gecko-dev/gfx/layers/NativeLayerCA.mm

1099 строки
40 KiB
Plaintext

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nullptr; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/layers/NativeLayerCA.h"
#import <AppKit/NSAnimationContext.h>
#import <AppKit/NSColor.h>
#import <OpenGL/gl.h>
#import <QuartzCore/QuartzCore.h>
#include <utility>
#include <algorithm>
#include "gfxUtils.h"
#include "GLBlitHelper.h"
#include "GLContextCGL.h"
#include "GLContextProvider.h"
#include "MozFramebuffer.h"
#include "mozilla/gfx/Swizzle.h"
#include "mozilla/layers/ScreenshotGrabber.h"
#include "mozilla/layers/SurfacePoolCA.h"
#include "mozilla/webrender/RenderMacIOSurfaceTextureHostOGL.h"
#include "ScopedGLHelpers.h"
@interface CALayer (PrivateSetContentsOpaque)
- (void)setContentsOpaque:(BOOL)opaque;
@end
namespace mozilla {
namespace layers {
using gfx::IntPoint;
using gfx::IntSize;
using gfx::IntRect;
using gfx::IntRegion;
using gfx::DataSourceSurface;
using gfx::Matrix4x4;
using gfx::SurfaceFormat;
using gl::GLContext;
using gl::GLContextCGL;
// Utility classes for NativeLayerRootSnapshotter (NLRS) profiler screenshots.
class WindowNLRS : public profiler_screenshots::Window {
public:
WindowNLRS(gl::GLContext* aGL, RenderSourceNLRS* aSnapshot) : mGL(aGL), mSnapshot(aSnapshot) {}
already_AddRefed<profiler_screenshots::RenderSource> GetWindowContents() override;
already_AddRefed<profiler_screenshots::DownscaleTarget> CreateDownscaleTarget(
const IntSize& aSize) override;
already_AddRefed<profiler_screenshots::AsyncReadbackBuffer> CreateAsyncReadbackBuffer(
const IntSize& aSize) override;
protected:
RefPtr<gl::GLContext> mGL;
RefPtr<RenderSourceNLRS> mSnapshot;
};
class RenderSourceNLRS : public profiler_screenshots::RenderSource {
public:
explicit RenderSourceNLRS(UniquePtr<gl::MozFramebuffer>&& aFramebuffer)
: RenderSource(aFramebuffer->mSize), mFramebuffer(std::move(aFramebuffer)) {}
auto& FB() { return *mFramebuffer; }
protected:
UniquePtr<gl::MozFramebuffer> mFramebuffer;
};
class DownscaleTargetNLRS : public profiler_screenshots::DownscaleTarget {
public:
DownscaleTargetNLRS(gl::GLContext* aGL, UniquePtr<gl::MozFramebuffer>&& aFramebuffer)
: profiler_screenshots::DownscaleTarget(aFramebuffer->mSize),
mGL(aGL),
mRenderSource(new RenderSourceNLRS(std::move(aFramebuffer))) {}
already_AddRefed<profiler_screenshots::RenderSource> AsRenderSource() override {
return do_AddRef(mRenderSource);
};
bool DownscaleFrom(profiler_screenshots::RenderSource* aSource, const IntRect& aSourceRect,
const IntRect& aDestRect) override;
protected:
RefPtr<gl::GLContext> mGL;
RefPtr<RenderSourceNLRS> mRenderSource;
};
class AsyncReadbackBufferNLRS : public profiler_screenshots::AsyncReadbackBuffer {
public:
AsyncReadbackBufferNLRS(gl::GLContext* aGL, const IntSize& aSize, GLuint aBufferHandle)
: profiler_screenshots::AsyncReadbackBuffer(aSize), mGL(aGL), mBufferHandle(aBufferHandle) {}
void CopyFrom(profiler_screenshots::RenderSource* aSource) override;
bool MapAndCopyInto(DataSourceSurface* aSurface, const IntSize& aReadSize) override;
protected:
virtual ~AsyncReadbackBufferNLRS();
RefPtr<gl::GLContext> mGL;
GLuint mBufferHandle = 0;
};
// Needs to be on the stack whenever CALayer mutations are performed.
// (Mutating CALayers outside of a transaction can result in permanently stuck rendering, because
// such mutations create an implicit transaction which never auto-commits if the current thread does
// not have a native runloop.)
// Uses NSAnimationContext, which wraps CATransaction with additional off-main-thread protection,
// see bug 1585523.
struct MOZ_STACK_CLASS AutoCATransaction final {
AutoCATransaction() {
[NSAnimationContext beginGrouping];
// By default, mutating a CALayer property triggers an animation which smoothly transitions the
// property to the new value. We don't need these animations, and this call turns them off:
[CATransaction setDisableActions:YES];
}
~AutoCATransaction() { [NSAnimationContext endGrouping]; }
};
/* static */ already_AddRefed<NativeLayerRootCA> NativeLayerRootCA::CreateForCALayer(
CALayer* aLayer) {
RefPtr<NativeLayerRootCA> layerRoot = new NativeLayerRootCA(aLayer);
return layerRoot.forget();
}
// Returns an autoreleased CALayer* object.
static CALayer* MakeOffscreenRootCALayer() {
// This layer should behave similarly to the backing layer of a flipped NSView.
// It will never be rendered on the screen and it will never be attached to an NSView's layer;
// instead, it will be the root layer of a "local" CAContext.
// Setting geometryFlipped to YES causes the orientation of descendant CALayers' contents (such as
// IOSurfaces) to be consistent with what happens in a layer subtree that is attached to a flipped
// NSView. Setting it to NO would cause the surfaces in individual leaf layers to render upside
// down (rather than just flipping the entire layer tree upside down).
