
auto videoPromise = mMediaSink->OnEnded(TrackInfo::kVideoTrack);
auto audioPromise = mMediaSink->OnEnded(TrackInfo::kAudioTrack);
if (audioPromise) {
mMediaSinkAudioPromise.Begin(audioPromise->Then(
OwnerThread(), __func__, this,
&MediaDecoderStateMachine::OnMediaSinkAudioComplete,
&MediaDecoderStateMachine::OnMediaSinkAudioError));
}
if (videoPromise) {
mMediaSinkVideoPromise.Begin(videoPromise->Then(
OwnerThread(), __func__, this,
&MediaDecoderStateMachine::OnMediaSinkVideoComplete,
&MediaDecoderStateMachine::OnMediaSinkVideoError));
}
}
}
bool MediaDecoderStateMachine::HasLowDecodedData(int64_t aAudioUsecs)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mReader->UseBufferingHeuristics());
// We consider ourselves low on decoded data if we're low on audio,
// provided we've not decoded to the end of the audio stream, or
// if we're low on video frames, provided
// we've not decoded to the end of the video stream.
return ((IsAudioDecoding() && GetDecodedAudioDuration() < aAudioUsecs) ||
(IsVideoDecoding() &&
static_cast<uint32_t>(VideoQueue().GetSize()) < LOW_VIDEO_FRAMES));
}
bool MediaDecoderStateMachine::OutOfDecodedAudio()
{
MOZ_ASSERT(OnTaskQueue());
return IsAudioDecoding() && !AudioQueue().IsFinished() &&
AudioQueue().GetSize() == 0 &&
!mMediaSink->HasUnplayedFrames(TrackInfo::kAudioTrack);
}
bool MediaDecoderStateMachine::HasLowUndecodedData()
{
MOZ_ASSERT(OnTaskQueue());
return HasLowUndecodedData(mLowDataThresholdUsecs);
}
bool MediaDecoderStateMachine::HasLowUndecodedData(int64_t aUsecs)
{
MOZ_ASSERT(OnTaskQueue());
NS_ASSERTION(mState >= DECODER_STATE_DECODING && !IsDecodingFirstFrame(),
"Must have loaded first frame for mBuffered to be valid");
// If we don't have a duration, mBuffered is probably not going to have
// a useful buffered range. Return false here so that we don't get stuck in
// buffering mode for live streams.
if (Duration().IsInfinite()) {
return false;
}
if (mBuffered.Ref().IsInvalid()) {
return false;
}
// We are never low in decoded data when we don't have audio/video or have
// decoded all audio/video samples.
int64_t endOfDecodedVideoData =
(HasVideo() && !VideoQueue().IsFinished())
? mDecodedVideoEndTime
: INT64_MAX;
int64_t endOfDecodedAudioData =
(HasAudio() && !AudioQueue().IsFinished())
? mDecodedAudioEndTime
: INT64_MAX;
int64_t endOfDecodedData = std::min(endOfDecodedVideoData, endOfDecodedAudioData);
if (Duration().ToMicroseconds() < endOfDecodedData) {
// Our duration is not up to date. No point buffering.
return false;
}
media::TimeInterval interval(media::TimeUnit::FromMicroseconds(endOfDecodedData),
media::TimeUnit::FromMicroseconds(std::min(endOfDecodedData + aUsecs, Duration().ToMicroseconds())));
return endOfDecodedData != INT64_MAX && !mBuffered.Ref().Contains(interval);
}
void
MediaDecoderStateMachine::DecodeError()
{
MOZ_ASSERT(OnTaskQueue());
if (IsShutdown()) {
// Already shutdown.
return;
}
// Change state to error, which will cause the state machine to wait until
// the MediaDecoder shuts it down.
SetState(DECODER_STATE_ERROR);
ScheduleStateMachine();
DECODER_WARN("Decode error, changed state to ERROR");
// MediaDecoder::DecodeError notifies the owner, and then shuts down the state
// machine.
mOnPlaybackEvent.Notify(MediaEventType::DecodeError);
}
void
MediaDecoderStateMachine::OnMetadataRead(MetadataHolder* aMetadata)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mState == DECODER_STATE_DECODING_METADATA);
mMetadataRequest.Complete();
if (mPendingDormant) {
mPendingDormant = false;
SetDormant(true);
return;
}
// Set mode to PLAYBACK after reading metadata.
mResource->SetReadMode(MediaCacheStream::MODE_PLAYBACK);
mInfo = aMetadata->mInfo;
mMetadataTags = aMetadata->mTags.forget();
RefPtr<MediaDecoderStateMachine> self = this;
if (mInfo.mMetadataDuration.isSome()) {
RecomputeDuration();
} else if (mInfo.mUnadjustedMetadataEndTime.isSome()) {
mReader->AwaitStartTime()->Then(OwnerThread(), __func__,
[self] () -> void {
NS_ENSURE_TRUE_VOID(!self->IsShutdown());
TimeUnit unadjusted = self->mInfo.mUnadjustedMetadataEndTime.ref();
TimeUnit adjustment = self->mReader->StartTime();
self->mInfo.mMetadataDuration.emplace(unadjusted - adjustment);
self->RecomputeDuration();
}, [] () -> void { NS_WARNING("Adjusting metadata end time failed"); }
);
}
if (HasVideo()) {
DECODER_LOG("Video decode isAsync=%d HWAccel=%d videoQueueSize=%d",
mReader->IsAsync(),
mReader->VideoIsHardwareAccelerated(),
GetAmpleVideoFrames());
}
// In general, we wait until we know the duration before notifying the decoder.
