gecko-dev/layout/base/nsLayoutUtils.cpp

8635 строки
310 KiB
C++
Исходник Ответственный История

Этот файл содержит неоднозначные символы Юникода!

Этот файл содержит неоднозначные символы Юникода, которые могут быть перепутаны с другими в текущей локали. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы подсветить эти символы.

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 sw=2 et tw=78: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsLayoutUtils.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/BasicEvents.h"
#include "mozilla/EventDispatcher.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/gfx/PathHelpers.h"
#include "mozilla/Likely.h"
#include "mozilla/Maybe.h"
#include "mozilla/MemoryReporting.h"
#include "nsCharTraits.h"
#include "nsFontMetrics.h"
#include "nsPresContext.h"
#include "nsIContent.h"
#include "nsIDOMHTMLDocument.h"
#include "nsIDOMHTMLElement.h"
#include "nsFrameList.h"
#include "nsGkAtoms.h"
#include "nsHtml5Atoms.h"
#include "nsIAtom.h"
#include "nsCSSPseudoElements.h"
#include "nsCSSAnonBoxes.h"
#include "nsCSSColorUtils.h"
#include "nsView.h"
#include "nsViewManager.h"
#include "nsPlaceholderFrame.h"
#include "nsIScrollableFrame.h"
#include "nsIDOMEvent.h"
#include "nsDisplayList.h"
#include "nsRegion.h"
#include "nsFrameManager.h"
#include "nsBlockFrame.h"
#include "nsBidiPresUtils.h"
#include "imgIContainer.h"
#include "ImageOps.h"
#include "ImageRegion.h"
#include "gfxRect.h"
#include "gfxContext.h"
#include "nsRenderingContext.h"
#include "nsIInterfaceRequestorUtils.h"
#include "nsCSSRendering.h"
#include "nsThemeConstants.h"
#include "nsPIDOMWindow.h"
#include "nsIDocShell.h"
#include "nsIWidget.h"
#include "gfxMatrix.h"
#include "gfxPrefs.h"
#include "gfxTypes.h"
#include "nsTArray.h"
#include "mozilla/dom/HTMLCanvasElement.h"
#include "nsICanvasRenderingContextInternal.h"
#include "gfxPlatform.h"
#include <algorithm>
#include <limits>
#include "mozilla/dom/HTMLVideoElement.h"
#include "mozilla/dom/HTMLImageElement.h"
#include "mozilla/dom/DOMRect.h"
#include "mozilla/dom/KeyframeEffect.h"
#include "mozilla/layers/APZCCallbackHelper.h"
#include "imgIRequest.h"
#include "nsIImageLoadingContent.h"
#include "nsCOMPtr.h"
#include "nsCSSProps.h"
#include "nsListControlFrame.h"
#include "mozilla/dom/Element.h"
#include "nsCanvasFrame.h"
#include "gfxDrawable.h"
#include "gfxUtils.h"
#include "nsDataHashtable.h"
#include "nsTextFrame.h"
#include "nsFontFaceList.h"
#include "nsFontInflationData.h"
#include "nsSVGUtils.h"
#include "SVGImageContext.h"
#include "SVGTextFrame.h"
#include "nsStyleStructInlines.h"
#include "nsStyleTransformMatrix.h"
#include "nsIFrameInlines.h"
#include "ImageContainer.h"
#include "nsComputedDOMStyle.h"
#include "ActiveLayerTracker.h"
#include "mozilla/gfx/2D.h"
#include "gfx2DGlue.h"
#include "mozilla/LookAndFeel.h"
#include "UnitTransforms.h"
#include "TiledLayerBuffer.h" // For TILEDLAYERBUFFER_TILE_SIZE
#include "ClientLayerManager.h"
#include "nsRefreshDriver.h"
#include "nsIContentViewer.h"
#include "LayersLogging.h"
#include "mozilla/Preferences.h"
#include "nsFrameSelection.h"
#include "FrameLayerBuilder.h"
#include "mozilla/layers/APZCTreeManager.h"
#include "mozilla/Telemetry.h"
#include "mozilla/EventDispatcher.h"
#include "mozilla/EventStateManager.h"
#include "mozilla/RuleNodeCacheConditions.h"
#ifdef MOZ_XUL
#include "nsXULPopupManager.h"
#endif
#include "GeckoProfiler.h"
#include "nsAnimationManager.h"
#include "nsTransitionManager.h"
#include "RestyleManager.h"
using namespace mozilla;
using namespace mozilla::dom;
using namespace mozilla::image;
using namespace mozilla::layers;
using namespace mozilla::layout;
using namespace mozilla::gfx;
#define GRID_ENABLED_PREF_NAME "layout.css.grid.enabled"
#define RUBY_ENABLED_PREF_NAME "layout.css.ruby.enabled"
#define STICKY_ENABLED_PREF_NAME "layout.css.sticky.enabled"
#define DISPLAY_CONTENTS_ENABLED_PREF_NAME "layout.css.display-contents.enabled"
#define TEXT_ALIGN_TRUE_ENABLED_PREF_NAME "layout.css.text-align-true-value.enabled"
#ifdef DEBUG
// TODO: remove, see bug 598468.
bool nsLayoutUtils::gPreventAssertInCompareTreePosition = false;
#endif // DEBUG
typedef FrameMetrics::ViewID ViewID;
typedef nsStyleTransformMatrix::TransformReferenceBox TransformReferenceBox;
/* static */ uint32_t nsLayoutUtils::sFontSizeInflationEmPerLine;
/* static */ uint32_t nsLayoutUtils::sFontSizeInflationMinTwips;
/* static */ uint32_t nsLayoutUtils::sFontSizeInflationLineThreshold;
/* static */ int32_t nsLayoutUtils::sFontSizeInflationMappingIntercept;
/* static */ uint32_t nsLayoutUtils::sFontSizeInflationMaxRatio;
/* static */ bool nsLayoutUtils::sFontSizeInflationForceEnabled;
/* static */ bool nsLayoutUtils::sFontSizeInflationDisabledInMasterProcess;
/* static */ bool nsLayoutUtils::sInvalidationDebuggingIsEnabled;
/* static */ bool nsLayoutUtils::sCSSVariablesEnabled;
/* static */ bool nsLayoutUtils::sInterruptibleReflowEnabled;
/* static */ bool nsLayoutUtils::sSVGTransformOriginEnabled;
static ViewID sScrollIdCounter = FrameMetrics::START_SCROLL_ID;
typedef nsDataHashtable<nsUint64HashKey, nsIContent*> ContentMap;
static ContentMap* sContentMap = nullptr;
static ContentMap& GetContentMap() {
if (!sContentMap) {
sContentMap = new ContentMap();
}
return *sContentMap;
}
// When the pref "layout.css.grid.enabled" changes, this function is invoked
// to let us update kDisplayKTable, to selectively disable or restore the
// entries for "grid" and "inline-grid" in that table.
static void
GridEnabledPrefChangeCallback(const char* aPrefName, void* aClosure)
{
MOZ_ASSERT(strncmp(aPrefName, GRID_ENABLED_PREF_NAME,
ArrayLength(GRID_ENABLED_PREF_NAME)) == 0,
"We only registered this callback for a single pref, so it "
"should only be called for that pref");
static int32_t sIndexOfGridInDisplayTable;
static int32_t sIndexOfInlineGridInDisplayTable;
static bool sAreGridKeywordIndicesInitialized; // initialized to false
bool isGridEnabled =
Preferences::GetBool(GRID_ENABLED_PREF_NAME, false);
if (!sAreGridKeywordIndicesInitialized) {
// First run: find the position of "grid" and "inline-grid" in
// kDisplayKTable.
sIndexOfGridInDisplayTable =
nsCSSProps::FindIndexOfKeyword(eCSSKeyword_grid,
nsCSSProps::kDisplayKTable);
MOZ_ASSERT(sIndexOfGridInDisplayTable >= 0,
"Couldn't find grid in kDisplayKTable");
sIndexOfInlineGridInDisplayTable =
nsCSSProps::FindIndexOfKeyword(eCSSKeyword_inline_grid,
nsCSSProps::kDisplayKTable);
MOZ_ASSERT(sIndexOfInlineGridInDisplayTable >= 0,
"Couldn't find inline-grid in kDisplayKTable");
sAreGridKeywordIndicesInitialized = true;
}
// OK -- now, stomp on or restore the "grid" entries in kDisplayKTable,
// depending on whether the grid pref is enabled vs. disabled.
if (sIndexOfGridInDisplayTable >= 0) {
nsCSSProps::kDisplayKTable[sIndexOfGridInDisplayTable] =
isGridEnabled ? eCSSKeyword_grid : eCSSKeyword_UNKNOWN;
}
if (sIndexOfInlineGridInDisplayTable >= 0) {
nsCSSProps::kDisplayKTable[sIndexOfInlineGridInDisplayTable] =
isGridEnabled ? eCSSKeyword_inline_grid : eCSSKeyword_UNKNOWN;
}
}
static void
RubyEnabledPrefChangeCallback(const char* aPrefName, void* aClosure)
{
MOZ_ASSERT(strncmp(aPrefName, RUBY_ENABLED_PREF_NAME,
ArrayLength(RUBY_ENABLED_PREF_NAME)) == 0,
"We only registered this callback for a single pref, so it "
"should only be called for that pref");
static int32_t sIndexOfRubyInDisplayTable;
static int32_t sIndexOfRubyBaseInDisplayTable;
static int32_t sIndexOfRubyBaseContainerInDisplayTable;
static int32_t sIndexOfRubyTextInDisplayTable;
static int32_t sIndexOfRubyTextContainerInDisplayTable;
static bool sAreRubyKeywordIndicesInitialized; // initialized to false
bool isRubyEnabled =
Preferences::GetBool(RUBY_ENABLED_PREF_NAME, false);
if (!sAreRubyKeywordIndicesInitialized) {
// First run: find the position of the ruby display values in
// kDisplayKTable.
sIndexOfRubyInDisplayTable =
nsCSSProps::FindIndexOfKeyword(eCSSKeyword_ruby,
nsCSSProps::kDisplayKTable);
MOZ_ASSERT(sIndexOfRubyInDisplayTable >= 0,
"Couldn't find ruby in kDisplayKTable");
sIndexOfRubyBaseInDisplayTable =
nsCSSProps::FindIndexOfKeyword(eCSSKeyword_ruby_base,
nsCSSProps::kDisplayKTable);
MOZ_ASSERT(sIndexOfRubyBaseInDisplayTable >= 0,
"Couldn't find ruby-base in kDisplayKTable");
sIndexOfRubyBaseContainerInDisplayTable =
nsCSSProps::FindIndexOfKeyword(eCSSKeyword_ruby_base_container,
nsCSSProps::kDisplayKTable);
MOZ_ASSERT(sIndexOfRubyBaseContainerInDisplayTable >= 0,
"Couldn't find ruby-base-container in kDisplayKTable");
sIndexOfRubyTextInDisplayTable =
nsCSSProps::FindIndexOfKeyword(eCSSKeyword_ruby_text,
nsCSSProps::kDisplayKTable);
MOZ_ASSERT(sIndexOfRubyTextInDisplayTable >= 0,
"Couldn't find ruby-text in kDisplayKTable");
sIndexOfRubyTextContainerInDisplayTable =
nsCSSProps::FindIndexOfKeyword(eCSSKeyword_ruby_text_container,
nsCSSProps::kDisplayKTable);
MOZ_ASSERT(sIndexOfRubyTextContainerInDisplayTable >= 0,
"Couldn't find ruby-text-container in kDisplayKTable");
sAreRubyKeywordIndicesInitialized = true;
}
// OK -- now, stomp on or restore the "ruby" entries in kDisplayKTable,
// depending on whether the ruby pref is enabled vs. disabled.
if (sIndexOfRubyInDisplayTable >= 0) {
nsCSSProps::kDisplayKTable[sIndexOfRubyInDisplayTable] =
isRubyEnabled ? eCSSKeyword_ruby : eCSSKeyword_UNKNOWN;
}
if (sIndexOfRubyBaseInDisplayTable >= 0) {
nsCSSProps::kDisplayKTable[sIndexOfRubyBaseInDisplayTable] =
isRubyEnabled ? eCSSKeyword_ruby_base : eCSSKeyword_UNKNOWN;
}
if (sIndexOfRubyBaseContainerInDisplayTable >= 0) {
nsCSSProps::kDisplayKTable[sIndexOfRubyBaseContainerInDisplayTable] =
isRubyEnabled ? eCSSKeyword_ruby_base_container : eCSSKeyword_UNKNOWN;
}
if (sIndexOfRubyTextInDisplayTable >= 0) {
nsCSSProps::kDisplayKTable[sIndexOfRubyTextInDisplayTable] =
isRubyEnabled ? eCSSKeyword_ruby_text : eCSSKeyword_UNKNOWN;
}
if (sIndexOfRubyTextContainerInDisplayTable >= 0) {
nsCSSProps::kDisplayKTable[sIndexOfRubyTextContainerInDisplayTable] =
isRubyEnabled ? eCSSKeyword_ruby_text_container : eCSSKeyword_UNKNOWN;
}
}
// When the pref "layout.css.sticky.enabled" changes, this function is invoked
// to let us update kPositionKTable, to selectively disable or restore the
// entry for "sticky" in that table.
static void
StickyEnabledPrefChangeCallback(const char* aPrefName, void* aClosure)
{
MOZ_ASSERT(strncmp(aPrefName, STICKY_ENABLED_PREF_NAME,
ArrayLength(STICKY_ENABLED_PREF_NAME)) == 0,
"We only registered this callback for a single pref, so it "
"should only be called for that pref");
static int32_t sIndexOfStickyInPositionTable;
static bool sIsStickyKeywordIndexInitialized; // initialized to false
bool isStickyEnabled =
Preferences::GetBool(STICKY_ENABLED_PREF_NAME, false);
if (!sIsStickyKeywordIndexInitialized) {
// First run: find the position of "sticky" in kPositionKTable.
sIndexOfStickyInPositionTable =
nsCSSProps::FindIndexOfKeyword(eCSSKeyword_sticky,
nsCSSProps::kPositionKTable);
MOZ_ASSERT(sIndexOfStickyInPositionTable >= 0,
"Couldn't find sticky in kPositionKTable");
sIsStickyKeywordIndexInitialized = true;
}
// OK -- now, stomp on or restore the "sticky" entry in kPositionKTable,
// depending on whether the sticky pref is enabled vs. disabled.
nsCSSProps::kPositionKTable[sIndexOfStickyInPositionTable] =
isStickyEnabled ? eCSSKeyword_sticky : eCSSKeyword_UNKNOWN;
}
// When the pref "layout.css.display-contents.enabled" changes, this function is
// invoked to let us update kDisplayKTable, to selectively disable or restore
// the entries for "contents" in that table.
static void
DisplayContentsEnabledPrefChangeCallback(const char* aPrefName, void* aClosure)
{
NS_ASSERTION(strcmp(aPrefName, DISPLAY_CONTENTS_ENABLED_PREF_NAME) == 0,
"Did you misspell " DISPLAY_CONTENTS_ENABLED_PREF_NAME " ?");
static bool sIsDisplayContentsKeywordIndexInitialized;
static int32_t sIndexOfContentsInDisplayTable;
bool isDisplayContentsEnabled =
Preferences::GetBool(DISPLAY_CONTENTS_ENABLED_PREF_NAME, false);
if (!sIsDisplayContentsKeywordIndexInitialized) {
// First run: find the position of "contents" in kDisplayKTable.
sIndexOfContentsInDisplayTable =
nsCSSProps::FindIndexOfKeyword(eCSSKeyword_contents,
nsCSSProps::kDisplayKTable);
sIsDisplayContentsKeywordIndexInitialized = true;
}
// OK -- now, stomp on or restore the "contents" entry in kDisplayKTable,
// depending on whether the pref is enabled vs. disabled.
if (sIndexOfContentsInDisplayTable >= 0) {
nsCSSProps::kDisplayKTable[sIndexOfContentsInDisplayTable] =
isDisplayContentsEnabled ? eCSSKeyword_contents : eCSSKeyword_UNKNOWN;
}
}
// When the pref "layout.css.text-align-true-value.enabled" changes, this
// function is called to let us update kTextAlignKTable & kTextAlignLastKTable,
// to selectively disable or restore the entries for "true" in those tables.
static void
TextAlignTrueEnabledPrefChangeCallback(const char* aPrefName, void* aClosure)
{
NS_ASSERTION(strcmp(aPrefName, TEXT_ALIGN_TRUE_ENABLED_PREF_NAME) == 0,
"Did you misspell " TEXT_ALIGN_TRUE_ENABLED_PREF_NAME " ?");
static bool sIsInitialized;
static int32_t sIndexOfTrueInTextAlignTable;
static int32_t sIndexOfTrueInTextAlignLastTable;
bool isTextAlignTrueEnabled =
Preferences::GetBool(TEXT_ALIGN_TRUE_ENABLED_PREF_NAME, false);
if (!sIsInitialized) {
// First run: find the position of "true" in kTextAlignKTable.
sIndexOfTrueInTextAlignTable =
nsCSSProps::FindIndexOfKeyword(eCSSKeyword_true,
nsCSSProps::kTextAlignKTable);
// First run: find the position of "true" in kTextAlignLastKTable.
sIndexOfTrueInTextAlignLastTable =
nsCSSProps::FindIndexOfKeyword(eCSSKeyword_true,
nsCSSProps::kTextAlignLastKTable);
sIsInitialized = true;
}
// OK -- now, stomp on or restore the "true" entry in the keyword tables,
// depending on whether the pref is enabled vs. disabled.
MOZ_ASSERT(sIndexOfTrueInTextAlignTable >= 0);
nsCSSProps::kTextAlignKTable[sIndexOfTrueInTextAlignTable] =
isTextAlignTrueEnabled ? eCSSKeyword_true : eCSSKeyword_UNKNOWN;
MOZ_ASSERT(sIndexOfTrueInTextAlignLastTable >= 0);
nsCSSProps::kTextAlignLastKTable[sIndexOfTrueInTextAlignLastTable] =
isTextAlignTrueEnabled ? eCSSKeyword_true : eCSSKeyword_UNKNOWN;
}
bool
nsLayoutUtils::HasAnimationsForCompositor(const nsIFrame* aFrame,
nsCSSProperty aProperty)
{
nsPresContext* presContext = aFrame->PresContext();
return presContext->AnimationManager()->GetAnimationsForCompositor(aFrame, aProperty) ||
presContext->TransitionManager()->GetAnimationsForCompositor(aFrame, aProperty);
}
bool
nsLayoutUtils::HasCurrentAnimationOfProperty(const nsIFrame* aFrame,
nsCSSProperty aProperty)
{
nsPresContext* presContext = aFrame->PresContext();
AnimationCollection* collection =
presContext->AnimationManager()->GetAnimationCollection(aFrame);
if (collection &&
collection->HasCurrentAnimationOfProperty(aProperty)) {
return true;
}
collection =
presContext->TransitionManager()->GetAnimationCollection(aFrame);
if (collection &&
collection->HasCurrentAnimationOfProperty(aProperty)) {
return true;
}
return false;
}
bool
nsLayoutUtils::HasCurrentAnimations(const nsIFrame* aFrame)
{
nsPresContext* presContext = aFrame->PresContext();
AnimationCollection* collection =
presContext->AnimationManager()->GetAnimationCollection(aFrame);
return collection &&
collection->HasCurrentAnimations();
}
bool
nsLayoutUtils::HasCurrentTransitions(const nsIFrame* aFrame)
{
nsPresContext* presContext = aFrame->PresContext();
AnimationCollection* collection =
presContext->TransitionManager()->GetAnimationCollection(aFrame);
return collection &&
collection->HasCurrentAnimations();
}
bool
nsLayoutUtils::HasCurrentAnimationsForProperties(const nsIFrame* aFrame,
const nsCSSProperty* aProperties,
size_t aPropertyCount)
{
nsPresContext* presContext = aFrame->PresContext();
AnimationCollection* collection =
presContext->AnimationManager()->GetAnimationCollection(aFrame);
if (collection &&
collection->HasCurrentAnimationsForProperties(aProperties,
aPropertyCount)) {
return true;
}
collection =
presContext->TransitionManager()->GetAnimationCollection(aFrame);
if (collection &&
collection->HasCurrentAnimationsForProperties(aProperties,
aPropertyCount)) {
return true;
}
return false;
}
static float
GetSuitableScale(float aMaxScale, float aMinScale,
nscoord aVisibleDimension, nscoord aDisplayDimension)
{
float displayVisibleRatio = float(aDisplayDimension) /
float(aVisibleDimension);
// We want to rasterize based on the largest scale used during the
// transform animation, unless that would make us rasterize something
// larger than the screen. But we never want to go smaller than the
// minimum scale over the animation.
if (FuzzyEqualsMultiplicative(displayVisibleRatio, aMaxScale, .01f)) {
// Using aMaxScale may make us rasterize something a fraction larger than
// the screen. However, if aMaxScale happens to be the final scale of a
// transform animation it is better to use aMaxScale so that for the
// fraction of a second before we delayerize the composited texture it has
// a better chance of being pixel aligned and composited without resampling
// (avoiding visually clunky delayerization).
return aMaxScale;
}
return std::max(std::min(aMaxScale, displayVisibleRatio), aMinScale);
}
static void
GetMinAndMaxScaleForAnimationProperty(const nsIFrame* aFrame,
AnimationCollection* aAnimations,
gfxSize& aMaxScale,
gfxSize& aMinScale)
{
for (size_t animIdx = aAnimations->mAnimations.Length(); animIdx-- != 0; ) {
dom::Animation* anim = aAnimations->mAnimations[animIdx];
if (!anim->IsRelevant()) {
continue;
}
dom::KeyframeEffectReadOnly* effect = anim->GetEffect();
for (size_t propIdx = effect->Properties().Length(); propIdx-- != 0; ) {
AnimationProperty& prop = effect->Properties()[propIdx];
if (prop.mProperty == eCSSProperty_transform) {
for (uint32_t segIdx = prop.mSegments.Length(); segIdx-- != 0; ) {
AnimationPropertySegment& segment = prop.mSegments[segIdx];
gfxSize from = segment.mFromValue.GetScaleValue(aFrame);
aMaxScale.width = std::max<float>(aMaxScale.width, from.width);
aMaxScale.height = std::max<float>(aMaxScale.height, from.height);
aMinScale.width = std::min<float>(aMinScale.width, from.width);
aMinScale.height = std::min<float>(aMinScale.height, from.height);
gfxSize to = segment.mToValue.GetScaleValue(aFrame);
aMaxScale.width = std::max<float>(aMaxScale.width, to.width);
aMaxScale.height = std::max<float>(aMaxScale.height, to.height);
aMinScale.width = std::min<float>(aMinScale.width, to.width);
aMinScale.height = std::min<float>(aMinScale.height, to.height);
}
}
}
}
}
gfxSize
nsLayoutUtils::ComputeSuitableScaleForAnimation(const nsIFrame* aFrame,
const nsSize& aVisibleSize,
const nsSize& aDisplaySize)
{
gfxSize maxScale(std::numeric_limits<gfxFloat>::min(),
std::numeric_limits<gfxFloat>::min());
gfxSize minScale(std::numeric_limits<gfxFloat>::max(),
std::numeric_limits<gfxFloat>::max());
nsPresContext* presContext = aFrame->PresContext();
AnimationCollection* animations =
presContext->AnimationManager()->GetAnimationsForCompositor(
aFrame, eCSSProperty_transform);
if (animations) {
GetMinAndMaxScaleForAnimationProperty(aFrame, animations,
maxScale, minScale);
}
animations =
presContext->TransitionManager()->GetAnimationsForCompositor(
aFrame, eCSSProperty_transform);
if (animations) {
GetMinAndMaxScaleForAnimationProperty(aFrame, animations,
maxScale, minScale);
}
if (maxScale.width == std::numeric_limits<gfxFloat>::min()) {
// We didn't encounter a transform
return gfxSize(1.0, 1.0);
}
return gfxSize(GetSuitableScale(maxScale.width, minScale.width,
aVisibleSize.width, aDisplaySize.width),
GetSuitableScale(maxScale.height, minScale.height,
aVisibleSize.height, aDisplaySize.height));
}
bool
nsLayoutUtils::AreAsyncAnimationsEnabled()
{
static bool sAreAsyncAnimationsEnabled;
static bool sAsyncPrefCached = false;
if (!sAsyncPrefCached) {
sAsyncPrefCached = true;
Preferences::AddBoolVarCache(&sAreAsyncAnimationsEnabled,
"layers.offmainthreadcomposition.async-animations");
}
return sAreAsyncAnimationsEnabled &&
gfxPlatform::OffMainThreadCompositingEnabled();
}
bool
nsLayoutUtils::IsAnimationLoggingEnabled()
{
static bool sShouldLog;
static bool sShouldLogPrefCached;
if (!sShouldLogPrefCached) {
sShouldLogPrefCached = true;
Preferences::AddBoolVarCache(&sShouldLog,
"layers.offmainthreadcomposition.log-animations");
}
return sShouldLog;
}
bool
nsLayoutUtils::UseBackgroundNearestFiltering()
{
static bool sUseBackgroundNearestFilteringEnabled;
static bool sUseBackgroundNearestFilteringPrefInitialised = false;
if (!sUseBackgroundNearestFilteringPrefInitialised) {
sUseBackgroundNearestFilteringPrefInitialised = true;
sUseBackgroundNearestFilteringEnabled =
Preferences::GetBool("gfx.filter.nearest.force-enabled", false);
}
return sUseBackgroundNearestFilteringEnabled;
}
bool
nsLayoutUtils::GPUImageScalingEnabled()
{
static bool sGPUImageScalingEnabled;
static bool sGPUImageScalingPrefInitialised = false;
if (!sGPUImageScalingPrefInitialised) {
sGPUImageScalingPrefInitialised = true;
sGPUImageScalingEnabled =
Preferences::GetBool("layout.gpu-image-scaling.enabled", false);
}
return sGPUImageScalingEnabled;
}
bool
nsLayoutUtils::AnimatedImageLayersEnabled()
{
static bool sAnimatedImageLayersEnabled;
static bool sAnimatedImageLayersPrefCached = false;
if (!sAnimatedImageLayersPrefCached) {
sAnimatedImageLayersPrefCached = true;
Preferences::AddBoolVarCache(&sAnimatedImageLayersEnabled,
"layout.animated-image-layers.enabled",
false);
}
return sAnimatedImageLayersEnabled;
}
bool
nsLayoutUtils::CSSFiltersEnabled()
{
static bool sCSSFiltersEnabled;
static bool sCSSFiltersPrefCached = false;
if (!sCSSFiltersPrefCached) {
sCSSFiltersPrefCached = true;
Preferences::AddBoolVarCache(&sCSSFiltersEnabled,
"layout.css.filters.enabled",
false);
}
return sCSSFiltersEnabled;
}
bool
nsLayoutUtils::CSSClipPathShapesEnabled()
{
static bool sCSSClipPathShapesEnabled;
static bool sCSSClipPathShapesPrefCached = false;
if (!sCSSClipPathShapesPrefCached) {
sCSSClipPathShapesPrefCached = true;
Preferences::AddBoolVarCache(&sCSSClipPathShapesEnabled,
"layout.css.clip-path-shapes.enabled",
false);
}
return sCSSClipPathShapesEnabled;
}
bool
nsLayoutUtils::UnsetValueEnabled()
{
static bool sUnsetValueEnabled;
static bool sUnsetValuePrefCached = false;
if (!sUnsetValuePrefCached) {
sUnsetValuePrefCached = true;
Preferences::AddBoolVarCache(&sUnsetValueEnabled,
"layout.css.unset-value.enabled",
false);
}
return sUnsetValueEnabled;
}
bool
nsLayoutUtils::IsTextAlignTrueValueEnabled()
{
static bool sTextAlignTrueValueEnabled;
static bool sTextAlignTrueValueEnabledPrefCached = false;
if (!sTextAlignTrueValueEnabledPrefCached) {
sTextAlignTrueValueEnabledPrefCached = true;
Preferences::AddBoolVarCache(&sTextAlignTrueValueEnabled,
TEXT_ALIGN_TRUE_ENABLED_PREF_NAME,
false);
}
return sTextAlignTrueValueEnabled;
}
void
nsLayoutUtils::UnionChildOverflow(nsIFrame* aFrame,
nsOverflowAreas& aOverflowAreas,
FrameChildListIDs aSkipChildLists)
{
// Iterate over all children except pop-ups.
FrameChildListIDs skip = aSkipChildLists |
nsIFrame::kSelectPopupList | nsIFrame::kPopupList;
for (nsIFrame::ChildListIterator childLists(aFrame);
!childLists.IsDone(); childLists.Next()) {
if (skip.Contains(childLists.CurrentID())) {
continue;
}
nsFrameList children = childLists.CurrentList();
for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next()) {
nsIFrame* child = e.get();
nsOverflowAreas childOverflow =
child->GetOverflowAreas() + child->GetPosition();
aOverflowAreas.UnionWith(childOverflow);
}
}
}
static void DestroyViewID(void* aObject, nsIAtom* aPropertyName,
void* aPropertyValue, void* aData)
{
ViewID* id = static_cast<ViewID*>(aPropertyValue);
GetContentMap().Remove(*id);
delete id;
}
/**
* A namespace class for static layout utilities.
*/
bool
nsLayoutUtils::FindIDFor(const nsIContent* aContent, ViewID* aOutViewId)
{
void* scrollIdProperty = aContent->GetProperty(nsGkAtoms::RemoteId);
if (scrollIdProperty) {
*aOutViewId = *static_cast<ViewID*>(scrollIdProperty);
return true;
}
return false;
}
ViewID
nsLayoutUtils::FindOrCreateIDFor(nsIContent* aContent)
{
ViewID scrollId;
if (!FindIDFor(aContent, &scrollId)) {
scrollId = sScrollIdCounter++;
aContent->SetProperty(nsGkAtoms::RemoteId, new ViewID(scrollId),
DestroyViewID);
GetContentMap().Put(scrollId, aContent);
}
return scrollId;
}
nsIContent*
nsLayoutUtils::FindContentFor(ViewID aId)
{
MOZ_ASSERT(aId != FrameMetrics::NULL_SCROLL_ID,
"Cannot find a content element in map for null IDs.");
nsIContent* content;
bool exists = GetContentMap().Get(aId, &content);
if (exists) {
return content;
} else {
return nullptr;
}
}
nsIScrollableFrame*
nsLayoutUtils::FindScrollableFrameFor(ViewID aId)
{
nsIContent* content = FindContentFor(aId);
if (!content) {
return nullptr;
}
nsIFrame* scrolledFrame = content->GetPrimaryFrame();
if (scrolledFrame && content->OwnerDoc()->GetRootElement() == content) {
// The content is the root element of a subdocument, so return the root scrollable
// for the subdocument.
scrolledFrame = scrolledFrame->PresContext()->PresShell()->GetRootScrollFrame();
}
return scrolledFrame ? scrolledFrame->GetScrollTargetFrame() : nullptr;
}
static nsRect
ApplyRectMultiplier(nsRect aRect, float aMultiplier)
{
if (aMultiplier == 1.0f) {
return aRect;
}
float newWidth = aRect.width * aMultiplier;
float newHeight = aRect.height * aMultiplier;
float newX = aRect.x - ((newWidth - aRect.width) / 2.0f);
float newY = aRect.y - ((newHeight - aRect.height) / 2.0f);
// Rounding doesn't matter too much here, do a round-in
return nsRect(ceil(newX), ceil(newY), floor(newWidth), floor(newHeight));
}
bool
nsLayoutUtils::UsesAsyncScrolling(nsIFrame* aFrame)
{
#ifdef MOZ_WIDGET_ANDROID
// We always have async scrolling for android
return true;
#endif
return AsyncPanZoomEnabled(aFrame);
}
bool
nsLayoutUtils::AsyncPanZoomEnabled(nsIFrame* aFrame)
{
// We use this as a shortcut, since if the compositor will never use APZ,
// no widget will either.
if (!gfxPlatform::AsyncPanZoomEnabled()) {
return false;
}
nsIFrame *frame = nsLayoutUtils::GetDisplayRootFrame(aFrame);
nsIWidget* widget = frame->GetNearestWidget();
if (!widget) {
return false;
}
return widget->AsyncPanZoomEnabled();
}
// Return the maximum displayport size, based on the LayerManager's maximum
// supported texture size. The result is in app units.
static nscoord
GetMaxDisplayPortSize(nsIContent* aContent)
{
MOZ_ASSERT(!gfxPrefs::LayersTilesEnabled(), "Do not clamp displayports if tiling is enabled");
nsIFrame* frame = aContent->GetPrimaryFrame();
if (!frame) {
return nscoord_MAX;
}
frame = nsLayoutUtils::GetDisplayRootFrame(frame);
nsIWidget* widget = frame->GetNearestWidget();
if (!widget) {
return nscoord_MAX;
}
LayerManager* lm = widget->GetLayerManager();
if (!lm) {
return nscoord_MAX;
}
nsPresContext* presContext = frame->PresContext();
int32_t maxSizeInDevPixels = lm->GetMaxTextureSize();
if (maxSizeInDevPixels < 0 || maxSizeInDevPixels == INT_MAX) {
return nscoord_MAX;
}
return presContext->DevPixelsToAppUnits(maxSizeInDevPixels);
}
static nsRect
GetDisplayPortFromRectData(nsIContent* aContent,
DisplayPortPropertyData* aRectData,
float aMultiplier)
{
// In the case where the displayport is set as a rect, we assume it is
// already aligned and clamped as necessary. The burden to do that is
// on the setter of the displayport. In practice very few places set the
// displayport directly as a rect (mostly tests). We still do need to
// expand it by the multiplier though.
return ApplyRectMultiplier(aRectData->mRect, aMultiplier);
}
static nsRect
GetDisplayPortFromMarginsData(nsIContent* aContent,
DisplayPortMarginsPropertyData* aMarginsData,
float aMultiplier)
{
// In the case where the displayport is set via margins, we apply the margins
// to a base rect. Then we align the expanded rect based on the alignment
// requested, further expand the rect by the multiplier, and finally, clamp it
// to the size of the scrollable rect.
nsRect base;
if (nsRect* baseData = static_cast<nsRect*>(aContent->GetProperty(nsGkAtoms::DisplayPortBase))) {
base = *baseData;
} else {
NS_WARNING("Attempting to get a margins-based displayport with no base data!");
}
nsIFrame* frame = aContent->GetPrimaryFrame();
if (!frame) {
// Turns out we can't really compute it. Oops. We still should return
// something sane. Note that although we can apply the multiplier on the
// base rect here, we can't tile-align or clamp the rect without a frame.