AutoCATransaction transaction;
CALayer* layer = [CALayer layer];
layer.position = NSZeroPoint;
layer.bounds = NSZeroRect;
layer.anchorPoint = NSZeroPoint;
layer.contentsGravity = kCAGravityTopLeft;
layer.masksToBounds = YES;
layer.geometryFlipped = YES;
return layer;
}
NativeLayerRootCA::NativeLayerRootCA(CALayer* aLayer)
: mMutex("NativeLayerRootCA"),
mOnscreenRepresentation(aLayer),
mOffscreenRepresentation(MakeOffscreenRootCALayer()) {}
NativeLayerRootCA::~NativeLayerRootCA() {
MOZ_RELEASE_ASSERT(mSublayers.IsEmpty(),
"Please clear all layers before destroying the layer root.");
}
already_AddRefed<NativeLayer> NativeLayerRootCA::CreateLayer(
const IntSize& aSize, bool aIsOpaque, SurfacePoolHandle* aSurfacePoolHandle) {
RefPtr<NativeLayer> layer =
new NativeLayerCA(aSize, aIsOpaque, aSurfacePoolHandle->AsSurfacePoolHandleCA());
return layer.forget();
}
already_AddRefed<NativeLayer> NativeLayerRootCA::CreateLayerForExternalTexture(bool aIsOpaque) {
RefPtr<NativeLayer> layer = new NativeLayerCA(aIsOpaque);
return layer.forget();
}
void NativeLayerRootCA::AppendLayer(NativeLayer* aLayer) {
MutexAutoLock lock(mMutex);
RefPtr<NativeLayerCA> layerCA = aLayer->AsNativeLayerCA();
MOZ_RELEASE_ASSERT(layerCA);
mSublayers.AppendElement(layerCA);
layerCA->SetBackingScale(mBackingScale);
ForAllRepresentations([&](Representation& r) { r.mMutated = true; });
}
void NativeLayerRootCA::RemoveLayer(NativeLayer* aLayer) {
MutexAutoLock lock(mMutex);
RefPtr<NativeLayerCA> layerCA = aLayer->AsNativeLayerCA();
MOZ_RELEASE_ASSERT(layerCA);
mSublayers.RemoveElement(layerCA);
ForAllRepresentations([&](Representation& r) { r.mMutated = true; });
}
void NativeLayerRootCA::SetLayers(const nsTArray<RefPtr<NativeLayer>>& aLayers) {
MutexAutoLock lock(mMutex);
// Ideally, we'd just be able to do mSublayers = std::move(aLayers).
// However, aLayers has a different type: it carries NativeLayer objects, whereas mSublayers
// carries NativeLayerCA objects, so we have to downcast all the elements first. There's one other
// reason to look at all the elements in aLayers first: We need to make sure any new layers know
// about our current backing scale.
nsTArray<RefPtr<NativeLayerCA>> layersCA(aLayers.Length());
for (auto& layer : aLayers) {
RefPtr<NativeLayerCA> layerCA = layer->AsNativeLayerCA();
MOZ_RELEASE_ASSERT(layerCA);
layerCA->SetBackingScale(mBackingScale);
layersCA.AppendElement(std::move(layerCA));
}
if (layersCA != mSublayers) {
mSublayers = std::move(layersCA);
ForAllRepresentations([&](Representation& r) { r.mMutated = true; });
}
}
void NativeLayerRootCA::SetBackingScale(float aBackingScale) {
MutexAutoLock lock(mMutex);
mBackingScale = aBackingScale;
for (auto layer : mSublayers) {
layer->SetBackingScale(aBackingScale);
}
}
float NativeLayerRootCA::BackingScale() {
MutexAutoLock lock(mMutex);
return mBackingScale;
}
void NativeLayerRootCA::SuspendOffMainThreadCommits() {
MutexAutoLock lock(mMutex);
mOffMainThreadCommitsSuspended = true;
}
bool NativeLayerRootCA::UnsuspendOffMainThreadCommits() {
MutexAutoLock lock(mMutex);
mOffMainThreadCommitsSuspended = false;
return mCommitPending;
}
bool NativeLayerRootCA::AreOffMainThreadCommitsSuspended() {
MutexAutoLock lock(mMutex);
return mOffMainThreadCommitsSuspended;
}
bool NativeLayerRootCA::CommitToScreen() {
MutexAutoLock lock(mMutex);
if (!NS_IsMainThread() && mOffMainThreadCommitsSuspended) {
mCommitPending = true;
return false;
}
mOnscreenRepresentation.Commit(WhichRepresentation::ONSCREEN, mSublayers);
mCommitPending = false;
return true;
}
UniquePtr<NativeLayerRootSnapshotter> NativeLayerRootCA::CreateSnapshotter() {
MutexAutoLock lock(mMutex);
MOZ_RELEASE_ASSERT(
!mWeakSnapshotter,
"No NativeLayerRootSnapshotter for this NativeLayerRoot should exist when this is called");
auto cr = NativeLayerRootSnapshotterCA::Create(this, mOffscreenRepresentation.mRootCALayer);
if (cr) {
mWeakSnapshotter = cr.get();
}
return cr;
}
void NativeLayerRootCA::OnNativeLayerRootSnapshotterDestroyed(
NativeLayerRootSnapshotterCA* aNativeLayerRootSnapshotter) {
MutexAutoLock lock(mMutex);
MOZ_RELEASE_ASSERT(mWeakSnapshotter == aNativeLayerRootSnapshotter);
mWeakSnapshotter = nullptr;
}
void NativeLayerRootCA::CommitOffscreen() {
MutexAutoLock lock(mMutex);
mOffscreenRepresentation.Commit(WhichRepresentation::OFFSCREEN, mSublayers);
}
template <typename F>
void NativeLayerRootCA::ForAllRepresentations(F aFn) {
aFn(mOnscreenRepresentation);
aFn(mOffscreenRepresentation);
}
NativeLayerRootCA::Representation::Representation(CALayer* aRootCALayer)
: mRootCALayer([aRootCALayer retain]) {}
NativeLayerRootCA::Representation::~Representation() {
if (mMutated) {
// Clear the root layer's sublayers. At this point the window is usually closed, so this
// transaction does not cause any screen updates.