// However, we notify unconditionally in this case without waiting for the start
// time, since the caller might be waiting on metadataloaded to be fired before
// feeding in the CDM, which we need to decode the first frame (and
// thus get the metadata). We could fix this if we could compute the start
// time by demuxing without necessaring decoding.
bool waitingForCDM =
#ifdef MOZ_EME
mInfo.IsEncrypted() && !mCDMProxy;
#else
false;
#endif
mNotifyMetadataBeforeFirstFrame = mDuration.Ref().isSome() || waitingForCDM;
if (mNotifyMetadataBeforeFirstFrame) {
EnqueueLoadedMetadataEvent();
}
if (waitingForCDM) {
// Metadata parsing was successful but we're still waiting for CDM caps
// to become available so that we can build the correct decryptor/decoder.
SetState(DECODER_STATE_WAIT_FOR_CDM);
return;
}
StartDecoding();
ScheduleStateMachine();
}
void
MediaDecoderStateMachine::OnMetadataNotRead(ReadMetadataFailureReason aReason)
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mState == DECODER_STATE_DECODING_METADATA);
mMetadataRequest.Complete();
DECODER_WARN("Decode metadata failed, shutting down decoder");
DecodeError();
}
void
MediaDecoderStateMachine::EnqueueLoadedMetadataEvent()
{
MOZ_ASSERT(OnTaskQueue());
MediaDecoderEventVisibility visibility =
mSentLoadedMetadataEvent ? MediaDecoderEventVisibility::Suppressed
: MediaDecoderEventVisibility::Observable;
mMetadataLoadedEvent.Notify(nsAutoPtr<MediaInfo>(new MediaInfo(mInfo)),
Move(mMetadataTags),
visibility);
mSentLoadedMetadataEvent = true;
}
void
MediaDecoderStateMachine::EnqueueFirstFrameLoadedEvent()
{
MOZ_ASSERT(OnTaskQueue());
// Track value of mSentFirstFrameLoadedEvent from before updating it
bool firstFrameBeenLoaded = mSentFirstFrameLoadedEvent;
mSentFirstFrameLoadedEvent = true;
RefPtr<MediaDecoderStateMachine> self = this;
mBufferedUpdateRequest.Begin(
mReader->UpdateBufferedWithPromise()
->Then(OwnerThread(),
__func__,
// Resolve
[self, firstFrameBeenLoaded]() {
self->mBufferedUpdateRequest.Complete();
MediaDecoderEventVisibility visibility =
firstFrameBeenLoaded ? MediaDecoderEventVisibility::Suppressed
: MediaDecoderEventVisibility::Observable;
self->mFirstFrameLoadedEvent.Notify(
nsAutoPtr<MediaInfo>(new MediaInfo(self->mInfo)), visibility);
},
// Reject
[]() { MOZ_CRASH("Should not reach"); }));
}
bool
MediaDecoderStateMachine::IsDecodingFirstFrame()
{
return mState == DECODER_STATE_DECODING && mDecodingFirstFrame;
}
void
MediaDecoderStateMachine::FinishDecodeFirstFrame()
{
MOZ_ASSERT(OnTaskQueue());
DECODER_LOG("FinishDecodeFirstFrame");
if (!IsRealTime() && !mSentFirstFrameLoadedEvent) {
mMediaSink->Redraw(mInfo.mVideo);
}
// If we don't know the duration by this point, we assume infinity, per spec.
if (mDuration.Ref().isNothing()) {
mDuration = Some(TimeUnit::FromInfinity());
}
DECODER_LOG("Media duration %lld, "
"transportSeekable=%d, mediaSeekable=%d",
Duration().ToMicroseconds(), mResource->IsTransportSeekable(), mMediaSeekable.Ref());
// Get potentially updated metadata
mReader->ReadUpdatedMetadata(&mInfo);
if (!mNotifyMetadataBeforeFirstFrame) {
// If we didn't have duration and/or start time before, we should now.
EnqueueLoadedMetadataEvent();
}
EnqueueFirstFrameLoadedEvent();
mDecodingFirstFrame = false;
}
void
MediaDecoderStateMachine::SeekCompleted()
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mState == DECODER_STATE_SEEKING);
int64_t seekTime = mSeekTask->GetSeekTarget().GetTime().ToMicroseconds();
int64_t newCurrentTime = seekTime;
// Setup timestamp state.