NS_WARNING("Attempting to get a displayport from a content with no primary frame!");
return ApplyRectMultiplier(base, aMultiplier);
}
bool isRoot = false;
if (aContent->OwnerDoc()->GetRootElement() == aContent) {
// We want the scroll frame, the root scroll frame differs from all
// others in that the primary frame is not the scroll frame.
frame = frame->PresContext()->PresShell()->GetRootScrollFrame();
if (!frame) {
// If there is no root scrollframe, just exit.
return ApplyRectMultiplier(base, aMultiplier);
}
isRoot = true;
}
nsPoint scrollPos;
if (nsIScrollableFrame* scrollableFrame = frame->GetScrollTargetFrame()) {
scrollPos = scrollableFrame->GetScrollPosition();
}
nsPresContext* presContext = frame->PresContext();
int32_t auPerDevPixel = presContext->AppUnitsPerDevPixel();
LayoutDeviceToScreenScale2D res(presContext->PresShell()->GetCumulativeResolution()
* nsLayoutUtils::GetTransformToAncestorScale(frame));
// First convert the base rect to screen pixels
LayoutDeviceToScreenScale2D parentRes = res;
if (isRoot) {
// the base rect for root scroll frames is specified in the parent document
// coordinate space, so it doesn't include the local resolution.
float localRes = presContext->PresShell()->GetResolution();
parentRes.xScale /= localRes;
parentRes.yScale /= localRes;
}
ScreenRect screenRect = LayoutDeviceRect::FromAppUnits(base, auPerDevPixel)
* parentRes;
nsRect expandedScrollableRect =
nsLayoutUtils::CalculateExpandedScrollableRect(frame);
if (gfxPrefs::LayersTilesEnabled()) {
// Note on the correctness of applying the alignment in Screen space:
// The correct space to apply the alignment in would be Layer space, but
// we don't necessarily know the scale to convert to Layer space at this
// point because Layout may not yet have chosen the resolution at which to
// render (it chooses that in FrameLayerBuilder, but this can be called
// during display list building). Therefore, we perform the alignment in
// Screen space, which basically assumes that Layout chose to render at
// screen resolution; since this is what Layout does most of the time,
// this is a good approximation. A proper solution would involve moving
// the choosing of the resolution to display-list building time.
int alignmentX = gfxPlatform::GetPlatform()->GetTileWidth();
int alignmentY = gfxPlatform::GetPlatform()->GetTileHeight();
// Expand the rect by the margins
screenRect.Inflate(aMarginsData->mMargins);
// Inflate the rectangle by 1 so that we always push to the next tile
// boundary. This is desirable to stop from having a rectangle with a
// moving origin occasionally being smaller when it coincidentally lines
// up to tile boundaries.
screenRect.Inflate(1);
// Avoid division by zero.
if (alignmentX == 0) {
alignmentX = 1;
}
if (alignmentY == 0) {
alignmentY = 1;
}
ScreenPoint scrollPosScreen = LayoutDevicePoint::FromAppUnits(scrollPos, auPerDevPixel)
* res;
screenRect += scrollPosScreen;
// Round-out the display port to the nearest alignment (tiles)
float x = alignmentX * floor(screenRect.x / alignmentX);
float y = alignmentY * floor(screenRect.y / alignmentY);
float w = alignmentX * ceil(screenRect.width / alignmentX + 1);
float h = alignmentY * ceil(screenRect.height / alignmentY + 1);
screenRect = ScreenRect(x, y, w, h);
screenRect -= scrollPosScreen;
ScreenRect screenExpScrollableRect =
LayoutDeviceRect::FromAppUnits(expandedScrollableRect,
auPerDevPixel) * res;
// Make sure the displayport remains within the scrollable rect.
screenRect = screenRect.ForceInside(screenExpScrollableRect - scrollPosScreen);
} else {
nscoord maxSizeInAppUnits = GetMaxDisplayPortSize(aContent);
if (maxSizeInAppUnits == nscoord_MAX) {
// Pick a safe maximum displayport size for sanity purposes. This is the
// lowest maximum texture size on tileless-platforms (Windows, D3D10).
maxSizeInAppUnits = presContext->DevPixelsToAppUnits(8192);
}
// Find the maximum size in screen pixels.
int32_t maxSizeInDevPixels = presContext->AppUnitsToDevPixels(maxSizeInAppUnits);
int32_t maxWidthInScreenPixels = floor(double(maxSizeInDevPixels) * res.xScale);
int32_t maxHeightInScreenPixels = floor(double(maxSizeInDevPixels) * res.yScale);
// For each axis, inflate the margins up to the maximum size.
const ScreenMargin& margins = aMarginsData->mMargins;
if (screenRect.height < maxHeightInScreenPixels) {
int32_t budget = maxHeightInScreenPixels - screenRect.height;
float top = std::min(margins.top, float(budget));
float bottom = std::min(margins.bottom, budget - top);
screenRect.y -= top;
screenRect.height += top + bottom;
}
if (screenRect.width < maxWidthInScreenPixels) {
int32_t budget = maxWidthInScreenPixels - screenRect.width;
float left = std::min(margins.left, float(budget));
float right = std::min(margins.right, budget - left);
screenRect.x -= left;
screenRect.width += left + right;
}
}
// Convert the aligned rect back into app units.
nsRect result = LayoutDeviceRect::ToAppUnits(screenRect / res, auPerDevPixel);
// Expand it for the low-res buffer if needed
result = ApplyRectMultiplier(result, aMultiplier);
// Finally, clamp it to the expanded scrollable rect.
result = expandedScrollableRect.Intersect(result + scrollPos) - scrollPos;
return result;
}
static bool
GetDisplayPortImpl(nsIContent* aContent, nsRect *aResult, float aMultiplier)
{
DisplayPortPropertyData* rectData =
static_cast<DisplayPortPropertyData*>(aContent->GetProperty(nsGkAtoms::DisplayPort));
DisplayPortMarginsPropertyData* marginsData =
static_cast<DisplayPortMarginsPropertyData*>(aContent->GetProperty(nsGkAtoms::DisplayPortMargins));
if (!rectData && !marginsData) {
// This content element has no displayport data at all
return false;
}
if (!aResult) {
// We have displayport data, but the caller doesn't want the actual
// rect, so we don't need to actually compute it.
return true;
}
if (rectData && marginsData) {
// choose margins if equal priority
if (rectData->mPriority > marginsData->mPriority) {
marginsData = nullptr;
} else {
rectData = nullptr;
}
}
NS_ASSERTION((rectData == nullptr) != (marginsData == nullptr),
"Only one of rectData or marginsData should be set!");
nsRect result;
if (APZCCallbackHelper::IsDisplayportSuppressed()) {
DisplayPortMarginsPropertyData noMargins(ScreenMargin(), 1);
result = GetDisplayPortFromMarginsData(aContent, &noMargins, aMultiplier);
} else if (rectData) {
result = GetDisplayPortFromRectData(aContent, rectData, aMultiplier);
} else {
result = GetDisplayPortFromMarginsData(aContent, marginsData, aMultiplier);
}
if (!gfxPrefs::LayersTilesEnabled()) {
// Either we should have gotten a valid rect directly from the displayport
// base, or we should have computed a valid rect from the margins.
NS_ASSERTION(result.width <= GetMaxDisplayPortSize(aContent),
"Displayport must be a valid texture size");
NS_ASSERTION(result.height <= GetMaxDisplayPortSize(aContent),
"Displayport must be a valid texture size");
}
*aResult = result;
return true;
}
bool
nsLayoutUtils::GetDisplayPort(nsIContent* aContent, nsRect *aResult)
{
if (gfxPrefs::UseLowPrecisionBuffer()) {
return GetDisplayPortImpl(aContent, aResult, 1.0f / gfxPrefs::LowPrecisionResolution());
}
return GetDisplayPortImpl(aContent, aResult, 1.0f);
}
/* static */ bool
nsLayoutUtils::GetDisplayPortForVisibilityTesting(nsIContent* aContent,
nsRect* aResult)
{
return GetDisplayPortImpl(aContent, aResult, 1.0f);
}
bool
nsLayoutUtils::SetDisplayPortMargins(nsIContent* aContent,
nsIPresShell* aPresShell,
const ScreenMargin& aMargins,
uint32_t aPriority,
RepaintMode aRepaintMode)
{
MOZ_ASSERT(aContent);
MOZ_ASSERT(aContent->GetComposedDoc() == aPresShell->GetDocument());
DisplayPortMarginsPropertyData* currentData =
static_cast<DisplayPortMarginsPropertyData*>(aContent->GetProperty(nsGkAtoms::DisplayPortMargins));
if (currentData && currentData->mPriority > aPriority) {
return false;
}
if (currentData && currentData->mMargins == aMargins) {
return true;
}
aContent->SetProperty(nsGkAtoms::DisplayPortMargins,
new DisplayPortMarginsPropertyData(
aMargins, aPriority),
nsINode::DeleteProperty<DisplayPortMarginsPropertyData>);
if (gfxPrefs::LayoutUseContainersForRootFrames()) {
nsIFrame* rootScrollFrame = aPresShell->GetRootScrollFrame();
if (rootScrollFrame &&
aContent == rootScrollFrame->GetContent() &&
nsLayoutUtils::UsesAsyncScrolling(rootScrollFrame))
{
// We are setting a root displayport for a document.
// If we have APZ, then set a special flag on the pres shell so
// that we don't get scrollbars drawn.
aPresShell->SetIgnoreViewportScrolling(true);
}
}
if (aRepaintMode == RepaintMode::Repaint) {
nsIFrame* rootFrame = aPresShell->FrameManager()->GetRootFrame();
if (rootFrame) {
rootFrame->SchedulePaint();
}
}
// Display port margins changing means that the set of visible images may
// have drastically changed. Schedule an update.
aPresShell->ScheduleImageVisibilityUpdate();
return true;
}
void
nsLayoutUtils::SetDisplayPortBase(nsIContent* aContent, const nsRect& aBase)
{
aContent->SetProperty(nsGkAtoms::DisplayPortBase, new nsRect(aBase),
nsINode::DeleteProperty<nsRect>);
}
void
nsLayoutUtils::SetDisplayPortBaseIfNotSet(nsIContent* aContent, const nsRect& aBase)
{
if (!aContent->GetProperty(nsGkAtoms::DisplayPortBase)) {
SetDisplayPortBase(aContent, aBase);
}
}
bool
nsLayoutUtils::GetCriticalDisplayPort(nsIContent* aContent, nsRect* aResult)
{
if (gfxPrefs::UseLowPrecisionBuffer()) {
return GetDisplayPortImpl(aContent, aResult, 1.0f);
}
return false;
}
nsContainerFrame*
nsLayoutUtils::LastContinuationWithChild(nsContainerFrame* aFrame)
{
NS_PRECONDITION(aFrame, "NULL frame pointer");
nsIFrame* f = aFrame->LastContinuation();
while (!f->GetFirstPrincipalChild() && f->GetPrevContinuation()) {
f = f->GetPrevContinuation();
}
return static_cast<nsContainerFrame*>(f);
}
//static
FrameChildListID
nsLayoutUtils::GetChildListNameFor(nsIFrame* aChildFrame)
{
nsIFrame::ChildListID id = nsIFrame::kPrincipalList;
if (aChildFrame->GetStateBits() & NS_FRAME_IS_OVERFLOW_CONTAINER) {
nsIFrame* pif = aChildFrame->GetPrevInFlow();
if (pif->GetParent() == aChildFrame->GetParent()) {
id = nsIFrame::kExcessOverflowContainersList;
}
else {
id = nsIFrame::kOverflowContainersList;
}
}
// See if the frame is moved out of the flow
else if (aChildFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW) {
// Look at the style information to tell
const nsStyleDisplay* disp = aChildFrame->StyleDisplay();
if (NS_STYLE_POSITION_ABSOLUTE == disp->mPosition) {
id = nsIFrame::kAbsoluteList;
} else if (NS_STYLE_POSITION_FIXED == disp->mPosition) {
if (nsLayoutUtils::IsReallyFixedPos(aChildFrame)) {
id = nsIFrame::kFixedList;
} else {
id = nsIFrame::kAbsoluteList;
}
#ifdef MOZ_XUL
} else if (NS_STYLE_DISPLAY_POPUP == disp->mDisplay) {
// Out-of-flows that are DISPLAY_POPUP must be kids of the root popup set
#ifdef DEBUG
nsIFrame* parent = aChildFrame->GetParent();
NS_ASSERTION(parent && parent->GetType() == nsGkAtoms::popupSetFrame,
"Unexpected parent");
#endif // DEBUG
id = nsIFrame::kPopupList;
#endif // MOZ_XUL
} else {
NS_ASSERTION(aChildFrame->IsFloating(), "not a floated frame");
id = nsIFrame::kFloatList;
}
} else {
nsIAtom* childType = aChildFrame->GetType();
if (nsGkAtoms::menuPopupFrame == childType) {
nsIFrame* parent = aChildFrame->GetParent();
MOZ_ASSERT(parent, "nsMenuPopupFrame can't be the root frame");
if (parent) {
if (parent->GetType() == nsGkAtoms::popupSetFrame) {
id = nsIFrame::kPopupList;
} else {
nsIFrame* firstPopup = parent->GetFirstChild(nsIFrame::kPopupList);
MOZ_ASSERT(!firstPopup || !firstPopup->GetNextSibling(),
"We assume popupList only has one child, but it has more.");
id = firstPopup == aChildFrame
? nsIFrame::kPopupList
: nsIFrame::kPrincipalList;
}
} else {
id = nsIFrame::kPrincipalList;
}
} else if (nsGkAtoms::tableColGroupFrame == childType) {
id = nsIFrame::kColGroupList;
} else if (aChildFrame->IsTableCaption()) {
id = nsIFrame::kCaptionList;
} else {
id = nsIFrame::kPrincipalList;
}
}
#ifdef DEBUG
// Verify that the frame is actually in that child list or in the
// corresponding overflow list.
nsContainerFrame* parent = aChildFrame->GetParent();
bool found = parent->GetChildList(id).ContainsFrame(aChildFrame);
if (!found) {
if (!(aChildFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW)) {
found = parent->GetChildList(nsIFrame::kOverflowList)
.ContainsFrame(aChildFrame);
}
else if (aChildFrame->IsFloating()) {
found = parent->GetChildList(nsIFrame::kOverflowOutOfFlowList)
.ContainsFrame(aChildFrame);
if (!found) {
found = parent->GetChildList(nsIFrame::kPushedFloatsList)
.ContainsFrame(aChildFrame);
}
}
// else it's positioned and should have been on the 'id' child list.
NS_POSTCONDITION(found, "not in child list");
}
#endif
return id;
}
/*static*/ nsIFrame*
nsLayoutUtils::GetBeforeFrameForContent(nsIFrame* aFrame,
nsIContent* aContent)
{
// We need to call GetGenConPseudos() on the first continuation/ib-split.
// Find it, for symmetry with GetAfterFrameForContent.
nsContainerFrame* genConParentFrame =
FirstContinuationOrIBSplitSibling(aFrame)->GetContentInsertionFrame();
if (!genConParentFrame) {
return nullptr;
}
nsTArray<nsIContent*>* prop = genConParentFrame->GetGenConPseudos();
if (prop) {
const nsTArray<nsIContent*>& pseudos(*prop);
for (uint32_t i = 0; i < pseudos.Length(); ++i) {
if (pseudos[i]->GetParent() == aContent &&
pseudos[i]->NodeInfo()->NameAtom() == nsGkAtoms::mozgeneratedcontentbefore) {
return pseudos[i]->GetPrimaryFrame();
}
}
}
// If the first child frame is a pseudo-frame, then try that.
// Note that the frame we create for the generated content is also a
// pseudo-frame and so don't drill down in that case.
nsIFrame* childFrame = genConParentFrame->GetFirstPrincipalChild();
if (childFrame &&
childFrame->IsPseudoFrame(aContent) &&
!childFrame->IsGeneratedContentFrame()) {
return GetBeforeFrameForContent(childFrame, aContent);
}
return nullptr;
}
/*static*/ nsIFrame*
nsLayoutUtils::GetBeforeFrame(nsIFrame* aFrame)
{
return GetBeforeFrameForContent(aFrame, aFrame->GetContent());
}
/*static*/ nsIFrame*
nsLayoutUtils::GetAfterFrameForContent(nsIFrame* aFrame,
nsIContent* aContent)
{
// We need to call GetGenConPseudos() on the first continuation,
// but callers are likely to pass the last.
nsContainerFrame* genConParentFrame =
FirstContinuationOrIBSplitSibling(aFrame)->GetContentInsertionFrame();
if (!genConParentFrame) {
return nullptr;
}
nsTArray<nsIContent*>* prop = genConParentFrame->GetGenConPseudos();
if (prop) {
const nsTArray<nsIContent*>& pseudos(*prop);
for (uint32_t i = 0; i < pseudos.Length(); ++i) {
if (pseudos[i]->GetParent() == aContent &&
pseudos[i]->NodeInfo()->NameAtom() == nsGkAtoms::mozgeneratedcontentafter) {
return pseudos[i]->GetPrimaryFrame();
}
}
}
// If the last child frame is a pseudo-frame, then try that.
// Note that the frame we create for the generated content is also a
// pseudo-frame and so don't drill down in that case.
genConParentFrame = aFrame->GetContentInsertionFrame();
if (!genConParentFrame) {
return nullptr;
}
nsIFrame* lastParentContinuation =
LastContinuationWithChild(static_cast<nsContainerFrame*>(
LastContinuationOrIBSplitSibling(genConParentFrame)));
nsIFrame* childFrame =
lastParentContinuation->GetLastChild(nsIFrame::kPrincipalList);
if (childFrame &&
childFrame->IsPseudoFrame(aContent) &&
!childFrame->IsGeneratedContentFrame()) {
return GetAfterFrameForContent(childFrame->FirstContinuation(), aContent);
}
return nullptr;
}
/*static*/ nsIFrame*
nsLayoutUtils::GetAfterFrame(nsIFrame* aFrame)
{
return GetAfterFrameForContent(aFrame, aFrame->GetContent());
}
// static
nsIFrame*
nsLayoutUtils::GetClosestFrameOfType(nsIFrame* aFrame, nsIAtom* aFrameType)
{
for (nsIFrame* frame = aFrame; frame; frame = frame->GetParent()) {
if (frame->GetType() == aFrameType) {
return frame;
}
}
return nullptr;
}
// static
nsIFrame*
nsLayoutUtils::GetStyleFrame(nsIFrame* aFrame)
{
if (aFrame->GetType() == nsGkAtoms::tableOuterFrame) {
nsIFrame* inner = aFrame->GetFirstPrincipalChild();
NS_ASSERTION(inner, "Outer table must have an inner");
return inner;
}
return aFrame;
}
nsIFrame*
nsLayoutUtils::GetStyleFrame(const nsIContent* aContent)
{
nsIFrame *frame = aContent->GetPrimaryFrame();
if (!frame) {
return nullptr;
}
return nsLayoutUtils::GetStyleFrame(frame);
}
nsIFrame*
nsLayoutUtils::GetFloatFromPlaceholder(nsIFrame* aFrame) {
NS_ASSERTION(nsGkAtoms::placeholderFrame == aFrame->GetType(),
"Must have a placeholder here");
if (aFrame->GetStateBits() & PLACEHOLDER_FOR_FLOAT) {
nsIFrame *outOfFlowFrame =
nsPlaceholderFrame::GetRealFrameForPlaceholder(aFrame);
NS_ASSERTION(outOfFlowFrame->IsFloating(),
"How did that happen?");
return outOfFlowFrame;
}
return nullptr;
}
// static
bool
nsLayoutUtils::IsGeneratedContentFor(nsIContent* aContent,
nsIFrame* aFrame,
nsIAtom* aPseudoElement)
{
NS_PRECONDITION(aFrame, "Must have a frame");
NS_PRECONDITION(aPseudoElement, "Must have a pseudo name");
if (!aFrame->IsGeneratedContentFrame()) {
return false;
}
nsIFrame* parent = aFrame->GetParent();
NS_ASSERTION(parent, "Generated content can't be root frame");
if (parent->IsGeneratedContentFrame()) {
// Not the root of the generated content
return false;
}
if (aContent && parent->GetContent() != aContent) {
return false;
}
return (aFrame->GetContent()->NodeInfo()->NameAtom() == nsGkAtoms::mozgeneratedcontentbefore) ==
(aPseudoElement == nsCSSPseudoElements::before);
}
// static
nsIFrame*
nsLayoutUtils::GetCrossDocParentFrame(const nsIFrame* aFrame,
nsPoint* aExtraOffset)
{
nsIFrame* p = aFrame->GetParent();
if (p)
return p;
nsView* v = aFrame->GetView();
if (!v)
return nullptr;
v = v->GetParent(); // anonymous inner view
if (!v)
return nullptr;
if (aExtraOffset) {
*aExtraOffset += v->GetPosition();
}
v = v->GetParent(); // subdocumentframe's view
return v ? v->GetFrame() : nullptr;
}
// static
bool
nsLayoutUtils::IsProperAncestorFrameCrossDoc(nsIFrame* aAncestorFrame, nsIFrame* aFrame,
nsIFrame* aCommonAncestor)
{
if (aFrame == aAncestorFrame)
return false;
return IsAncestorFrameCrossDoc(aAncestorFrame, aFrame, aCommonAncestor);
}
// static
bool
nsLayoutUtils::IsAncestorFrameCrossDoc(const nsIFrame* aAncestorFrame, const nsIFrame* aFrame,
const nsIFrame* aCommonAncestor)
{
for (const nsIFrame* f = aFrame; f != aCommonAncestor;
f = GetCrossDocParentFrame(f)) {
if (f == aAncestorFrame)
return true;
}
return aCommonAncestor == aAncestorFrame;
}
// static
bool
nsLayoutUtils::IsProperAncestorFrame(nsIFrame* aAncestorFrame, nsIFrame* aFrame,
nsIFrame* aCommonAncestor)
{
if (aFrame == aAncestorFrame)
return false;
for (nsIFrame* f = aFrame; f != aCommonAncestor; f = f->GetParent()) {
if (f == aAncestorFrame)
return true;
}
return aCommonAncestor == aAncestorFrame;
}
// static
int32_t
nsLayoutUtils::DoCompareTreePosition(nsIContent* aContent1,
nsIContent* aContent2,
int32_t aIf1Ancestor,
int32_t aIf2Ancestor,
const nsIContent* aCommonAncestor)
{
NS_PRECONDITION(aContent1, "aContent1 must not be null");
NS_PRECONDITION(aContent2, "aContent2 must not be null");
nsAutoTArray<nsINode*, 32> content1Ancestors;
nsINode* c1;
for (c1 = aContent1; c1 && c1 != aCommonAncestor; c1 = c1->GetParentNode()) {
content1Ancestors.AppendElement(c1);
}
if (!c1 && aCommonAncestor) {
// So, it turns out aCommonAncestor was not an ancestor of c1. Oops.
// Never mind. We can continue as if aCommonAncestor was null.
aCommonAncestor = nullptr;
}
nsAutoTArray<nsINode*, 32> content2Ancestors;
nsINode* c2;
for (c2 = aContent2; c2 && c2 != aCommonAncestor; c2 = c2->GetParentNode()) {
content2Ancestors.AppendElement(c2);
}
if (!c2 && aCommonAncestor) {
// So, it turns out aCommonAncestor was not an ancestor of c2.
// We need to retry with no common ancestor hint.
return DoCompareTreePosition(aContent1, aContent2,
aIf1Ancestor, aIf2Ancestor, nullptr);
}
int last1 = content1Ancestors.Length() - 1;
int last2 = content2Ancestors.Length() - 1;
nsINode* content1Ancestor = nullptr;
nsINode* content2Ancestor = nullptr;
while (last1 >= 0 && last2 >= 0
&& ((content1Ancestor = content1Ancestors.ElementAt(last1)) ==
(content2Ancestor = content2Ancestors.ElementAt(last2)))) {
last1--;
last2--;
}
if (last1 < 0) {
if (last2 < 0) {
NS_ASSERTION(aContent1 == aContent2, "internal error?");
return 0;
}
// aContent1 is an ancestor of aContent2
return aIf1Ancestor;
}
if (last2 < 0) {
// aContent2 is an ancestor of aContent1
return aIf2Ancestor;
}
// content1Ancestor != content2Ancestor, so they must be siblings with the same parent
nsINode* parent = content1Ancestor->GetParentNode();
#ifdef DEBUG
// TODO: remove the uglyness, see bug 598468.
NS_ASSERTION(gPreventAssertInCompareTreePosition || parent,
"no common ancestor at all???");
#endif // DEBUG
if (!parent) { // different documents??
return 0;
}
int32_t index1 = parent->IndexOf(content1Ancestor);
int32_t index2 = parent->IndexOf(content2Ancestor);
if (index1 < 0 || index2 < 0) {
// one of them must be anonymous; we can't determine the order
return 0;
}
return index1 - index2;
}
// static
nsIFrame*
nsLayoutUtils::FillAncestors(nsIFrame* aFrame,
nsIFrame* aStopAtAncestor,
nsTArray<nsIFrame*>* aAncestors)
{
while (aFrame && aFrame != aStopAtAncestor) {
aAncestors->AppendElement(aFrame);
aFrame = nsLayoutUtils::GetParentOrPlaceholderFor(aFrame);
}
return aFrame;
}
// Return true if aFrame1 is after aFrame2
static bool IsFrameAfter(nsIFrame* aFrame1, nsIFrame* aFrame2)
{
nsIFrame* f = aFrame2;
do {
f = f->GetNextSibling();
if (f == aFrame1)
return true;
} while (f);
return false;
}
// static
int32_t
nsLayoutUtils::DoCompareTreePosition(nsIFrame* aFrame1,
nsIFrame* aFrame2,
int32_t aIf1Ancestor,
int32_t aIf2Ancestor,
nsIFrame* aCommonAncestor)
{
NS_PRECONDITION(aFrame1, "aFrame1 must not be null");
NS_PRECONDITION(aFrame2, "aFrame2 must not be null");
nsAutoTArray<nsIFrame*,20> frame2Ancestors;
nsIFrame* nonCommonAncestor =
FillAncestors(aFrame2, aCommonAncestor, &frame2Ancestors);
return DoCompareTreePosition(aFrame1, aFrame2, frame2Ancestors,
aIf1Ancestor, aIf2Ancestor,
nonCommonAncestor ? aCommonAncestor : nullptr);
}
// static
int32_t
nsLayoutUtils::DoCompareTreePosition(nsIFrame* aFrame1,
nsIFrame* aFrame2,
nsTArray<nsIFrame*>& aFrame2Ancestors,
int32_t aIf1Ancestor,
int32_t aIf2Ancestor,
nsIFrame* aCommonAncestor)
{
NS_PRECONDITION(aFrame1, "aFrame1 must not be null");
NS_PRECONDITION(aFrame2, "aFrame2 must not be null");
nsPresContext* presContext = aFrame1->PresContext();
if (presContext != aFrame2->PresContext()) {
NS_ERROR("no common ancestor at all, different documents");
return 0;
}
nsAutoTArray<nsIFrame*,20> frame1Ancestors;
if (aCommonAncestor &&
!FillAncestors(aFrame1, aCommonAncestor, &frame1Ancestors)) {
// We reached the root of the frame tree ... if aCommonAncestor was set,
// it is wrong
return DoCompareTreePosition(aFrame1, aFrame2,
aIf1Ancestor, aIf2Ancestor, nullptr);
}
int32_t last1 = int32_t(frame1Ancestors.Length()) - 1;
int32_t last2 = int32_t(aFrame2Ancestors.Length()) - 1;
while (last1 >= 0 && last2 >= 0 &&
frame1Ancestors[last1] == aFrame2Ancestors[last2]) {
last1--;
last2--;
}
if (last1 < 0) {
if (last2 < 0) {
NS_ASSERTION(aFrame1 == aFrame2, "internal error?");
return 0;
}
// aFrame1 is an ancestor of aFrame2
return aIf1Ancestor;
}
if (last2 < 0) {
// aFrame2 is an ancestor of aFrame1
return aIf2Ancestor;
}
nsIFrame* ancestor1 = frame1Ancestors[last1];
nsIFrame* ancestor2 = aFrame2Ancestors[last2];
// Now we should be able to walk sibling chains to find which one is first
if (IsFrameAfter(ancestor2, ancestor1))
return -1;
if (IsFrameAfter(ancestor1, ancestor2))
return 1;
NS_WARNING("Frames were in different child lists???");
return 0;
}
// static
nsIFrame* nsLayoutUtils::GetLastSibling(nsIFrame* aFrame) {
if (!aFrame) {
return nullptr;
}
nsIFrame* next;
while ((next = aFrame->GetNextSibling()) != nullptr) {
aFrame = next;
}
return aFrame;
}
// static
nsView*
nsLayoutUtils::FindSiblingViewFor(nsView* aParentView, nsIFrame* aFrame) {
nsIFrame* parentViewFrame = aParentView->GetFrame();
nsIContent* parentViewContent = parentViewFrame ? parentViewFrame->GetContent() : nullptr;
for (nsView* insertBefore = aParentView->GetFirstChild(); insertBefore;
insertBefore = insertBefore->GetNextSibling()) {
nsIFrame* f = insertBefore->GetFrame();
if (!f) {
// this view could be some anonymous view attached to a meaningful parent
for (nsView* searchView = insertBefore->GetParent(); searchView;
searchView = searchView->GetParent()) {
f = searchView->GetFrame();
if (f) {
break;
}
}
NS_ASSERTION(f, "Can't find a frame anywhere!");
}
if (!f || !aFrame->GetContent() || !f->GetContent() ||
CompareTreePosition(aFrame->GetContent(), f->GetContent(), parentViewContent) > 0) {
// aFrame's content is after f's content (or we just don't know),
// so put our view before f's view
return insertBefore;
}
}
return nullptr;
}
//static
nsIScrollableFrame*
nsLayoutUtils::GetScrollableFrameFor(const nsIFrame *aScrolledFrame)
{
nsIFrame *frame = aScrolledFrame->GetParent();
nsIScrollableFrame *sf = do_QueryFrame(frame);
return (sf && sf->GetScrolledFrame() == aScrolledFrame) ? sf : nullptr;
}
/* static */ void
nsLayoutUtils::SetFixedPositionLayerData(Layer* aLayer,
const nsIFrame* aViewportFrame,
const nsRect& aAnchorRect,
const nsIFrame* aFixedPosFrame,
nsPresContext* aPresContext,
const ContainerLayerParameters& aContainerParameters) {
// Find out the rect of the viewport frame relative to the reference frame.
// This, in conjunction with the container scale, will correspond to the
// coordinate-space of the built layer.
float factor = aPresContext->AppUnitsPerDevPixel();
Rect anchorRect(NSAppUnitsToFloatPixels(aAnchorRect.x, factor) *
aContainerParameters.mXScale,
NSAppUnitsToFloatPixels(aAnchorRect.y, factor) *
aContainerParameters.mYScale,
NSAppUnitsToFloatPixels(aAnchorRect.width, factor) *
aContainerParameters.mXScale,
NSAppUnitsToFloatPixels(aAnchorRect.height, factor) *
aContainerParameters.mYScale);
// Need to transform anchorRect from the container layer's coordinate system
// into aLayer's coordinate system.
Matrix transform2d;
if (aLayer->GetTransform().Is2D(&transform2d)) {
transform2d.Invert();
anchorRect = transform2d.TransformBounds(anchorRect);
} else {
NS_ERROR("3D transform found between fixedpos content and its viewport (should never happen)");
anchorRect = Rect(0,0,0,0);
}
// Work out the anchor point for this fixed position layer. We assume that
// any positioning set (left/top/right/bottom) indicates that the
// corresponding side of its container should be the anchor point,
// defaulting to top-left.
LayerPoint anchor(anchorRect.x, anchorRect.y);
if (aFixedPosFrame != aViewportFrame) {
const nsStylePosition* position = aFixedPosFrame->StylePosition();
if (position->mOffset.GetRightUnit() != eStyleUnit_Auto) {
if (position->mOffset.GetLeftUnit() != eStyleUnit_Auto) {
anchor.x = anchorRect.x + anchorRect.width / 2.f;
} else {
anchor.x = anchorRect.XMost();
}
}
if (position->mOffset.GetBottomUnit() != eStyleUnit_Auto) {
if (position->mOffset.GetTopUnit() != eStyleUnit_Auto) {
anchor.y = anchorRect.y + anchorRect.height / 2.f;
} else {
anchor.y = anchorRect.YMost();
}
}
}
ViewID id = FrameMetrics::NULL_SCROLL_ID;
if (nsIFrame* rootScrollFrame = aPresContext->PresShell()->GetRootScrollFrame()) {
if (nsIContent* content = rootScrollFrame->GetContent()) {
id = FindOrCreateIDFor(content);
}
}
aLayer->SetFixedPositionData(id, anchor);
}
bool
nsLayoutUtils::ViewportHasDisplayPort(nsPresContext* aPresContext, nsRect* aDisplayPort)
{
nsIFrame* rootScrollFrame =
aPresContext->PresShell()->GetRootScrollFrame();
return rootScrollFrame &&
nsLayoutUtils::GetDisplayPort(rootScrollFrame->GetContent(), aDisplayPort);
}
bool
nsLayoutUtils::IsFixedPosFrameInDisplayPort(const nsIFrame* aFrame, nsRect* aDisplayPort)
{
// Fixed-pos frames are parented by the viewport frame or the page content frame.