AutoCATransaction transaction;
mRootCALayer.sublayers = @[];
}
[mRootCALayer release];
}
void NativeLayerRootCA::Representation::Commit(WhichRepresentation aRepresentation,
const nsTArray<RefPtr<NativeLayerCA>>& aSublayers) {
AutoCATransaction transaction;
// Call ApplyChanges on our sublayers first, and then update the root layer's
// list of sublayers. The order is important because we need layer->UnderlyingCALayer()
// to be non-null, and the underlying CALayer gets lazily initialized in ApplyChanges().
for (auto layer : aSublayers) {
layer->ApplyChanges(aRepresentation);
}
if (mMutated) {
NSMutableArray<CALayer*>* sublayers = [NSMutableArray arrayWithCapacity:aSublayers.Length()];
for (auto layer : aSublayers) {
[sublayers addObject:layer->UnderlyingCALayer(aRepresentation)];
}
mRootCALayer.sublayers = sublayers;
mMutated = false;
}
}
/* static */ UniquePtr<NativeLayerRootSnapshotterCA> NativeLayerRootSnapshotterCA::Create(
NativeLayerRootCA* aLayerRoot, CALayer* aRootCALayer) {
if (NS_IsMainThread()) {
// Disallow creating snapshotters on the main thread.
// On the main thread, any explicit CATransaction / NSAnimationContext is nested within a global
// implicit transaction. This makes it impossible to apply CALayer mutations synchronously such
// that they become visible to CARenderer. As a result, the snapshotter would not capture
// the right output on the main thread.
return nullptr;
}
nsCString failureUnused;
RefPtr<gl::GLContext> gl =
gl::GLContextProvider::CreateHeadless({gl::CreateContextFlags::ALLOW_OFFLINE_RENDERER |
gl::CreateContextFlags::REQUIRE_COMPAT_PROFILE},
&failureUnused);
if (!gl) {
return nullptr;
}
return UniquePtr<NativeLayerRootSnapshotterCA>(
new NativeLayerRootSnapshotterCA(aLayerRoot, std::move(gl), aRootCALayer));
}
NativeLayerRootSnapshotterCA::NativeLayerRootSnapshotterCA(NativeLayerRootCA* aLayerRoot,
RefPtr<GLContext>&& aGL,
CALayer* aRootCALayer)
: mLayerRoot(aLayerRoot), mGL(aGL) {
AutoCATransaction transaction;
mRenderer = [[CARenderer rendererWithCGLContext:gl::GLContextCGL::Cast(mGL)->GetCGLContext()
options:nil] retain];
mRenderer.layer = aRootCALayer;
}
NativeLayerRootSnapshotterCA::~NativeLayerRootSnapshotterCA() {
mLayerRoot->OnNativeLayerRootSnapshotterDestroyed(this);
[mRenderer release];
}
void NativeLayerRootSnapshotterCA::UpdateSnapshot(const IntSize& aSize) {
CGRect bounds = CGRectMake(0, 0, aSize.width, aSize.height);
{
// Set the correct bounds and scale on the renderer and its root layer. CARenderer always
// renders at unit scale, i.e. the coordinates on the root layer must map 1:1 to render target
// pixels. But the coordinates on our content layers are in "points", where 1 point maps to 2
// device pixels on HiDPI. So in order to render at the full device pixel resolution, we set a
// scale transform on the root offscreen layer.
AutoCATransaction transaction;
mRenderer.layer.bounds = bounds;
float scale = mLayerRoot->BackingScale();
mRenderer.layer.sublayerTransform = CATransform3DMakeScale(scale, scale, 1);
mRenderer.bounds = bounds;
}
mLayerRoot->CommitOffscreen();
mGL->MakeCurrent();
bool needToRedrawEverything = false;
if (!mSnapshot || mSnapshot->Size() != aSize) {
mSnapshot = nullptr;
auto fb = gl::MozFramebuffer::Create(mGL, aSize, 0, false);
if (!fb) {
return;
}
mSnapshot = new RenderSourceNLRS(std::move(fb));
needToRedrawEverything = true;
}
const gl::ScopedBindFramebuffer bindFB(mGL, mSnapshot->FB().mFB);
mGL->fViewport(0.0, 0.0, aSize.width, aSize.height);
// These legacy OpenGL function calls are part of CARenderer's API contract, see CARenderer.h.
// The size passed to glOrtho must be the device pixel size of the render target, otherwise
// CARenderer will produce incorrect results.
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0.0, aSize.width, 0.0, aSize.height, -1, 1);
float mediaTime = CACurrentMediaTime();
[mRenderer beginFrameAtTime:mediaTime timeStamp:nullptr];
if (needToRedrawEverything) {
[mRenderer addUpdateRect:bounds];
}
if (!CGRectIsEmpty([mRenderer updateBounds])) {
// CARenderer assumes the layer tree is opaque. It only ever paints over existing content, it
// never erases anything. However, our layer tree is not necessarily opaque. So we manually
// erase the area that's going to be redrawn. This ensures correct rendering in the transparent
// areas.
//
// Since we erase the bounds of the update area, this will erase more than necessary if the
// update area is not a single rectangle. Unfortunately we cannot get the precise update region
// from CARenderer, we can only get the bounds.
CGRect updateBounds = [mRenderer updateBounds];
gl::ScopedGLState scopedScissorTestState(mGL, LOCAL_GL_SCISSOR_TEST, true);
gl::ScopedScissorRect scissor(mGL, updateBounds.origin.x, updateBounds.origin.y,
updateBounds.size.width, updateBounds.size.height);
mGL->fClearColor(0.0, 0.0, 0.0, 0.0);
mGL->fClear(LOCAL_GL_COLOR_BUFFER_BIT);
// We erased the update region's bounds. Make sure the entire update bounds get repainted.