RefPtr<MediaData> video = VideoQueue().PeekFront();
if (seekTime == Duration().ToMicroseconds()) {
newCurrentTime = seekTime;
} else if (HasAudio()) {
RefPtr<MediaData> audio = AudioQueue().PeekFront();
// Though we adjust the newCurrentTime in audio-based, and supplemented
// by video. For better UX, should NOT bind the slide position to
// the first audio data timestamp directly.
// While seeking to a position where there's only either audio or video, or
// seeking to a position lies before audio or video, we need to check if
// seekTime is bounded in suitable duration. See Bug 1112438.
int64_t audioStart = audio ? audio->mTime : seekTime;
// We only pin the seek time to the video start time if the video frame
// contains the seek time.
if (video && video->mTime <= seekTime && video->GetEndTime() > seekTime) {
newCurrentTime = std::min(audioStart, video->mTime);
} else {
newCurrentTime = audioStart;
}
} else {
newCurrentTime = video ? video->mTime : seekTime;
}
// Change state to DECODING or COMPLETED now.
bool isLiveStream = mResource->IsLiveStream();
State nextState;
if (newCurrentTime == Duration().ToMicroseconds() && !isLiveStream) {
// Seeked to end of media, move to COMPLETED state. Note we don't do
// this when playing a live stream, since the end of media will advance
// once we download more data!
DECODER_LOG("Changed state from SEEKING (to %lld) to COMPLETED", seekTime);
// Explicitly set our state so we don't decode further, and so
// we report playback ended to the media element.
nextState = DECODER_STATE_COMPLETED;
} else {
DECODER_LOG("Changed state from SEEKING (to %lld) to DECODING", seekTime);
nextState = DECODER_STATE_DECODING;
}
// We want to resolve the seek request prior finishing the first frame
// to ensure that the seeked event is fired prior loadeded.
mCurrentSeek.Resolve(nextState == DECODER_STATE_COMPLETED, __func__);
// Discard and nullify the seek task.
// Reset the MediaDecoderReaderWrapper's callbask.
DiscardSeekTaskIfExist();
// NOTE: Discarding the mSeekTask must be done before here. The following code
// might ask the MediaDecoderReaderWrapper to request media data, however, the
// SeekTask::Discard() will ask MediaDecoderReaderWrapper to discard media
// data requests.
if (mDecodingFirstFrame) {
// We were resuming from dormant, or initiated a seek early.
// We can fire loadeddata now.
FinishDecodeFirstFrame();
}
if (nextState == DECODER_STATE_DECODING) {
StartDecoding();
} else {
SetState(nextState);
}
// Ensure timestamps are up to date.
UpdatePlaybackPositionInternal(newCurrentTime);
// Try to decode another frame to detect if we're at the end...
DECODER_LOG("Seek completed, mCurrentPosition=%lld", mCurrentPosition.Ref());
// Reset quick buffering status. This ensures that if we began the
// seek while quick-buffering, we won't bypass quick buffering mode
// if we need to buffer after the seek.
mQuickBuffering = false;
ScheduleStateMachine();
if (video) {
mMediaSink->Redraw(mInfo.mVideo);
mOnPlaybackEvent.Notify(MediaEventType::Invalidate);
}
}
RefPtr<ShutdownPromise>
MediaDecoderStateMachine::BeginShutdown()
{
return InvokeAsync(OwnerThread(), this, __func__,
&MediaDecoderStateMachine::Shutdown);
}
RefPtr<ShutdownPromise>
MediaDecoderStateMachine::FinishShutdown()
{
MOZ_ASSERT(OnTaskQueue());
// The reader's listeners hold references to the state machine,
// creating a cycle which keeps the state machine and its shared
// thread pools alive. So break it here.
// Prevent dangling pointers by disconnecting the listeners.
mAudioQueueListener.Disconnect();
mVideoQueueListener.Disconnect();
mMetadataManager.Disconnect();
// Disconnect canonicals and mirrors before shutting down our task queue.
mBuffered.DisconnectIfConnected();
mIsReaderSuspended.DisconnectIfConnected();
mEstimatedDuration.DisconnectIfConnected();
mExplicitDuration.DisconnectIfConnected();
mPlayState.DisconnectIfConnected();
mNextPlayState.DisconnectIfConnected();
mVolume.DisconnectIfConnected();
mLogicalPlaybackRate.DisconnectIfConnected();
mPreservesPitch.DisconnectIfConnected();
mSameOriginMedia.DisconnectIfConnected();
mMediaPrincipalHandle.DisconnectIfConnected();
mPlaybackBytesPerSecond.DisconnectIfConnected();
mPlaybackRateReliable.DisconnectIfConnected();
mDecoderPosition.DisconnectIfConnected();
mMediaSeekable.DisconnectIfConnected();
mMediaSeekableOnlyInBufferedRanges.DisconnectIfConnected();
mIsVisible.DisconnectIfConnected();
mDuration.DisconnectAll();
mIsShutdown.DisconnectAll();
mNextFrameStatus.DisconnectAll();
mCurrentPosition.DisconnectAll();
mPlaybackOffset.DisconnectAll();
mIsAudioDataAudible.DisconnectAll();
// Shut down the watch manager before shutting down our task queue.