// We'll assume that printing/print preview don't have displayports for their
// pages!
nsIFrame* parent = aFrame->GetParent();
if (!parent || parent->GetParent() ||
aFrame->StyleDisplay()->mPosition != NS_STYLE_POSITION_FIXED) {
return false;
}
return ViewportHasDisplayPort(aFrame->PresContext(), aDisplayPort);
}
NS_DECLARE_FRAME_PROPERTY(ScrollbarThumbLayerized, nullptr)
/* static */ void
nsLayoutUtils::SetScrollbarThumbLayerization(nsIFrame* aThumbFrame, bool aLayerize)
{
aThumbFrame->Properties().Set(ScrollbarThumbLayerized(),
reinterpret_cast<void*>(intptr_t(aLayerize)));
}
bool
nsLayoutUtils::IsScrollbarThumbLayerized(nsIFrame* aThumbFrame)
{
return reinterpret_cast<intptr_t>(aThumbFrame->Properties().Get(ScrollbarThumbLayerized()));
}
nsIFrame*
nsLayoutUtils::GetAnimatedGeometryRootForFrame(nsDisplayListBuilder* aBuilder,
nsIFrame* aFrame,
const nsIFrame* aStopAtAncestor)
{
return aBuilder->FindAnimatedGeometryRootFor(aFrame, aStopAtAncestor);
}
nsIFrame*
nsLayoutUtils::GetAnimatedGeometryRootFor(nsDisplayItem* aItem,
nsDisplayListBuilder* aBuilder,
LayerManager* aManager)
{
nsIFrame* f = aItem->Frame();
if (aItem->ShouldFixToViewport(aManager)) {
// Make its active scrolled root be the active scrolled root of
// the enclosing viewport, since it shouldn't be scrolled by scrolled
// frames in its document. InvalidateFixedBackgroundFramesFromList in
// nsGfxScrollFrame will not repaint this item when scrolling occurs.
nsIFrame* viewportFrame =
nsLayoutUtils::GetClosestFrameOfType(f, nsGkAtoms::viewportFrame);
NS_ASSERTION(viewportFrame, "no viewport???");
return GetAnimatedGeometryRootForFrame(aBuilder, viewportFrame,
aBuilder->FindReferenceFrameFor(viewportFrame));
}
return GetAnimatedGeometryRootForFrame(aBuilder, f, aItem->ReferenceFrame());
}
// static
nsIScrollableFrame*
nsLayoutUtils::GetNearestScrollableFrameForDirection(nsIFrame* aFrame,
Direction aDirection)
{
NS_ASSERTION(aFrame, "GetNearestScrollableFrameForDirection expects a non-null frame");
for (nsIFrame* f = aFrame; f; f = nsLayoutUtils::GetCrossDocParentFrame(f)) {
nsIScrollableFrame* scrollableFrame = do_QueryFrame(f);
if (scrollableFrame) {
ScrollbarStyles ss = scrollableFrame->GetScrollbarStyles();
uint32_t directions = scrollableFrame->GetPerceivedScrollingDirections();
if (aDirection == eVertical ?
(ss.mVertical != NS_STYLE_OVERFLOW_HIDDEN &&
(directions & nsIScrollableFrame::VERTICAL)) :
(ss.mHorizontal != NS_STYLE_OVERFLOW_HIDDEN &&
(directions & nsIScrollableFrame::HORIZONTAL)))
return scrollableFrame;
}
}
return nullptr;
}
// static
nsIScrollableFrame*
nsLayoutUtils::GetNearestScrollableFrame(nsIFrame* aFrame, uint32_t aFlags)
{
NS_ASSERTION(aFrame, "GetNearestScrollableFrame expects a non-null frame");
for (nsIFrame* f = aFrame; f; f = (aFlags & SCROLLABLE_SAME_DOC) ?
f->GetParent() : nsLayoutUtils::GetCrossDocParentFrame(f)) {
nsIScrollableFrame* scrollableFrame = do_QueryFrame(f);
if (scrollableFrame) {
if (aFlags & SCROLLABLE_ONLY_ASYNC_SCROLLABLE) {
if (scrollableFrame->WantAsyncScroll()) {
return scrollableFrame;
}
continue;
}
ScrollbarStyles ss = scrollableFrame->GetScrollbarStyles();
if ((aFlags & SCROLLABLE_INCLUDE_HIDDEN) ||
ss.mVertical != NS_STYLE_OVERFLOW_HIDDEN ||
ss.mHorizontal != NS_STYLE_OVERFLOW_HIDDEN)
return scrollableFrame;
}
if (aFlags & SCROLLABLE_ALWAYS_MATCH_ROOT) {
nsIPresShell* ps = f->PresContext()->PresShell();
if (ps->GetDocument() && ps->GetDocument()->IsRootDisplayDocument() &&
ps->GetRootFrame() == f) {
return ps->GetRootScrollFrameAsScrollable();
}
}
}
return nullptr;
}
// static
nsRect
nsLayoutUtils::GetScrolledRect(nsIFrame* aScrolledFrame,
const nsRect& aScrolledFrameOverflowArea,
const nsSize& aScrollPortSize,
uint8_t aDirection)
{
nscoord x1 = aScrolledFrameOverflowArea.x,
x2 = aScrolledFrameOverflowArea.XMost(),
y1 = aScrolledFrameOverflowArea.y,
y2 = aScrolledFrameOverflowArea.YMost();
if (y1 < 0) {
y1 = 0;
}
if (aDirection != NS_STYLE_DIRECTION_RTL) {
if (x1 < 0) {
x1 = 0;
}
} else {
if (x2 > aScrollPortSize.width) {
x2 = aScrollPortSize.width;
}
// When the scrolled frame chooses a size larger than its available width (because
// its padding alone is larger than the available width), we need to keep the
// start-edge of the scroll frame anchored to the start-edge of the scrollport.
// When the scrolled frame is RTL, this means moving it in our left-based
// coordinate system, so we need to compensate for its extra width here by
// effectively repositioning the frame.
nscoord extraWidth = std::max(0, aScrolledFrame->GetSize().width - aScrollPortSize.width);
x2 += extraWidth;
}
return nsRect(x1, y1, x2 - x1, y2 - y1);
}
//static
bool
nsLayoutUtils::HasPseudoStyle(nsIContent* aContent,
nsStyleContext* aStyleContext,
nsCSSPseudoElements::Type aPseudoElement,
nsPresContext* aPresContext)
{
NS_PRECONDITION(aPresContext, "Must have a prescontext");
nsRefPtr<nsStyleContext> pseudoContext;
if (aContent) {
pseudoContext = aPresContext->StyleSet()->
ProbePseudoElementStyle(aContent->AsElement(), aPseudoElement,
aStyleContext);
}
return pseudoContext != nullptr;
}
nsPoint
nsLayoutUtils::GetDOMEventCoordinatesRelativeTo(nsIDOMEvent* aDOMEvent, nsIFrame* aFrame)
{
if (!aDOMEvent)
return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
WidgetEvent* event = aDOMEvent->GetInternalNSEvent();
if (!event)
return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
return GetEventCoordinatesRelativeTo(event, aFrame);
}
nsPoint
nsLayoutUtils::GetEventCoordinatesRelativeTo(const WidgetEvent* aEvent,
nsIFrame* aFrame)
{
if (!aEvent || (aEvent->mClass != eMouseEventClass &&
aEvent->mClass != eMouseScrollEventClass &&
aEvent->mClass != eWheelEventClass &&
aEvent->mClass != eDragEventClass &&
aEvent->mClass != eSimpleGestureEventClass &&
aEvent->mClass != ePointerEventClass &&
aEvent->mClass != eGestureNotifyEventClass &&
aEvent->mClass != eTouchEventClass &&
aEvent->mClass != eQueryContentEventClass))
return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
return GetEventCoordinatesRelativeTo(aEvent,
aEvent->AsGUIEvent()->refPoint,
aFrame);
}
nsPoint
nsLayoutUtils::GetEventCoordinatesRelativeTo(const WidgetEvent* aEvent,
const LayoutDeviceIntPoint& aPoint,
nsIFrame* aFrame)
{
if (!aFrame) {
return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
}
nsIWidget* widget = aEvent->AsGUIEvent()->widget;
if (!widget) {
return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
}
return GetEventCoordinatesRelativeTo(widget, aPoint, aFrame);
}
nsPoint
nsLayoutUtils::GetEventCoordinatesRelativeTo(nsIWidget* aWidget,
const LayoutDeviceIntPoint& aPoint,
nsIFrame* aFrame)
{
if (!aFrame || !aWidget) {
return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
}
nsView* view = aFrame->GetView();
if (view) {
nsIWidget* frameWidget = view->GetWidget();
if (frameWidget && frameWidget == aWidget) {
// Special case this cause it happens a lot.
// This also fixes bug 664707, events in the extra-special case of select
// dropdown popups that are transformed.
nsPresContext* presContext = aFrame->PresContext();
nsPoint pt(presContext->DevPixelsToAppUnits(aPoint.x),
presContext->DevPixelsToAppUnits(aPoint.y));
return pt - view->ViewToWidgetOffset();
}
}
/* If we walk up the frame tree and discover that any of the frames are
* transformed, we need to do extra work to convert from the global
* space to the local space.
*/
nsIFrame* rootFrame = aFrame;
bool transformFound = false;
for (nsIFrame* f = aFrame; f; f = GetCrossDocParentFrame(f)) {
if (f->IsTransformed()) {
transformFound = true;
}
rootFrame = f;
}
nsView* rootView = rootFrame->GetView();
if (!rootView) {
return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
}
nsPoint widgetToView = TranslateWidgetToView(rootFrame->PresContext(),
aWidget, aPoint, rootView);
if (widgetToView == nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE)) {
return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
}
// Convert from root document app units to app units of the document aFrame
// is in.
int32_t rootAPD = rootFrame->PresContext()->AppUnitsPerDevPixel();
int32_t localAPD = aFrame->PresContext()->AppUnitsPerDevPixel();
widgetToView = widgetToView.ScaleToOtherAppUnits(rootAPD, localAPD);
/* If we encountered a transform, we can't do simple arithmetic to figure
* out how to convert back to aFrame's coordinates and must use the CTM.
*/
if (transformFound || aFrame->IsSVGText()) {
return TransformRootPointToFrame(aFrame, widgetToView);
}
/* Otherwise, all coordinate systems are translations of one another,
* so we can just subtract out the difference.
*/
return widgetToView - aFrame->GetOffsetToCrossDoc(rootFrame);
}
nsIFrame*
nsLayoutUtils::GetPopupFrameForEventCoordinates(nsPresContext* aPresContext,
const WidgetEvent* aEvent)
{
#ifdef MOZ_XUL
nsXULPopupManager* pm = nsXULPopupManager::GetInstance();
if (!pm) {
return nullptr;
}
nsTArray<nsIFrame*> popups;
pm->GetVisiblePopups(popups);
uint32_t i;
// Search from top to bottom
for (i = 0; i < popups.Length(); i++) {
nsIFrame* popup = popups[i];
if (popup->PresContext()->GetRootPresContext() == aPresContext &&
popup->GetScrollableOverflowRect().Contains(
GetEventCoordinatesRelativeTo(aEvent, popup))) {
return popup;
}
}
#endif
return nullptr;
}
static void ConstrainToCoordValues(float& aStart, float& aSize)
{
MOZ_ASSERT(aSize >= 0);
// Here we try to make sure that the resulting nsRect will continue to cover
// as much of the area that was covered by the original gfx Rect as possible.
// We clamp the bounds of the rect to {nscoord_MIN,nscoord_MAX} since
// nsRect::X/Y() and nsRect::XMost/YMost() can't return values outwith this
// range:
float end = aStart + aSize;
aStart = clamped(aStart, float(nscoord_MIN), float(nscoord_MAX));
end = clamped(end, float(nscoord_MIN), float(nscoord_MAX));
aSize = end - aStart;
// We must also clamp aSize to {0,nscoord_MAX} since nsRect::Width/Height()
// can't return a value greater than nscoord_MAX. If aSize is greater than
// nscoord_MAX then we reduce it to nscoord_MAX while keeping the rect
// centered:
if (aSize > nscoord_MAX) {
float excess = aSize - nscoord_MAX;
excess /= 2;
aStart += excess;
aSize = nscoord_MAX;
}
}
/**
* Given a gfxFloat, constrains its value to be between nscoord_MIN and nscoord_MAX.
*
* @param aVal The value to constrain (in/out)
*/
static void ConstrainToCoordValues(gfxFloat& aVal)
{
if (aVal <= nscoord_MIN)
aVal = nscoord_MIN;
else if (aVal >= nscoord_MAX)
aVal = nscoord_MAX;
}
static void ConstrainToCoordValues(gfxFloat& aStart, gfxFloat& aSize)
{
gfxFloat max = aStart + aSize;
// Clamp the end points to within nscoord range
ConstrainToCoordValues(aStart);
ConstrainToCoordValues(max);
aSize = max - aStart;
// If the width if still greater than the max nscoord, then bring both
// endpoints in by the same amount until it fits.
if (aSize > nscoord_MAX) {
gfxFloat excess = aSize - nscoord_MAX;
excess /= 2;
aStart += excess;
aSize = nscoord_MAX;
} else if (aSize < nscoord_MIN) {
gfxFloat excess = aSize - nscoord_MIN;
excess /= 2;
aStart -= excess;
aSize = nscoord_MIN;
}
}
nsRect
nsLayoutUtils::RoundGfxRectToAppRect(const Rect &aRect, float aFactor)
{
/* Get a new Rect whose units are app units by scaling by the specified factor. */
Rect scaledRect = aRect;
scaledRect.ScaleRoundOut(aFactor);
/* We now need to constrain our results to the max and min values for coords. */
ConstrainToCoordValues(scaledRect.x, scaledRect.width);
ConstrainToCoordValues(scaledRect.y, scaledRect.height);
/* Now typecast everything back. This is guaranteed to be safe. */
return nsRect(nscoord(scaledRect.X()), nscoord(scaledRect.Y()),
nscoord(scaledRect.Width()), nscoord(scaledRect.Height()));
}
nsRect
nsLayoutUtils::RoundGfxRectToAppRect(const gfxRect &aRect, float aFactor)
{
/* Get a new gfxRect whose units are app units by scaling by the specified factor. */
gfxRect scaledRect = aRect;
scaledRect.ScaleRoundOut(aFactor);
/* We now need to constrain our results to the max and min values for coords. */
ConstrainToCoordValues(scaledRect.x, scaledRect.width);
ConstrainToCoordValues(scaledRect.y, scaledRect.height);
/* Now typecast everything back. This is guaranteed to be safe. */
return nsRect(nscoord(scaledRect.X()), nscoord(scaledRect.Y()),
nscoord(scaledRect.Width()), nscoord(scaledRect.Height()));
}
nsRegion
nsLayoutUtils::RoundedRectIntersectRect(const nsRect& aRoundedRect,
const nscoord aRadii[8],
const nsRect& aContainedRect)
{
// rectFullHeight and rectFullWidth together will approximately contain
// the total area of the frame minus the rounded corners.
nsRect rectFullHeight = aRoundedRect;
nscoord xDiff = std::max(aRadii[NS_CORNER_TOP_LEFT_X], aRadii[NS_CORNER_BOTTOM_LEFT_X]);
rectFullHeight.x += xDiff;
rectFullHeight.width -= std::max(aRadii[NS_CORNER_TOP_RIGHT_X],
aRadii[NS_CORNER_BOTTOM_RIGHT_X]) + xDiff;
nsRect r1;
r1.IntersectRect(rectFullHeight, aContainedRect);
nsRect rectFullWidth = aRoundedRect;
nscoord yDiff = std::max(aRadii[NS_CORNER_TOP_LEFT_Y], aRadii[NS_CORNER_TOP_RIGHT_Y]);
rectFullWidth.y += yDiff;
rectFullWidth.height -= std::max(aRadii[NS_CORNER_BOTTOM_LEFT_Y],
aRadii[NS_CORNER_BOTTOM_RIGHT_Y]) + yDiff;
nsRect r2;
r2.IntersectRect(rectFullWidth, aContainedRect);
nsRegion result;
result.Or(r1, r2);
return result;
}
nsIntRegion
nsLayoutUtils::RoundedRectIntersectIntRect(const nsIntRect& aRoundedRect,
const RectCornerRadii& aCornerRadii,
const nsIntRect& aContainedRect)
{
// rectFullHeight and rectFullWidth together will approximately contain
// the total area of the frame minus the rounded corners.
nsIntRect rectFullHeight = aRoundedRect;
uint32_t xDiff = std::max(aCornerRadii.TopLeft().width,
aCornerRadii.BottomLeft().width);
rectFullHeight.x += xDiff;
rectFullHeight.width -= std::max(aCornerRadii.TopRight().width,
aCornerRadii.BottomRight().width) + xDiff;
nsIntRect r1;
r1.IntersectRect(rectFullHeight, aContainedRect);
nsIntRect rectFullWidth = aRoundedRect;
uint32_t yDiff = std::max(aCornerRadii.TopLeft().height,
aCornerRadii.TopRight().height);
rectFullWidth.y += yDiff;
rectFullWidth.height -= std::max(aCornerRadii.BottomLeft().height,
aCornerRadii.BottomRight().height) + yDiff;
nsIntRect r2;
r2.IntersectRect(rectFullWidth, aContainedRect);
nsIntRegion result;
result.Or(r1, r2);
return result;
}
// Helper for RoundedRectIntersectsRect.
static bool
CheckCorner(nscoord aXOffset, nscoord aYOffset,
nscoord aXRadius, nscoord aYRadius)
{
MOZ_ASSERT(aXOffset > 0 && aYOffset > 0,
"must not pass nonpositives to CheckCorner");
MOZ_ASSERT(aXRadius >= 0 && aYRadius >= 0,
"must not pass negatives to CheckCorner");
// Avoid floating point math unless we're either (1) within the
// quarter-ellipse area at the rounded corner or (2) outside the
// rounding.
if (aXOffset >= aXRadius || aYOffset >= aYRadius)
return true;
// Convert coordinates to a unit circle with (0,0) as the center of
// curvature, and see if we're inside the circle or outside.
float scaledX = float(aXRadius - aXOffset) / float(aXRadius);
float scaledY = float(aYRadius - aYOffset) / float(aYRadius);
return scaledX * scaledX + scaledY * scaledY < 1.0f;
}
bool
nsLayoutUtils::RoundedRectIntersectsRect(const nsRect& aRoundedRect,
const nscoord aRadii[8],
const nsRect& aTestRect)
{
if (!aTestRect.Intersects(aRoundedRect))
return false;
// distances from this edge of aRoundedRect to opposite edge of aTestRect,
// which we know are positive due to the Intersects check above.
nsMargin insets;
insets.top = aTestRect.YMost() - aRoundedRect.y;
insets.right = aRoundedRect.XMost() - aTestRect.x;
insets.bottom = aRoundedRect.YMost() - aTestRect.y;
insets.left = aTestRect.XMost() - aRoundedRect.x;
// Check whether the bottom-right corner of aTestRect is inside the
// top left corner of aBounds when rounded by aRadii, etc. If any
// corner is not, then fail; otherwise succeed.
return CheckCorner(insets.left, insets.top,
aRadii[NS_CORNER_TOP_LEFT_X],
aRadii[NS_CORNER_TOP_LEFT_Y]) &&
CheckCorner(insets.right, insets.top,
aRadii[NS_CORNER_TOP_RIGHT_X],
aRadii[NS_CORNER_TOP_RIGHT_Y]) &&
CheckCorner(insets.right, insets.bottom,
aRadii[NS_CORNER_BOTTOM_RIGHT_X],
aRadii[NS_CORNER_BOTTOM_RIGHT_Y]) &&
CheckCorner(insets.left, insets.bottom,
aRadii[NS_CORNER_BOTTOM_LEFT_X],
aRadii[NS_CORNER_BOTTOM_LEFT_Y]);
}
nsRect
nsLayoutUtils::MatrixTransformRectOut(const nsRect &aBounds,
const Matrix4x4 &aMatrix, float aFactor)
{
nsRect outside = aBounds;
outside.ScaleRoundOut(1/aFactor);
RectDouble image = RectDouble(outside.x, outside.y,
outside.width, outside.height);
RectDouble maxBounds = RectDouble(double(nscoord_MIN) / aFactor * 0.5,
double(nscoord_MIN) / aFactor * 0.5,
double(nscoord_MAX) / aFactor,
double(nscoord_MAX) / aFactor);
image = aMatrix.TransformAndClipBounds(image, maxBounds);
return RoundGfxRectToAppRect(ThebesRect(image), aFactor);
}
nsRect
nsLayoutUtils::MatrixTransformRect(const nsRect &aBounds,
const Matrix4x4 &aMatrix, float aFactor)
{
RectDouble image = RectDouble(NSAppUnitsToDoublePixels(aBounds.x, aFactor),
NSAppUnitsToDoublePixels(aBounds.y, aFactor),
NSAppUnitsToDoublePixels(aBounds.width, aFactor),
NSAppUnitsToDoublePixels(aBounds.height, aFactor));
RectDouble maxBounds = RectDouble(double(nscoord_MIN) / aFactor * 0.5,
double(nscoord_MIN) / aFactor * 0.5,
double(nscoord_MAX) / aFactor,
double(nscoord_MAX) / aFactor);
image = aMatrix.TransformAndClipBounds(image, maxBounds);
return RoundGfxRectToAppRect(ThebesRect(image), aFactor);
}
nsPoint
nsLayoutUtils::MatrixTransformPoint(const nsPoint &aPoint,
const Matrix4x4 &aMatrix, float aFactor)
{
gfxPoint image = gfxPoint(NSAppUnitsToFloatPixels(aPoint.x, aFactor),
NSAppUnitsToFloatPixels(aPoint.y, aFactor));
image.Transform(aMatrix);
return nsPoint(NSFloatPixelsToAppUnits(float(image.x), aFactor),
NSFloatPixelsToAppUnits(float(image.y), aFactor));
}
Matrix4x4
nsLayoutUtils::GetTransformToAncestor(nsIFrame *aFrame, const nsIFrame *aAncestor)
{
nsIFrame* parent;
Matrix4x4 ctm;
if (aFrame == aAncestor) {
return ctm;
}
ctm = aFrame->GetTransformMatrix(aAncestor, &parent);
while (parent && parent != aAncestor) {
if (!parent->Preserves3DChildren()) {
ctm.ProjectTo2D();
}
ctm = ctm * parent->GetTransformMatrix(aAncestor, &parent);
}
return ctm;
}
gfxSize
nsLayoutUtils::GetTransformToAncestorScale(nsIFrame* aFrame)
{
Matrix4x4 transform = GetTransformToAncestor(aFrame,
nsLayoutUtils::GetDisplayRootFrame(aFrame));
Matrix transform2D;
if (transform.Is2D(&transform2D)) {
return ThebesMatrix(transform2D).ScaleFactors(true);
}
return gfxSize(1, 1);
}
static Matrix4x4
GetTransformToAncestorExcludingAnimated(nsIFrame* aFrame,
const nsIFrame* aAncestor)
{
nsIFrame* parent;
Matrix4x4 ctm;
if (aFrame == aAncestor) {
return ctm;
}
if (ActiveLayerTracker::IsScaleSubjectToAnimation(aFrame)) {
return ctm;
}
ctm = aFrame->GetTransformMatrix(aAncestor, &parent);
while (parent && parent != aAncestor) {
if (ActiveLayerTracker::IsScaleSubjectToAnimation(parent)) {
return Matrix4x4();
}
if (!parent->Preserves3DChildren()) {
ctm.ProjectTo2D();
}
ctm = ctm * parent->GetTransformMatrix(aAncestor, &parent);
}
return ctm;
}
gfxSize
nsLayoutUtils::GetTransformToAncestorScaleExcludingAnimated(nsIFrame* aFrame)
{
Matrix4x4 transform = GetTransformToAncestorExcludingAnimated(aFrame,
nsLayoutUtils::GetDisplayRootFrame(aFrame));
Matrix transform2D;
if (transform.Is2D(&transform2D)) {
return ThebesMatrix(transform2D).ScaleFactors(true);
}
return gfxSize(1, 1);
}
nsIFrame*
nsLayoutUtils::FindNearestCommonAncestorFrame(nsIFrame* aFrame1, nsIFrame* aFrame2)
{
nsAutoTArray<nsIFrame*,100> ancestors1;
nsAutoTArray<nsIFrame*,100> ancestors2;
nsIFrame* commonAncestor = nullptr;
if (aFrame1->PresContext() == aFrame2->PresContext()) {
commonAncestor = aFrame1->PresContext()->PresShell()->GetRootFrame();
}
for (nsIFrame* f = aFrame1; f != commonAncestor;
f = nsLayoutUtils::GetCrossDocParentFrame(f)) {
ancestors1.AppendElement(f);
}
for (nsIFrame* f = aFrame2; f != commonAncestor;
f = nsLayoutUtils::GetCrossDocParentFrame(f)) {
ancestors2.AppendElement(f);
}
uint32_t minLengths = std::min(ancestors1.Length(), ancestors2.Length());
for (uint32_t i = 1; i <= minLengths; ++i) {
if (ancestors1[ancestors1.Length() - i] == ancestors2[ancestors2.Length() - i]) {
commonAncestor = ancestors1[ancestors1.Length() - i];
} else {
break;
}
}
return commonAncestor;
}
nsLayoutUtils::TransformResult
nsLayoutUtils::TransformPoints(nsIFrame* aFromFrame, nsIFrame* aToFrame,
uint32_t aPointCount, CSSPoint* aPoints)
{
nsIFrame* nearestCommonAncestor = FindNearestCommonAncestorFrame(aFromFrame, aToFrame);
if (!nearestCommonAncestor) {
return NO_COMMON_ANCESTOR;
}
Matrix4x4 downToDest = GetTransformToAncestor(aToFrame, nearestCommonAncestor);
if (downToDest.IsSingular()) {
return NONINVERTIBLE_TRANSFORM;
}
downToDest.Invert();
Matrix4x4 upToAncestor = GetTransformToAncestor(aFromFrame, nearestCommonAncestor);
CSSToLayoutDeviceScale devPixelsPerCSSPixelFromFrame(
double(nsPresContext::AppUnitsPerCSSPixel())/
aFromFrame->PresContext()->AppUnitsPerDevPixel());
CSSToLayoutDeviceScale devPixelsPerCSSPixelToFrame(
double(nsPresContext::AppUnitsPerCSSPixel())/
aToFrame->PresContext()->AppUnitsPerDevPixel());
for (uint32_t i = 0; i < aPointCount; ++i) {
LayoutDevicePoint devPixels = aPoints[i] * devPixelsPerCSSPixelFromFrame;
// What should the behaviour be if some of the points aren't invertible
// and others are? Just assume all points are for now.
Point toDevPixels = downToDest.ProjectPoint(
(upToAncestor * Point(devPixels.x, devPixels.y))).As2DPoint();
// Divide here so that when the devPixelsPerCSSPixels are the same, we get the correct
// answer instead of some inaccuracy multiplying a number by its reciprocal.
aPoints[i] = LayoutDevicePoint(toDevPixels.x, toDevPixels.y) /
devPixelsPerCSSPixelToFrame;
}
return TRANSFORM_SUCCEEDED;
}
nsLayoutUtils::TransformResult
nsLayoutUtils::TransformPoint(nsIFrame* aFromFrame, nsIFrame* aToFrame,
nsPoint& aPoint)
{
nsIFrame* nearestCommonAncestor = FindNearestCommonAncestorFrame(aFromFrame, aToFrame);
if (!nearestCommonAncestor) {
return NO_COMMON_ANCESTOR;
}
Matrix4x4 downToDest = GetTransformToAncestor(aToFrame, nearestCommonAncestor);
if (downToDest.IsSingular()) {
return NONINVERTIBLE_TRANSFORM;
}
downToDest.Invert();
Matrix4x4 upToAncestor = GetTransformToAncestor(aFromFrame, nearestCommonAncestor);
float devPixelsPerAppUnitFromFrame =
1.0f / aFromFrame->PresContext()->AppUnitsPerDevPixel();
float devPixelsPerAppUnitToFrame =
1.0f / aToFrame->PresContext()->AppUnitsPerDevPixel();
Point4D toDevPixels = downToDest.ProjectPoint(
upToAncestor * Point(aPoint.x * devPixelsPerAppUnitFromFrame,
aPoint.y * devPixelsPerAppUnitFromFrame));
if (!toDevPixels.HasPositiveWCoord()) {
// Not strictly true, but we failed to get a valid point in this
// coordinate space.
return NONINVERTIBLE_TRANSFORM;
}
aPoint.x = NSToCoordRound(toDevPixels.x / devPixelsPerAppUnitToFrame);
aPoint.y = NSToCoordRound(toDevPixels.y / devPixelsPerAppUnitToFrame);
return TRANSFORM_SUCCEEDED;
}
nsLayoutUtils::TransformResult
nsLayoutUtils::TransformRect(nsIFrame* aFromFrame, nsIFrame* aToFrame,
nsRect& aRect)
{
nsIFrame* nearestCommonAncestor = FindNearestCommonAncestorFrame(aFromFrame, aToFrame);
if (!nearestCommonAncestor) {
return NO_COMMON_ANCESTOR;
}
Matrix4x4 downToDest = GetTransformToAncestor(aToFrame, nearestCommonAncestor);
if (downToDest.IsSingular()) {
return NONINVERTIBLE_TRANSFORM;
}
downToDest.Invert();
Matrix4x4 upToAncestor = GetTransformToAncestor(aFromFrame, nearestCommonAncestor);
float devPixelsPerAppUnitFromFrame =
1.0f / aFromFrame->PresContext()->AppUnitsPerDevPixel();
float devPixelsPerAppUnitToFrame =
1.0f / aToFrame->PresContext()->AppUnitsPerDevPixel();
gfx::Rect toDevPixels = downToDest.ProjectRectBounds(
upToAncestor.ProjectRectBounds(
gfx::Rect(aRect.x * devPixelsPerAppUnitFromFrame,
aRect.y * devPixelsPerAppUnitFromFrame,
aRect.width * devPixelsPerAppUnitFromFrame,
aRect.height * devPixelsPerAppUnitFromFrame),
Rect(-std::numeric_limits<Float>::max() * 0.5f,
-std::numeric_limits<Float>::max() * 0.5f,
std::numeric_limits<Float>::max(),
std::numeric_limits<Float>::max())),
Rect(-std::numeric_limits<Float>::max() * devPixelsPerAppUnitFromFrame * 0.5f,
-std::numeric_limits<Float>::max() * devPixelsPerAppUnitFromFrame * 0.5f,
std::numeric_limits<Float>::max() * devPixelsPerAppUnitFromFrame,
std::numeric_limits<Float>::max() * devPixelsPerAppUnitFromFrame));
aRect.x = toDevPixels.x / devPixelsPerAppUnitToFrame;
aRect.y = toDevPixels.y / devPixelsPerAppUnitToFrame;
aRect.width = toDevPixels.width / devPixelsPerAppUnitToFrame;
aRect.height = toDevPixels.height / devPixelsPerAppUnitToFrame;
return TRANSFORM_SUCCEEDED;
}
nsRect
nsLayoutUtils::GetRectRelativeToFrame(Element* aElement, nsIFrame* aFrame)
{
if (!aElement || !aFrame) {
return nsRect();
}
nsIFrame* frame = aElement->GetPrimaryFrame();
if (!frame) {
return nsRect();
}
nsRect rect = frame->GetRectRelativeToSelf();
nsLayoutUtils::TransformResult rv =
nsLayoutUtils::TransformRect(frame, aFrame, rect);
if (rv != nsLayoutUtils::TRANSFORM_SUCCEEDED) {
return nsRect();
}
return rect;
}
bool
nsLayoutUtils::ContainsPoint(const nsRect& aRect, const nsPoint& aPoint,
nscoord aInflateSize)
{
nsRect rect = aRect;
rect.Inflate(aInflateSize);
return rect.Contains(aPoint);
}
bool
nsLayoutUtils::IsRectVisibleInScrollFrames(nsIFrame* aFrame, const nsRect& aRect)
{
return !ClampRectToScrollFrames(aFrame, aRect).IsEmpty();
}
nsRect
nsLayoutUtils::ClampRectToScrollFrames(nsIFrame* aFrame, const nsRect& aRect)
{
nsIFrame* closestScrollFrame =
nsLayoutUtils::GetClosestFrameOfType(aFrame, nsGkAtoms::scrollFrame);
nsRect resultRect = aRect;
while (closestScrollFrame) {
nsIScrollableFrame* sf = do_QueryFrame(closestScrollFrame);
nsRect scrollPortRect = sf->GetScrollPortRect();
nsLayoutUtils::TransformRect(closestScrollFrame, aFrame, scrollPortRect);
resultRect = resultRect.Intersect(scrollPortRect);
// Check whether aRect is visible in the scroll frame or not.
if (resultRect.IsEmpty()) {
break;
}
// Get next ancestor scroll frame.
closestScrollFrame =
nsLayoutUtils::GetClosestFrameOfType(closestScrollFrame->GetParent(),
nsGkAtoms::scrollFrame);
}
return resultRect;
}
bool
nsLayoutUtils::GetLayerTransformForFrame(nsIFrame* aFrame,
Matrix4x4* aTransform)
{
// FIXME/bug 796690: we can sometimes compute a transform in these
// cases, it just increases complexity considerably. Punt for now.
if (aFrame->Preserves3DChildren() || aFrame->HasTransformGetter()) {
return false;
}
nsIFrame* root = nsLayoutUtils::GetDisplayRootFrame(aFrame);
if (root->HasAnyStateBits(NS_FRAME_UPDATE_LAYER_TREE)) {
// Content may have been invalidated, so we can't reliably compute
// the "layer transform" in general.
return false;
}
// If the caller doesn't care about the value, early-return to skip
// overhead below.