[mRenderer addUpdateRect:updateBounds];
}
[mRenderer render];
[mRenderer endFrame];
}
bool NativeLayerRootSnapshotterCA::ReadbackPixels(const IntSize& aReadbackSize,
SurfaceFormat aReadbackFormat,
const Range<uint8_t>& aReadbackBuffer) {
if (aReadbackFormat != SurfaceFormat::B8G8R8A8) {
return false;
}
UpdateSnapshot(aReadbackSize);
if (!mSnapshot) {
return false;
}
const gl::ScopedBindFramebuffer bindFB(mGL, mSnapshot->FB().mFB);
gl::ScopedPackState safePackState(mGL);
mGL->fReadPixels(0.0f, 0.0f, aReadbackSize.width, aReadbackSize.height, LOCAL_GL_BGRA,
LOCAL_GL_UNSIGNED_BYTE, &aReadbackBuffer[0]);
return true;
}
void NativeLayerRootSnapshotterCA::MaybeGrabProfilerScreenshot(
ScreenshotGrabber* aScreenshotGrabber, const gfx::IntSize& aWindowSize) {
UpdateSnapshot(aWindowSize);
WindowNLRS window(mGL, mSnapshot);
aScreenshotGrabber->MaybeGrabScreenshot(window);
}
NativeLayerCA::NativeLayerCA(const IntSize& aSize, bool aIsOpaque,
SurfacePoolHandleCA* aSurfacePoolHandle)
: mMutex("NativeLayerCA"),
mSurfacePoolHandle(aSurfacePoolHandle),
mSize(aSize),
mIsOpaque(aIsOpaque) {
MOZ_RELEASE_ASSERT(mSurfacePoolHandle, "Need a non-null surface pool handle.");
}
NativeLayerCA::NativeLayerCA(bool aIsOpaque)
: mMutex("NativeLayerCA"), mSurfacePoolHandle(nullptr), mIsOpaque(aIsOpaque) {}
NativeLayerCA::~NativeLayerCA() {
if (mInProgressLockedIOSurface) {
mInProgressLockedIOSurface->Unlock(false);
mInProgressLockedIOSurface = nullptr;
}
if (mInProgressSurface) {
IOSurfaceDecrementUseCount(mInProgressSurface->mSurface.get());
mSurfacePoolHandle->ReturnSurfaceToPool(mInProgressSurface->mSurface);
}
if (mFrontSurface) {
mSurfacePoolHandle->ReturnSurfaceToPool(mFrontSurface->mSurface);
}
for (const auto& surf : mSurfaces) {
mSurfacePoolHandle->ReturnSurfaceToPool(surf.mEntry.mSurface);
}
}
void NativeLayerCA::AttachExternalImage(wr::RenderTextureHost* aExternalImage) {
wr::RenderMacIOSurfaceTextureHostOGL* texture =
aExternalImage->AsRenderMacIOSurfaceTextureHostOGL();
MOZ_ASSERT(texture);
mTextureHost = texture;
mSize = texture->GetSize(0);
mDisplayRect = IntRect(IntPoint{}, mSize);
ForAllRepresentations([&](Representation& r) {
r.mMutatedFrontSurface = true;
r.mMutatedDisplayRect = true;
r.mMutatedSize = true;
});
}
void NativeLayerCA::SetSurfaceIsFlipped(bool aIsFlipped) {
MutexAutoLock lock(mMutex);
if (aIsFlipped != mSurfaceIsFlipped) {
mSurfaceIsFlipped = aIsFlipped;
ForAllRepresentations([&](Representation& r) { r.mMutatedSurfaceIsFlipped = true; });
}
}
bool NativeLayerCA::SurfaceIsFlipped() {
MutexAutoLock lock(mMutex);
return mSurfaceIsFlipped;
}
IntSize NativeLayerCA::GetSize() {
MutexAutoLock lock(mMutex);
return mSize;
}
void NativeLayerCA::SetPosition(const IntPoint& aPosition) {
MutexAutoLock lock(mMutex);
if (aPosition != mPosition) {
mPosition = aPosition;
ForAllRepresentations([&](Representation& r) { r.mMutatedPosition = true; });
}
}
IntPoint NativeLayerCA::GetPosition() {
MutexAutoLock lock(mMutex);
return mPosition;
}
void NativeLayerCA::SetTransform(const Matrix4x4& aTransform) {
MutexAutoLock lock(mMutex);
MOZ_ASSERT(aTransform.IsRectilinear());
if (aTransform != mTransform) {
mTransform = aTransform;
ForAllRepresentations([&](Representation& r) { r.mMutatedTransform = true; });
}
}
void NativeLayerCA::SetSamplingFilter(gfx::SamplingFilter aSamplingFilter) {
MutexAutoLock lock(mMutex);
if (aSamplingFilter != mSamplingFilter) {
mSamplingFilter = aSamplingFilter;
ForAllRepresentations([&](Representation& r) { r.mMutatedSamplingFilter = true; });
}
}
Matrix4x4 NativeLayerCA::GetTransform() {
MutexAutoLock lock(mMutex);
return mTransform;
}
IntRect NativeLayerCA::GetRect() {
MutexAutoLock lock(mMutex);
return IntRect(mPosition, mSize);
}
void NativeLayerCA::SetBackingScale(float aBackingScale) {
MutexAutoLock lock(mMutex);
if (aBackingScale != mBackingScale) {
mBackingScale = aBackingScale;
ForAllRepresentations([&](Representation& r) { r.mMutatedBackingScale = true; });
}
}
bool NativeLayerCA::IsOpaque() {
MutexAutoLock lock(mMutex);
return mIsOpaque;
}
void NativeLayerCA::SetClipRect(const Maybe<gfx::IntRect>& aClipRect) {
MutexAutoLock lock(mMutex);
if (aClipRect != mClipRect) {
mClipRect = aClipRect;
ForAllRepresentations([&](Representation& r) { r.mMutatedClipRect = true; });