mWatchManager.Shutdown();
MOZ_ASSERT(mState == DECODER_STATE_SHUTDOWN,
"How did we escape from the shutdown state?");
DECODER_LOG("Shutting down state machine task queue");
return OwnerThread()->BeginShutdown();
}
nsresult MediaDecoderStateMachine::RunStateMachine()
{
MOZ_ASSERT(OnTaskQueue());
mDelayedScheduler.Reset(); // Must happen on state machine task queue.
mDispatchedStateMachine = false;
MediaResource* resource = mResource;
NS_ENSURE_TRUE(resource, NS_ERROR_NULL_POINTER);
switch (mState) {
case DECODER_STATE_ERROR:
case DECODER_STATE_SHUTDOWN:
case DECODER_STATE_DORMANT:
case DECODER_STATE_WAIT_FOR_CDM:
case DECODER_STATE_DECODING_METADATA:
return NS_OK;
case DECODER_STATE_DECODING: {
if (IsDecodingFirstFrame()) {
// We haven't completed decoding our first frames, we can't start
// playback yet.
return NS_OK;
}
if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING && IsPlaying())
{
// We're playing, but the element/decoder is in paused state. Stop
// playing!
StopPlayback();
}
// Start playback if necessary so that the clock can be properly queried.
MaybeStartPlayback();
UpdatePlaybackPositionPeriodically();
NS_ASSERTION(!IsPlaying() ||
IsStateMachineScheduled(),
"Must have timer scheduled");
MaybeStartBuffering();
return NS_OK;
}
case DECODER_STATE_BUFFERING: {
TimeStamp now = TimeStamp::Now();
NS_ASSERTION(!mBufferingStart.IsNull(), "Must know buffering start time.");
// With buffering heuristics we will remain in the buffering state if
// we've not decoded enough data to begin playback, or if we've not
// downloaded a reasonable amount of data inside our buffering time.
if (mReader->UseBufferingHeuristics()) {
TimeDuration elapsed = now - mBufferingStart;
bool isLiveStream = resource->IsLiveStream();
if ((isLiveStream || !CanPlayThrough()) &&
elapsed < TimeDuration::FromSeconds(mBufferingWait * mPlaybackRate) &&
(mQuickBuffering ? HasLowDecodedData(mQuickBufferingLowDataThresholdUsecs)
: HasLowUndecodedData(mBufferingWait * USECS_PER_S)) &&
mResource->IsExpectingMoreData())
{
DECODER_LOG("Buffering: wait %ds, timeout in %.3lfs %s",
mBufferingWait, mBufferingWait - elapsed.ToSeconds(),
(mQuickBuffering ? "(quick exit)" : ""));
ScheduleStateMachineIn(USECS_PER_S);
return NS_OK;
}
} else if (OutOfDecodedAudio() || OutOfDecodedVideo()) {
MOZ_ASSERT(mReader->IsWaitForDataSupported(),
"Don't yet have a strategy for non-heuristic + non-WaitForData");
DispatchDecodeTasksIfNeeded();
MOZ_ASSERT_IF(!mMinimizePreroll && OutOfDecodedAudio(), mReader->IsRequestingAudioData() || mReader->IsWaitingAudioData());
MOZ_ASSERT_IF(!mMinimizePreroll && OutOfDecodedVideo(), mReader->IsRequestingVideoData() || mReader->IsWaitingVideoData());
DECODER_LOG("In buffering mode, waiting to be notified: outOfAudio: %d, "
"mAudioStatus: %s, outOfVideo: %d, mVideoStatus: %s",
OutOfDecodedAudio(), AudioRequestStatus(),
OutOfDecodedVideo(), VideoRequestStatus());
return NS_OK;
}
DECODER_LOG("Changed state from BUFFERING to DECODING");
DECODER_LOG("Buffered for %.3lfs", (now - mBufferingStart).ToSeconds());
StartDecoding();
NS_ASSERTION(IsStateMachineScheduled(), "Must have timer scheduled");
return NS_OK;
}
case DECODER_STATE_SEEKING: {
return NS_OK;
}
case DECODER_STATE_COMPLETED: {
if (mPlayState != MediaDecoder::PLAY_STATE_PLAYING && IsPlaying()) {
StopPlayback();
}
// Play the remaining media. We want to run AdvanceFrame() at least
// once to ensure the current playback position is advanced to the
// end of the media, and so that we update the readyState.
if ((HasVideo() && !mVideoCompleted) ||
(HasAudio() && !mAudioCompleted)) {
// Start playback if necessary to play the remaining media.
MaybeStartPlayback();
UpdatePlaybackPositionPeriodically();
NS_ASSERTION(!IsPlaying() ||
IsStateMachineScheduled(),
"Must have timer scheduled");
return NS_OK;
}
// StopPlayback in order to reset the IsPlaying() state so audio
// is restarted correctly.