if (!aTransform) {
return true;
}
nsDisplayListBuilder builder(root, nsDisplayListBuilder::OTHER,
false/*don't build caret*/);
nsDisplayList list;
nsDisplayTransform* item =
new (&builder) nsDisplayTransform(&builder, aFrame, &list, nsRect());
*aTransform = item->GetTransform();
item->~nsDisplayTransform();
return true;
}
static bool
TransformGfxPointFromAncestor(nsIFrame *aFrame,
const Point &aPoint,
nsIFrame *aAncestor,
Point* aOut)
{
Matrix4x4 ctm = nsLayoutUtils::GetTransformToAncestor(aFrame, aAncestor);
ctm.Invert();
Point4D point = ctm.ProjectPoint(aPoint);
if (!point.HasPositiveWCoord()) {
return false;
}
*aOut = point.As2DPoint();
return true;
}
static Rect
TransformGfxRectToAncestor(nsIFrame *aFrame,
const Rect &aRect,
const nsIFrame *aAncestor,
bool* aPreservesAxisAlignedRectangles = nullptr)
{
Matrix4x4 ctm = nsLayoutUtils::GetTransformToAncestor(aFrame, aAncestor);
if (aPreservesAxisAlignedRectangles) {
Matrix matrix2d;
*aPreservesAxisAlignedRectangles =
ctm.Is2D(&matrix2d) && matrix2d.PreservesAxisAlignedRectangles();
}
Rect maxBounds = Rect(-std::numeric_limits<float>::max() * 0.5,
-std::numeric_limits<float>::max() * 0.5,
std::numeric_limits<float>::max(),
std::numeric_limits<float>::max());
return ctm.TransformAndClipBounds(aRect, maxBounds);
}
static SVGTextFrame*
GetContainingSVGTextFrame(nsIFrame* aFrame)
{
if (!aFrame->IsSVGText()) {
return nullptr;
}
return static_cast<SVGTextFrame*>
(nsLayoutUtils::GetClosestFrameOfType(aFrame->GetParent(),
nsGkAtoms::svgTextFrame));
}
nsPoint
nsLayoutUtils::TransformAncestorPointToFrame(nsIFrame* aFrame,
const nsPoint& aPoint,
nsIFrame* aAncestor)
{
SVGTextFrame* text = GetContainingSVGTextFrame(aFrame);
float factor = aFrame->PresContext()->AppUnitsPerDevPixel();
Point result(NSAppUnitsToFloatPixels(aPoint.x, factor),
NSAppUnitsToFloatPixels(aPoint.y, factor));
if (text) {
if (!TransformGfxPointFromAncestor(text, result, aAncestor, &result)) {
return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
}
result = text->TransformFramePointToTextChild(result, aFrame);
} else {
if (!TransformGfxPointFromAncestor(aFrame, result, nullptr, &result)) {
return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
}
}
return nsPoint(NSFloatPixelsToAppUnits(float(result.x), factor),
NSFloatPixelsToAppUnits(float(result.y), factor));
}
nsRect
nsLayoutUtils::TransformFrameRectToAncestor(nsIFrame* aFrame,
const nsRect& aRect,
const nsIFrame* aAncestor,
bool* aPreservesAxisAlignedRectangles /* = nullptr */)
{
SVGTextFrame* text = GetContainingSVGTextFrame(aFrame);
float srcAppUnitsPerDevPixel = aFrame->PresContext()->AppUnitsPerDevPixel();
Rect result;
if (text) {
result = ToRect(text->TransformFrameRectFromTextChild(aRect, aFrame));
result = TransformGfxRectToAncestor(text, result, aAncestor);
// TransformFrameRectFromTextChild could involve any kind of transform, we
// could drill down into it to get an answer out of it but we don't yet.
if (aPreservesAxisAlignedRectangles)
*aPreservesAxisAlignedRectangles = false;
} else {
result = Rect(NSAppUnitsToFloatPixels(aRect.x, srcAppUnitsPerDevPixel),
NSAppUnitsToFloatPixels(aRect.y, srcAppUnitsPerDevPixel),
NSAppUnitsToFloatPixels(aRect.width, srcAppUnitsPerDevPixel),
NSAppUnitsToFloatPixels(aRect.height, srcAppUnitsPerDevPixel));
result = TransformGfxRectToAncestor(aFrame, result, aAncestor, aPreservesAxisAlignedRectangles);
}
float destAppUnitsPerDevPixel = aAncestor->PresContext()->AppUnitsPerDevPixel();
return nsRect(NSFloatPixelsToAppUnits(float(result.x), destAppUnitsPerDevPixel),
NSFloatPixelsToAppUnits(float(result.y), destAppUnitsPerDevPixel),
NSFloatPixelsToAppUnits(float(result.width), destAppUnitsPerDevPixel),
NSFloatPixelsToAppUnits(float(result.height), destAppUnitsPerDevPixel));
}
static LayoutDeviceIntPoint GetWidgetOffset(nsIWidget* aWidget, nsIWidget*& aRootWidget) {
LayoutDeviceIntPoint offset(0, 0);
while ((aWidget->WindowType() == eWindowType_child ||
aWidget->IsPlugin())) {
nsIWidget* parent = aWidget->GetParent();
if (!parent) {
break;
}
nsIntRect bounds;
aWidget->GetBounds(bounds);
offset += LayoutDeviceIntPoint::FromUntyped(bounds.TopLeft());
aWidget = parent;
}
aRootWidget = aWidget;
return offset;
}
static LayoutDeviceIntPoint
WidgetToWidgetOffset(nsIWidget* aFrom, nsIWidget* aTo) {
nsIWidget* fromRoot;
LayoutDeviceIntPoint fromOffset = GetWidgetOffset(aFrom, fromRoot);
nsIWidget* toRoot;
LayoutDeviceIntPoint toOffset = GetWidgetOffset(aTo, toRoot);
if (fromRoot == toRoot) {
return fromOffset - toOffset;
}
return aFrom->WidgetToScreenOffset() - aTo->WidgetToScreenOffset();
}
nsPoint
nsLayoutUtils::TranslateWidgetToView(nsPresContext* aPresContext,
nsIWidget* aWidget, const LayoutDeviceIntPoint& aPt,
nsView* aView)
{
nsPoint viewOffset;
nsIWidget* viewWidget = aView->GetNearestWidget(&viewOffset);
if (!viewWidget) {
return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
}
LayoutDeviceIntPoint widgetPoint = aPt + WidgetToWidgetOffset(aWidget, viewWidget);
nsPoint widgetAppUnits(aPresContext->DevPixelsToAppUnits(widgetPoint.x),
aPresContext->DevPixelsToAppUnits(widgetPoint.y));
return widgetAppUnits - viewOffset;
}
LayoutDeviceIntPoint
nsLayoutUtils::TranslateViewToWidget(nsPresContext* aPresContext,
nsView* aView, nsPoint aPt,
nsIWidget* aWidget)
{
nsPoint viewOffset;
nsIWidget* viewWidget = aView->GetNearestWidget(&viewOffset);
if (!viewWidget) {
return LayoutDeviceIntPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
}
LayoutDeviceIntPoint relativeToViewWidget(aPresContext->AppUnitsToDevPixels(aPt.x + viewOffset.x),
aPresContext->AppUnitsToDevPixels(aPt.y + viewOffset.y));
return relativeToViewWidget + WidgetToWidgetOffset(viewWidget, aWidget);
}
// Combine aNewBreakType with aOrigBreakType, but limit the break types
// to NS_STYLE_CLEAR_LEFT, RIGHT, BOTH.
uint8_t
nsLayoutUtils::CombineBreakType(uint8_t aOrigBreakType,
uint8_t aNewBreakType)
{
uint8_t breakType = aOrigBreakType;
switch(breakType) {
case NS_STYLE_CLEAR_LEFT:
if (NS_STYLE_CLEAR_RIGHT == aNewBreakType ||
NS_STYLE_CLEAR_BOTH == aNewBreakType) {
breakType = NS_STYLE_CLEAR_BOTH;
}
break;
case NS_STYLE_CLEAR_RIGHT:
if (NS_STYLE_CLEAR_LEFT == aNewBreakType ||
NS_STYLE_CLEAR_BOTH == aNewBreakType) {
breakType = NS_STYLE_CLEAR_BOTH;
}
break;
case NS_STYLE_CLEAR_NONE:
if (NS_STYLE_CLEAR_LEFT == aNewBreakType ||
NS_STYLE_CLEAR_RIGHT == aNewBreakType ||
NS_STYLE_CLEAR_BOTH == aNewBreakType) {
breakType = aNewBreakType;
}
}
return breakType;
}
#ifdef MOZ_DUMP_PAINTING
#include <stdio.h>
static bool gDumpEventList = false;
int gPaintCount = 0;
#endif
nsIFrame*
nsLayoutUtils::GetFrameForPoint(nsIFrame* aFrame, nsPoint aPt, uint32_t aFlags)
{
PROFILER_LABEL("nsLayoutUtils", "GetFrameForPoint",
js::ProfileEntry::Category::GRAPHICS);
nsresult rv;
nsAutoTArray<nsIFrame*,8> outFrames;
rv = GetFramesForArea(aFrame, nsRect(aPt, nsSize(1, 1)), outFrames, aFlags);
NS_ENSURE_SUCCESS(rv, nullptr);
return outFrames.Length() ? outFrames.ElementAt(0) : nullptr;
}
nsresult
nsLayoutUtils::GetFramesForArea(nsIFrame* aFrame, const nsRect& aRect,
nsTArray<nsIFrame*> &aOutFrames,
uint32_t aFlags)
{
PROFILER_LABEL("nsLayoutUtils", "GetFramesForArea",
js::ProfileEntry::Category::GRAPHICS);
nsDisplayListBuilder builder(aFrame, nsDisplayListBuilder::EVENT_DELIVERY,
false);
nsDisplayList list;
if (aFlags & IGNORE_PAINT_SUPPRESSION) {
builder.IgnorePaintSuppression();
}
if (aFlags & IGNORE_ROOT_SCROLL_FRAME) {
nsIFrame* rootScrollFrame =
aFrame->PresContext()->PresShell()->GetRootScrollFrame();
if (rootScrollFrame) {
builder.SetIgnoreScrollFrame(rootScrollFrame);
}
}
if (aFlags & IGNORE_CROSS_DOC) {
builder.SetDescendIntoSubdocuments(false);
}
builder.EnterPresShell(aFrame);
aFrame->BuildDisplayListForStackingContext(&builder, aRect, &list);
builder.LeavePresShell(aFrame);
#ifdef MOZ_DUMP_PAINTING
if (gDumpEventList) {
fprintf_stderr(stderr, "Event handling --- (%d,%d):\n", aRect.x, aRect.y);
std::stringstream ss;
nsFrame::PrintDisplayList(&builder, list, ss);
print_stderr(ss);
}
#endif
nsDisplayItem::HitTestState hitTestState;
list.HitTest(&builder, aRect, &hitTestState, &aOutFrames);
list.DeleteAll();
return NS_OK;
}
// aScrollFrameAsScrollable must be non-nullptr and queryable to an nsIFrame
FrameMetrics
nsLayoutUtils::CalculateBasicFrameMetrics(nsIScrollableFrame* aScrollFrame) {
nsIFrame* frame = do_QueryFrame(aScrollFrame);
MOZ_ASSERT(frame);
// Calculate the metrics necessary for calculating the displayport.
// This code has a lot in common with the code in ComputeFrameMetrics();
// we may want to refactor this at some point.
FrameMetrics metrics;
nsPresContext* presContext = frame->PresContext();
nsIPresShell* presShell = presContext->PresShell();
CSSToLayoutDeviceScale deviceScale(float(nsPresContext::AppUnitsPerCSSPixel())
/ presContext->AppUnitsPerDevPixel());
float resolution = 1.0f;
if (frame == presShell->GetRootScrollFrame()) {
// Only the root scrollable frame for a given presShell should pick up
// the presShell's resolution. All the other frames are 1.0.
resolution = presShell->GetResolution();
}
// Note: unlike in ComputeFrameMetrics(), we don't know the full cumulative
// resolution including FrameMetrics::mExtraResolution, because layout hasn't
// chosen a resolution to paint at yet. However, the display port calculation
// divides out mExtraResolution anyways, so we get the correct result by
// setting the mCumulativeResolution to everything except the extra resolution
// and leaving mExtraResolution at 1.
LayoutDeviceToLayerScale2D cumulativeResolution(
presShell->GetCumulativeResolution()
* nsLayoutUtils::GetTransformToAncestorScale(frame));
LayerToParentLayerScale layerToParentLayerScale(1.0f);
metrics.SetDevPixelsPerCSSPixel(deviceScale);
metrics.SetPresShellResolution(resolution);
metrics.SetCumulativeResolution(cumulativeResolution);
metrics.SetZoom(deviceScale * cumulativeResolution * layerToParentLayerScale);
// Only the size of the composition bounds is relevant to the
// displayport calculation, not its origin.
nsSize compositionSize = nsLayoutUtils::CalculateCompositionSizeForFrame(frame);
LayoutDeviceToParentLayerScale2D compBoundsScale;
if (frame == presShell->GetRootScrollFrame() && presContext->IsRootContentDocument()) {
if (presContext->GetParentPresContext()) {
float res = presContext->GetParentPresContext()->PresShell()->GetCumulativeResolution();
compBoundsScale = LayoutDeviceToParentLayerScale2D(
LayoutDeviceToParentLayerScale(res));
}
} else {
compBoundsScale = cumulativeResolution * layerToParentLayerScale;
}
metrics.SetCompositionBounds(
LayoutDeviceRect::FromAppUnits(nsRect(nsPoint(0, 0), compositionSize),
presContext->AppUnitsPerDevPixel())
* compBoundsScale);
metrics.SetRootCompositionSize(
nsLayoutUtils::CalculateRootCompositionSize(frame, false, metrics));
metrics.SetScrollOffset(CSSPoint::FromAppUnits(
aScrollFrame->GetScrollPosition()));
metrics.SetScrollableRect(CSSRect::FromAppUnits(
nsLayoutUtils::CalculateScrollableRectForFrame(aScrollFrame, nullptr)));
return metrics;
}
bool
nsLayoutUtils::CalculateAndSetDisplayPortMargins(nsIScrollableFrame* aScrollFrame,
RepaintMode aRepaintMode) {
nsIFrame* frame = do_QueryFrame(aScrollFrame);
MOZ_ASSERT(frame);
nsIContent* content = frame->GetContent();
MOZ_ASSERT(content);
FrameMetrics metrics = CalculateBasicFrameMetrics(aScrollFrame);
ScreenMargin displayportMargins = APZCTreeManager::CalculatePendingDisplayPort(
metrics, ParentLayerPoint(0.0f, 0.0f), 0.0);
nsIPresShell* presShell = frame->PresContext()->GetPresShell();
return nsLayoutUtils::SetDisplayPortMargins(
content, presShell, displayportMargins, 0, aRepaintMode);
}
bool
nsLayoutUtils::GetOrMaybeCreateDisplayPort(nsDisplayListBuilder& aBuilder,
nsIFrame* aScrollFrame,
nsRect aDisplayPortBase,
nsRect* aOutDisplayport) {
nsIContent* content = aScrollFrame->GetContent();
nsIScrollableFrame* scrollableFrame = do_QueryFrame(aScrollFrame);
if (!content || !scrollableFrame) {
return false;
}
// Set the base rect. Note that this will not influence 'haveDisplayPort',
// which is based on either the whole rect or margins being set, but it
// will affect what is returned in 'aOutDisplayPort' if margins are set.
SetDisplayPortBase(content, aDisplayPortBase);
bool haveDisplayPort = GetDisplayPort(content, aOutDisplayport);
// We perform an optimization where we ensure that at least one
// async-scrollable frame (i.e. one that WantsAsyncScroll()) has a displayport.
// If that's not the case yet, and we are async-scrollable, we will get a
// displayport.
// Note: we only do this in processes where we do subframe scrolling to
// begin with (i.e., not in the parent process on B2G).
if (aBuilder.IsPaintingToWindow() &&
nsLayoutUtils::AsyncPanZoomEnabled(aScrollFrame) &&
!aBuilder.HaveScrollableDisplayPort() &&
scrollableFrame->WantAsyncScroll()) {
// If we don't already have a displayport, calculate and set one.
if (!haveDisplayPort) {
CalculateAndSetDisplayPortMargins(scrollableFrame, nsLayoutUtils::RepaintMode::DoNotRepaint);
haveDisplayPort = GetDisplayPort(content, aOutDisplayport);
NS_ASSERTION(haveDisplayPort, "should have a displayport after having just set it");
}
// Record that the we now have a scrollable display port.
aBuilder.SetHaveScrollableDisplayPort();
}
return haveDisplayPort;
}
nsresult
nsLayoutUtils::PaintFrame(nsRenderingContext* aRenderingContext, nsIFrame* aFrame,
const nsRegion& aDirtyRegion, nscolor aBackstop,
uint32_t aFlags)
{
PROFILER_LABEL("nsLayoutUtils", "PaintFrame",
js::ProfileEntry::Category::GRAPHICS);
if (aFlags & PAINT_WIDGET_LAYERS) {
nsView* view = aFrame->GetView();
if (!(view && view->GetWidget() && GetDisplayRootFrame(aFrame) == aFrame)) {
aFlags &= ~PAINT_WIDGET_LAYERS;
NS_ASSERTION(aRenderingContext, "need a rendering context");
}
}
nsPresContext* presContext = aFrame->PresContext();
nsIPresShell* presShell = presContext->PresShell();
nsRootPresContext* rootPresContext = presContext->GetRootPresContext();
if (!rootPresContext) {
return NS_OK;
}
TimeStamp startBuildDisplayList = TimeStamp::Now();
nsDisplayListBuilder builder(aFrame, nsDisplayListBuilder::PAINTING,
!(aFlags & PAINT_HIDE_CARET));
if (aFlags & PAINT_IN_TRANSFORM) {
builder.SetInTransform(true);
}
if (aFlags & PAINT_SYNC_DECODE_IMAGES) {
builder.SetSyncDecodeImages(true);
}
if (aFlags & (PAINT_WIDGET_LAYERS | PAINT_TO_WINDOW)) {
builder.SetPaintingToWindow(true);
}
if (aFlags & PAINT_IGNORE_SUPPRESSION) {
builder.IgnorePaintSuppression();
}
nsIFrame* rootScrollFrame = presShell->GetRootScrollFrame();
bool usingDisplayPort = false;
nsRect displayport;
if (rootScrollFrame && !aFrame->GetParent() &&
(aFlags & (PAINT_WIDGET_LAYERS | PAINT_TO_WINDOW)) &&
gfxPrefs::LayoutUseContainersForRootFrames()) {
nsRect displayportBase(
nsPoint(0,0),
nsLayoutUtils::CalculateCompositionSizeForFrame(rootScrollFrame));
usingDisplayPort = nsLayoutUtils::GetOrMaybeCreateDisplayPort(
builder, rootScrollFrame, displayportBase, &displayport);
}
nsDisplayList hoistedScrollItemStorage;
if (aFlags & (PAINT_WIDGET_LAYERS | PAINT_TO_WINDOW)) {
builder.SetCommittedScrollInfoItemList(&hoistedScrollItemStorage);
}
nsRegion visibleRegion;
if (aFlags & PAINT_WIDGET_LAYERS) {
// This layer tree will be reused, so we'll need to calculate it
// for the whole "visible" area of the window
//
// |ignoreViewportScrolling| and |usingDisplayPort| are persistent
// document-rendering state. We rely on PresShell to flush
// retained layers as needed when that persistent state changes.
if (!usingDisplayPort) {
visibleRegion = aFrame->GetVisualOverflowRectRelativeToSelf();
} else {
visibleRegion = displayport;
}
} else {
visibleRegion = aDirtyRegion;
}
// If we're going to display something different from what we'd normally
// paint in a window then we will flush out any retained layer trees before
// *and after* we draw.
bool willFlushRetainedLayers = (aFlags & PAINT_HIDE_CARET) != 0;
nsDisplayList list;
// If the root has embedded plugins, flag the builder so we know we'll need
// to update plugin geometry after painting.
if ((aFlags & PAINT_WIDGET_LAYERS) &&
!willFlushRetainedLayers &&
!(aFlags & PAINT_DOCUMENT_RELATIVE) &&
rootPresContext->NeedToComputePluginGeometryUpdates()) {
builder.SetWillComputePluginGeometry(true);
}
nsRect canvasArea(nsPoint(0, 0), aFrame->GetSize());
bool ignoreViewportScrolling =
aFrame->GetParent() ? false : presShell->IgnoringViewportScrolling();
if (ignoreViewportScrolling && rootScrollFrame) {
nsIScrollableFrame* rootScrollableFrame =
presShell->GetRootScrollFrameAsScrollable();
if (aFlags & PAINT_DOCUMENT_RELATIVE) {
// Make visibleRegion and aRenderingContext relative to the
// scrolled frame instead of the root frame.
nsPoint pos = rootScrollableFrame->GetScrollPosition();
visibleRegion.MoveBy(-pos);
if (aRenderingContext) {
gfxPoint devPixelOffset =
nsLayoutUtils::PointToGfxPoint(pos,
presContext->AppUnitsPerDevPixel());
aRenderingContext->ThebesContext()->SetMatrix(
aRenderingContext->ThebesContext()->CurrentMatrix().Translate(devPixelOffset));
}
}
builder.SetIgnoreScrollFrame(rootScrollFrame);
nsCanvasFrame* canvasFrame =
do_QueryFrame(rootScrollableFrame->GetScrolledFrame());
if (canvasFrame) {
// Use UnionRect here to ensure that areas where the scrollbars
// were are still filled with the background color.
canvasArea.UnionRect(canvasArea,
canvasFrame->CanvasArea() + builder.ToReferenceFrame(canvasFrame));
}
}
builder.EnterPresShell(aFrame);
nsRect dirtyRect = visibleRegion.GetBounds();
{
// If a scrollable container layer is created in nsDisplayList::PaintForFrame,
// it will be the scroll parent for display items that are built in the
// BuildDisplayListForStackingContext call below. We need to set the scroll
// parent on the display list builder while we build those items, so that they
// can pick up their scroll parent's id.
ViewID id = FrameMetrics::NULL_SCROLL_ID;
if (ignoreViewportScrolling && presContext->IsRootContentDocument()) {
if (nsIFrame* rootScrollFrame = presShell->GetRootScrollFrame()) {
if (nsIContent* content = rootScrollFrame->GetContent()) {
id = nsLayoutUtils::FindOrCreateIDFor(content);
}
}
}
#if !defined(MOZ_WIDGET_ANDROID) || defined(MOZ_ANDROID_APZ)
else if (presShell->GetDocument() && presShell->GetDocument()->IsRootDisplayDocument()
&& !presShell->GetRootScrollFrame()) {
// In cases where the root document is a XUL document, we want to take
// the ViewID from the root element, as that will be the ViewID of the
// root APZC in the tree. Skip doing this in cases where we know
// nsGfxScrollFrame::BuilDisplayList will do it instead.
if (dom::Element* element = presShell->GetDocument()->GetDocumentElement()) {
id = nsLayoutUtils::FindOrCreateIDFor(element);
}
}
#endif
nsDisplayListBuilder::AutoCurrentScrollParentIdSetter idSetter(&builder, id);
PROFILER_LABEL("nsLayoutUtils", "PaintFrame::BuildDisplayList",
js::ProfileEntry::Category::GRAPHICS);
aFrame->BuildDisplayListForStackingContext(&builder, dirtyRect, &list);
}
const bool paintAllContinuations = aFlags & PAINT_ALL_CONTINUATIONS;
NS_ASSERTION(!paintAllContinuations || !aFrame->GetPrevContinuation(),
"If painting all continuations, the frame must be "
"first-continuation");
nsIAtom* frameType = aFrame->GetType();
if (paintAllContinuations) {
nsIFrame* currentFrame = aFrame;
while ((currentFrame = currentFrame->GetNextContinuation()) != nullptr) {
PROFILER_LABEL("nsLayoutUtils", "PaintFrame::ContinuationsBuildDisplayList",
js::ProfileEntry::Category::GRAPHICS);
nsRect frameDirty = dirtyRect - builder.ToReferenceFrame(currentFrame);
currentFrame->BuildDisplayListForStackingContext(&builder,
frameDirty, &list);
}
}
// For the viewport frame in print preview/page layout we want to paint
// the grey background behind the page, not the canvas color.
if (frameType == nsGkAtoms::viewportFrame &&
nsLayoutUtils::NeedsPrintPreviewBackground(presContext)) {
nsRect bounds = nsRect(builder.ToReferenceFrame(aFrame),
aFrame->GetSize());
nsDisplayListBuilder::AutoBuildingDisplayList
buildingDisplayList(&builder, aFrame, bounds, false);
presShell->AddPrintPreviewBackgroundItem(builder, list, aFrame, bounds);
} else if (frameType != nsGkAtoms::pageFrame) {
// For printing, this function is first called on an nsPageFrame, which
// creates a display list with a PageContent item. The PageContent item's
// paint function calls this function on the nsPageFrame's child which is
// an nsPageContentFrame. We only want to add the canvas background color
// item once, for the nsPageContentFrame.
// Add the canvas background color to the bottom of the list. This
// happens after we've built the list so that AddCanvasBackgroundColorItem
// can monkey with the contents if necessary.
canvasArea.IntersectRect(canvasArea, visibleRegion.GetBounds());
nsDisplayListBuilder::AutoBuildingDisplayList
buildingDisplayList(&builder, aFrame, canvasArea, false);
presShell->AddCanvasBackgroundColorItem(
builder, list, aFrame, canvasArea, aBackstop);
// If the passed in backstop color makes us draw something different from
// normal, we need to flush layers.
if ((aFlags & PAINT_WIDGET_LAYERS) && !willFlushRetainedLayers) {
nsView* view = aFrame->GetView();
if (view) {
nscolor backstop = presShell->ComputeBackstopColor(view);
// The PresShell's canvas background color doesn't get updated until
// EnterPresShell, so this check has to be done after that.
nscolor canvasColor = presShell->GetCanvasBackground();
if (NS_ComposeColors(aBackstop, canvasColor) !=
NS_ComposeColors(backstop, canvasColor)) {
willFlushRetainedLayers = true;
}
}
}
}
builder.LeavePresShell(aFrame);
Telemetry::AccumulateTimeDelta(Telemetry::PAINT_BUILD_DISPLAYLIST_TIME,
startBuildDisplayList);
if (builder.GetHadToIgnorePaintSuppression()) {
willFlushRetainedLayers = true;
}
bool profilerNeedsDisplayList = profiler_feature_active("displaylistdump");
bool consoleNeedsDisplayList = gfxUtils::DumpDisplayList() || gfxUtils::sDumpPainting;
#ifdef MOZ_DUMP_PAINTING
FILE* savedDumpFile = gfxUtils::sDumpPaintFile;
#endif
UniquePtr<std::stringstream> ss;
if (consoleNeedsDisplayList || profilerNeedsDisplayList) {
ss = MakeUnique<std::stringstream>();
#ifdef MOZ_DUMP_PAINTING
if (gfxUtils::sDumpPaintingToFile) {
nsCString string("dump-");
string.AppendInt(gPaintCount);
string.AppendLiteral(".html");
gfxUtils::sDumpPaintFile = fopen(string.BeginReading(), "w");
} else {
gfxUtils::sDumpPaintFile = stderr;
}
if (gfxUtils::sDumpPaintingToFile) {
*ss << "<html><head><script>var array = {}; function ViewImage(index) { window.location = array[index]; }</script></head><body>";
}
#endif
*ss << nsPrintfCString("Painting --- before optimization (dirty %d,%d,%d,%d):\n",
dirtyRect.x, dirtyRect.y, dirtyRect.width, dirtyRect.height).get();
nsFrame::PrintDisplayList(&builder, list, *ss, gfxUtils::sDumpPaintingToFile);
if (gfxUtils::sDumpPaintingToFile) {
*ss << "<script>";
} else {
// Flush stream now to avoid reordering dump output relative to
// messages dumped by PaintRoot below.
if (profilerNeedsDisplayList && !consoleNeedsDisplayList) {
profiler_log(ss->str().c_str());
} else {
// Send to the console which will send to the profiler if required.
fprint_stderr(gfxUtils::sDumpPaintFile, *ss);
}
ss = MakeUnique<std::stringstream>();
}
}
uint32_t flags = nsDisplayList::PAINT_DEFAULT;
if (aFlags & PAINT_WIDGET_LAYERS) {
flags |= nsDisplayList::PAINT_USE_WIDGET_LAYERS;
if (willFlushRetainedLayers) {
// The caller wanted to paint from retained layers, but set up
// the paint in such a way that we can't use them. We're going
// to display something different from what we'd normally paint
// in a window, so make sure we flush out any retained layer
// trees before *and after* we draw. Callers should be fixed to
// not do this.
NS_WARNING("Flushing retained layers!");
flags |= nsDisplayList::PAINT_FLUSH_LAYERS;
} else if (!(aFlags & PAINT_DOCUMENT_RELATIVE)) {
nsIWidget *widget = aFrame->GetNearestWidget();
if (widget) {
// If we're finished building display list items for painting of the outermost
// pres shell, notify the widget about any toolbars we've encountered.
widget->UpdateThemeGeometries(builder.GetThemeGeometries());
}
}
}
if (aFlags & PAINT_EXISTING_TRANSACTION) {
flags |= nsDisplayList::PAINT_EXISTING_TRANSACTION;
}
if (aFlags & PAINT_NO_COMPOSITE) {
flags |= nsDisplayList::PAINT_NO_COMPOSITE;
}
if (aFlags & PAINT_COMPRESSED) {
flags |= nsDisplayList::PAINT_COMPRESSED;
}
TimeStamp paintStart = TimeStamp::Now();
nsRefPtr<LayerManager> layerManager =
list.PaintRoot(&builder, aRenderingContext, flags);
Telemetry::AccumulateTimeDelta(Telemetry::PAINT_RASTERIZE_TIME,
paintStart);
if (consoleNeedsDisplayList || profilerNeedsDisplayList) {
#ifdef MOZ_DUMP_PAINTING
if (gfxUtils::sDumpPaintingToFile) {
*ss << "</script>";
}
#endif
*ss << "Painting --- after optimization:\n";
nsFrame::PrintDisplayList(&builder, list, *ss, gfxUtils::sDumpPaintingToFile);
*ss << "Painting --- layer tree:\n";
if (layerManager) {
FrameLayerBuilder::DumpRetainedLayerTree(layerManager, *ss,
gfxUtils::sDumpPaintingToFile);
}
if (profilerNeedsDisplayList && !consoleNeedsDisplayList) {
profiler_log(ss->str().c_str());
} else {
// Send to the console which will send to the profiler if required.
fprint_stderr(gfxUtils::sDumpPaintFile, *ss);
}
#ifdef MOZ_DUMP_PAINTING
if (gfxUtils::sDumpPaintingToFile) {
*ss << "</body></html>";
}
if (gfxUtils::sDumpPaintingToFile) {
fclose(gfxUtils::sDumpPaintFile);
}
gfxUtils::sDumpPaintFile = savedDumpFile;
gPaintCount++;
#endif
std::stringstream lsStream;
nsFrame::PrintDisplayList(&builder, list, lsStream);
layerManager->GetRoot()->SetDisplayListLog(lsStream.str().c_str());
}
#ifdef MOZ_DUMP_PAINTING
if (gfxPrefs::DumpClientLayers()) {
std::stringstream ss;
FrameLayerBuilder::DumpRetainedLayerTree(layerManager, ss, false);
print_stderr(ss);
}
#endif
// Update the widget's opaque region information. This sets
// glass boundaries on Windows. Also set up the window dragging region
// and plugin clip regions and bounds.
if ((aFlags & PAINT_WIDGET_LAYERS) &&
!willFlushRetainedLayers &&
!(aFlags & PAINT_DOCUMENT_RELATIVE)) {
nsIWidget *widget = aFrame->GetNearestWidget();
if (widget) {
nsRegion opaqueRegion;
opaqueRegion.And(builder.GetWindowExcludeGlassRegion(), builder.GetWindowOpaqueRegion());
widget->UpdateOpaqueRegion(
opaqueRegion.ToNearestPixels(presContext->AppUnitsPerDevPixel()));
const nsIntRegion& draggingRegion = builder.GetWindowDraggingRegion();
widget->UpdateWindowDraggingRegion(draggingRegion);
}
}
if (builder.WillComputePluginGeometry()) {
// For single process compute and apply plugin geometry updates to plugin
// windows, then request composition. For content processes skip eveything
// except requesting composition. Geometry updates were calculated and
// shipped to the chrome process in nsDisplayList when the layer
// transaction completed.
if (XRE_IsParentProcess()) {
rootPresContext->ComputePluginGeometryUpdates(aFrame, &builder, &list);
// We're not going to get a WillPaintWindow event here if we didn't do
// widget invalidation, so just apply the plugin geometry update here
// instead. We could instead have the compositor send back an equivalent
// to WillPaintWindow, but it should be close enough to now not to matter.
if (layerManager && !layerManager->NeedsWidgetInvalidation()) {
rootPresContext->ApplyPluginGeometryUpdates();
}
}
// We told the compositor thread not to composite when it received the
// transaction because we wanted to update plugins first. Schedule the
// composite now.
if (layerManager) {
layerManager->Composite();
}
}
// Flush the list so we don't trigger the IsEmpty-on-destruction assertion
list.DeleteAll();
return NS_OK;
}
/**
* Uses a binary search for find where the cursor falls in the line of text
* It also keeps track of the part of the string that has already been measured
* so it doesn't have to keep measuring the same text over and over
*
* @param "aBaseWidth" contains the width in twips of the portion
* of the text that has already been measured, and aBaseInx contains
* the index of the text that has already been measured.