}
}
Maybe<gfx::IntRect> NativeLayerCA::ClipRect() {
MutexAutoLock lock(mMutex);
return mClipRect;
}
gfx::IntRect NativeLayerCA::CurrentSurfaceDisplayRect() {
MutexAutoLock lock(mMutex);
return mDisplayRect;
}
NativeLayerCA::Representation::~Representation() {
[mContentCALayer release];
[mOpaquenessTintLayer release];
[mWrappingCALayer release];
}
void NativeLayerCA::InvalidateRegionThroughoutSwapchain(const MutexAutoLock&,
const IntRegion& aRegion) {
IntRegion r = aRegion;
if (mInProgressSurface) {
mInProgressSurface->mInvalidRegion.OrWith(r);
}
if (mFrontSurface) {
mFrontSurface->mInvalidRegion.OrWith(r);
}
for (auto& surf : mSurfaces) {
surf.mEntry.mInvalidRegion.OrWith(r);
}
}
bool NativeLayerCA::NextSurface(const MutexAutoLock& aLock) {
if (mSize.IsEmpty()) {
NSLog(@"NextSurface returning false because of invalid mSize (%d, %d).", mSize.width,
mSize.height);
return false;
}
MOZ_RELEASE_ASSERT(
!mInProgressSurface,
"ERROR: Do not call NextSurface twice in sequence. Call NotifySurfaceReady before the "
"next call to NextSurface.");
Maybe<SurfaceWithInvalidRegion> surf = GetUnusedSurfaceAndCleanUp(aLock);
if (!surf) {
CFTypeRefPtr<IOSurfaceRef> newSurf = mSurfacePoolHandle->ObtainSurfaceFromPool(mSize);
if (!newSurf) {
NSLog(@"NextSurface returning false because IOSurfaceCreate failed to create the surface.");
return false;
}
surf = Some(SurfaceWithInvalidRegion{newSurf, IntRect({}, mSize)});
}
MOZ_RELEASE_ASSERT(surf);
mInProgressSurface = std::move(surf);
IOSurfaceIncrementUseCount(mInProgressSurface->mSurface.get());
return true;
}
template <typename F>
void NativeLayerCA::HandlePartialUpdate(const MutexAutoLock& aLock, const IntRect& aDisplayRect,
const IntRegion& aUpdateRegion, F&& aCopyFn) {
MOZ_RELEASE_ASSERT(IntRect({}, mSize).Contains(aUpdateRegion.GetBounds()),
"The update region should be within the surface bounds.");
MOZ_RELEASE_ASSERT(IntRect({}, mSize).Contains(aDisplayRect),
"The display rect should be within the surface bounds.");
MOZ_RELEASE_ASSERT(!mInProgressUpdateRegion);
MOZ_RELEASE_ASSERT(!mInProgressDisplayRect);
mInProgressUpdateRegion = Some(aUpdateRegion);
mInProgressDisplayRect = Some(aDisplayRect);
InvalidateRegionThroughoutSwapchain(aLock, aUpdateRegion);
if (mFrontSurface) {
// Copy not-overwritten valid content from mFrontSurface so that valid content never gets lost.
gfx::IntRegion copyRegion;
copyRegion.Sub(mInProgressSurface->mInvalidRegion, aUpdateRegion);
copyRegion.SubOut(mFrontSurface->mInvalidRegion);
if (!copyRegion.IsEmpty()) {
// Now copy the valid content, using a caller-provided copy function.
aCopyFn(mFrontSurface->mSurface, copyRegion);
mInProgressSurface->mInvalidRegion.SubOut(copyRegion);
}
}
}
RefPtr<gfx::DrawTarget> NativeLayerCA::NextSurfaceAsDrawTarget(const IntRect& aDisplayRect,
const IntRegion& aUpdateRegion,
gfx::BackendType aBackendType) {
MutexAutoLock lock(mMutex);
if (!NextSurface(lock)) {
return nullptr;
}
mInProgressLockedIOSurface = new MacIOSurface(mInProgressSurface->mSurface);
mInProgressLockedIOSurface->Lock(false);
RefPtr<gfx::DrawTarget> dt = mInProgressLockedIOSurface->GetAsDrawTargetLocked(aBackendType);
HandlePartialUpdate(
lock, aDisplayRect, aUpdateRegion,
[&](CFTypeRefPtr<IOSurfaceRef> validSource, const gfx::IntRegion& copyRegion) {
RefPtr<MacIOSurface> source = new MacIOSurface(validSource);
source->Lock(true);
{
RefPtr<gfx::DrawTarget> sourceDT = source->GetAsDrawTargetLocked(aBackendType);
RefPtr<gfx::SourceSurface> sourceSurface = sourceDT->Snapshot();
for (auto iter = copyRegion.RectIter(); !iter.Done(); iter.Next()) {
const gfx::IntRect& r = iter.Get();
dt->CopySurface(sourceSurface, r, r.TopLeft());
}
}
source->Unlock(true);
});
return dt;
}
Maybe<GLuint> NativeLayerCA::NextSurfaceAsFramebuffer(const IntRect& aDisplayRect,
const IntRegion& aUpdateRegion,
bool aNeedsDepth) {
MutexAutoLock lock(mMutex);
if (!NextSurface(lock)) {
return Nothing();
}
Maybe<GLuint> fbo =
mSurfacePoolHandle->GetFramebufferForSurface(mInProgressSurface->mSurface, aNeedsDepth);
if (!fbo) {
return Nothing();
}
HandlePartialUpdate(
lock, aDisplayRect, aUpdateRegion,
[&](CFTypeRefPtr<IOSurfaceRef> validSource, const gfx::IntRegion& copyRegion) {
// Copy copyRegion from validSource to fbo.