StopPlayback();
if (mPlayState == MediaDecoder::PLAY_STATE_PLAYING &&
!mSentPlaybackEndedEvent)
{
int64_t clockTime = std::max(AudioEndTime(), VideoEndTime());
clockTime = std::max(int64_t(0), std::max(clockTime, Duration().ToMicroseconds()));
UpdatePlaybackPosition(clockTime);
// Ensure readyState is updated before firing the 'ended' event.
UpdateNextFrameStatus();
mOnPlaybackEvent.Notify(MediaEventType::PlaybackEnded);
mSentPlaybackEndedEvent = true;
// MediaSink::GetEndTime() must be called before stopping playback.
StopMediaSink();
}
return NS_OK;
}
}
return NS_OK;
}
void
MediaDecoderStateMachine::Reset(TrackSet aTracks)
{
MOZ_ASSERT(OnTaskQueue());
DECODER_LOG("MediaDecoderStateMachine::Reset");
// We should be resetting because we're seeking, shutting down, or entering
// dormant state. We could also be in the process of going dormant, and have
// just switched to exiting dormant before we finished entering dormant,
// hence the DECODING_NONE case below.
MOZ_ASSERT(IsShutdown() ||
mState == DECODER_STATE_SEEKING ||
mState == DECODER_STATE_DORMANT);
// Assert that aTracks specifies to reset the video track because we
// don't currently support resetting just the audio track.
MOZ_ASSERT(aTracks.contains(TrackInfo::kVideoTrack));
if (aTracks.contains(TrackInfo::kAudioTrack) &&
aTracks.contains(TrackInfo::kVideoTrack)) {
// Stop the audio thread. Otherwise, MediaSink might be accessing AudioQueue
// outside of the decoder monitor while we are clearing the queue and causes
// crash for no samples to be popped.
StopMediaSink();
}
if (aTracks.contains(TrackInfo::kVideoTrack)) {
mDecodedVideoEndTime = 0;
mVideoCompleted = false;
VideoQueue().Reset();
}
if (aTracks.contains(TrackInfo::kAudioTrack)) {
mDecodedAudioEndTime = 0;
mAudioCompleted = false;
AudioQueue().Reset();
}
mMetadataRequest.DisconnectIfExists();
mSeekTaskRequest.DisconnectIfExists();
mPlaybackOffset = 0;
mReader->ResetDecode(aTracks);
}
int64_t
MediaDecoderStateMachine::GetClock(TimeStamp* aTimeStamp) const
{
MOZ_ASSERT(OnTaskQueue());
int64_t clockTime = mMediaSink->GetPosition(aTimeStamp);
NS_ASSERTION(GetMediaTime() <= clockTime, "Clock should go forwards.");
return clockTime;
}
void
MediaDecoderStateMachine::UpdatePlaybackPositionPeriodically()
{
MOZ_ASSERT(OnTaskQueue());
if (!IsPlaying()) {
return;
}
if (mAudioCaptured) {
DiscardStreamData();
}
// Cap the current time to the larger of the audio and video end time.
// This ensures that if we're running off the system clock, we don't
// advance the clock to after the media end time.
if (VideoEndTime() != -1 || AudioEndTime() != -1) {
const int64_t clockTime = GetClock();
// Skip frames up to the frame at the playback position, and figure out
// the time remaining until it's time to display the next frame and drop
// the current frame.
NS_ASSERTION(clockTime >= 0, "Should have positive clock time.");
// These will be non -1 if we've displayed a video frame, or played an audio frame.
int64_t t = std::min(clockTime, std::max(VideoEndTime(), AudioEndTime()));
// FIXME: Bug 1091422 - chained ogg files hit this assertion.
//MOZ_ASSERT(t >= GetMediaTime());
if (t > GetMediaTime()) {
UpdatePlaybackPosition(t);
}
}
// Note we have to update playback position before releasing the monitor.
// Otherwise, MediaDecoder::AddOutputStream could kick in when we are outside
// the monitor and get a staled value from GetCurrentTimeUs() which hits the
// assertion in GetClock().