*
* @param aTextWidth returns the (in twips) the length of the text that falls
* before the cursor aIndex contains the index of the text where the cursor falls
*/
bool
nsLayoutUtils::BinarySearchForPosition(nsRenderingContext* aRendContext,
nsFontMetrics& aFontMetrics,
const char16_t* aText,
int32_t aBaseWidth,
int32_t aBaseInx,
int32_t aStartInx,
int32_t aEndInx,
int32_t aCursorPos,
int32_t& aIndex,
int32_t& aTextWidth)
{
int32_t range = aEndInx - aStartInx;
if ((range == 1) || (range == 2 && NS_IS_HIGH_SURROGATE(aText[aStartInx]))) {
aIndex = aStartInx + aBaseInx;
aTextWidth = nsLayoutUtils::AppUnitWidthOfString(aText, aIndex,
aFontMetrics,
*aRendContext);
return true;
}
int32_t inx = aStartInx + (range / 2);
// Make sure we don't leave a dangling low surrogate
if (NS_IS_HIGH_SURROGATE(aText[inx-1]))
inx++;
int32_t textWidth = nsLayoutUtils::AppUnitWidthOfString(aText, inx,
aFontMetrics,
*aRendContext);
int32_t fullWidth = aBaseWidth + textWidth;
if (fullWidth == aCursorPos) {
aTextWidth = textWidth;
aIndex = inx;
return true;
} else if (aCursorPos < fullWidth) {
aTextWidth = aBaseWidth;
if (BinarySearchForPosition(aRendContext, aFontMetrics, aText, aBaseWidth,
aBaseInx, aStartInx, inx, aCursorPos, aIndex,
aTextWidth)) {
return true;
}
} else {
aTextWidth = fullWidth;
if (BinarySearchForPosition(aRendContext, aFontMetrics, aText, aBaseWidth,
aBaseInx, inx, aEndInx, aCursorPos, aIndex,
aTextWidth)) {
return true;
}
}
return false;
}
static void
AddBoxesForFrame(nsIFrame* aFrame,
nsLayoutUtils::BoxCallback* aCallback)
{
nsIAtom* pseudoType = aFrame->StyleContext()->GetPseudo();
if (pseudoType == nsCSSAnonBoxes::tableOuter) {
AddBoxesForFrame(aFrame->GetFirstPrincipalChild(), aCallback);
nsIFrame* kid = aFrame->GetFirstChild(nsIFrame::kCaptionList);
if (kid) {
AddBoxesForFrame(kid, aCallback);
}
} else if (pseudoType == nsCSSAnonBoxes::mozAnonymousBlock ||
pseudoType == nsCSSAnonBoxes::mozAnonymousPositionedBlock ||
pseudoType == nsCSSAnonBoxes::mozMathMLAnonymousBlock ||
pseudoType == nsCSSAnonBoxes::mozXULAnonymousBlock) {
for (nsIFrame* kid : aFrame->PrincipalChildList()) {
AddBoxesForFrame(kid, aCallback);
}
} else {
aCallback->AddBox(aFrame);
}
}
void
nsLayoutUtils::GetAllInFlowBoxes(nsIFrame* aFrame, BoxCallback* aCallback)
{
while (aFrame) {
AddBoxesForFrame(aFrame, aCallback);
aFrame = nsLayoutUtils::GetNextContinuationOrIBSplitSibling(aFrame);
}
}
nsIFrame*
nsLayoutUtils::GetFirstNonAnonymousFrame(nsIFrame* aFrame)
{
while (aFrame) {
nsIAtom* pseudoType = aFrame->StyleContext()->GetPseudo();
if (pseudoType == nsCSSAnonBoxes::tableOuter) {
nsIFrame* f = GetFirstNonAnonymousFrame(aFrame->GetFirstPrincipalChild());
if (f) {
return f;
}
nsIFrame* kid = aFrame->GetFirstChild(nsIFrame::kCaptionList);
if (kid) {
f = GetFirstNonAnonymousFrame(kid);
if (f) {
return f;
}
}
} else if (pseudoType == nsCSSAnonBoxes::mozAnonymousBlock ||
pseudoType == nsCSSAnonBoxes::mozAnonymousPositionedBlock ||
pseudoType == nsCSSAnonBoxes::mozMathMLAnonymousBlock ||
pseudoType == nsCSSAnonBoxes::mozXULAnonymousBlock) {
for (nsIFrame* kid : aFrame->PrincipalChildList()) {
nsIFrame* f = GetFirstNonAnonymousFrame(kid);
if (f) {
return f;
}
}
} else {
return aFrame;
}
aFrame = nsLayoutUtils::GetNextContinuationOrIBSplitSibling(aFrame);
}
return nullptr;
}
struct BoxToRect : public nsLayoutUtils::BoxCallback {
nsIFrame* mRelativeTo;
nsLayoutUtils::RectCallback* mCallback;
uint32_t mFlags;
BoxToRect(nsIFrame* aRelativeTo, nsLayoutUtils::RectCallback* aCallback,
uint32_t aFlags)
: mRelativeTo(aRelativeTo), mCallback(aCallback), mFlags(aFlags) {}
virtual void AddBox(nsIFrame* aFrame) override {
nsRect r;
nsIFrame* outer = nsSVGUtils::GetOuterSVGFrameAndCoveredRegion(aFrame, &r);
if (!outer) {
outer = aFrame;
switch (mFlags & nsLayoutUtils::RECTS_WHICH_BOX_MASK) {
case nsLayoutUtils::RECTS_USE_CONTENT_BOX:
r = aFrame->GetContentRectRelativeToSelf();
break;
case nsLayoutUtils::RECTS_USE_PADDING_BOX:
r = aFrame->GetPaddingRectRelativeToSelf();
break;
case nsLayoutUtils::RECTS_USE_MARGIN_BOX:
r = aFrame->GetMarginRectRelativeToSelf();
break;
default: // Use the border box
r = aFrame->GetRectRelativeToSelf();
}
}
if (mFlags & nsLayoutUtils::RECTS_ACCOUNT_FOR_TRANSFORMS) {
r = nsLayoutUtils::TransformFrameRectToAncestor(outer, r, mRelativeTo);
} else {
r += outer->GetOffsetTo(mRelativeTo);
}
mCallback->AddRect(r);
}
};
void
nsLayoutUtils::GetAllInFlowRects(nsIFrame* aFrame, nsIFrame* aRelativeTo,
RectCallback* aCallback, uint32_t aFlags)
{
BoxToRect converter(aRelativeTo, aCallback, aFlags);
GetAllInFlowBoxes(aFrame, &converter);
}
nsLayoutUtils::RectAccumulator::RectAccumulator() : mSeenFirstRect(false) {}
void nsLayoutUtils::RectAccumulator::AddRect(const nsRect& aRect) {
mResultRect.UnionRect(mResultRect, aRect);
if (!mSeenFirstRect) {
mSeenFirstRect = true;
mFirstRect = aRect;
}
}
nsLayoutUtils::RectListBuilder::RectListBuilder(DOMRectList* aList)
: mRectList(aList)
{
}
void nsLayoutUtils::RectListBuilder::AddRect(const nsRect& aRect) {
nsRefPtr<DOMRect> rect = new DOMRect(mRectList);
rect->SetLayoutRect(aRect);
mRectList->Append(rect);
}
nsIFrame* nsLayoutUtils::GetContainingBlockForClientRect(nsIFrame* aFrame)
{
return aFrame->PresContext()->PresShell()->GetRootFrame();
}
nsRect
nsLayoutUtils::GetAllInFlowRectsUnion(nsIFrame* aFrame, nsIFrame* aRelativeTo,
uint32_t aFlags) {
RectAccumulator accumulator;
GetAllInFlowRects(aFrame, aRelativeTo, &accumulator, aFlags);
return accumulator.mResultRect.IsEmpty() ? accumulator.mFirstRect
: accumulator.mResultRect;
}
nsRect
nsLayoutUtils::GetTextShadowRectsUnion(const nsRect& aTextAndDecorationsRect,
nsIFrame* aFrame,
uint32_t aFlags)
{
const nsStyleText* textStyle = aFrame->StyleText();
if (!textStyle->HasTextShadow())
return aTextAndDecorationsRect;
nsRect resultRect = aTextAndDecorationsRect;
int32_t A2D = aFrame->PresContext()->AppUnitsPerDevPixel();
for (uint32_t i = 0; i < textStyle->mTextShadow->Length(); ++i) {
nsCSSShadowItem* shadow = textStyle->mTextShadow->ShadowAt(i);
nsMargin blur = nsContextBoxBlur::GetBlurRadiusMargin(shadow->mRadius, A2D);
if ((aFlags & EXCLUDE_BLUR_SHADOWS) && blur != nsMargin(0, 0, 0, 0))
continue;
nsRect tmpRect(aTextAndDecorationsRect);
tmpRect.MoveBy(nsPoint(shadow->mXOffset, shadow->mYOffset));
tmpRect.Inflate(blur);
resultRect.UnionRect(resultRect, tmpRect);
}
return resultRect;
}
enum ObjectDimensionType { eWidth, eHeight };
static nscoord
ComputeMissingDimension(const nsSize& aDefaultObjectSize,
const nsSize& aIntrinsicRatio,
const Maybe<nscoord>& aSpecifiedWidth,
const Maybe<nscoord>& aSpecifiedHeight,
ObjectDimensionType aDimensionToCompute)
{
// The "default sizing algorithm" computes the missing dimension as follows:
// (source: http://dev.w3.org/csswg/css-images-3/#default-sizing )
// 1. "If the object has an intrinsic aspect ratio, the missing dimension of
// the concrete object size is calculated using the intrinsic aspect
// ratio and the present dimension."
if (aIntrinsicRatio.width > 0 && aIntrinsicRatio.height > 0) {
// Fill in the missing dimension using the intrinsic aspect ratio.
nscoord knownDimensionSize;
float ratio;
if (aDimensionToCompute == eWidth) {
knownDimensionSize = *aSpecifiedHeight;
ratio = aIntrinsicRatio.width / aIntrinsicRatio.height;
} else {
knownDimensionSize = *aSpecifiedWidth;
ratio = aIntrinsicRatio.height / aIntrinsicRatio.width;
}
return NSCoordSaturatingNonnegativeMultiply(knownDimensionSize, ratio);
}
// 2. "Otherwise, if the missing dimension is present in the objects
// intrinsic dimensions, [...]"
// NOTE: *Skipping* this case, because we already know it's not true -- we're
// in this function because the missing dimension is *not* present in
// the object's intrinsic dimensions.
// 3. "Otherwise, the missing dimension of the concrete object size is taken
// from the default object size. "
return (aDimensionToCompute == eWidth) ?
aDefaultObjectSize.width : aDefaultObjectSize.height;
}
/*
* This computes & returns the concrete object size of replaced content, if
* that content were to be rendered with "object-fit: none". (Or, if the
* element has neither an intrinsic height nor width, this method returns an
* empty Maybe<> object.)
*
* As specced...
* http://dev.w3.org/csswg/css-images-3/#valdef-object-fit-none
* ..we use "the default sizing algorithm with no specified size,
* and a default object size equal to the replaced element's used width and
* height."
*
* The default sizing algorithm is described here:
* http://dev.w3.org/csswg/css-images-3/#default-sizing
* Quotes in the function-impl are taken from that ^ spec-text.
*
* Per its final bulleted section: since there's no specified size,
* we run the default sizing algorithm using the object's intrinsic size in
* place of the specified size. But if the object has neither an intrinsic
* height nor an intrinsic width, then we instead return without populating our
* outparam, and we let the caller figure out the size (using a contain
* constraint).
*/
static Maybe<nsSize>
MaybeComputeObjectFitNoneSize(const nsSize& aDefaultObjectSize,
const IntrinsicSize& aIntrinsicSize,
const nsSize& aIntrinsicRatio)
{
// "If the object has an intrinsic height or width, its size is resolved as
// if its intrinsic dimensions were given as the specified size."
//
// So, first we check if we have an intrinsic height and/or width:
Maybe<nscoord> specifiedWidth;
if (aIntrinsicSize.width.GetUnit() == eStyleUnit_Coord) {
specifiedWidth.emplace(aIntrinsicSize.width.GetCoordValue());
}
Maybe<nscoord> specifiedHeight;
if (aIntrinsicSize.height.GetUnit() == eStyleUnit_Coord) {
specifiedHeight.emplace(aIntrinsicSize.height.GetCoordValue());
}
Maybe<nsSize> noneSize; // (the value we'll return)
if (specifiedWidth || specifiedHeight) {
// We have at least one specified dimension; use whichever dimension is
// specified, and compute the other one using our intrinsic ratio, or (if
// no valid ratio) using the default object size.
noneSize.emplace();
noneSize->width = specifiedWidth ?
*specifiedWidth :
ComputeMissingDimension(aDefaultObjectSize, aIntrinsicRatio,
specifiedWidth, specifiedHeight,
eWidth);
noneSize->height = specifiedHeight ?
*specifiedHeight :
ComputeMissingDimension(aDefaultObjectSize, aIntrinsicRatio,
specifiedWidth, specifiedHeight,
eHeight);
}
// [else:] "Otherwise [if there's neither an intrinsic height nor width], its
// size is resolved as a contain constraint against the default object size."
// We'll let our caller do that, to share code & avoid redundant
// computations; so, we return w/out populating noneSize.
return noneSize;
}
// Computes the concrete object size to render into, as described at
// http://dev.w3.org/csswg/css-images-3/#concrete-size-resolution
static nsSize
ComputeConcreteObjectSize(const nsSize& aConstraintSize,
const IntrinsicSize& aIntrinsicSize,
const nsSize& aIntrinsicRatio,
uint8_t aObjectFit)
{
// Handle default behavior (filling the container) w/ fast early return.
// (Also: if there's no valid intrinsic ratio, then we have the "fill"
// behavior & just use the constraint size.)
if (MOZ_LIKELY(aObjectFit == NS_STYLE_OBJECT_FIT_FILL) ||
aIntrinsicRatio.width == 0 ||
aIntrinsicRatio.height == 0) {
return aConstraintSize;
}
// The type of constraint to compute (cover/contain), if needed:
Maybe<nsImageRenderer::FitType> fitType;
Maybe<nsSize> noneSize;
if (aObjectFit == NS_STYLE_OBJECT_FIT_NONE ||
aObjectFit == NS_STYLE_OBJECT_FIT_SCALE_DOWN) {
noneSize = MaybeComputeObjectFitNoneSize(aConstraintSize, aIntrinsicSize,
aIntrinsicRatio);
if (!noneSize || aObjectFit == NS_STYLE_OBJECT_FIT_SCALE_DOWN) {
// Need to compute a 'CONTAIN' constraint (either for the 'none' size
// itself, or for comparison w/ the 'none' size to resolve 'scale-down'.)
fitType.emplace(nsImageRenderer::CONTAIN);
}
} else if (aObjectFit == NS_STYLE_OBJECT_FIT_COVER) {
fitType.emplace(nsImageRenderer::COVER);
} else if (aObjectFit == NS_STYLE_OBJECT_FIT_CONTAIN) {
fitType.emplace(nsImageRenderer::CONTAIN);
}
Maybe<nsSize> constrainedSize;
if (fitType) {
constrainedSize.emplace(
nsImageRenderer::ComputeConstrainedSize(aConstraintSize,
aIntrinsicRatio,
*fitType));
}
// Now, we should have all the sizing information that we need.
switch (aObjectFit) {
// skipping NS_STYLE_OBJECT_FIT_FILL; we handled it w/ early-return.
case NS_STYLE_OBJECT_FIT_CONTAIN:
case NS_STYLE_OBJECT_FIT_COVER:
MOZ_ASSERT(constrainedSize);
return *constrainedSize;
case NS_STYLE_OBJECT_FIT_NONE:
if (noneSize) {
return *noneSize;
}
MOZ_ASSERT(constrainedSize);
return *constrainedSize;
case NS_STYLE_OBJECT_FIT_SCALE_DOWN:
MOZ_ASSERT(constrainedSize);
if (noneSize) {
constrainedSize->width =
std::min(constrainedSize->width, noneSize->width);
constrainedSize->height =
std::min(constrainedSize->height, noneSize->height);
}
return *constrainedSize;
default:
MOZ_ASSERT_UNREACHABLE("Unexpected enum value for 'object-fit'");
return aConstraintSize; // fall back to (default) 'fill' behavior
}
}
// (Helper for HasInitialObjectFitAndPosition, to check
// each "object-position" coord.)
typedef nsStyleBackground::Position::PositionCoord PositionCoord;
static bool
IsCoord50Pct(const PositionCoord& aCoord)
{
return (aCoord.mLength == 0 &&
aCoord.mHasPercent &&
aCoord.mPercent == 0.5f);
}
// Indicates whether the given nsStylePosition has the initial values
// for the "object-fit" and "object-position" properties.
static bool
HasInitialObjectFitAndPosition(const nsStylePosition* aStylePos)
{
const nsStyleBackground::Position& objectPos = aStylePos->mObjectPosition;
return aStylePos->mObjectFit == NS_STYLE_OBJECT_FIT_FILL &&
IsCoord50Pct(objectPos.mXPosition) &&
IsCoord50Pct(objectPos.mYPosition);
}
/* static */ nsRect
nsLayoutUtils::ComputeObjectDestRect(const nsRect& aConstraintRect,
const IntrinsicSize& aIntrinsicSize,
const nsSize& aIntrinsicRatio,
const nsStylePosition* aStylePos,
nsPoint* aAnchorPoint)
{
// Step 1: Figure out our "concrete object size"
// (the size of the region we'll actually draw our image's pixels into).
nsSize concreteObjectSize =
ComputeConcreteObjectSize(aConstraintRect.Size(), aIntrinsicSize,
aIntrinsicRatio, aStylePos->mObjectFit);
// Step 2: Figure out how to align that region in the element's content-box.
nsPoint imageTopLeftPt, imageAnchorPt;
nsImageRenderer::ComputeObjectAnchorPoint(aStylePos->mObjectPosition,
aConstraintRect.Size(),
concreteObjectSize,
&imageTopLeftPt, &imageAnchorPt);
// Right now, we're with respect to aConstraintRect's top-left point. We add
// that point here, to convert to the same broader coordinate space that
// aConstraintRect is in.
imageTopLeftPt += aConstraintRect.TopLeft();
imageAnchorPt += aConstraintRect.TopLeft();
if (aAnchorPoint) {
// Special-case: if our "object-fit" and "object-position" properties have
// their default values ("object-fit: fill; object-position:50% 50%"), then
// we'll override the calculated imageAnchorPt, and instead use the
// object's top-left corner.
//
// This special case is partly for backwards compatibility (since
// traditionally we've pixel-aligned the top-left corner of e.g. <img>
// elements), and partly because ComputeSnappedDrawingParameters produces
// less error if the anchor point is at the top-left corner. So, all other
// things being equal, we prefer that code path with less error.
if (HasInitialObjectFitAndPosition(aStylePos)) {
*aAnchorPoint = imageTopLeftPt;
} else {
*aAnchorPoint = imageAnchorPt;
}
}
return nsRect(imageTopLeftPt, concreteObjectSize);
}
nsresult
nsLayoutUtils::GetFontMetricsForFrame(const nsIFrame* aFrame,
nsFontMetrics** aFontMetrics,
float aInflation)
{
return nsLayoutUtils::GetFontMetricsForStyleContext(aFrame->StyleContext(),
aFontMetrics,
aInflation);
}
nsresult
nsLayoutUtils::GetFontMetricsForStyleContext(nsStyleContext* aStyleContext,
nsFontMetrics** aFontMetrics,
float aInflation)
{
// pass the user font set object into the device context to pass along to CreateFontGroup
nsPresContext* pc = aStyleContext->PresContext();
gfxUserFontSet* fs = pc->GetUserFontSet();
gfxTextPerfMetrics* tp = pc->GetTextPerfMetrics();
WritingMode wm(aStyleContext);
gfxFont::Orientation orientation =
wm.IsVertical() && !wm.IsSideways() ? gfxFont::eVertical
: gfxFont::eHorizontal;
const nsStyleFont* styleFont = aStyleContext->StyleFont();
// When aInflation is 1.0, avoid making a local copy of the nsFont.
// This also avoids running font.size through floats when it is large,
// which would be lossy. Fortunately, in such cases, aInflation is
// guaranteed to be 1.0f.
if (aInflation == 1.0f) {
return pc->DeviceContext()->GetMetricsFor(styleFont->mFont,
styleFont->mLanguage,
styleFont->mExplicitLanguage,
orientation, fs, tp,
*aFontMetrics);
}
nsFont font = styleFont->mFont;
font.size = NSToCoordRound(font.size * aInflation);
return pc->DeviceContext()->GetMetricsFor(font, styleFont->mLanguage,
styleFont->mExplicitLanguage,
orientation, fs, tp,
*aFontMetrics);
}
nsIFrame*
nsLayoutUtils::FindChildContainingDescendant(nsIFrame* aParent, nsIFrame* aDescendantFrame)
{
nsIFrame* result = aDescendantFrame;
while (result) {
nsIFrame* parent = result->GetParent();
if (parent == aParent) {
break;
}
// The frame is not an immediate child of aParent so walk up another level
result = parent;
}
return result;
}
nsBlockFrame*
nsLayoutUtils::GetAsBlock(nsIFrame* aFrame)
{
nsBlockFrame* block = do_QueryFrame(aFrame);
return block;
}
nsBlockFrame*
nsLayoutUtils::FindNearestBlockAncestor(nsIFrame* aFrame)
{
nsIFrame* nextAncestor;
for (nextAncestor = aFrame->GetParent(); nextAncestor;
nextAncestor = nextAncestor->GetParent()) {
nsBlockFrame* block = GetAsBlock(nextAncestor);
if (block)
return block;
}
return nullptr;
}
nsIFrame*
nsLayoutUtils::GetNonGeneratedAncestor(nsIFrame* aFrame)
{
if (!(aFrame->GetStateBits() & NS_FRAME_GENERATED_CONTENT))
return aFrame;
nsIFrame* f = aFrame;
do {
f = GetParentOrPlaceholderFor(f);
} while (f->GetStateBits() & NS_FRAME_GENERATED_CONTENT);
return f;
}
nsIFrame*
nsLayoutUtils::GetParentOrPlaceholderFor(nsIFrame* aFrame)
{
if ((aFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW)
&& !aFrame->GetPrevInFlow()) {
return aFrame->PresContext()->PresShell()->FrameManager()->
GetPlaceholderFrameFor(aFrame);
}
return aFrame->GetParent();
}
nsIFrame*
nsLayoutUtils::GetParentOrPlaceholderForCrossDoc(nsIFrame* aFrame)
{
nsIFrame* f = GetParentOrPlaceholderFor(aFrame);
if (f)
return f;
return GetCrossDocParentFrame(aFrame);
}
nsIFrame*
nsLayoutUtils::GetNextContinuationOrIBSplitSibling(nsIFrame *aFrame)
{
nsIFrame *result = aFrame->GetNextContinuation();
if (result)
return result;
if ((aFrame->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT) != 0) {
// We only store the ib-split sibling annotation with the first
// frame in the continuation chain. Walk back to find that frame now.
aFrame = aFrame->FirstContinuation();
void* value = aFrame->Properties().Get(nsIFrame::IBSplitSibling());
return static_cast<nsIFrame*>(value);
}
return nullptr;
}
nsIFrame*
nsLayoutUtils::FirstContinuationOrIBSplitSibling(nsIFrame *aFrame)
{
nsIFrame *result = aFrame->FirstContinuation();
if (result->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT) {
while (true) {
nsIFrame *f = static_cast<nsIFrame*>
(result->Properties().Get(nsIFrame::IBSplitPrevSibling()));
if (!f)
break;
result = f;
}
}
return result;
}
nsIFrame*
nsLayoutUtils::LastContinuationOrIBSplitSibling(nsIFrame *aFrame)
{
nsIFrame *result = aFrame->FirstContinuation();
if (result->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT) {
while (true) {
nsIFrame *f = static_cast<nsIFrame*>
(result->Properties().Get(nsIFrame::IBSplitSibling()));
if (!f)
break;
result = f;
}
}
result = result->LastContinuation();
return result;
}
bool
nsLayoutUtils::IsFirstContinuationOrIBSplitSibling(nsIFrame *aFrame)
{
if (aFrame->GetPrevContinuation()) {
return false;
}
if ((aFrame->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT) &&
aFrame->Properties().Get(nsIFrame::IBSplitPrevSibling())) {
return false;
}
return true;
}
bool
nsLayoutUtils::IsViewportScrollbarFrame(nsIFrame* aFrame)
{
if (!aFrame)
return false;
nsIFrame* rootScrollFrame =
aFrame->PresContext()->PresShell()->GetRootScrollFrame();
if (!rootScrollFrame)
return false;
nsIScrollableFrame* rootScrollableFrame = do_QueryFrame(rootScrollFrame);
NS_ASSERTION(rootScrollableFrame, "The root scorollable frame is null");
if (!IsProperAncestorFrame(rootScrollFrame, aFrame))
return false;
nsIFrame* rootScrolledFrame = rootScrollableFrame->GetScrolledFrame();
return !(rootScrolledFrame == aFrame ||
IsProperAncestorFrame(rootScrolledFrame, aFrame));
}
// Use only for widths/heights (or their min/max), since it clamps
// negative calc() results to 0.
static bool GetAbsoluteCoord(const nsStyleCoord& aStyle, nscoord& aResult)
{
if (aStyle.IsCalcUnit()) {
if (aStyle.CalcHasPercent()) {
return false;
}
// If it has no percents, we can pass 0 for the percentage basis.
aResult = nsRuleNode::ComputeComputedCalc(aStyle, 0);
if (aResult < 0)
aResult = 0;
return true;
}
if (eStyleUnit_Coord != aStyle.GetUnit())
return false;
aResult = aStyle.GetCoordValue();
NS_ASSERTION(aResult >= 0, "negative widths not allowed");
return true;
}
// Only call on style coords for which GetAbsoluteCoord returned false.
static bool
GetPercentBSize(const nsStyleCoord& aStyle,
nsIFrame* aFrame,
nscoord& aResult)
{
if (eStyleUnit_Percent != aStyle.GetUnit() &&
!aStyle.IsCalcUnit())
return false;
MOZ_ASSERT(!aStyle.IsCalcUnit() || aStyle.CalcHasPercent(),
"GetAbsoluteCoord should have handled this");
// During reflow, nsHTMLScrollFrame::ReflowScrolledFrame uses
// SetComputedHeight on the reflow state for its child to propagate its
// computed height to the scrolled content. So here we skip to the scroll
// frame that contains this scrolled content in order to get the same
// behavior as layout when computing percentage heights.
nsIFrame *f = aFrame->GetContainingBlock(nsIFrame::SKIP_SCROLLED_FRAME);
if (!f) {
NS_NOTREACHED("top of frame tree not a containing block");
return false;
}
WritingMode wm = f->GetWritingMode();
const nsStylePosition *pos = f->StylePosition();
const nsStyleCoord& bSizeCoord = pos->BSize(wm);
nscoord h;
if (!GetAbsoluteCoord(bSizeCoord, h) &&
!GetPercentBSize(bSizeCoord, f, h)) {
NS_ASSERTION(bSizeCoord.GetUnit() == eStyleUnit_Auto ||
bSizeCoord.HasPercent(),
"unknown block-size unit");
nsIAtom* fType = f->GetType();
if (fType != nsGkAtoms::viewportFrame && fType != nsGkAtoms::canvasFrame &&
fType != nsGkAtoms::pageContentFrame) {
// There's no basis for the percentage height, so it acts like auto.
// Should we consider a max-height < min-height pair a basis for
// percentage heights? The spec is somewhat unclear, and not doing
// so is simpler and avoids troubling discontinuities in behavior,
// so I'll choose not to. -LDB
return false;
}
NS_ASSERTION(bSizeCoord.GetUnit() == eStyleUnit_Auto,
"Unexpected block-size unit for viewport or canvas or page-content");
// For the viewport, canvas, and page-content kids, the percentage
// basis is just the parent block-size.
h = f->BSize(wm);
if (h == NS_UNCONSTRAINEDSIZE) {
// We don't have a percentage basis after all
return false;
}
}
const nsStyleCoord& maxBSizeCoord = pos->MaxBSize(wm);
nscoord maxh;
if (GetAbsoluteCoord(maxBSizeCoord, maxh) ||
GetPercentBSize(maxBSizeCoord, f, maxh)) {
if (maxh < h)
h = maxh;
} else {
NS_ASSERTION(maxBSizeCoord.GetUnit() == eStyleUnit_None ||
maxBSizeCoord.HasPercent(),
"unknown max block-size unit");
}
const nsStyleCoord& minBSizeCoord = pos->MinBSize(wm);
nscoord minh;
if (GetAbsoluteCoord(minBSizeCoord, minh) ||
GetPercentBSize(minBSizeCoord, f, minh)) {
if (minh > h)
h = minh;
} else {
NS_ASSERTION(minBSizeCoord.HasPercent() ||
minBSizeCoord.GetUnit() == eStyleUnit_Auto,
"unknown min block-size unit");
}
if (aStyle.IsCalcUnit()) {
aResult = std::max(nsRuleNode::ComputeComputedCalc(aStyle, h), 0);
return true;
}
aResult = NSToCoordRound(aStyle.GetPercentValue() * h);
return true;
}
// Handles only -moz-max-content and -moz-min-content, and
// -moz-fit-content for min-width and max-width, since the others
// (-moz-fit-content for width, and -moz-available) have no effect on
// intrinsic widths.
enum eWidthProperty { PROP_WIDTH, PROP_MAX_WIDTH, PROP_MIN_WIDTH };
static bool
GetIntrinsicCoord(const nsStyleCoord& aStyle,
nsRenderingContext* aRenderingContext,
nsIFrame* aFrame,
eWidthProperty aProperty,
nscoord& aResult)
{
NS_PRECONDITION(aProperty == PROP_WIDTH || aProperty == PROP_MAX_WIDTH ||
aProperty == PROP_MIN_WIDTH, "unexpected property");
if (aStyle.GetUnit() != eStyleUnit_Enumerated)
return false;
int32_t val = aStyle.GetIntValue();
NS_ASSERTION(val == NS_STYLE_WIDTH_MAX_CONTENT ||
val == NS_STYLE_WIDTH_MIN_CONTENT ||
val == NS_STYLE_WIDTH_FIT_CONTENT ||
val == NS_STYLE_WIDTH_AVAILABLE,
"unexpected enumerated value for width property");
if (val == NS_STYLE_WIDTH_AVAILABLE)
return false;
if (val == NS_STYLE_WIDTH_FIT_CONTENT) {
if (aProperty == PROP_WIDTH)
return false; // handle like 'width: auto'
if (aProperty == PROP_MAX_WIDTH)
// constrain large 'width' values down to -moz-max-content
val = NS_STYLE_WIDTH_MAX_CONTENT;
else
// constrain small 'width' or 'max-width' values up to -moz-min-content
val = NS_STYLE_WIDTH_MIN_CONTENT;
}
NS_ASSERTION(val == NS_STYLE_WIDTH_MAX_CONTENT ||
val == NS_STYLE_WIDTH_MIN_CONTENT,
"should have reduced everything remaining to one of these");
// If aFrame is a container for font size inflation, then shrink
// wrapping inside of it should not apply font size inflation.
AutoMaybeDisableFontInflation an(aFrame);
if (val == NS_STYLE_WIDTH_MAX_CONTENT)
aResult = aFrame->GetPrefISize(aRenderingContext);
else
aResult = aFrame->GetMinISize(aRenderingContext);
return true;
}
#undef DEBUG_INTRINSIC_WIDTH
#ifdef DEBUG_INTRINSIC_WIDTH
static int32_t gNoiseIndent = 0;
#endif
/**
* Add aOffsets which describes what to add on outside of the content box
* aContentSize (controlled by 'box-sizing') and apply min/max properties.
* We have to account for these properties after getting all the offsets
* (margin, border, padding) because percentages do not operate linearly.
* Doing this is ok because although percentages aren't handled linearly,
* they are handled monotonically.