MOZ_RELEASE_ASSERT(mSurfacePoolHandle->gl());
mSurfacePoolHandle->gl()->MakeCurrent();
Maybe<GLuint> sourceFBO = mSurfacePoolHandle->GetFramebufferForSurface(validSource, false);
if (!sourceFBO) {
return;
}
for (auto iter = copyRegion.RectIter(); !iter.Done(); iter.Next()) {
gfx::IntRect r = iter.Get();
if (mSurfaceIsFlipped) {
r.y = mSize.height - r.YMost();
}
mSurfacePoolHandle->gl()->BlitHelper()->BlitFramebufferToFramebuffer(*sourceFBO, *fbo, r,
r, LOCAL_GL_NEAREST);
}
});
return fbo;
}
void NativeLayerCA::NotifySurfaceReady() {
MutexAutoLock lock(mMutex);
MOZ_RELEASE_ASSERT(mInProgressSurface,
"NotifySurfaceReady called without preceding call to NextSurface");
if (mInProgressLockedIOSurface) {
mInProgressLockedIOSurface->Unlock(false);
mInProgressLockedIOSurface = nullptr;
}
if (mFrontSurface) {
mSurfaces.push_back({*mFrontSurface, 0});
mFrontSurface = Nothing();
}
MOZ_RELEASE_ASSERT(mInProgressUpdateRegion);
IOSurfaceDecrementUseCount(mInProgressSurface->mSurface.get());
mFrontSurface = std::move(mInProgressSurface);
mFrontSurface->mInvalidRegion.SubOut(mInProgressUpdateRegion.extract());
ForAllRepresentations([&](Representation& r) { r.mMutatedFrontSurface = true; });
MOZ_RELEASE_ASSERT(mInProgressDisplayRect);
if (!mDisplayRect.IsEqualInterior(*mInProgressDisplayRect)) {
mDisplayRect = *mInProgressDisplayRect;
ForAllRepresentations([&](Representation& r) { r.mMutatedDisplayRect = true; });
}
mInProgressDisplayRect = Nothing();
MOZ_RELEASE_ASSERT(mFrontSurface->mInvalidRegion.Intersect(mDisplayRect).IsEmpty(),
"Parts of the display rect are invalid! This shouldn't happen.");
}
void NativeLayerCA::DiscardBackbuffers() {
MutexAutoLock lock(mMutex);
for (const auto& surf : mSurfaces) {
mSurfacePoolHandle->ReturnSurfaceToPool(surf.mEntry.mSurface);
}
mSurfaces.clear();
}
NativeLayerCA::Representation& NativeLayerCA::GetRepresentation(
WhichRepresentation aRepresentation) {
switch (aRepresentation) {
case WhichRepresentation::ONSCREEN:
return mOnscreenRepresentation;
case WhichRepresentation::OFFSCREEN:
return mOffscreenRepresentation;
}
}
template <typename F>
void NativeLayerCA::ForAllRepresentations(F aFn) {
aFn(mOnscreenRepresentation);
aFn(mOffscreenRepresentation);
}
void NativeLayerCA::ApplyChanges(WhichRepresentation aRepresentation) {
MutexAutoLock lock(mMutex);
CFTypeRefPtr<IOSurfaceRef> surface;
if (mFrontSurface) {
surface = mFrontSurface->mSurface;
} else if (mTextureHost) {
surface = mTextureHost->GetSurface()->GetIOSurfaceRef();
}
GetRepresentation(aRepresentation)
.ApplyChanges(mSize, mIsOpaque, mPosition, mTransform, mDisplayRect, mClipRect, mBackingScale,
mSurfaceIsFlipped, mSamplingFilter, surface);
}
CALayer* NativeLayerCA::UnderlyingCALayer(WhichRepresentation aRepresentation) {
MutexAutoLock lock(mMutex);
return GetRepresentation(aRepresentation).UnderlyingCALayer();
}
void NativeLayerCA::Representation::ApplyChanges(
const IntSize& aSize, bool aIsOpaque, const IntPoint& aPosition, const Matrix4x4& aTransform,
const IntRect& aDisplayRect, const Maybe<IntRect>& aClipRect, float aBackingScale,
bool aSurfaceIsFlipped, gfx::SamplingFilter aSamplingFilter,
CFTypeRefPtr<IOSurfaceRef> aFrontSurface) {
if (!mWrappingCALayer) {
mWrappingCALayer = [[CALayer layer] retain];
mWrappingCALayer.position = NSZeroPoint;
mWrappingCALayer.bounds = NSZeroRect;
mWrappingCALayer.anchorPoint = NSZeroPoint;
mWrappingCALayer.contentsGravity = kCAGravityTopLeft;
mContentCALayer = [[CALayer layer] retain];
mContentCALayer.position = NSZeroPoint;
mContentCALayer.anchorPoint = NSZeroPoint;
mContentCALayer.contentsGravity = kCAGravityTopLeft;
mContentCALayer.contentsScale = 1;
mContentCALayer.bounds = CGRectMake(0, 0, aSize.width, aSize.height);
mContentCALayer.opaque = aIsOpaque;
if ([mContentCALayer respondsToSelector:@selector(setContentsOpaque:)]) {
// The opaque property seems to not be enough when using IOSurface contents.
// Additionally, call the private method setContentsOpaque.