int64_t delay = std::max<int64_t>(1, AUDIO_DURATION_USECS / mPlaybackRate);
ScheduleStateMachineIn(delay);
}
void MediaDecoderStateMachine::UpdateNextFrameStatus()
{
MOZ_ASSERT(OnTaskQueue());
MediaDecoderOwner::NextFrameStatus status;
const char* statusString;
if (mState <= DECODER_STATE_WAIT_FOR_CDM || IsDecodingFirstFrame()) {
status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE;
statusString = "NEXT_FRAME_UNAVAILABLE";
} else if (IsBuffering()) {
status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_BUFFERING;
statusString = "NEXT_FRAME_UNAVAILABLE_BUFFERING";
} else if (IsSeeking()) {
status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE_SEEKING;
statusString = "NEXT_FRAME_UNAVAILABLE_SEEKING";
} else if (HaveNextFrameData()) {
status = MediaDecoderOwner::NEXT_FRAME_AVAILABLE;
statusString = "NEXT_FRAME_AVAILABLE";
} else {
status = MediaDecoderOwner::NEXT_FRAME_UNAVAILABLE;
statusString = "NEXT_FRAME_UNAVAILABLE";
}
if (status != mNextFrameStatus) {
DECODER_LOG("Changed mNextFrameStatus to %s", statusString);
}
mNextFrameStatus = status;
}
bool MediaDecoderStateMachine::JustExitedQuickBuffering()
{
MOZ_ASSERT(OnTaskQueue());
return !mDecodeStartTime.IsNull() &&
mQuickBuffering &&
(TimeStamp::Now() - mDecodeStartTime) < TimeDuration::FromMicroseconds(QUICK_BUFFER_THRESHOLD_USECS);
}
bool
MediaDecoderStateMachine::CanPlayThrough()
{
MOZ_ASSERT(OnTaskQueue());
return IsRealTime() || GetStatistics().CanPlayThrough();
}
MediaStatistics
MediaDecoderStateMachine::GetStatistics()
{
MOZ_ASSERT(OnTaskQueue());
MediaStatistics result;
result.mDownloadRate = mResource->GetDownloadRate(&result.mDownloadRateReliable);
result.mDownloadPosition = mResource->GetCachedDataEnd(mDecoderPosition);
result.mTotalBytes = mResource->GetLength();
result.mPlaybackRate = mPlaybackBytesPerSecond;
result.mPlaybackRateReliable = mPlaybackRateReliable;
result.mDecoderPosition = mDecoderPosition;
result.mPlaybackPosition = mPlaybackOffset;
return result;
}
void MediaDecoderStateMachine::StartBuffering()
{
MOZ_ASSERT(OnTaskQueue());
if (mState != DECODER_STATE_DECODING) {
// We only move into BUFFERING state if we're actually decoding.
// If we're currently doing something else, we don't need to buffer,
// and more importantly, we shouldn't overwrite mState to interrupt
// the current operation, as that could leave us in an inconsistent
// state!
return;
}
if (IsPlaying()) {
StopPlayback();
}
TimeDuration decodeDuration = TimeStamp::Now() - mDecodeStartTime;
// Go into quick buffering mode provided we've not just left buffering using
// a "quick exit". This stops us flip-flopping between playing and buffering
// when the download speed is similar to the decode speed.
mQuickBuffering =
!JustExitedQuickBuffering() &&
decodeDuration < UsecsToDuration(QUICK_BUFFER_THRESHOLD_USECS);
mBufferingStart = TimeStamp::Now();
SetState(DECODER_STATE_BUFFERING);
DECODER_LOG("Changed state from DECODING to BUFFERING, decoded for %.3lfs",
decodeDuration.ToSeconds());
MediaStatistics stats = GetStatistics();
DECODER_LOG("Playback rate: %.1lfKB/s%s download rate: %.1lfKB/s%s",
stats.mPlaybackRate/1024, stats.mPlaybackRateReliable ? "" : " (unreliable)",
stats.mDownloadRate/1024, stats.mDownloadRateReliable ? "" : " (unreliable)");
}
void
MediaDecoderStateMachine::ScheduleStateMachine()
{
MOZ_ASSERT(OnTaskQueue());
if (mDispatchedStateMachine) {
return;
}
mDispatchedStateMachine = true;
OwnerThread()->Dispatch(NewRunnableMethod(this, &MediaDecoderStateMachine::RunStateMachine));
}
void
MediaDecoderStateMachine::ScheduleStateMachineIn(int64_t aMicroseconds)
{
MOZ_ASSERT(OnTaskQueue()); // mDelayedScheduler.Ensure() may Disconnect()
// the promise, which must happen on the state
// machine task queue.
MOZ_ASSERT(aMicroseconds > 0);
if (mDispatchedStateMachine) {
return;
}
// Real-time weirdness.
if (IsRealTime()) {
aMicroseconds = std::min(aMicroseconds, int64_t(40000));
}
TimeStamp now = TimeStamp::Now();
TimeStamp target = now + TimeDuration::FromMicroseconds(aMicroseconds);
SAMPLE_LOG("Scheduling state machine for %lf ms from now", (target - now).ToMilliseconds());
RefPtr<MediaDecoderStateMachine> self = this;
mDelayedScheduler.Ensure(target, [self] () {
self->OnDelayedSchedule();
}, [self] () {
self->NotReached();
});
}
bool MediaDecoderStateMachine::OnTaskQueue() const
{
return OwnerThread()->IsCurrentThreadIn();
}
bool MediaDecoderStateMachine::IsStateMachineScheduled() const
{
MOZ_ASSERT(OnTaskQueue());
return mDispatchedStateMachine || mDelayedScheduler.IsScheduled();
}
bool MediaDecoderStateMachine::IsVideoDecodeSuspended() const
{
MOZ_ASSERT(OnTaskQueue());
return mVideoDecodeSuspended || mIsReaderSuspended;
}
void
MediaDecoderStateMachine::LogicalPlaybackRateChanged()
{
MOZ_ASSERT(OnTaskQueue());
if (mLogicalPlaybackRate == 0) {
// This case is handled in MediaDecoder by pausing playback.