*
* @param aContentSize the content size calculated so far
(@see IntrinsicForContainer)
* @param aContentMinSize ditto min content size
* @param aStyleSize a 'width' or 'height' property value
* @param aFixedMinSize if aStyleMinSize is a definite size then this points to
* the value, otherwise nullptr
* @param aStyleMinSize a 'min-width' or 'min-height' property value
* @param aFixedMaxSize if aStyleMaxSize is a definite size then this points to
* the value, otherwise nullptr
* @param aStyleMaxSize a 'max-width' or 'max-height' property value
* @param aFlags same as for IntrinsicForContainer
* @param aContainerWM the container's WM
*/
static nscoord
AddIntrinsicSizeOffset(nsRenderingContext* aRenderingContext,
nsIFrame* aFrame,
const nsIFrame::IntrinsicISizeOffsetData& aOffsets,
nsLayoutUtils::IntrinsicISizeType aType,
uint8_t aBoxSizing,
nscoord aContentSize,
nscoord aContentMinSize,
const nsStyleCoord& aStyleSize,
const nscoord* aFixedMinSize,
const nsStyleCoord& aStyleMinSize,
const nscoord* aFixedMaxSize,
const nsStyleCoord& aStyleMaxSize,
uint32_t aFlags,
PhysicalAxis aAxis)
{
nscoord result = aContentSize;
nscoord min = aContentMinSize;
nscoord coordOutsideSize = 0;
float pctOutsideSize = 0;
float pctTotal = 0.0f;
if (!(aFlags & nsLayoutUtils::IGNORE_PADDING)) {
coordOutsideSize += aOffsets.hPadding;
pctOutsideSize += aOffsets.hPctPadding;
if (aBoxSizing == NS_STYLE_BOX_SIZING_PADDING) {
min += coordOutsideSize;
result = NSCoordSaturatingAdd(result, coordOutsideSize);
pctTotal += pctOutsideSize;
coordOutsideSize = 0;
pctOutsideSize = 0.0f;
}
}
coordOutsideSize += aOffsets.hBorder;
if (aBoxSizing == NS_STYLE_BOX_SIZING_BORDER) {
min += coordOutsideSize;
result = NSCoordSaturatingAdd(result, coordOutsideSize);
pctTotal += pctOutsideSize;
coordOutsideSize = 0;
pctOutsideSize = 0.0f;
}
coordOutsideSize += aOffsets.hMargin;
pctOutsideSize += aOffsets.hPctMargin;
min += coordOutsideSize;
result = NSCoordSaturatingAdd(result, coordOutsideSize);
pctTotal += pctOutsideSize;
nscoord size;
if (GetAbsoluteCoord(aStyleSize, size) ||
GetIntrinsicCoord(aStyleSize, aRenderingContext, aFrame,
PROP_WIDTH, size)) {
result = nsLayoutUtils::AddPercents(aType, size + coordOutsideSize,
pctOutsideSize);
} else if (aType == nsLayoutUtils::MIN_ISIZE &&
// The only cases of coord-percent-calc() units that
// GetAbsoluteCoord didn't handle are percent and calc()s
// containing percent.
aStyleSize.IsCoordPercentCalcUnit() &&
aFrame->IsFrameOfType(nsIFrame::eReplaced)) {
// A percentage width on replaced elements means they can shrink to 0.
result = 0; // let |min| handle padding/border/margin
} else {
// NOTE: We could really do a lot better for percents and for some
// cases of calc() containing percent (certainly including any where
// the coefficient on the percent is positive and there are no max()
// expressions). However, doing better for percents wouldn't be
// backwards compatible.
result = nsLayoutUtils::AddPercents(aType, result, pctTotal);
}
nscoord maxSize = aFixedMaxSize ? *aFixedMaxSize : 0;
if (aFixedMaxSize ||
GetIntrinsicCoord(aStyleMaxSize, aRenderingContext, aFrame,
PROP_MAX_WIDTH, maxSize)) {
maxSize = nsLayoutUtils::AddPercents(aType, maxSize + coordOutsideSize,
pctOutsideSize);
if (result > maxSize) {
result = maxSize;
}
}
nscoord minSize = aFixedMinSize ? *aFixedMinSize : 0;
if (aFixedMinSize ||
GetIntrinsicCoord(aStyleMinSize, aRenderingContext, aFrame,
PROP_MIN_WIDTH, minSize)) {
minSize = nsLayoutUtils::AddPercents(aType, minSize + coordOutsideSize,
pctOutsideSize);
if (result < minSize) {
result = minSize;
}
}
min = nsLayoutUtils::AddPercents(aType, min, pctTotal);
if (result < min) {
result = min;
}
const nsStyleDisplay* disp = aFrame->StyleDisplay();
if (aFrame->IsThemed(disp)) {
LayoutDeviceIntSize devSize;
bool canOverride = true;
nsPresContext* pc = aFrame->PresContext();
pc->GetTheme()->GetMinimumWidgetSize(pc, aFrame, disp->mAppearance,
&devSize, &canOverride);
nscoord themeSize =
pc->DevPixelsToAppUnits(aAxis == eAxisVertical ? devSize.height
: devSize.width);
// GetMinimumWidgetSize() returns a border-box width.
themeSize += aOffsets.hMargin;
themeSize = nsLayoutUtils::AddPercents(aType, themeSize,
aOffsets.hPctMargin);
if (themeSize > result || !canOverride) {
result = themeSize;
}
}
return result;
}
static void
AddStateBitToAncestors(nsIFrame* aFrame, nsFrameState aBit)
{
for (nsIFrame* f = aFrame; f; f = f->GetParent()) {
if (f->HasAnyStateBits(aBit)) {
break;
}
f->AddStateBits(aBit);
}
}
/* static */ nscoord
nsLayoutUtils::IntrinsicForAxis(PhysicalAxis aAxis,
nsRenderingContext* aRenderingContext,
nsIFrame* aFrame,
IntrinsicISizeType aType,
uint32_t aFlags)
{
NS_PRECONDITION(aFrame, "null frame");
NS_PRECONDITION(aFrame->GetParent(),
"IntrinsicForAxis called on frame not in tree");
NS_PRECONDITION(aType == MIN_ISIZE || aType == PREF_ISIZE, "bad type");
const bool horizontalAxis = MOZ_LIKELY(aAxis == eAxisHorizontal);
#ifdef DEBUG_INTRINSIC_WIDTH
nsFrame::IndentBy(stderr, gNoiseIndent);
static_cast<nsFrame*>(aFrame)->ListTag(stderr);
printf_stderr(" %s %s intrinsic size for container:\n",
aType == MIN_ISIZE ? "min" : "pref",
horizontalAxis ? "horizontal" : "vertical");
#endif
// If aFrame is a container for font size inflation, then shrink
// wrapping inside of it should not apply font size inflation.
AutoMaybeDisableFontInflation an(aFrame);
// We want the size this frame will contribute to the parent's inline-size,
// so we work in the parent's writing mode; but if aFrame is orthogonal to
// its parent, we'll need to look at its BSize instead of min/pref-ISize.
const nsStylePosition* stylePos = aFrame->StylePosition();
uint8_t boxSizing = stylePos->mBoxSizing;
const nsStyleCoord& styleISize =
horizontalAxis ? stylePos->mWidth : stylePos->mHeight;
const nsStyleCoord& styleMinISize =
horizontalAxis ? stylePos->mMinWidth : stylePos->mMinHeight;
const nsStyleCoord& styleMaxISize =
horizontalAxis ? stylePos->mMaxWidth : stylePos->mMaxHeight;
// We build up two values starting with the content box, and then
// adding padding, border and margin. The result is normally
// |result|. Then, when we handle 'width', 'min-width', and
// 'max-width', we use the results we've been building in |min| as a
// minimum, overriding 'min-width'. This ensures two things:
// * that we don't let a value of 'box-sizing' specifying a width
// smaller than the padding/border inside the box-sizing box give
// a content width less than zero
// * that we prevent tables from becoming smaller than their
// intrinsic minimum width
nscoord result = 0, min = 0;
nscoord maxISize;
bool haveFixedMaxISize = GetAbsoluteCoord(styleMaxISize, maxISize);
nscoord minISize;
// Treat "min-width: auto" as 0.
bool haveFixedMinISize;
if (eStyleUnit_Auto == styleMinISize.GetUnit()) {
// NOTE: Technically, "auto" is supposed to behave like "min-content" on
// flex items. However, we don't need to worry about that here, because
// flex items' min-sizes are intentionally ignored until the flex
// container explicitly considers them during space distribution.
minISize = 0;
haveFixedMinISize = true;
} else {
haveFixedMinISize = GetAbsoluteCoord(styleMinISize, minISize);
}
PhysicalAxis ourInlineAxis =
aFrame->GetWritingMode().PhysicalAxis(eLogicalAxisInline);
// If we have a specified width (or a specified 'min-width' greater
// than the specified 'max-width', which works out to the same thing),
// don't even bother getting the frame's intrinsic width, because in
// this case GetAbsoluteCoord(styleISize, w) will always succeed, so
// we'll never need the intrinsic dimensions.
if (styleISize.GetUnit() == eStyleUnit_Enumerated &&
(styleISize.GetIntValue() == NS_STYLE_WIDTH_MAX_CONTENT ||
styleISize.GetIntValue() == NS_STYLE_WIDTH_MIN_CONTENT)) {
// -moz-fit-content and -moz-available enumerated widths compute intrinsic
// widths just like auto.
// For -moz-max-content and -moz-min-content, we handle them like
// specified widths, but ignore box-sizing.
boxSizing = NS_STYLE_BOX_SIZING_CONTENT;
} else if (!styleISize.ConvertsToLength() &&
!(haveFixedMinISize && haveFixedMaxISize && maxISize <= minISize)) {
#ifdef DEBUG_INTRINSIC_WIDTH
++gNoiseIndent;
#endif
if (MOZ_UNLIKELY(aAxis != ourInlineAxis)) {
// We need aFrame's block-dir size.
if (aFlags & BAIL_IF_REFLOW_NEEDED) {
return NS_INTRINSIC_WIDTH_UNKNOWN;
}
// XXX Unfortunately, we probably don't know this yet, so this is wrong...
// but it's not clear what we should do. If aFrame's inline size hasn't
// been determined yet, we can't necessarily figure out its block size
// either. For now, authors who put orthogonal elements into things like
// buttons or table cells may have to explicitly provide sizes rather
// than expecting intrinsic sizing to work "perfectly" in underspecified
// cases.
result = aFrame->BSize();
} else {
result = aType == MIN_ISIZE
? aFrame->GetMinISize(aRenderingContext)
: aFrame->GetPrefISize(aRenderingContext);
}
#ifdef DEBUG_INTRINSIC_WIDTH
--gNoiseIndent;
nsFrame::IndentBy(stderr, gNoiseIndent);
static_cast<nsFrame*>(aFrame)->ListTag(stderr);
printf_stderr(" %s %s intrinsic size from frame is %d.\n",
aType == MIN_ISIZE ? "min" : "pref",
horizontalAxis ? "horizontal" : "vertical",
result);
#endif
// Handle elements with an intrinsic ratio (or size) and a specified
// height, min-height, or max-height.
// NOTE: We treat "min-height:auto" as "0" for the purpose of this code,
// since that's what it means in all cases except for on flex items -- and
// even there, we're supposed to ignore it (i.e. treat it as 0) until the
// flex container explicitly considers it.
const nsStyleCoord& styleBSize =
horizontalAxis ? stylePos->mHeight : stylePos->mWidth;
const nsStyleCoord& styleMinBSize =
horizontalAxis ? stylePos->mMinHeight : stylePos->mMinWidth;
const nsStyleCoord& styleMaxBSize =
horizontalAxis ? stylePos->mMaxHeight : stylePos->mMaxWidth;
if (styleBSize.GetUnit() != eStyleUnit_Auto ||
!(styleMinBSize.GetUnit() == eStyleUnit_Auto ||
(styleMinBSize.GetUnit() == eStyleUnit_Coord &&
styleMinBSize.GetCoordValue() == 0)) ||
styleMaxBSize.GetUnit() != eStyleUnit_None) {
nsSize ratio(aFrame->GetIntrinsicRatio());
nscoord ratioISize = (horizontalAxis ? ratio.width : ratio.height);
nscoord ratioBSize = (horizontalAxis ? ratio.height : ratio.width);
if (ratioBSize != 0) {
AddStateBitToAncestors(aFrame,
NS_FRAME_DESCENDANT_INTRINSIC_ISIZE_DEPENDS_ON_BSIZE);
nscoord bSizeTakenByBoxSizing = 0;
switch (boxSizing) {
case NS_STYLE_BOX_SIZING_BORDER: {
const nsStyleBorder* styleBorder = aFrame->StyleBorder();
bSizeTakenByBoxSizing +=
horizontalAxis ? styleBorder->GetComputedBorder().TopBottom()
: styleBorder->GetComputedBorder().LeftRight();
// fall through
}
case NS_STYLE_BOX_SIZING_PADDING: {
if (!(aFlags & IGNORE_PADDING)) {
const nsStyleSides& stylePadding =
aFrame->StylePadding()->mPadding;
const nsStyleCoord& paddingStart =
stylePadding.Get(horizontalAxis ? NS_SIDE_TOP : NS_SIDE_LEFT);
const nsStyleCoord& paddingEnd =
stylePadding.Get(horizontalAxis ? NS_SIDE_BOTTOM : NS_SIDE_RIGHT);
nscoord pad;
if (GetAbsoluteCoord(paddingStart, pad) ||
GetPercentBSize(paddingStart, aFrame, pad)) {
bSizeTakenByBoxSizing += pad;
}
if (GetAbsoluteCoord(paddingEnd, pad) ||
GetPercentBSize(paddingEnd, aFrame, pad)) {
bSizeTakenByBoxSizing += pad;
}
}
// fall through
}
case NS_STYLE_BOX_SIZING_CONTENT:
default:
break;
}
nscoord h;
if (GetAbsoluteCoord(styleBSize, h) ||
GetPercentBSize(styleBSize, aFrame, h)) {
h = std::max(0, h - bSizeTakenByBoxSizing);
result = NSCoordMulDiv(h, ratioISize, ratioBSize);
}
if (GetAbsoluteCoord(styleMaxBSize, h) ||
GetPercentBSize(styleMaxBSize, aFrame, h)) {
h = std::max(0, h - bSizeTakenByBoxSizing);
nscoord maxISize = NSCoordMulDiv(h, ratioISize, ratioBSize);
if (maxISize < result)
result = maxISize;
}
if (GetAbsoluteCoord(styleMinBSize, h) ||
GetPercentBSize(styleMinBSize, aFrame, h)) {
h = std::max(0, h - bSizeTakenByBoxSizing);
nscoord minISize = NSCoordMulDiv(h, ratioISize, ratioBSize);
if (minISize > result)
result = minISize;
}
}
}
}
if (aFrame->GetType() == nsGkAtoms::tableFrame) {
// Tables can't shrink smaller than their intrinsic minimum width,
// no matter what.
min = aFrame->GetMinISize(aRenderingContext);
}
nsIFrame::IntrinsicISizeOffsetData offsets =
MOZ_LIKELY(aAxis == ourInlineAxis) ? aFrame->IntrinsicISizeOffsets()
: aFrame->IntrinsicBSizeOffsets();
result = AddIntrinsicSizeOffset(aRenderingContext, aFrame, offsets, aType,
boxSizing, result, min, styleISize,
haveFixedMinISize ? &minISize : nullptr,
styleMinISize,
haveFixedMaxISize ? &maxISize : nullptr,
styleMaxISize,
aFlags, aAxis);
#ifdef DEBUG_INTRINSIC_WIDTH
nsFrame::IndentBy(stderr, gNoiseIndent);
static_cast<nsFrame*>(aFrame)->ListTag(stderr);
printf_stderr(" %s %s intrinsic size for container is %d twips.\n",
aType == MIN_ISIZE ? "min" : "pref",
horizontalAxis ? "horizontal" : "vertical",
result);
#endif
return result;
}
/* static */ nscoord
nsLayoutUtils::IntrinsicForContainer(nsRenderingContext* aRenderingContext,
nsIFrame* aFrame,
IntrinsicISizeType aType,
uint32_t aFlags)
{
MOZ_ASSERT(aFrame && aFrame->GetParent());
// We want the size aFrame will contribute to its parent's inline-size.
PhysicalAxis axis =
aFrame->GetParent()->GetWritingMode().PhysicalAxis(eLogicalAxisInline);
return IntrinsicForAxis(axis, aRenderingContext, aFrame, aType, aFlags);
}
/* static */ nscoord
nsLayoutUtils::MinSizeContributionForAxis(PhysicalAxis aAxis,
nsRenderingContext* aRC,
nsIFrame* aFrame,
IntrinsicISizeType aType,
uint32_t aFlags)
{
NS_PRECONDITION(aFrame, "null frame");
NS_PRECONDITION(aFrame->GetParent(),
"MinSizeContributionForAxis called on frame not in tree");
#ifdef DEBUG_INTRINSIC_WIDTH
nsFrame::IndentBy(stderr, gNoiseIndent);
static_cast<nsFrame*>(aFrame)->ListTag(stderr);
printf_stderr(" %s min-isize for %s WM:\n",
aType == MIN_ISIZE ? "min" : "pref",
aWM.IsVertical() ? "vertical" : "horizontal");
#endif
// If aFrame is a container for font size inflation, then shrink
// wrapping inside of it should not apply font size inflation.
AutoMaybeDisableFontInflation an(aFrame);
PhysicalAxis ourInlineAxis =
aFrame->GetWritingMode().PhysicalAxis(eLogicalAxisInline);
nsIFrame::IntrinsicISizeOffsetData offsets =
ourInlineAxis == aAxis ? aFrame->IntrinsicISizeOffsets()
: aFrame->IntrinsicBSizeOffsets();
nscoord result = 0;
nscoord min = 0;
const nsStylePosition* stylePos = aFrame->StylePosition();
uint8_t boxSizing = stylePos->mBoxSizing;
const nsStyleCoord& style = aAxis == eAxisHorizontal ? stylePos->mMinWidth
: stylePos->mMinHeight;
nscoord minSize;
nscoord* fixedMinSize = nullptr;
if (GetAbsoluteCoord(style, minSize)) {
fixedMinSize = &minSize;
}
result = AddIntrinsicSizeOffset(aRC, aFrame, offsets, aType, boxSizing,
result, min, style, fixedMinSize,
style, fixedMinSize, style, aFlags, aAxis);
#ifdef DEBUG_INTRINSIC_WIDTH
nsFrame::IndentBy(stderr, gNoiseIndent);
static_cast<nsFrame*>(aFrame)->ListTag(stderr);
printf_stderr(" %s min-isize is %d twips.\n",
aType == MIN_ISIZE ? "min" : "pref", result);
#endif
return result;
}
/* static */ nscoord
nsLayoutUtils::ComputeCBDependentValue(nscoord aPercentBasis,
const nsStyleCoord& aCoord)
{
NS_WARN_IF_FALSE(aPercentBasis != NS_UNCONSTRAINEDSIZE,
"have unconstrained width or height; this should only "
"result from very large sizes, not attempts at intrinsic "
"size calculation");
if (aCoord.IsCoordPercentCalcUnit()) {
return nsRuleNode::ComputeCoordPercentCalc(aCoord, aPercentBasis);
}
NS_ASSERTION(aCoord.GetUnit() == eStyleUnit_None ||
aCoord.GetUnit() == eStyleUnit_Auto,
"unexpected width value");
return 0;
}
/* static */ nscoord
nsLayoutUtils::ComputeISizeValue(
nsRenderingContext* aRenderingContext,
nsIFrame* aFrame,
nscoord aContainingBlockISize,
nscoord aContentEdgeToBoxSizing,
nscoord aBoxSizingToMarginEdge,
const nsStyleCoord& aCoord)
{
NS_PRECONDITION(aFrame, "non-null frame expected");
NS_PRECONDITION(aRenderingContext, "non-null rendering context expected");
NS_WARN_IF_FALSE(aContainingBlockISize != NS_UNCONSTRAINEDSIZE,
"have unconstrained inline-size; this should only result from "
"very large sizes, not attempts at intrinsic inline-size "
"calculation");
NS_PRECONDITION(aContainingBlockISize >= 0,
"inline-size less than zero");
nscoord result;
if (aCoord.IsCoordPercentCalcUnit()) {
result = nsRuleNode::ComputeCoordPercentCalc(aCoord,
aContainingBlockISize);
// The result of a calc() expression might be less than 0; we
// should clamp at runtime (below). (Percentages and coords that
// are less than 0 have already been dropped by the parser.)
result -= aContentEdgeToBoxSizing;
} else {
MOZ_ASSERT(eStyleUnit_Enumerated == aCoord.GetUnit());
// If aFrame is a container for font size inflation, then shrink
// wrapping inside of it should not apply font size inflation.
AutoMaybeDisableFontInflation an(aFrame);
int32_t val = aCoord.GetIntValue();
switch (val) {
case NS_STYLE_WIDTH_MAX_CONTENT:
result = aFrame->GetPrefISize(aRenderingContext);
NS_ASSERTION(result >= 0, "inline-size less than zero");
break;
case NS_STYLE_WIDTH_MIN_CONTENT:
result = aFrame->GetMinISize(aRenderingContext);
NS_ASSERTION(result >= 0, "inline-size less than zero");
break;
case NS_STYLE_WIDTH_FIT_CONTENT:
{
nscoord pref = aFrame->GetPrefISize(aRenderingContext),
min = aFrame->GetMinISize(aRenderingContext),
fill = aContainingBlockISize -
(aBoxSizingToMarginEdge + aContentEdgeToBoxSizing);
result = std::max(min, std::min(pref, fill));
NS_ASSERTION(result >= 0, "inline-size less than zero");
}
break;
case NS_STYLE_WIDTH_AVAILABLE:
result = aContainingBlockISize -
(aBoxSizingToMarginEdge + aContentEdgeToBoxSizing);
}
}
return std::max(0, result);
}
/* static */ nscoord
nsLayoutUtils::ComputeBSizeDependentValue(
nscoord aContainingBlockBSize,
const nsStyleCoord& aCoord)
{
// XXXldb Some callers explicitly check aContainingBlockBSize
// against NS_AUTOHEIGHT *and* unit against eStyleUnit_Percent or
// calc()s containing percents before calling this function.
// However, it would be much more likely to catch problems without
// the unit conditions.
// XXXldb Many callers pass a non-'auto' containing block height when
// according to CSS2.1 they should be passing 'auto'.
NS_PRECONDITION(NS_AUTOHEIGHT != aContainingBlockBSize ||
!aCoord.HasPercent(),
"unexpected containing block block-size");
if (aCoord.IsCoordPercentCalcUnit()) {
return nsRuleNode::ComputeCoordPercentCalc(aCoord, aContainingBlockBSize);
}
NS_ASSERTION(aCoord.GetUnit() == eStyleUnit_None ||
aCoord.GetUnit() == eStyleUnit_Auto,
"unexpected block-size value");
return 0;
}
/* static */ void
nsLayoutUtils::MarkDescendantsDirty(nsIFrame *aSubtreeRoot)
{
nsAutoTArray<nsIFrame*, 4> subtrees;
subtrees.AppendElement(aSubtreeRoot);
// dirty descendants, iterating over subtrees that may include
// additional subtrees associated with placeholders
do {
nsIFrame *subtreeRoot = subtrees.ElementAt(subtrees.Length() - 1);
subtrees.RemoveElementAt(subtrees.Length() - 1);
// Mark all descendants dirty (using an nsTArray stack rather than
// recursion).
// Note that nsHTMLReflowState::InitResizeFlags has some similar
// code; see comments there for how and why it differs.
nsAutoTArray<nsIFrame*, 32> stack;
stack.AppendElement(subtreeRoot);
do {
nsIFrame *f = stack.ElementAt(stack.Length() - 1);
stack.RemoveElementAt(stack.Length() - 1);
f->MarkIntrinsicISizesDirty();
if (f->GetType() == nsGkAtoms::placeholderFrame) {
nsIFrame *oof = nsPlaceholderFrame::GetRealFrameForPlaceholder(f);
if (!nsLayoutUtils::IsProperAncestorFrame(subtreeRoot, oof)) {
// We have another distinct subtree we need to mark.
subtrees.AppendElement(oof);
}
}
nsIFrame::ChildListIterator lists(f);
for (; !lists.IsDone(); lists.Next()) {
nsFrameList::Enumerator childFrames(lists.CurrentList());
for (; !childFrames.AtEnd(); childFrames.Next()) {
nsIFrame* kid = childFrames.get();
stack.AppendElement(kid);
}
}
} while (stack.Length() != 0);
} while (subtrees.Length() != 0);
}
/* static */
LogicalSize
nsLayoutUtils::ComputeSizeWithIntrinsicDimensions(WritingMode aWM,
nsRenderingContext* aRenderingContext, nsIFrame* aFrame,
const IntrinsicSize& aIntrinsicSize,
nsSize aIntrinsicRatio,
const mozilla::LogicalSize& aCBSize,
const mozilla::LogicalSize& aMargin,
const mozilla::LogicalSize& aBorder,
const mozilla::LogicalSize& aPadding)
{
const nsStylePosition* stylePos = aFrame->StylePosition();
// If we're a flex item, we'll compute our size a bit differently.
bool isVertical = aWM.IsVertical();
const nsStyleCoord* inlineStyleCoord = &stylePos->ISize(aWM);
const nsStyleCoord* blockStyleCoord = &stylePos->BSize(aWM);
bool isFlexItem = aFrame->IsFlexItem();
bool isInlineFlexItem = false;
if (isFlexItem) {
// Flex items use their "flex-basis" property in place of their main-size
// property (e.g. "width") for sizing purposes, *unless* they have
// "flex-basis:auto", in which case they use their main-size property after
// all.
uint32_t flexDirection =
aFrame->GetParent()->StylePosition()->mFlexDirection;
isInlineFlexItem =
flexDirection == NS_STYLE_FLEX_DIRECTION_ROW ||
flexDirection == NS_STYLE_FLEX_DIRECTION_ROW_REVERSE;
// NOTE: The logic here should match the similar chunk for determining
// inlineStyleCoord and blockStyleCoord in nsFrame::ComputeSize().
const nsStyleCoord* flexBasis = &(stylePos->mFlexBasis);
if (flexBasis->GetUnit() != eStyleUnit_Auto) {
if (isInlineFlexItem) {
inlineStyleCoord = flexBasis;
} else {
// One caveat for vertical flex items: We don't support enumerated
// values (e.g. "max-content") for height properties yet. So, if our
// computed flex-basis is an enumerated value, we'll just behave as if
// it were "auto", which means "use the main-size property after all"
// (which is "height", in this case).
// NOTE: Once we support intrinsic sizing keywords for "height",
// we should remove this check.
if (flexBasis->GetUnit() != eStyleUnit_Enumerated) {
blockStyleCoord = flexBasis;
}
}
}
}
// Handle intrinsic sizes and their interaction with
// {min-,max-,}{width,height} according to the rules in
// http://www.w3.org/TR/CSS21/visudet.html#min-max-widths
// Note: throughout the following section of the function, I avoid
// a * (b / c) because of its reduced accuracy relative to a * b / c
// or (a * b) / c (which are equivalent).
const bool isAutoISize = inlineStyleCoord->GetUnit() == eStyleUnit_Auto;
const bool isAutoBSize = IsAutoBSize(*blockStyleCoord, aCBSize.BSize(aWM));
LogicalSize boxSizingAdjust(aWM);
switch (stylePos->mBoxSizing) {
case NS_STYLE_BOX_SIZING_BORDER:
boxSizingAdjust += aBorder;
// fall through
case NS_STYLE_BOX_SIZING_PADDING:
boxSizingAdjust += aPadding;
}
nscoord boxSizingToMarginEdgeISize =
aMargin.ISize(aWM) + aBorder.ISize(aWM) + aPadding.ISize(aWM) -
boxSizingAdjust.ISize(aWM);
nscoord iSize, minISize, maxISize, bSize, minBSize, maxBSize;
if (!isAutoISize) {
iSize = nsLayoutUtils::ComputeISizeValue(aRenderingContext,
aFrame, aCBSize.ISize(aWM), boxSizingAdjust.ISize(aWM),
boxSizingToMarginEdgeISize, *inlineStyleCoord);
}
const nsStyleCoord& maxISizeCoord = stylePos->MaxISize(aWM);
if (maxISizeCoord.GetUnit() != eStyleUnit_None &&
!(isFlexItem && isInlineFlexItem)) {
maxISize = nsLayoutUtils::ComputeISizeValue(aRenderingContext,
aFrame, aCBSize.ISize(aWM), boxSizingAdjust.ISize(aWM),
boxSizingToMarginEdgeISize, maxISizeCoord);
} else {
maxISize = nscoord_MAX;
}
// NOTE: Flex items ignore their min & max sizing properties in their
// flex container's main-axis. (Those properties get applied later in
// the flexbox algorithm.)
const nsStyleCoord& minISizeCoord = stylePos->MinISize(aWM);
if (minISizeCoord.GetUnit() != eStyleUnit_Auto &&
!(isFlexItem && isInlineFlexItem)) {
minISize = nsLayoutUtils::ComputeISizeValue(aRenderingContext,
aFrame, aCBSize.ISize(aWM), boxSizingAdjust.ISize(aWM),
boxSizingToMarginEdgeISize, minISizeCoord);
} else {
// Treat "min-width: auto" as 0.
// NOTE: Technically, "auto" is supposed to behave like "min-content" on
// flex items. However, we don't need to worry about that here, because
// flex items' min-sizes are intentionally ignored until the flex
// container explicitly considers them during space distribution.
minISize = 0;
}
if (!isAutoBSize) {
bSize = nsLayoutUtils::ComputeBSizeValue(aCBSize.BSize(aWM),
boxSizingAdjust.BSize(aWM),
*blockStyleCoord);
}
const nsStyleCoord& maxBSizeCoord = stylePos->MaxBSize(aWM);
if (!IsAutoBSize(maxBSizeCoord, aCBSize.BSize(aWM)) &&
!(isFlexItem && !isInlineFlexItem)) {
maxBSize = nsLayoutUtils::ComputeBSizeValue(aCBSize.BSize(aWM),
boxSizingAdjust.BSize(aWM), maxBSizeCoord);
} else {
maxBSize = nscoord_MAX;
}
const nsStyleCoord& minBSizeCoord = stylePos->MinBSize(aWM);
if (!IsAutoBSize(minBSizeCoord, aCBSize.BSize(aWM)) &&
!(isFlexItem && !isInlineFlexItem)) {
minBSize = nsLayoutUtils::ComputeBSizeValue(aCBSize.BSize(aWM),
boxSizingAdjust.BSize(aWM), minBSizeCoord);
} else {
minBSize = 0;
}
// Resolve percentage intrinsic iSize/bSize as necessary:
NS_ASSERTION(aCBSize.ISize(aWM) != NS_UNCONSTRAINEDSIZE,
"Our containing block must not have unconstrained inline-size!");
const nsStyleCoord& isizeCoord =
isVertical ? aIntrinsicSize.height : aIntrinsicSize.width;
const nsStyleCoord& bsizeCoord =
isVertical ? aIntrinsicSize.width : aIntrinsicSize.height;
bool hasIntrinsicISize, hasIntrinsicBSize;
nscoord intrinsicISize, intrinsicBSize;
if (isizeCoord.GetUnit() == eStyleUnit_Coord) {
hasIntrinsicISize = true;
intrinsicISize = isizeCoord.GetCoordValue();
if (intrinsicISize < 0)
intrinsicISize = 0;
} else {
NS_ASSERTION(isizeCoord.GetUnit() == eStyleUnit_None,
"unexpected unit");
hasIntrinsicISize = false;
intrinsicISize = 0;
}
if (bsizeCoord.GetUnit() == eStyleUnit_Coord) {
hasIntrinsicBSize = true;
intrinsicBSize = bsizeCoord.GetCoordValue();
if (intrinsicBSize < 0)
intrinsicBSize = 0;
} else {
NS_ASSERTION(bsizeCoord.GetUnit() == eStyleUnit_None,
"unexpected unit");
hasIntrinsicBSize = false;
intrinsicBSize = 0;
}
NS_ASSERTION(aIntrinsicRatio.width >= 0 && aIntrinsicRatio.height >= 0,
"Intrinsic ratio has a negative component!");
LogicalSize logicalRatio(aWM, aIntrinsicRatio);
// Now calculate the used values for iSize and bSize:
if (isAutoISize) {
if (isAutoBSize) {
// 'auto' iSize, 'auto' bSize
// Get tentative values - CSS 2.1 sections 10.3.2 and 10.6.2:
nscoord tentISize, tentBSize;
if (hasIntrinsicISize) {
tentISize = intrinsicISize;
} else if (hasIntrinsicBSize && logicalRatio.BSize(aWM) > 0) {
tentISize = NSCoordMulDiv(intrinsicBSize, logicalRatio.ISize(aWM), logicalRatio.BSize(aWM));
} else if (logicalRatio.ISize(aWM) > 0) {
tentISize = aCBSize.ISize(aWM) - boxSizingToMarginEdgeISize; // XXX scrollbar?
if (tentISize < 0) tentISize = 0;
} else {
tentISize = nsPresContext::CSSPixelsToAppUnits(300);
}
if (hasIntrinsicBSize) {
tentBSize = intrinsicBSize;
} else if (logicalRatio.ISize(aWM) > 0) {
tentBSize = NSCoordMulDiv(tentISize, logicalRatio.BSize(aWM), logicalRatio.ISize(aWM));
} else {
tentBSize = nsPresContext::CSSPixelsToAppUnits(150);
}
if (aIntrinsicRatio != nsSize(0, 0)) {
nsSize autoSize =
ComputeAutoSizeWithIntrinsicDimensions(minISize, minBSize,
maxISize, maxBSize,
tentISize, tentBSize);
// The nsSize that ComputeAutoSizeWithIntrinsicDimensions returns will
// actually contain logical values if the parameters passed to it were
// logical coordinates, so we do NOT perform a physical-to-logical
// conversion here, but just assign the fields directly to our result.
iSize = autoSize.width;
bSize = autoSize.height;
} else {
// No intrinsic ratio, so just clamp the dimensions
// independently without calling
// ComputeAutoSizeWithIntrinsicDimensions, which deals with
// propagating these changes to the other dimension (and would
// be incorrect when there is no intrinsic ratio).
iSize = NS_CSS_MINMAX(tentISize, minISize, maxISize);
bSize = NS_CSS_MINMAX(tentBSize, minBSize, maxBSize);
}
} else {
// 'auto' iSize, non-'auto' bSize
bSize = NS_CSS_MINMAX(bSize, minBSize, maxBSize);
if (logicalRatio.BSize(aWM) > 0) {
iSize = NSCoordMulDiv(bSize, logicalRatio.ISize(aWM), logicalRatio.BSize(aWM));
} else if (hasIntrinsicISize) {
iSize = intrinsicISize;
} else {
iSize = nsPresContext::CSSPixelsToAppUnits(300);
}
iSize = NS_CSS_MINMAX(iSize, minISize, maxISize);
}
} else {
if (isAutoBSize) {
// non-'auto' iSize, 'auto' bSize
iSize = NS_CSS_MINMAX(iSize, minISize, maxISize);
if (logicalRatio.ISize(aWM) > 0) {
bSize = NSCoordMulDiv(iSize, logicalRatio.BSize(aWM), logicalRatio.ISize(aWM));
} else if (hasIntrinsicBSize) {
bSize = intrinsicBSize;
} else {
bSize = nsPresContext::CSSPixelsToAppUnits(150);
}
bSize = NS_CSS_MINMAX(bSize, minBSize, maxBSize);
} else {
// non-'auto' iSize, non-'auto' bSize
iSize = NS_CSS_MINMAX(iSize, minISize, maxISize);
bSize = NS_CSS_MINMAX(bSize, minBSize, maxBSize);
}
}
return LogicalSize(aWM, iSize, bSize);
}
nsSize
nsLayoutUtils::ComputeAutoSizeWithIntrinsicDimensions(nscoord minWidth, nscoord minHeight,
nscoord maxWidth, nscoord maxHeight,
nscoord tentWidth, nscoord tentHeight)
{
// Now apply min/max-width/height - CSS 2.1 sections 10.4 and 10.7:
if (minWidth > maxWidth)
maxWidth = minWidth;
if (minHeight > maxHeight)
maxHeight = minHeight;
nscoord heightAtMaxWidth, heightAtMinWidth,
widthAtMaxHeight, widthAtMinHeight;
if (tentWidth > 0) {
heightAtMaxWidth = NSCoordMulDiv(maxWidth, tentHeight, tentWidth);
if (heightAtMaxWidth < minHeight)
heightAtMaxWidth = minHeight;
heightAtMinWidth = NSCoordMulDiv(minWidth, tentHeight, tentWidth);
if (heightAtMinWidth > maxHeight)
heightAtMinWidth = maxHeight;
} else {
heightAtMaxWidth = heightAtMinWidth = NS_CSS_MINMAX(tentHeight, minHeight, maxHeight);
}
if (tentHeight > 0) {
widthAtMaxHeight = NSCoordMulDiv(maxHeight, tentWidth, tentHeight);
if (widthAtMaxHeight < minWidth)
widthAtMaxHeight = minWidth;
widthAtMinHeight = NSCoordMulDiv(minHeight, tentWidth, tentHeight);
if (widthAtMinHeight > maxWidth)
widthAtMinHeight = maxWidth;
} else {
widthAtMaxHeight = widthAtMinHeight = NS_CSS_MINMAX(tentWidth, minWidth, maxWidth);
}
// The table at http://www.w3.org/TR/CSS21/visudet.html#min-max-widths :
nscoord width, height;
if (tentWidth > maxWidth) {
if (tentHeight > maxHeight) {
if (int64_t(maxWidth) * int64_t(tentHeight) <=
int64_t(maxHeight) * int64_t(tentWidth)) {
width = maxWidth;
height = heightAtMaxWidth;
} else {
width = widthAtMaxHeight;
height = maxHeight;
}
} else {
// This also covers "(w > max-width) and (h < min-height)" since in
// that case (max-width/w < 1), and with (h < min-height):
// max(max-width * h/w, min-height) == min-height
width = maxWidth;
height = heightAtMaxWidth;
}
} else if (tentWidth < minWidth) {
if (tentHeight < minHeight) {
if (int64_t(minWidth) * int64_t(tentHeight) <=
int64_t(minHeight) * int64_t(tentWidth)) {
width = widthAtMinHeight;
height = minHeight;
} else {
width = minWidth;
height = heightAtMinWidth;
}
} else {
// This also covers "(w < min-width) and (h > max-height)" since in
// that case (min-width/w > 1), and with (h > max-height):
// min(min-width * h/w, max-height) == max-height
width = minWidth;
height = heightAtMinWidth;
}
} else {
if (tentHeight > maxHeight) {
width = widthAtMaxHeight;
height = maxHeight;
} else if (tentHeight < minHeight) {
width = widthAtMinHeight;
height = minHeight;
} else {
width = tentWidth;
height = tentHeight;
}
}
return nsSize(width, height);
}
/* static */ nscoord
nsLayoutUtils::MinISizeFromInline(nsIFrame* aFrame,
nsRenderingContext* aRenderingContext)
{
NS_ASSERTION(!aFrame->IsContainerForFontSizeInflation(),
"should not be container for font size inflation");
nsIFrame::InlineMinISizeData data;
DISPLAY_MIN_WIDTH(aFrame, data.prevLines);
aFrame->AddInlineMinISize(aRenderingContext, &data);
data.ForceBreak(aRenderingContext);
return data.prevLines;
}
/* static */ nscoord
nsLayoutUtils::PrefISizeFromInline(nsIFrame* aFrame,
nsRenderingContext* aRenderingContext)
{
NS_ASSERTION(!aFrame->IsContainerForFontSizeInflation(),
"should not be container for font size inflation");
nsIFrame::InlinePrefISizeData data;
DISPLAY_PREF_WIDTH(aFrame, data.prevLines);
aFrame->AddInlinePrefISize(aRenderingContext, &data);
data.ForceBreak(aRenderingContext);
return data.prevLines;
}
static nscolor
DarkenColor(nscolor aColor)
{
uint16_t hue, sat, value;
uint8_t alpha;
// convert the RBG to HSV so we can get the lightness (which is the v)
NS_RGB2HSV(aColor, hue, sat, value, alpha);
// The goal here is to send white to black while letting colored
// stuff stay colored... So we adopt the following approach.