[mContentCALayer setContentsOpaque:aIsOpaque];
}
[mWrappingCALayer addSublayer:mContentCALayer];
}
bool shouldTintOpaqueness = StaticPrefs::gfx_core_animation_tint_opaque();
if (shouldTintOpaqueness && !mOpaquenessTintLayer) {
mOpaquenessTintLayer = [[CALayer layer] retain];
mOpaquenessTintLayer.position = NSZeroPoint;
mOpaquenessTintLayer.bounds = mContentCALayer.bounds;
mOpaquenessTintLayer.anchorPoint = NSZeroPoint;
mOpaquenessTintLayer.contentsGravity = kCAGravityTopLeft;
if (aIsOpaque) {
mOpaquenessTintLayer.backgroundColor =
[[[NSColor greenColor] colorWithAlphaComponent:0.5] CGColor];
} else {
mOpaquenessTintLayer.backgroundColor =
[[[NSColor redColor] colorWithAlphaComponent:0.5] CGColor];
}
[mWrappingCALayer addSublayer:mOpaquenessTintLayer];
} else if (!shouldTintOpaqueness && mOpaquenessTintLayer) {
[mOpaquenessTintLayer removeFromSuperlayer];
[mOpaquenessTintLayer release];
mOpaquenessTintLayer = nullptr;
}
// CALayers have a position and a size, specified through the position and the bounds properties.
// layer.bounds.origin must always be (0, 0).
// A layer's position affects the layer's entire layer subtree. In other words, each layer's
// position is relative to its superlayer's position. We implement the clip rect using
// masksToBounds on mWrappingCALayer. So mContentCALayer's position is relative to the clip rect
// position.
// Note: The Core Animation docs on "Positioning and Sizing Sublayers" say:
// Important: Always use integral numbers for the width and height of your layer.
// We hope that this refers to integral physical pixels, and not to integral logical coordinates.
if (mMutatedBackingScale || mMutatedSize) {
mContentCALayer.bounds =
CGRectMake(0, 0, aSize.width / aBackingScale, aSize.height / aBackingScale);
if (mOpaquenessTintLayer) {
mOpaquenessTintLayer.bounds = mContentCALayer.bounds;
}
mContentCALayer.contentsScale = aBackingScale;
}
if (mMutatedBackingScale || mMutatedPosition || mMutatedDisplayRect || mMutatedClipRect ||
mMutatedTransform || mMutatedSurfaceIsFlipped || mMutatedSize) {
Maybe<IntRect> clipFromDisplayRect;
if (!aDisplayRect.IsEqualInterior(IntRect({}, aSize))) {
// When the display rect is a subset of the layer, then we want to guarantee that no
// pixels outside that rect are sampled, since they might be uninitialized.
// Transforming the display rect into a post-transform clip only maintains this if
// it's an integer translation, which is all we support for this case currently.
MOZ_ASSERT(aTransform.Is2DIntegerTranslation());
clipFromDisplayRect =
Some(RoundedToInt(aTransform.TransformBounds(IntRectToRect(aDisplayRect + aPosition))));
}
auto effectiveClip = IntersectMaybeRects(aClipRect, clipFromDisplayRect);
auto globalClipOrigin = effectiveClip ? effectiveClip->TopLeft() : IntPoint();
auto clipToLayerOffset = -globalClipOrigin;
mWrappingCALayer.position =
CGPointMake(globalClipOrigin.x / aBackingScale, globalClipOrigin.y / aBackingScale);
if (effectiveClip) {
mWrappingCALayer.masksToBounds = YES;
mWrappingCALayer.bounds = CGRectMake(0, 0, effectiveClip->Width() / aBackingScale,
effectiveClip->Height() / aBackingScale);
} else {
mWrappingCALayer.masksToBounds = NO;
}
Matrix4x4 transform = aTransform;
transform.PreTranslate(aPosition.x, aPosition.y, 0);
transform.PostTranslate(clipToLayerOffset.x, clipToLayerOffset.y, 0);
if (aSurfaceIsFlipped) {
transform.PreTranslate(0, aSize.height, 0).PreScale(1, -1, 1);
}
CATransform3D transformCA{transform._11,
transform._12,
transform._13,
transform._14,
transform._21,
transform._22,
transform._23,
transform._24,
transform._31,
transform._32,
transform._33,
transform._34,
transform._41 / aBackingScale,
transform._42 / aBackingScale,
transform._43,
transform._44};
mContentCALayer.transform = transformCA;
if (mOpaquenessTintLayer) {
mOpaquenessTintLayer.transform = mContentCALayer.transform;
}
}
if (mMutatedFrontSurface) {
mContentCALayer.contents = (id)aFrontSurface.get();
}
if (mMutatedSamplingFilter) {
if (aSamplingFilter == gfx::SamplingFilter::POINT) {
mContentCALayer.minificationFilter = kCAFilterNearest;
mContentCALayer.magnificationFilter = kCAFilterNearest;
} else {
mContentCALayer.minificationFilter = kCAFilterLinear;
mContentCALayer.magnificationFilter = kCAFilterLinear;
}
}
mMutatedPosition = false;
mMutatedTransform = false;
mMutatedBackingScale = false;
mMutatedSize = false;
mMutatedSurfaceIsFlipped = false;
mMutatedDisplayRect = false;
mMutatedClipRect = false;
mMutatedFrontSurface = false;
mMutatedSamplingFilter = false;
}
// Called when mMutex is already being held by the current thread.