return;
}
mPlaybackRate = mLogicalPlaybackRate;
mMediaSink->SetPlaybackRate(mPlaybackRate);
if (mIsAudioPrerolling && DonePrerollingAudio()) {
StopPrerollingAudio();
}
if (mIsVideoPrerolling && DonePrerollingVideo()) {
StopPrerollingVideo();
}
ScheduleStateMachine();
}
void MediaDecoderStateMachine::PreservesPitchChanged()
{
MOZ_ASSERT(OnTaskQueue());
mMediaSink->SetPreservesPitch(mPreservesPitch);
}
bool MediaDecoderStateMachine::IsShutdown()
{
MOZ_ASSERT(OnTaskQueue());
return mIsShutdown;
}
int64_t
MediaDecoderStateMachine::AudioEndTime() const
{
MOZ_ASSERT(OnTaskQueue());
if (mMediaSink->IsStarted()) {
return mMediaSink->GetEndTime(TrackInfo::kAudioTrack);
}
MOZ_ASSERT(!HasAudio());
return -1;
}
int64_t
MediaDecoderStateMachine::VideoEndTime() const
{
MOZ_ASSERT(OnTaskQueue());
if (mMediaSink->IsStarted()) {
return mMediaSink->GetEndTime(TrackInfo::kVideoTrack);
}
return -1;
}
void
MediaDecoderStateMachine::OnMediaSinkVideoComplete()
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mInfo.HasVideo());
VERBOSE_LOG("[%s]", __func__);
mMediaSinkVideoPromise.Complete();
mVideoCompleted = true;
ScheduleStateMachine();
}
void
MediaDecoderStateMachine::OnMediaSinkVideoError()
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mInfo.HasVideo());
VERBOSE_LOG("[%s]", __func__);
mMediaSinkVideoPromise.Complete();
mVideoCompleted = true;
if (HasAudio()) {
return;
}
DecodeError();
}
void MediaDecoderStateMachine::OnMediaSinkAudioComplete()
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mInfo.HasAudio());
VERBOSE_LOG("[%s]", __func__);
mMediaSinkAudioPromise.Complete();
mAudioCompleted = true;
// To notify PlaybackEnded as soon as possible.
ScheduleStateMachine();
}
void MediaDecoderStateMachine::OnMediaSinkAudioError()
{
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(mInfo.HasAudio());
VERBOSE_LOG("[%s]", __func__);
mMediaSinkAudioPromise.Complete();
mAudioCompleted = true;
// Make the best effort to continue playback when there is video.
if (HasVideo()) {
return;
}
// Otherwise notify media decoder/element about this error for it makes
// no sense to play an audio-only file without sound output.
DecodeError();
}
#ifdef MOZ_EME
void
MediaDecoderStateMachine::OnCDMProxyReady(RefPtr<CDMProxy> aProxy)
{
MOZ_ASSERT(OnTaskQueue());
mCDMProxyPromise.Complete();
mCDMProxy = aProxy;
mReader->SetCDMProxy(aProxy);
if (mState == DECODER_STATE_WAIT_FOR_CDM) {
StartDecoding();
}
}
void
MediaDecoderStateMachine::OnCDMProxyNotReady()
{
MOZ_ASSERT(OnTaskQueue());
mCDMProxyPromise.Complete();
}
#endif
void
MediaDecoderStateMachine::SetAudioCaptured(bool aCaptured)
{
MOZ_ASSERT(OnTaskQueue());
if (aCaptured == mAudioCaptured) {
return;
}
// Rest these flags so they are consistent with the status of the sink.
// TODO: Move these flags into MediaSink to improve cohesion so we don't need
// to reset these flags when switching MediaSinks.
mAudioCompleted = false;
mVideoCompleted = false;
// Backup current playback parameters.
MediaSink::PlaybackParams params = mMediaSink->GetPlaybackParams();
// Stop and shut down the existing sink.
StopMediaSink();
mMediaSink->Shutdown();
// Create a new sink according to whether audio is captured.
mMediaSink = CreateMediaSink(aCaptured);
// Restore playback parameters.
mMediaSink->SetPlaybackParams(params);
// We don't need to call StartMediaSink() here because IsPlaying() is now
// always in sync with the playing state of MediaSink. It will be started in
// MaybeStartPlayback() in the next cycle if necessary.
mAudioCaptured = aCaptured;
ScheduleStateMachine();
// Don't buffer as much when audio is captured because we don't need to worry
// about high latency audio devices.
mAmpleAudioThresholdUsecs = mAudioCaptured ?