// Something with sat = 0 should end up with value = 0. Something
// with a high sat can end up with a high value and it's ok.... At
// the same time, we don't want to make things lighter. Do
// something simple, since it seems to work.
if (value > sat) {
value = sat;
// convert this color back into the RGB color space.
NS_HSV2RGB(aColor, hue, sat, value, alpha);
}
return aColor;
}
// Check whether we should darken text/decoration colors. We need to do this if
// background images and colors are being suppressed, because that means
// light text will not be visible against the (presumed light-colored) background.
static bool
ShouldDarkenColors(nsPresContext* aPresContext)
{
return !aPresContext->GetBackgroundColorDraw() &&
!aPresContext->GetBackgroundImageDraw();
}
nscolor
nsLayoutUtils::GetColor(nsIFrame* aFrame, nsCSSProperty aProperty)
{
nscolor color = aFrame->GetVisitedDependentColor(aProperty);
if (ShouldDarkenColors(aFrame->PresContext())) {
color = DarkenColor(color);
}
return color;
}
gfxFloat
nsLayoutUtils::GetSnappedBaselineY(nsIFrame* aFrame, gfxContext* aContext,
nscoord aY, nscoord aAscent)
{
gfxFloat appUnitsPerDevUnit = aFrame->PresContext()->AppUnitsPerDevPixel();
gfxFloat baseline = gfxFloat(aY) + aAscent;
gfxRect putativeRect(0, baseline/appUnitsPerDevUnit, 1, 1);
if (!aContext->UserToDevicePixelSnapped(putativeRect, true))
return baseline;
return aContext->DeviceToUser(putativeRect.TopLeft()).y * appUnitsPerDevUnit;
}
gfxFloat
nsLayoutUtils::GetSnappedBaselineX(nsIFrame* aFrame, gfxContext* aContext,
nscoord aX, nscoord aAscent)
{
gfxFloat appUnitsPerDevUnit = aFrame->PresContext()->AppUnitsPerDevPixel();
gfxFloat baseline = gfxFloat(aX) + aAscent;
gfxRect putativeRect(baseline / appUnitsPerDevUnit, 0, 1, 1);
if (!aContext->UserToDevicePixelSnapped(putativeRect, true)) {
return baseline;
}
return aContext->DeviceToUser(putativeRect.TopLeft()).x * appUnitsPerDevUnit;
}
// Hard limit substring lengths to 8000 characters ... this lets us statically
// size the cluster buffer array in FindSafeLength
#define MAX_GFX_TEXT_BUF_SIZE 8000
static int32_t FindSafeLength(const char16_t *aString, uint32_t aLength,
uint32_t aMaxChunkLength)
{
if (aLength <= aMaxChunkLength)
return aLength;
int32_t len = aMaxChunkLength;
// Ensure that we don't break inside a surrogate pair
while (len > 0 && NS_IS_LOW_SURROGATE(aString[len])) {
len--;
}
if (len == 0) {
// We don't want our caller to go into an infinite loop, so don't
// return zero. It's hard to imagine how we could actually get here
// unless there are languages that allow clusters of arbitrary size.
// If there are and someone feeds us a 500+ character cluster, too
// bad.
return aMaxChunkLength;
}
return len;
}
static int32_t GetMaxChunkLength(nsFontMetrics& aFontMetrics)
{
return std::min(aFontMetrics.GetMaxStringLength(), MAX_GFX_TEXT_BUF_SIZE);
}
nscoord
nsLayoutUtils::AppUnitWidthOfString(const char16_t *aString,
uint32_t aLength,
nsFontMetrics& aFontMetrics,
nsRenderingContext& aContext)
{
uint32_t maxChunkLength = GetMaxChunkLength(aFontMetrics);
nscoord width = 0;
while (aLength > 0) {
int32_t len = FindSafeLength(aString, aLength, maxChunkLength);
width += aFontMetrics.GetWidth(aString, len, &aContext);
aLength -= len;
aString += len;
}
return width;
}
nscoord
nsLayoutUtils::AppUnitWidthOfStringBidi(const char16_t* aString,
uint32_t aLength,
const nsIFrame* aFrame,
nsFontMetrics& aFontMetrics,
nsRenderingContext& aContext)
{
nsPresContext* presContext = aFrame->PresContext();
if (presContext->BidiEnabled()) {
nsBidiLevel level =
nsBidiPresUtils::BidiLevelFromStyle(aFrame->StyleContext());
return nsBidiPresUtils::MeasureTextWidth(aString, aLength, level,
presContext, aContext,
aFontMetrics);
}
aFontMetrics.SetTextRunRTL(false);
aFontMetrics.SetVertical(aFrame->GetWritingMode().IsVertical());
aFontMetrics.SetTextOrientation(aFrame->StyleVisibility()->mTextOrientation);
return nsLayoutUtils::AppUnitWidthOfString(aString, aLength, aFontMetrics,
aContext);
}
bool
nsLayoutUtils::StringWidthIsGreaterThan(const nsString& aString,
nsFontMetrics& aFontMetrics,
nsRenderingContext& aContext,
nscoord aWidth)
{
const char16_t *string = aString.get();
uint32_t length = aString.Length();
uint32_t maxChunkLength = GetMaxChunkLength(aFontMetrics);
nscoord width = 0;
while (length > 0) {
int32_t len = FindSafeLength(string, length, maxChunkLength);
width += aFontMetrics.GetWidth(string, len, &aContext);
if (width > aWidth) {
return true;
}
length -= len;
string += len;
}
return false;
}
nsBoundingMetrics
nsLayoutUtils::AppUnitBoundsOfString(const char16_t* aString,
uint32_t aLength,
nsFontMetrics& aFontMetrics,
nsRenderingContext& aContext)
{
uint32_t maxChunkLength = GetMaxChunkLength(aFontMetrics);
int32_t len = FindSafeLength(aString, aLength, maxChunkLength);
// Assign directly in the first iteration. This ensures that
// negative ascent/descent can be returned and the left bearing
// is properly initialized.
nsBoundingMetrics totalMetrics =
aFontMetrics.GetBoundingMetrics(aString, len, &aContext);
aLength -= len;
aString += len;
while (aLength > 0) {
len = FindSafeLength(aString, aLength, maxChunkLength);
nsBoundingMetrics metrics =
aFontMetrics.GetBoundingMetrics(aString, len, &aContext);
totalMetrics += metrics;
aLength -= len;
aString += len;
}
return totalMetrics;
}
void
nsLayoutUtils::DrawString(const nsIFrame* aFrame,
nsFontMetrics& aFontMetrics,
nsRenderingContext* aContext,
const char16_t* aString,
int32_t aLength,
nsPoint aPoint,
nsStyleContext* aStyleContext)
{
nsresult rv = NS_ERROR_FAILURE;
// If caller didn't pass a style context, use the frame's.
if (!aStyleContext) {
aStyleContext = aFrame->StyleContext();
}
aFontMetrics.SetVertical(WritingMode(aStyleContext).IsVertical());
aFontMetrics.SetTextOrientation(
aStyleContext->StyleVisibility()->mTextOrientation);
nsPresContext* presContext = aFrame->PresContext();
if (presContext->BidiEnabled()) {
nsBidiLevel level =
nsBidiPresUtils::BidiLevelFromStyle(aStyleContext);
rv = nsBidiPresUtils::RenderText(aString, aLength, level,
presContext, *aContext, *aContext,
aFontMetrics,
aPoint.x, aPoint.y);
}
if (NS_FAILED(rv))
{
aFontMetrics.SetTextRunRTL(false);
DrawUniDirString(aString, aLength, aPoint, aFontMetrics, *aContext);
}
}
void
nsLayoutUtils::DrawUniDirString(const char16_t* aString,
uint32_t aLength,
nsPoint aPoint,
nsFontMetrics& aFontMetrics,
nsRenderingContext& aContext)
{
nscoord x = aPoint.x;
nscoord y = aPoint.y;
uint32_t maxChunkLength = GetMaxChunkLength(aFontMetrics);
if (aLength <= maxChunkLength) {
aFontMetrics.DrawString(aString, aLength, x, y, &aContext, &aContext);
return;
}
bool isRTL = aFontMetrics.GetTextRunRTL();
// If we're drawing right to left, we must start at the end.
if (isRTL) {
x += nsLayoutUtils::AppUnitWidthOfString(aString, aLength, aFontMetrics,
aContext);
}
while (aLength > 0) {
int32_t len = FindSafeLength(aString, aLength, maxChunkLength);
nscoord width = aFontMetrics.GetWidth(aString, len, &aContext);
if (isRTL) {
x -= width;
}
aFontMetrics.DrawString(aString, len, x, y, &aContext, &aContext);
if (!isRTL) {
x += width;
}
aLength -= len;
aString += len;
}
}
/* static */ void
nsLayoutUtils::PaintTextShadow(const nsIFrame* aFrame,
nsRenderingContext* aContext,
const nsRect& aTextRect,
const nsRect& aDirtyRect,
const nscolor& aForegroundColor,
TextShadowCallback aCallback,
void* aCallbackData)
{
const nsStyleText* textStyle = aFrame->StyleText();
if (!textStyle->HasTextShadow())
return;
// Text shadow happens with the last value being painted at the back,
// ie. it is painted first.
gfxContext* aDestCtx = aContext->ThebesContext();
for (uint32_t i = textStyle->mTextShadow->Length(); i > 0; --i) {
nsCSSShadowItem* shadowDetails = textStyle->mTextShadow->ShadowAt(i - 1);
nsPoint shadowOffset(shadowDetails->mXOffset,
shadowDetails->mYOffset);
nscoord blurRadius = std::max(shadowDetails->mRadius, 0);
nsRect shadowRect(aTextRect);
shadowRect.MoveBy(shadowOffset);
nsPresContext* presCtx = aFrame->PresContext();
nsContextBoxBlur contextBoxBlur;
gfxContext* shadowContext = contextBoxBlur.Init(shadowRect, 0, blurRadius,
presCtx->AppUnitsPerDevPixel(),
aDestCtx, aDirtyRect, nullptr);
if (!shadowContext)
continue;
nscolor shadowColor;
if (shadowDetails->mHasColor)
shadowColor = shadowDetails->mColor;
else
shadowColor = aForegroundColor;
// Conjure an nsRenderingContext from a gfxContext for drawing the text
// to blur.
nsRenderingContext renderingContext(shadowContext);
aDestCtx->Save();
aDestCtx->NewPath();
aDestCtx->SetColor(gfxRGBA(shadowColor));
// The callback will draw whatever we want to blur as a shadow.
aCallback(&renderingContext, shadowOffset, shadowColor, aCallbackData);
contextBoxBlur.DoPaint();
aDestCtx->Restore();
}
}
/* static */ nscoord
nsLayoutUtils::GetCenteredFontBaseline(nsFontMetrics* aFontMetrics,
nscoord aLineHeight,
bool aIsInverted)
{
nscoord fontAscent = aIsInverted ? aFontMetrics->MaxDescent()
: aFontMetrics->MaxAscent();
nscoord fontHeight = aFontMetrics->MaxHeight();
nscoord leading = aLineHeight - fontHeight;
return fontAscent + leading/2;
}
/* static */ bool
nsLayoutUtils::GetFirstLineBaseline(WritingMode aWritingMode,
const nsIFrame* aFrame, nscoord* aResult)
{
LinePosition position;
if (!GetFirstLinePosition(aWritingMode, aFrame, &position))
return false;
*aResult = position.mBaseline;
return true;
}
/* static */ bool
nsLayoutUtils::GetFirstLinePosition(WritingMode aWM,
const nsIFrame* aFrame,
LinePosition* aResult)
{
const nsBlockFrame* block = nsLayoutUtils::GetAsBlock(const_cast<nsIFrame*>(aFrame));
if (!block) {
// For the first-line baseline we also have to check for a table, and if
// so, use the baseline of its first row.
nsIAtom* fType = aFrame->GetType();
if (fType == nsGkAtoms::tableOuterFrame) {
aResult->mBStart = 0;
aResult->mBaseline = aFrame->GetLogicalBaseline(aWM);
// This is what we want for the list bullet caller; not sure if
// other future callers will want the same.
aResult->mBEnd = aFrame->BSize(aWM);
return true;
}
// For first-line baselines, we have to consider scroll frames.
if (fType == nsGkAtoms::scrollFrame) {
nsIScrollableFrame *sFrame = do_QueryFrame(const_cast<nsIFrame*>(aFrame));
if (!sFrame) {
NS_NOTREACHED("not scroll frame");
}
LinePosition kidPosition;
if (GetFirstLinePosition(aWM,
sFrame->GetScrolledFrame(), &kidPosition)) {
// Consider only the border and padding that contributes to the
// kid's position, not the scrolling, so we get the initial
// position.
*aResult = kidPosition +
aFrame->GetLogicalUsedBorderAndPadding(aWM).BStart(aWM);
return true;
}
return false;
}
if (fType == nsGkAtoms::fieldSetFrame) {
LinePosition kidPosition;
nsIFrame* kid = aFrame->GetFirstPrincipalChild();
// kid might be a legend frame here, but that's ok.
if (GetFirstLinePosition(aWM, kid, &kidPosition)) {
*aResult = kidPosition +
kid->GetLogicalNormalPosition(aWM, aFrame->GetSize()).B(aWM);
return true;
}
return false;
}
// No baseline.
return false;
}
for (nsBlockFrame::const_line_iterator line = block->begin_lines(),
line_end = block->end_lines();
line != line_end; ++line) {
if (line->IsBlock()) {
nsIFrame *kid = line->mFirstChild;
LinePosition kidPosition;
if (GetFirstLinePosition(aWM, kid, &kidPosition)) {
//XXX Not sure if this is the correct value to use for container
// width here. It will only be used in vertical-rl layout,
// which we don't have full support and testing for yet.
const nsSize& containerSize = line->mContainerSize;
*aResult = kidPosition +
kid->GetLogicalNormalPosition(aWM, containerSize).B(aWM);
return true;
}
} else {
// XXX Is this the right test? We have some bogus empty lines
// floating around, but IsEmpty is perhaps too weak.
if (line->BSize() != 0 || !line->IsEmpty()) {
nscoord bStart = line->BStart();
aResult->mBStart = bStart;
aResult->mBaseline = bStart + line->GetLogicalAscent();
aResult->mBEnd = bStart + line->BSize();
return true;
}
}
}
return false;
}
/* static */ bool
nsLayoutUtils::GetLastLineBaseline(WritingMode aWM,
const nsIFrame* aFrame, nscoord* aResult)
{
const nsBlockFrame* block = nsLayoutUtils::GetAsBlock(const_cast<nsIFrame*>(aFrame));
if (!block)
// No baseline. (We intentionally don't descend into scroll frames.)
return false;
for (nsBlockFrame::const_reverse_line_iterator line = block->rbegin_lines(),
line_end = block->rend_lines();
line != line_end; ++line) {
if (line->IsBlock()) {
nsIFrame *kid = line->mFirstChild;
nscoord kidBaseline;
const nsSize& containerSize = line->mContainerSize;
if (GetLastLineBaseline(aWM, kid, &kidBaseline)) {
// Ignore relative positioning for baseline calculations
*aResult = kidBaseline +
kid->GetLogicalNormalPosition(aWM, containerSize).B(aWM);
return true;
} else if (kid->GetType() == nsGkAtoms::scrollFrame) {
// Use the bottom of the scroll frame.
// XXX CSS2.1 really doesn't say what to do here.
*aResult = kid->GetLogicalNormalPosition(aWM, containerSize).B(aWM) +
kid->BSize(aWM);
return true;
}
} else {
// XXX Is this the right test? We have some bogus empty lines
// floating around, but IsEmpty is perhaps too weak.
if (line->BSize() != 0 || !line->IsEmpty()) {
*aResult = line->BStart() + line->GetLogicalAscent();
return true;
}
}
}
return false;
}
static nscoord
CalculateBlockContentBEnd(WritingMode aWM, nsBlockFrame* aFrame)
{
NS_PRECONDITION(aFrame, "null ptr");
nscoord contentBEnd = 0;
for (nsBlockFrame::line_iterator line = aFrame->begin_lines(),
line_end = aFrame->end_lines();
line != line_end; ++line) {
if (line->IsBlock()) {
nsIFrame* child = line->mFirstChild;
const nsSize& containerSize = line->mContainerSize;
nscoord offset =
child->GetLogicalNormalPosition(aWM, containerSize).B(aWM);
contentBEnd =
std::max(contentBEnd,
nsLayoutUtils::CalculateContentBEnd(aWM, child) + offset);
}
else {
contentBEnd = std::max(contentBEnd, line->BEnd());
}
}
return contentBEnd;
}
/* static */ nscoord
nsLayoutUtils::CalculateContentBEnd(WritingMode aWM, nsIFrame* aFrame)
{
NS_PRECONDITION(aFrame, "null ptr");
nscoord contentBEnd = aFrame->BSize(aWM);
// We want scrollable overflow rather than visual because this
// calculation is intended to affect layout.
LogicalSize overflowSize(aWM, aFrame->GetScrollableOverflowRect().Size());
if (overflowSize.BSize(aWM) > contentBEnd) {
nsIFrame::ChildListIDs skip(nsIFrame::kOverflowList |
nsIFrame::kExcessOverflowContainersList |
nsIFrame::kOverflowOutOfFlowList);
nsBlockFrame* blockFrame = GetAsBlock(aFrame);
if (blockFrame) {
contentBEnd =
std::max(contentBEnd, CalculateBlockContentBEnd(aWM, blockFrame));
skip |= nsIFrame::kPrincipalList;
}
nsIFrame::ChildListIterator lists(aFrame);
for (; !lists.IsDone(); lists.Next()) {
if (!skip.Contains(lists.CurrentID())) {
nsFrameList::Enumerator childFrames(lists.CurrentList());
for (; !childFrames.AtEnd(); childFrames.Next()) {
nsIFrame* child = childFrames.get();
nscoord offset =
child->GetLogicalNormalPosition(aWM,
aFrame->GetSize()).B(aWM);
contentBEnd = std::max(contentBEnd,
CalculateContentBEnd(aWM, child) + offset);
}
}
}
}
return contentBEnd;
}
/* static */ nsIFrame*
nsLayoutUtils::GetClosestLayer(nsIFrame* aFrame)
{
nsIFrame* layer;
for (layer = aFrame; layer; layer = layer->GetParent()) {
if (layer->IsAbsPosContaininingBlock() ||
(layer->GetParent() &&
layer->GetParent()->GetType() == nsGkAtoms::scrollFrame))
break;
}
if (layer)
return layer;
return aFrame->PresContext()->PresShell()->FrameManager()->GetRootFrame();
}
GraphicsFilter
nsLayoutUtils::GetGraphicsFilterForFrame(nsIFrame* aForFrame)
{
GraphicsFilter defaultFilter = GraphicsFilter::FILTER_GOOD;
nsStyleContext *sc;
if (nsCSSRendering::IsCanvasFrame(aForFrame)) {
nsCSSRendering::FindBackground(aForFrame, &sc);
} else {
sc = aForFrame->StyleContext();
}
switch (sc->StyleSVG()->mImageRendering) {
case NS_STYLE_IMAGE_RENDERING_OPTIMIZESPEED:
return GraphicsFilter::FILTER_FAST;
case NS_STYLE_IMAGE_RENDERING_OPTIMIZEQUALITY:
return GraphicsFilter::FILTER_BEST;
case NS_STYLE_IMAGE_RENDERING_CRISPEDGES:
return GraphicsFilter::FILTER_NEAREST;
default:
return defaultFilter;
}
}
/**
* Given an image being drawn into an appunit coordinate system, and
* a point in that coordinate system, map the point back into image
* pixel space.
* @param aSize the size of the image, in pixels
* @param aDest the rectangle that the image is being mapped into
* @param aPt a point in the same coordinate system as the rectangle
*/
static gfxPoint
MapToFloatImagePixels(const gfxSize& aSize,
const gfxRect& aDest, const gfxPoint& aPt)
{
return gfxPoint(((aPt.x - aDest.X())*aSize.width)/aDest.Width(),
((aPt.y - aDest.Y())*aSize.height)/aDest.Height());
}
/**
* Given an image being drawn into an pixel-based coordinate system, and
* a point in image space, map the point into the pixel-based coordinate
* system.
* @param aSize the size of the image, in pixels
* @param aDest the rectangle that the image is being mapped into
* @param aPt a point in image space
*/
static gfxPoint
MapToFloatUserPixels(const gfxSize& aSize,
const gfxRect& aDest, const gfxPoint& aPt)
{
return gfxPoint(aPt.x*aDest.Width()/aSize.width + aDest.X(),
aPt.y*aDest.Height()/aSize.height + aDest.Y());
}
/* static */ gfxRect
nsLayoutUtils::RectToGfxRect(const nsRect& aRect, int32_t aAppUnitsPerDevPixel)
{
return gfxRect(gfxFloat(aRect.x) / aAppUnitsPerDevPixel,
gfxFloat(aRect.y) / aAppUnitsPerDevPixel,
gfxFloat(aRect.width) / aAppUnitsPerDevPixel,
gfxFloat(aRect.height) / aAppUnitsPerDevPixel);
}
struct SnappedImageDrawingParameters {
// A transform from image space to device space.
gfxMatrix imageSpaceToDeviceSpace;
// The size at which the image should be drawn (which may not be its
// intrinsic size due to, for example, HQ scaling).
nsIntSize size;
// The region in tiled image space which will be drawn, with an associated
// region to which sampling should be restricted.
ImageRegion region;
// The default viewport size for SVG images, which we use unless a different
// one has been explicitly specified. This is the same as |size| except that
// it does not take into account any transformation on the gfxContext we're
// drawing to - for example, CSS transforms are not taken into account.
CSSIntSize svgViewportSize;
// Whether there's anything to draw at all.
bool shouldDraw;
SnappedImageDrawingParameters()
: region(ImageRegion::Empty())
, shouldDraw(false)
{}
SnappedImageDrawingParameters(const gfxMatrix& aImageSpaceToDeviceSpace,
const nsIntSize& aSize,
const ImageRegion& aRegion,
const CSSIntSize& aSVGViewportSize)
: imageSpaceToDeviceSpace(aImageSpaceToDeviceSpace)
, size(aSize)
, region(aRegion)
, svgViewportSize(aSVGViewportSize)
, shouldDraw(true)
{}
};
/**
* Given two axis-aligned rectangles, returns the transformation that maps the
* first onto the second.
*
* @param aFrom The rect to be transformed.
* @param aTo The rect that aFrom should be mapped onto by the transformation.
*/
static gfxMatrix
TransformBetweenRects(const gfxRect& aFrom, const gfxRect& aTo)
{
gfxSize scale(aTo.width / aFrom.width,
aTo.height / aFrom.height);
gfxPoint translation(aTo.x - aFrom.x * scale.width,
aTo.y - aFrom.y * scale.height);
return gfxMatrix(scale.width, 0, 0, scale.height,
translation.x, translation.y);
}
static nsRect
TileNearRect(const nsRect& aAnyTile, const nsRect& aTargetRect)
{
nsPoint distance = aTargetRect.TopLeft() - aAnyTile.TopLeft();
return aAnyTile + nsPoint(distance.x / aAnyTile.width * aAnyTile.width,
distance.y / aAnyTile.height * aAnyTile.height);
}
static gfxFloat
StableRound(gfxFloat aValue)
{
// Values slightly less than 0.5 should round up like 0.5 would; we're
// assuming they were meant to be 0.5.
return floor(aValue + 0.5001);
}
static gfxPoint
StableRound(const gfxPoint& aPoint)
{
return gfxPoint(StableRound(aPoint.x), StableRound(aPoint.y));
}
/**
* Given a set of input parameters, compute certain output parameters
* for drawing an image with the image snapping algorithm.
* See https://wiki.mozilla.org/Gecko:Image_Snapping_and_Rendering
*
* @see nsLayoutUtils::DrawImage() for the descriptions of input parameters
*/
static SnappedImageDrawingParameters
ComputeSnappedImageDrawingParameters(gfxContext* aCtx,
int32_t aAppUnitsPerDevPixel,
const nsRect aDest,
const nsRect aFill,
const nsPoint aAnchor,
const nsRect aDirty,
imgIContainer* aImage,
GraphicsFilter aGraphicsFilter,
uint32_t aImageFlags)
{
if (aDest.IsEmpty() || aFill.IsEmpty())
return SnappedImageDrawingParameters();
// Avoid unnecessarily large offsets.
bool doTile = !aDest.Contains(aFill);
nsRect appUnitDest = doTile ? TileNearRect(aDest, aFill.Intersect(aDirty))
: aDest;
nsPoint anchor = aAnchor + (appUnitDest.TopLeft() - aDest.TopLeft());
gfxRect devPixelDest =
nsLayoutUtils::RectToGfxRect(appUnitDest, aAppUnitsPerDevPixel);
gfxRect devPixelFill =
nsLayoutUtils::RectToGfxRect(aFill, aAppUnitsPerDevPixel);
gfxRect devPixelDirty =
nsLayoutUtils::RectToGfxRect(aDirty, aAppUnitsPerDevPixel);
gfxMatrix currentMatrix = aCtx->CurrentMatrix();
gfxRect fill = devPixelFill;
gfxRect dest = devPixelDest;
bool didSnap;
// Snap even if we have a scale in the context. But don't snap if
// we have something that's not translation+scale, or if the scale flips in
// the X or Y direction, because snapped image drawing can't handle that yet.
if (!currentMatrix.HasNonAxisAlignedTransform() &&
currentMatrix._11 > 0.0 && currentMatrix._22 > 0.0 &&
aCtx->UserToDevicePixelSnapped(fill, true) &&
aCtx->UserToDevicePixelSnapped(dest, true)) {
// We snapped. On this code path, |fill| and |dest| take into account
// currentMatrix's transform.
didSnap = true;
} else {
// We didn't snap. On this code path, |fill| and |dest| do not take into
// account currentMatrix's transform.
didSnap = false;
fill = devPixelFill;
dest = devPixelDest;
}
// If we snapped above, |dest| already takes into account |currentMatrix|'s scale
// and has integer coordinates. If not, we need these properties to compute
// the optimal drawn image size, so compute |snappedDestSize| here.
gfxSize snappedDestSize = dest.Size();
if (!didSnap) {
gfxSize scaleFactors = currentMatrix.ScaleFactors(true);
snappedDestSize.Scale(scaleFactors.width, scaleFactors.height);
snappedDestSize.width = NS_round(snappedDestSize.width);
snappedDestSize.height = NS_round(snappedDestSize.height);
}
// We need to be sure that this is at least one pixel in width and height,
// or we'll end up drawing nothing even if we have a nonempty fill.
snappedDestSize.width = std::max(snappedDestSize.width, 1.0);
snappedDestSize.height = std::max(snappedDestSize.height, 1.0);
// Bail if we're not going to end up drawing anything.
if (fill.IsEmpty() || snappedDestSize.IsEmpty()) {
return SnappedImageDrawingParameters();
}
nsIntSize intImageSize =
aImage->OptimalImageSizeForDest(snappedDestSize,
imgIContainer::FRAME_CURRENT,
aGraphicsFilter, aImageFlags);
gfxSize imageSize(intImageSize.width, intImageSize.height);
// XXX(seth): May be buggy; see bug 1151016.
CSSIntSize svgViewportSize = currentMatrix.IsIdentity()
? CSSIntSize(intImageSize.width, intImageSize.height)
: CSSIntSize(devPixelDest.width, devPixelDest.height);
// Compute the set of pixels that would be sampled by an ideal rendering
gfxPoint subimageTopLeft =
MapToFloatImagePixels(imageSize, devPixelDest, devPixelFill.TopLeft());
gfxPoint subimageBottomRight =
MapToFloatImagePixels(imageSize, devPixelDest, devPixelFill.BottomRight());
gfxRect subimage;
subimage.MoveTo(NSToIntFloor(subimageTopLeft.x),
NSToIntFloor(subimageTopLeft.y));
subimage.SizeTo(NSToIntCeil(subimageBottomRight.x) - subimage.x,
NSToIntCeil(subimageBottomRight.y) - subimage.y);
gfxMatrix transform;
gfxMatrix invTransform;
bool anchorAtUpperLeft = anchor.x == appUnitDest.x &&
anchor.y == appUnitDest.y;
bool exactlyOneImageCopy = aFill.IsEqualEdges(appUnitDest);
if (anchorAtUpperLeft && exactlyOneImageCopy) {
// The simple case: we can ignore the anchor point and compute the
// transformation from the sampled region (the subimage) to the fill rect.
// This approach is preferable when it works since it tends to produce
// less numerical error.
transform = TransformBetweenRects(subimage, fill);
invTransform = TransformBetweenRects(fill, subimage);
} else {
// The more complicated case: we compute the transformation from the
// image rect positioned at the image space anchor point to the dest rect
// positioned at the device space anchor point.
// Compute the anchor point in both device space and image space. This
// code assumes that pixel-based devices have one pixel per device unit!
gfxPoint anchorPoint(gfxFloat(anchor.x)/aAppUnitsPerDevPixel,
gfxFloat(anchor.y)/aAppUnitsPerDevPixel);
gfxPoint imageSpaceAnchorPoint =
MapToFloatImagePixels(imageSize, devPixelDest, anchorPoint);
if (didSnap) {
imageSpaceAnchorPoint = StableRound(imageSpaceAnchorPoint);
anchorPoint = imageSpaceAnchorPoint;
anchorPoint = MapToFloatUserPixels(imageSize, devPixelDest, anchorPoint);
anchorPoint = currentMatrix.Transform(anchorPoint);
anchorPoint = StableRound(anchorPoint);
}
// Compute an unsnapped version of the dest rect's size. We continue to
// follow the pattern that we take |currentMatrix| into account only if
// |didSnap| is true.
gfxSize unsnappedDestSize
= didSnap ? devPixelDest.Size() * currentMatrix.ScaleFactors(true)
: devPixelDest.Size();
gfxRect anchoredDestRect(anchorPoint, unsnappedDestSize);
gfxRect anchoredImageRect(imageSpaceAnchorPoint, imageSize);
// Calculate anchoredDestRect with snapped fill rect when the devPixelFill rect
// corresponds to just a single tile in that direction
if (fill.Width() != devPixelFill.Width() &&
devPixelDest.x == devPixelFill.x &&
devPixelDest.XMost() == devPixelFill.XMost()) {
anchoredDestRect.width = fill.width;
}
if (fill.Height() != devPixelFill.Height() &&
devPixelDest.y == devPixelFill.y &&
devPixelDest.YMost() == devPixelFill.YMost()) {
anchoredDestRect.height = fill.height;
}
transform = TransformBetweenRects(anchoredImageRect, anchoredDestRect);
invTransform = TransformBetweenRects(anchoredDestRect, anchoredImageRect);
}
// If the transform is not a straight translation by integers, then
// filtering will occur, and restricting the fill rect to the dirty rect
// would change the values computed for edge pixels, which we can't allow.