Maybe<NativeLayerCA::SurfaceWithInvalidRegion> NativeLayerCA::GetUnusedSurfaceAndCleanUp(
const MutexAutoLock&) {
std::vector<SurfaceWithInvalidRegionAndCheckCount> usedSurfaces;
Maybe<SurfaceWithInvalidRegion> unusedSurface;
// Separate mSurfaces into used and unused surfaces.
for (auto& surf : mSurfaces) {
if (IOSurfaceIsInUse(surf.mEntry.mSurface.get())) {
surf.mCheckCount++;
if (surf.mCheckCount < 10) {
usedSurfaces.push_back(std::move(surf));
} else {
// The window server has been holding on to this surface for an unreasonably long time. This
// is known to happen sometimes, for example in occluded windows or after a GPU switch. In
// that case, release our references to the surface so that it doesn't look like we're
// trying to keep it alive.
mSurfacePoolHandle->ReturnSurfaceToPool(std::move(surf.mEntry.mSurface));
}
} else {
if (unusedSurface) {
// Multiple surfaces are unused. Keep the most recent one and release any earlier ones. The
// most recent one requires the least amount of copying during partial repaints.
mSurfacePoolHandle->ReturnSurfaceToPool(std::move(unusedSurface->mSurface));
}
unusedSurface = Some(std::move(surf.mEntry));
}
}
// Put the used surfaces back into mSurfaces.
mSurfaces = std::move(usedSurfaces);
return unusedSurface;
}
already_AddRefed<profiler_screenshots::RenderSource> WindowNLRS::GetWindowContents() {
return do_AddRef(mSnapshot);
}
already_AddRefed<profiler_screenshots::DownscaleTarget> WindowNLRS::CreateDownscaleTarget(
const IntSize& aSize) {
auto fb = gl::MozFramebuffer::Create(mGL, aSize, 0, false);
if (!fb) {
return nullptr;
}
RefPtr<profiler_screenshots::DownscaleTarget> dt = new DownscaleTargetNLRS(mGL, std::move(fb));
return dt.forget();
}
already_AddRefed<profiler_screenshots::AsyncReadbackBuffer> WindowNLRS::CreateAsyncReadbackBuffer(
const IntSize& aSize) {
size_t bufferByteCount = aSize.width * aSize.height * 4;
GLuint bufferHandle = 0;
mGL->fGenBuffers(1, &bufferHandle);
gl::ScopedPackState scopedPackState(mGL);
mGL->fBindBuffer(LOCAL_GL_PIXEL_PACK_BUFFER, bufferHandle);
mGL->fPixelStorei(LOCAL_GL_PACK_ALIGNMENT, 1);
mGL->fBufferData(LOCAL_GL_PIXEL_PACK_BUFFER, bufferByteCount, nullptr, LOCAL_GL_STREAM_READ);
return MakeAndAddRef<AsyncReadbackBufferNLRS>(mGL, aSize, bufferHandle);
}
bool DownscaleTargetNLRS::DownscaleFrom(profiler_screenshots::RenderSource* aSource,
const IntRect& aSourceRect, const IntRect& aDestRect) {
mGL->BlitHelper()->BlitFramebufferToFramebuffer(static_cast<RenderSourceNLRS*>(aSource)->FB().mFB,
mRenderSource->FB().mFB, aSourceRect, aDestRect,
LOCAL_GL_LINEAR);
return true;
}
void AsyncReadbackBufferNLRS::CopyFrom(profiler_screenshots::RenderSource* aSource) {
IntSize size = aSource->Size();
MOZ_RELEASE_ASSERT(Size() == size);
gl::ScopedPackState scopedPackState(mGL);
mGL->fBindBuffer(LOCAL_GL_PIXEL_PACK_BUFFER, mBufferHandle);
mGL->fPixelStorei(LOCAL_GL_PACK_ALIGNMENT, 1);
const gl::ScopedBindFramebuffer bindFB(mGL, static_cast<RenderSourceNLRS*>(aSource)->FB().mFB);
mGL->fReadPixels(0, 0, size.width, size.height, LOCAL_GL_RGBA, LOCAL_GL_UNSIGNED_BYTE, 0);
}
bool AsyncReadbackBufferNLRS::MapAndCopyInto(DataSourceSurface* aSurface,
const IntSize& aReadSize) {
MOZ_RELEASE_ASSERT(aReadSize <= aSurface->GetSize());
if (!mGL || !mGL->MakeCurrent()) {
return false;
}
gl::ScopedPackState scopedPackState(mGL);
mGL->fBindBuffer(LOCAL_GL_PIXEL_PACK_BUFFER, mBufferHandle);
mGL->fPixelStorei(LOCAL_GL_PACK_ALIGNMENT, 1);
const uint8_t* srcData = nullptr;
if (mGL->IsSupported(gl::GLFeature::map_buffer_range)) {
srcData = static_cast<uint8_t*>(mGL->fMapBufferRange(LOCAL_GL_PIXEL_PACK_BUFFER, 0,
aReadSize.height * aReadSize.width * 4,
LOCAL_GL_MAP_READ_BIT));
} else {
srcData =
static_cast<uint8_t*>(mGL->fMapBuffer(LOCAL_GL_PIXEL_PACK_BUFFER, LOCAL_GL_READ_ONLY));
}
if (!srcData) {
return false;
}
int32_t srcStride = mSize.width * 4; // Bind() sets an alignment of 1
DataSourceSurface::ScopedMap map(aSurface, DataSourceSurface::WRITE);
uint8_t* destData = map.GetData();
int32_t destStride = map.GetStride();
SurfaceFormat destFormat = aSurface->GetFormat();
for (int32_t destRow = 0; destRow < aReadSize.height; destRow++) {
// Turn srcData upside down during the copy.
int32_t srcRow = aReadSize.height - 1 - destRow;
const uint8_t* src = &srcData[srcRow * srcStride];
uint8_t* dest = &destData[destRow * destStride];
SwizzleData(src, srcStride, SurfaceFormat::R8G8B8A8, dest, destStride, destFormat,
IntSize(aReadSize.width, 1));
}
mGL->fUnmapBuffer(LOCAL_GL_PIXEL_PACK_BUFFER);
return true;
}
AsyncReadbackBufferNLRS::~AsyncReadbackBufferNLRS() {
if (mGL && mGL->MakeCurrent()) {
mGL->fDeleteBuffers(1, &mBufferHandle);
}
}
} // namespace layers
} // namespace mozilla