detail::AMPLE_AUDIO_USECS / 2 :
detail::AMPLE_AUDIO_USECS;
if (mIsAudioPrerolling && DonePrerollingAudio()) {
StopPrerollingAudio();
}
}
uint32_t MediaDecoderStateMachine::GetAmpleVideoFrames() const
{
MOZ_ASSERT(OnTaskQueue());
return (mReader->IsAsync() && mReader->VideoIsHardwareAccelerated())
? std::max<uint32_t>(sVideoQueueHWAccelSize, MIN_VIDEO_QUEUE_SIZE)
: std::max<uint32_t>(sVideoQueueDefaultSize, MIN_VIDEO_QUEUE_SIZE);
}
void
MediaDecoderStateMachine::DumpDebugInfo()
{
MOZ_ASSERT(NS_IsMainThread());
// It is fine to capture a raw pointer here because MediaDecoder only call
// this function before shutdown begins.
nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction([this] () {
DUMP_LOG(
"GetMediaTime=%lld GetClock=%lld "
"mState=%s mPlayState=%d mDecodingFirstFrame=%d IsPlaying=%d "
"mAudioStatus=%s mVideoStatus=%s mDecodedAudioEndTime=%lld mDecodedVideoEndTime=%lld "
"mIsAudioPrerolling=%d mIsVideoPrerolling=%d",
GetMediaTime(), mMediaSink->IsStarted() ? GetClock() : -1,
gMachineStateStr[mState], mPlayState.Ref(), mDecodingFirstFrame, IsPlaying(),
AudioRequestStatus(), VideoRequestStatus(), mDecodedAudioEndTime, mDecodedVideoEndTime,
mIsAudioPrerolling, mIsVideoPrerolling);
});
OwnerThread()->DispatchStateChange(r.forget());
}
void MediaDecoderStateMachine::AddOutputStream(ProcessedMediaStream* aStream,
bool aFinishWhenEnded)
{
MOZ_ASSERT(NS_IsMainThread());
DECODER_LOG("AddOutputStream aStream=%p!", aStream);
mOutputStreamManager->Add(aStream, aFinishWhenEnded);
nsCOMPtr<nsIRunnable> r = NewRunnableMethod<bool>(
this, &MediaDecoderStateMachine::SetAudioCaptured, true);
OwnerThread()->Dispatch(r.forget());
}
void MediaDecoderStateMachine::RemoveOutputStream(MediaStream* aStream)
{
MOZ_ASSERT(NS_IsMainThread());
DECODER_LOG("RemoveOutputStream=%p!", aStream);
mOutputStreamManager->Remove(aStream);
if (mOutputStreamManager->IsEmpty()) {
nsCOMPtr<nsIRunnable> r = NewRunnableMethod<bool>(
this, &MediaDecoderStateMachine::SetAudioCaptured, false);
OwnerThread()->Dispatch(r.forget());
}
}
size_t
MediaDecoderStateMachine::SizeOfVideoQueue() const
{
return mReader->SizeOfVideoQueueInBytes();
}
size_t
MediaDecoderStateMachine::SizeOfAudioQueue() const
{
return mReader->SizeOfAudioQueueInBytes();
}
AbstractCanonical<media::TimeIntervals>*
MediaDecoderStateMachine::CanonicalBuffered() const
{
return mReader->CanonicalBuffered();
}
MediaEventSource<void>&
MediaDecoderStateMachine::OnMediaNotSeekable() const
{
return mReader->OnMediaNotSeekable();
}
const char*
MediaDecoderStateMachine::AudioRequestStatus() const
{
MOZ_ASSERT(OnTaskQueue());
if (mReader->IsRequestingAudioData()) {
MOZ_DIAGNOSTIC_ASSERT(!mReader->IsWaitingAudioData());
return "pending";
} else if (mReader->IsWaitingAudioData()) {
return "waiting";
}
return "idle";
}
const char*
MediaDecoderStateMachine::VideoRequestStatus() const
{
MOZ_ASSERT(OnTaskQueue());
if (mReader->IsRequestingVideoData()) {
MOZ_DIAGNOSTIC_ASSERT(!mReader->IsWaitingVideoData());
return "pending";
} else if (mReader->IsWaitingVideoData()) {
return "waiting";
}
return "idle";
}
void
MediaDecoderStateMachine::OnSuspendTimerResolved()
{
DECODER_LOG("OnSuspendTimerResolved");
mVideoDecodeSuspendTimer.CompleteRequest();
mVideoDecodeSuspended = true;
}
void
MediaDecoderStateMachine::OnSuspendTimerRejected()
{
DECODER_LOG("OnSuspendTimerRejected");
MOZ_ASSERT(OnTaskQueue());
MOZ_ASSERT(!mVideoDecodeSuspended);
mVideoDecodeSuspendTimer.CompleteRequest();
}
} // namespace mozilla
// avoid redefined macro in unified build
#undef LOG
#undef DECODER_LOG
#undef VERBOSE_LOG
#undef DECODER_WARN
#undef DECODER_WARN_HELPER
#undef NS_DispatchToMainThread