// Also, if 'didSnap' is false then rounding out 'devPixelDirty' might not
// produce pixel-aligned coordinates, which would also break the values
// computed for edge pixels.
if (didSnap && !invTransform.HasNonIntegerTranslation()) {
// This form of Transform is safe to call since non-axis-aligned
// transforms wouldn't be snapped.
devPixelDirty = currentMatrix.Transform(devPixelDirty);
devPixelDirty.RoundOut();
fill = fill.Intersect(devPixelDirty);
}
if (fill.IsEmpty())
return SnappedImageDrawingParameters();
gfxRect imageSpaceFill(didSnap ? invTransform.Transform(fill)
: invTransform.TransformBounds(fill));
// If we didn't snap, we need to post-multiply the matrix on the context to
// get the final matrix we'll draw with, because we didn't take it into
// account when computing the matrices above.
if (!didSnap) {
transform = transform * currentMatrix;
}
ImageRegion region =
ImageRegion::CreateWithSamplingRestriction(imageSpaceFill, subimage);
return SnappedImageDrawingParameters(transform, intImageSize,
region, svgViewportSize);
}
static DrawResult
DrawImageInternal(gfxContext& aContext,
nsPresContext* aPresContext,
imgIContainer* aImage,
GraphicsFilter aGraphicsFilter,
const nsRect& aDest,
const nsRect& aFill,
const nsPoint& aAnchor,
const nsRect& aDirty,
const SVGImageContext* aSVGContext,
uint32_t aImageFlags)
{
if (aPresContext->Type() == nsPresContext::eContext_Print) {
// We want vector images to be passed on as vector commands, not a raster
// image.
aImageFlags |= imgIContainer::FLAG_BYPASS_SURFACE_CACHE;
}
if (aDest.Contains(aFill)) {
aImageFlags |= imgIContainer::FLAG_CLAMP;
}
int32_t appUnitsPerDevPixel =
aPresContext->AppUnitsPerDevPixel();
SnappedImageDrawingParameters params =
ComputeSnappedImageDrawingParameters(&aContext, appUnitsPerDevPixel, aDest,
aFill, aAnchor, aDirty, aImage,
aGraphicsFilter, aImageFlags);
if (!params.shouldDraw) {
return DrawResult::SUCCESS;
}
gfxContextMatrixAutoSaveRestore contextMatrixRestorer(&aContext);
aContext.SetMatrix(params.imageSpaceToDeviceSpace);
Maybe<SVGImageContext> svgContext = ToMaybe(aSVGContext);
if (!svgContext) {
// Use the default viewport.
svgContext = Some(SVGImageContext(params.svgViewportSize, Nothing()));
}
return aImage->Draw(&aContext, params.size, params.region,
imgIContainer::FRAME_CURRENT, aGraphicsFilter,
svgContext, aImageFlags);
}
/* static */ DrawResult
nsLayoutUtils::DrawSingleUnscaledImage(gfxContext& aContext,
nsPresContext* aPresContext,
imgIContainer* aImage,
GraphicsFilter aGraphicsFilter,
const nsPoint& aDest,
const nsRect* aDirty,
uint32_t aImageFlags,
const nsRect* aSourceArea)
{
CSSIntSize imageSize;
aImage->GetWidth(&imageSize.width);
aImage->GetHeight(&imageSize.height);
if (imageSize.width < 1 || imageSize.height < 1) {
NS_WARNING("Image width or height is non-positive");
return DrawResult::TEMPORARY_ERROR;
}
nsSize size(CSSPixel::ToAppUnits(imageSize));
nsRect source;
if (aSourceArea) {
source = *aSourceArea;
} else {
source.SizeTo(size);
}
nsRect dest(aDest - source.TopLeft(), size);
nsRect fill(aDest, source.Size());
// Ensure that only a single image tile is drawn. If aSourceArea extends
// outside the image bounds, we want to honor the aSourceArea-to-aDest
// translation but we don't want to actually tile the image.
fill.IntersectRect(fill, dest);
return DrawImageInternal(aContext, aPresContext,
aImage, aGraphicsFilter,
dest, fill, aDest, aDirty ? *aDirty : dest,
nullptr, aImageFlags);
}
/* static */ DrawResult
nsLayoutUtils::DrawSingleImage(gfxContext& aContext,
nsPresContext* aPresContext,
imgIContainer* aImage,
GraphicsFilter aGraphicsFilter,
const nsRect& aDest,
const nsRect& aDirty,
const SVGImageContext* aSVGContext,
uint32_t aImageFlags,
const nsPoint* aAnchorPoint,
const nsRect* aSourceArea)
{
nscoord appUnitsPerCSSPixel = nsDeviceContext::AppUnitsPerCSSPixel();
CSSIntSize pixelImageSize(ComputeSizeForDrawingWithFallback(aImage, aDest.Size()));
if (pixelImageSize.width < 1 || pixelImageSize.height < 1) {
NS_WARNING("Image width or height is non-positive");
return DrawResult::TEMPORARY_ERROR;
}
nsSize imageSize(CSSPixel::ToAppUnits(pixelImageSize));
nsRect source;
nsCOMPtr<imgIContainer> image;
if (aSourceArea) {
source = *aSourceArea;
nsIntRect subRect(source.x, source.y, source.width, source.height);
subRect.ScaleInverseRoundOut(appUnitsPerCSSPixel);
image = ImageOps::Clip(aImage, subRect);
nsRect imageRect;
imageRect.SizeTo(imageSize);
nsRect clippedSource = imageRect.Intersect(source);
source -= clippedSource.TopLeft();
imageSize = clippedSource.Size();
} else {
source.SizeTo(imageSize);
image = aImage;
}
nsRect dest = GetWholeImageDestination(imageSize, source, aDest);
// Ensure that only a single image tile is drawn. If aSourceArea extends
// outside the image bounds, we want to honor the aSourceArea-to-aDest
// transform but we don't want to actually tile the image.
nsRect fill;
fill.IntersectRect(aDest, dest);
return DrawImageInternal(aContext, aPresContext, image,
aGraphicsFilter, dest, fill,
aAnchorPoint ? *aAnchorPoint : fill.TopLeft(),
aDirty, aSVGContext, aImageFlags);
}
/* static */ void
nsLayoutUtils::ComputeSizeForDrawing(imgIContainer *aImage,
CSSIntSize& aImageSize, /*outparam*/
nsSize& aIntrinsicRatio, /*outparam*/
bool& aGotWidth, /*outparam*/
bool& aGotHeight /*outparam*/)
{
aGotWidth = NS_SUCCEEDED(aImage->GetWidth(&aImageSize.width));
aGotHeight = NS_SUCCEEDED(aImage->GetHeight(&aImageSize.height));
bool gotRatio = NS_SUCCEEDED(aImage->GetIntrinsicRatio(&aIntrinsicRatio));
if (!(aGotWidth && aGotHeight) && !gotRatio) {
// We hit an error (say, because the image failed to load or couldn't be
// decoded) and should return zero size.
aGotWidth = aGotHeight = true;
aImageSize = CSSIntSize(0, 0);
aIntrinsicRatio = nsSize(0, 0);
}
}
/* static */ CSSIntSize
nsLayoutUtils::ComputeSizeForDrawingWithFallback(imgIContainer* aImage,
const nsSize& aFallbackSize)
{
CSSIntSize imageSize;
nsSize imageRatio;
bool gotHeight, gotWidth;
ComputeSizeForDrawing(aImage, imageSize, imageRatio, gotWidth, gotHeight);
// If we didn't get both width and height, try to compute them using the
// intrinsic ratio of the image.
if (gotWidth != gotHeight) {
if (!gotWidth) {
if (imageRatio.height != 0) {
imageSize.width =
NSCoordSaturatingNonnegativeMultiply(imageSize.height,
float(imageRatio.width) /
float(imageRatio.height));
gotWidth = true;
}
} else {
if (imageRatio.width != 0) {
imageSize.height =
NSCoordSaturatingNonnegativeMultiply(imageSize.width,
float(imageRatio.height) /
float(imageRatio.width));
gotHeight = true;
}
}
}
// If we still don't have a width or height, just use the fallback size the
// caller provided.
if (!gotWidth) {
imageSize.width = nsPresContext::AppUnitsToIntCSSPixels(aFallbackSize.width);
}
if (!gotHeight) {
imageSize.height = nsPresContext::AppUnitsToIntCSSPixels(aFallbackSize.height);
}
return imageSize;
}
/* static */ DrawResult
nsLayoutUtils::DrawBackgroundImage(gfxContext& aContext,
nsPresContext* aPresContext,
imgIContainer* aImage,
const CSSIntSize& aImageSize,
GraphicsFilter aGraphicsFilter,
const nsRect& aDest,
const nsRect& aFill,
const nsPoint& aAnchor,
const nsRect& aDirty,
uint32_t aImageFlags)
{
PROFILER_LABEL("layout", "nsLayoutUtils::DrawBackgroundImage",
js::ProfileEntry::Category::GRAPHICS);
if (UseBackgroundNearestFiltering()) {
aGraphicsFilter = GraphicsFilter::FILTER_NEAREST;
}
SVGImageContext svgContext(aImageSize, Nothing());
return DrawImageInternal(aContext, aPresContext, aImage,
aGraphicsFilter, aDest, aFill, aAnchor,
aDirty, &svgContext, aImageFlags);
}
/* static */ DrawResult
nsLayoutUtils::DrawImage(gfxContext& aContext,
nsPresContext* aPresContext,
imgIContainer* aImage,
GraphicsFilter aGraphicsFilter,
const nsRect& aDest,
const nsRect& aFill,
const nsPoint& aAnchor,
const nsRect& aDirty,
uint32_t aImageFlags)
{
return DrawImageInternal(aContext, aPresContext, aImage,
aGraphicsFilter, aDest, aFill, aAnchor,
aDirty, nullptr, aImageFlags);
}
/* static */ nsRect
nsLayoutUtils::GetWholeImageDestination(const nsSize& aWholeImageSize,
const nsRect& aImageSourceArea,
const nsRect& aDestArea)
{
double scaleX = double(aDestArea.width)/aImageSourceArea.width;
double scaleY = double(aDestArea.height)/aImageSourceArea.height;
nscoord destOffsetX = NSToCoordRound(aImageSourceArea.x*scaleX);
nscoord destOffsetY = NSToCoordRound(aImageSourceArea.y*scaleY);
nscoord wholeSizeX = NSToCoordRound(aWholeImageSize.width*scaleX);
nscoord wholeSizeY = NSToCoordRound(aWholeImageSize.height*scaleY);
return nsRect(aDestArea.TopLeft() - nsPoint(destOffsetX, destOffsetY),
nsSize(wholeSizeX, wholeSizeY));
}
/* static */ already_AddRefed<imgIContainer>
nsLayoutUtils::OrientImage(imgIContainer* aContainer,
const nsStyleImageOrientation& aOrientation)
{
MOZ_ASSERT(aContainer, "Should have an image container");
nsCOMPtr<imgIContainer> img(aContainer);
if (aOrientation.IsFromImage()) {
img = ImageOps::Orient(img, img->GetOrientation());
} else if (!aOrientation.IsDefault()) {
Angle angle = aOrientation.Angle();
Flip flip = aOrientation.IsFlipped() ? Flip::Horizontal
: Flip::Unflipped;
img = ImageOps::Orient(img, Orientation(angle, flip));
}
return img.forget();
}
static bool NonZeroStyleCoord(const nsStyleCoord& aCoord)
{
if (aCoord.IsCoordPercentCalcUnit()) {
// Since negative results are clamped to 0, check > 0.
return nsRuleNode::ComputeCoordPercentCalc(aCoord, nscoord_MAX) > 0 ||
nsRuleNode::ComputeCoordPercentCalc(aCoord, 0) > 0;
}
return true;
}
/* static */ bool
nsLayoutUtils::HasNonZeroCorner(const nsStyleCorners& aCorners)
{
NS_FOR_CSS_HALF_CORNERS(corner) {
if (NonZeroStyleCoord(aCorners.Get(corner)))
return true;
}
return false;
}
// aCorner is a "full corner" value, i.e. NS_CORNER_TOP_LEFT etc
static bool IsCornerAdjacentToSide(uint8_t aCorner, css::Side aSide)
{
PR_STATIC_ASSERT((int)NS_SIDE_TOP == NS_CORNER_TOP_LEFT);
PR_STATIC_ASSERT((int)NS_SIDE_RIGHT == NS_CORNER_TOP_RIGHT);
PR_STATIC_ASSERT((int)NS_SIDE_BOTTOM == NS_CORNER_BOTTOM_RIGHT);
PR_STATIC_ASSERT((int)NS_SIDE_LEFT == NS_CORNER_BOTTOM_LEFT);
PR_STATIC_ASSERT((int)NS_SIDE_TOP == ((NS_CORNER_TOP_RIGHT - 1)&3));
PR_STATIC_ASSERT((int)NS_SIDE_RIGHT == ((NS_CORNER_BOTTOM_RIGHT - 1)&3));
PR_STATIC_ASSERT((int)NS_SIDE_BOTTOM == ((NS_CORNER_BOTTOM_LEFT - 1)&3));
PR_STATIC_ASSERT((int)NS_SIDE_LEFT == ((NS_CORNER_TOP_LEFT - 1)&3));
return aSide == aCorner || aSide == ((aCorner - 1)&3);
}
/* static */ bool
nsLayoutUtils::HasNonZeroCornerOnSide(const nsStyleCorners& aCorners,
css::Side aSide)
{
PR_STATIC_ASSERT(NS_CORNER_TOP_LEFT_X/2 == NS_CORNER_TOP_LEFT);
PR_STATIC_ASSERT(NS_CORNER_TOP_LEFT_Y/2 == NS_CORNER_TOP_LEFT);
PR_STATIC_ASSERT(NS_CORNER_TOP_RIGHT_X/2 == NS_CORNER_TOP_RIGHT);
PR_STATIC_ASSERT(NS_CORNER_TOP_RIGHT_Y/2 == NS_CORNER_TOP_RIGHT);
PR_STATIC_ASSERT(NS_CORNER_BOTTOM_RIGHT_X/2 == NS_CORNER_BOTTOM_RIGHT);
PR_STATIC_ASSERT(NS_CORNER_BOTTOM_RIGHT_Y/2 == NS_CORNER_BOTTOM_RIGHT);
PR_STATIC_ASSERT(NS_CORNER_BOTTOM_LEFT_X/2 == NS_CORNER_BOTTOM_LEFT);
PR_STATIC_ASSERT(NS_CORNER_BOTTOM_LEFT_Y/2 == NS_CORNER_BOTTOM_LEFT);
NS_FOR_CSS_HALF_CORNERS(corner) {
// corner is a "half corner" value, so dividing by two gives us a
// "full corner" value.
if (NonZeroStyleCoord(aCorners.Get(corner)) &&
IsCornerAdjacentToSide(corner/2, aSide))
return true;
}
return false;
}
/* static */ nsTransparencyMode
nsLayoutUtils::GetFrameTransparency(nsIFrame* aBackgroundFrame,
nsIFrame* aCSSRootFrame) {
if (aCSSRootFrame->StyleDisplay()->mOpacity < 1.0f)
return eTransparencyTransparent;
if (HasNonZeroCorner(aCSSRootFrame->StyleBorder()->mBorderRadius))
return eTransparencyTransparent;
if (aCSSRootFrame->StyleDisplay()->mAppearance == NS_THEME_WIN_GLASS)
return eTransparencyGlass;
if (aCSSRootFrame->StyleDisplay()->mAppearance == NS_THEME_WIN_BORDERLESS_GLASS)
return eTransparencyBorderlessGlass;
nsITheme::Transparency transparency;
if (aCSSRootFrame->IsThemed(&transparency))
return transparency == nsITheme::eTransparent
? eTransparencyTransparent
: eTransparencyOpaque;
// We need an uninitialized window to be treated as opaque because
// doing otherwise breaks window display effects on some platforms,
// specifically Vista. (bug 450322)
if (aBackgroundFrame->GetType() == nsGkAtoms::viewportFrame &&
!aBackgroundFrame->GetFirstPrincipalChild()) {
return eTransparencyOpaque;
}
nsStyleContext* bgSC;
if (!nsCSSRendering::FindBackground(aBackgroundFrame, &bgSC)) {
return eTransparencyTransparent;
}
const nsStyleBackground* bg = bgSC->StyleBackground();
if (NS_GET_A(bg->mBackgroundColor) < 255 ||
// bottom layer's clip is used for the color
bg->BottomLayer().mClip != NS_STYLE_BG_CLIP_BORDER)
return eTransparencyTransparent;
return eTransparencyOpaque;
}
static bool IsPopupFrame(nsIFrame* aFrame)
{
// aFrame is a popup it's the list control frame dropdown for a combobox.
nsIAtom* frameType = aFrame->GetType();
if (frameType == nsGkAtoms::listControlFrame) {
nsListControlFrame* lcf = static_cast<nsListControlFrame*>(aFrame);
return lcf->IsInDropDownMode();
}
// ... or if it's a XUL menupopup frame.
return frameType == nsGkAtoms::menuPopupFrame;
}
/* static */ bool
nsLayoutUtils::IsPopup(nsIFrame* aFrame)
{
// Optimization: the frame can't possibly be a popup if it has no view.
if (!aFrame->HasView()) {
NS_ASSERTION(!IsPopupFrame(aFrame), "popup frame must have a view");
return false;
}
return IsPopupFrame(aFrame);
}
/* static */ nsIFrame*
nsLayoutUtils::GetDisplayRootFrame(nsIFrame* aFrame)
{
// We could use GetRootPresContext() here if the
// NS_FRAME_IN_POPUP frame bit is set.
nsIFrame* f = aFrame;
for (;;) {
if (!f->HasAnyStateBits(NS_FRAME_IN_POPUP)) {
f = f->PresContext()->FrameManager()->GetRootFrame();
} else if (IsPopup(f)) {
return f;
}
nsIFrame* parent = GetCrossDocParentFrame(f);
if (!parent)
return f;
f = parent;
}
}
/* static */ nsIFrame*
nsLayoutUtils::GetReferenceFrame(nsIFrame* aFrame)
{
nsIFrame *f = aFrame;
for (;;) {
if (f->IsTransformed() || IsPopup(f)) {
return f;
}
nsIFrame* parent = GetCrossDocParentFrame(f);
if (!parent) {
return f;
}
f = parent;
}
}
/* static */ nsIFrame*
nsLayoutUtils::GetTransformRootFrame(nsIFrame* aFrame)
{
nsIFrame *parent = nsLayoutUtils::GetCrossDocParentFrame(aFrame);
while (parent && parent->Preserves3DChildren()) {
parent = nsLayoutUtils::GetCrossDocParentFrame(parent);
}
return parent;
}
/* static */ uint32_t
nsLayoutUtils::GetTextRunFlagsForStyle(nsStyleContext* aStyleContext,
const nsStyleFont* aStyleFont,
const nsStyleText* aStyleText,
nscoord aLetterSpacing)
{
uint32_t result = 0;
if (aLetterSpacing != 0) {
result |= gfxTextRunFactory::TEXT_DISABLE_OPTIONAL_LIGATURES;
}
if (aStyleText->mControlCharacterVisibility == NS_STYLE_CONTROL_CHARACTER_VISIBILITY_HIDDEN) {
result |= gfxTextRunFactory::TEXT_HIDE_CONTROL_CHARACTERS;
}
switch (aStyleContext->StyleSVG()->mTextRendering) {
case NS_STYLE_TEXT_RENDERING_OPTIMIZESPEED:
result |= gfxTextRunFactory::TEXT_OPTIMIZE_SPEED;
break;
case NS_STYLE_TEXT_RENDERING_AUTO:
if (aStyleFont->mFont.size <
aStyleContext->PresContext()->GetAutoQualityMinFontSize()) {
result |= gfxTextRunFactory::TEXT_OPTIMIZE_SPEED;
}
break;
default:
break;
}
return result | GetTextRunOrientFlagsForStyle(aStyleContext);
}
/* static */ uint32_t
nsLayoutUtils::GetTextRunOrientFlagsForStyle(nsStyleContext* aStyleContext)
{
WritingMode wm(aStyleContext);
if (wm.IsVertical()) {
switch (aStyleContext->StyleVisibility()->mTextOrientation) {
case NS_STYLE_TEXT_ORIENTATION_MIXED:
return gfxTextRunFactory::TEXT_ORIENT_VERTICAL_MIXED;
case NS_STYLE_TEXT_ORIENTATION_UPRIGHT:
return gfxTextRunFactory::TEXT_ORIENT_VERTICAL_UPRIGHT;
case NS_STYLE_TEXT_ORIENTATION_SIDEWAYS:
// This should depend on writing mode vertical-lr vs vertical-rl,
// but until we support SIDEWAYS_LEFT, we'll treat this the same
// as SIDEWAYS_RIGHT and simply fall through.
/*
if (wm.IsVerticalLR()) {
return gfxTextRunFactory::TEXT_ORIENT_VERTICAL_SIDEWAYS_LEFT;
} else {
return gfxTextRunFactory::TEXT_ORIENT_VERTICAL_SIDEWAYS_RIGHT;
}
*/
case NS_STYLE_TEXT_ORIENTATION_SIDEWAYS_RIGHT:
return gfxTextRunFactory::TEXT_ORIENT_VERTICAL_SIDEWAYS_RIGHT;
case NS_STYLE_TEXT_ORIENTATION_SIDEWAYS_LEFT:
// Not yet supported, so fall through to the default (error) case.
/*
return gfxTextRunFactory::TEXT_ORIENT_VERTICAL_SIDEWAYS_LEFT;
*/
default:
NS_NOTREACHED("unknown text-orientation");
}
}
return 0;
}
/* static */ void
nsLayoutUtils::GetRectDifferenceStrips(const nsRect& aR1, const nsRect& aR2,
nsRect* aHStrip, nsRect* aVStrip) {
NS_ASSERTION(aR1.TopLeft() == aR2.TopLeft(),
"expected rects at the same position");
nsRect unionRect(aR1.x, aR1.y, std::max(aR1.width, aR2.width),
std::max(aR1.height, aR2.height));
nscoord VStripStart = std::min(aR1.width, aR2.width);
nscoord HStripStart = std::min(aR1.height, aR2.height);
*aVStrip = unionRect;
aVStrip->x += VStripStart;
aVStrip->width -= VStripStart;
*aHStrip = unionRect;
aHStrip->y += HStripStart;
aHStrip->height -= HStripStart;
}
nsDeviceContext*
nsLayoutUtils::GetDeviceContextForScreenInfo(nsPIDOMWindow* aWindow)
{
if (!aWindow) {
return nullptr;
}
nsCOMPtr<nsIDocShell> docShell = aWindow->GetDocShell();
while (docShell) {
// Now make sure our size is up to date. That will mean that the device
// context does the right thing on multi-monitor systems when we return it to
// the caller. It will also make sure that our prescontext has been created,
// if we're supposed to have one.
nsCOMPtr<nsPIDOMWindow> win = docShell->GetWindow();
if (!win) {
// No reason to go on
return nullptr;
}
win->EnsureSizeUpToDate();
nsRefPtr<nsPresContext> presContext;
docShell->GetPresContext(getter_AddRefs(presContext));
if (presContext) {
nsDeviceContext* context = presContext->DeviceContext();
if (context) {
return context;
}
}
nsCOMPtr<nsIDocShellTreeItem> parentItem;
docShell->GetParent(getter_AddRefs(parentItem));
docShell = do_QueryInterface(parentItem);
}
return nullptr;
}
/* static */ bool
nsLayoutUtils::IsReallyFixedPos(nsIFrame* aFrame)
{
NS_PRECONDITION(aFrame->GetParent(),
"IsReallyFixedPos called on frame not in tree");
NS_PRECONDITION(aFrame->StyleDisplay()->mPosition ==
NS_STYLE_POSITION_FIXED,
"IsReallyFixedPos called on non-'position:fixed' frame");
nsIAtom *parentType = aFrame->GetParent()->GetType();
return parentType == nsGkAtoms::viewportFrame ||
parentType == nsGkAtoms::pageContentFrame;
}
nsLayoutUtils::SurfaceFromElementResult
nsLayoutUtils::SurfaceFromElement(nsIImageLoadingContent* aElement,
uint32_t aSurfaceFlags,
DrawTarget* aTarget)
{
SurfaceFromElementResult result;
nsresult rv;
nsCOMPtr<imgIRequest> imgRequest;
rv = aElement->GetRequest(nsIImageLoadingContent::CURRENT_REQUEST,
getter_AddRefs(imgRequest));
if (NS_FAILED(rv) || !imgRequest)
return result;
uint32_t status;
imgRequest->GetImageStatus(&status);
result.mHasSize = status & imgIRequest::STATUS_SIZE_AVAILABLE;
if ((status & imgIRequest::STATUS_LOAD_COMPLETE) == 0) {
// Spec says to use GetComplete, but that only works on
// nsIDOMHTMLImageElement, and we support all sorts of other stuff
// here. Do this for now pending spec clarification.
result.mIsStillLoading = (status & imgIRequest::STATUS_ERROR) == 0;
return result;
}
nsCOMPtr<nsIPrincipal> principal;
rv = imgRequest->GetImagePrincipal(getter_AddRefs(principal));
if (NS_FAILED(rv))
return result;
nsCOMPtr<imgIContainer> imgContainer;
rv = imgRequest->GetImage(getter_AddRefs(imgContainer));
if (NS_FAILED(rv))
return result;
uint32_t noRasterize = aSurfaceFlags & SFE_NO_RASTERIZING_VECTORS;
uint32_t whichFrame = (aSurfaceFlags & SFE_WANT_FIRST_FRAME)
? (uint32_t) imgIContainer::FRAME_FIRST
: (uint32_t) imgIContainer::FRAME_CURRENT;
uint32_t frameFlags = imgIContainer::FLAG_SYNC_DECODE;
if (aSurfaceFlags & SFE_NO_COLORSPACE_CONVERSION)
frameFlags |= imgIContainer::FLAG_DECODE_NO_COLORSPACE_CONVERSION;
if (aSurfaceFlags & SFE_PREFER_NO_PREMULTIPLY_ALPHA) {
frameFlags |= imgIContainer::FLAG_DECODE_NO_PREMULTIPLY_ALPHA;
result.mIsPremultiplied = false;
}
int32_t imgWidth, imgHeight;
rv = imgContainer->GetWidth(&imgWidth);
nsresult rv2 = imgContainer->GetHeight(&imgHeight);
if (NS_FAILED(rv) || NS_FAILED(rv2))
return result;
if (!noRasterize || imgContainer->GetType() == imgIContainer::TYPE_RASTER) {
if (aSurfaceFlags & SFE_WANT_IMAGE_SURFACE) {
frameFlags |= imgIContainer::FLAG_WANT_DATA_SURFACE;
}
result.mSourceSurface = imgContainer->GetFrame(whichFrame, frameFlags);
if (!result.mSourceSurface) {
return result;
}
// The surface we return is likely to be cached. We don't want to have to
// convert to a surface that's compatible with aTarget each time it's used
// (that would result in terrible performance), so we convert once here
// upfront if aTarget is specified.
if (aTarget) {
RefPtr<SourceSurface> optSurface =
aTarget->OptimizeSourceSurface(result.mSourceSurface);
if (optSurface) {
result.mSourceSurface = optSurface;
}
}
} else {
result.mDrawInfo.mImgContainer = imgContainer;
result.mDrawInfo.mWhichFrame = whichFrame;
result.mDrawInfo.mDrawingFlags = frameFlags;
}
int32_t corsmode;
if (NS_SUCCEEDED(imgRequest->GetCORSMode(&corsmode))) {
result.mCORSUsed = (corsmode != imgIRequest::CORS_NONE);
}
result.mSize = gfxIntSize(imgWidth, imgHeight);
result.mPrincipal = principal.forget();
// no images, including SVG images, can load content from another domain.
result.mIsWriteOnly = false;
result.mImageRequest = imgRequest.forget();
return result;
}
nsLayoutUtils::SurfaceFromElementResult
nsLayoutUtils::SurfaceFromElement(HTMLImageElement *aElement,
uint32_t aSurfaceFlags,
DrawTarget* aTarget)
{
return SurfaceFromElement(static_cast<nsIImageLoadingContent*>(aElement),
aSurfaceFlags, aTarget);
}
nsLayoutUtils::SurfaceFromElementResult
nsLayoutUtils::SurfaceFromElement(HTMLCanvasElement* aElement,
uint32_t aSurfaceFlags,
DrawTarget* aTarget)
{
SurfaceFromElementResult result;
bool* isPremultiplied = nullptr;
if (aSurfaceFlags & SFE_PREFER_NO_PREMULTIPLY_ALPHA) {
isPremultiplied = &result.mIsPremultiplied;
}
gfxIntSize size = aElement->GetSize();
result.mSourceSurface = aElement->GetSurfaceSnapshot(isPremultiplied);
if (!result.mSourceSurface) {
// If the element doesn't have a context then we won't get a snapshot. The canvas spec wants us to not error and just
// draw nothing, so return an empty surface.
DrawTarget *ref = aTarget ? aTarget : gfxPlatform::GetPlatform()->ScreenReferenceDrawTarget();
RefPtr<DrawTarget> dt = ref->CreateSimilarDrawTarget(IntSize(size.width, size.height),
SurfaceFormat::B8G8R8A8);
if (dt) {
result.mSourceSurface = dt->Snapshot();
}
} else if (aTarget) {
RefPtr<SourceSurface> opt = aTarget->OptimizeSourceSurface(result.mSourceSurface);
if (opt) {
result.mSourceSurface = opt;
}
}
// Ensure that any future changes to the canvas trigger proper invalidation,
// in case this is being used by -moz-element()
aElement->MarkContextClean();
result.mHasSize = true;
result.mSize = size;
result.mPrincipal = aElement->NodePrincipal();
result.mIsWriteOnly = aElement->IsWriteOnly();
return result;
}
nsLayoutUtils::SurfaceFromElementResult
nsLayoutUtils::SurfaceFromElement(HTMLVideoElement* aElement,
uint32_t aSurfaceFlags,
DrawTarget* aTarget)
{
SurfaceFromElementResult result;
NS_WARN_IF_FALSE((aSurfaceFlags & SFE_PREFER_NO_PREMULTIPLY_ALPHA) == 0, "We can't support non-premultiplied alpha for video!");
#ifdef MOZ_EME
if (aElement->ContainsRestrictedContent()) {
return result;
}
#endif
uint16_t readyState;
if (NS_SUCCEEDED(aElement->GetReadyState(&readyState)) &&
(readyState == nsIDOMHTMLMediaElement::HAVE_NOTHING ||
readyState == nsIDOMHTMLMediaElement::HAVE_METADATA)) {
result.mIsStillLoading = true;
return result;
}
// If it doesn't have a principal, just bail
nsCOMPtr<nsIPrincipal> principal = aElement->GetCurrentPrincipal();
if (!principal)
return result;
ImageContainer *container = aElement->GetImageContainer();
if (!container)
return result;
AutoLockImage lockImage(container);
layers::Image* image = lockImage.GetImage();
if (!image) {
return result;
}
result.mSourceSurface = image->GetAsSourceSurface();
if (!result.mSourceSurface)
return result;
if (aTarget) {
RefPtr<SourceSurface> opt = aTarget->OptimizeSourceSurface(result.mSourceSurface);
if (opt) {
result.mSourceSurface = opt;
}
}
result.mCORSUsed = aElement->GetCORSMode() != CORS_NONE;
result.mHasSize = true;
result.mSize = image->GetSize();
result.mPrincipal = principal.forget();
result.mIsWriteOnly = false;
return result;
}
nsLayoutUtils::SurfaceFromElementResult
nsLayoutUtils::SurfaceFromElement(dom::Element* aElement,
uint32_t aSurfaceFlags,
DrawTarget* aTarget)
{
// If it's a <canvas>, we may be able to just grab its internal surface
if (HTMLCanvasElement* canvas =
HTMLCanvasElement::FromContentOrNull(aElement)) {
return SurfaceFromElement(canvas, aSurfaceFlags, aTarget);
}
// Maybe it's <video>?
if (HTMLVideoElement* video =
HTMLVideoElement::FromContentOrNull(aElement)) {
return SurfaceFromElement(video, aSurfaceFlags, aTarget);
}
// Finally, check if it's a normal image
nsCOMPtr<nsIImageLoadingContent> imageLoader = do_QueryInterface(aElement);
if (!imageLoader) {
return SurfaceFromElementResult();
}
return SurfaceFromElement(imageLoader, aSurfaceFlags, aTarget);
}
/* static */
nsIContent*
nsLayoutUtils::GetEditableRootContentByContentEditable(nsIDocument* aDocument)
{
// If the document is in designMode we should return nullptr.
if (!aDocument || aDocument->HasFlag(NODE_IS_EDITABLE)) {
return nullptr;
}
// contenteditable only works with HTML document.
// Note: Use nsIDOMHTMLDocument rather than nsIHTMLDocument for getting the
// body node because nsIDOMHTMLDocument::GetBody() does something
// additional work for some cases and nsEditor uses them.
nsCOMPtr<nsIDOMHTMLDocument> domHTMLDoc = do_QueryInterface(aDocument);
if (!domHTMLDoc) {
return nullptr;
}
Element* rootElement = aDocument->GetRootElement();
if (rootElement && rootElement->IsEditable()) {
return rootElement;
}
// If there are no editable root element, check its <body> element.
// Note that the body element could be <frameset> element.
nsCOMPtr<nsIDOMHTMLElement> body;
nsresult rv = domHTMLDoc->GetBody(getter_AddRefs(body));
nsCOMPtr<nsIContent> content = do_QueryInterface(body);
if (NS_SUCCEEDED(rv) && content && content->IsEditable()) {
return content;
}
return nullptr;
}
#ifdef DEBUG
/* static */ void
nsLayoutUtils::AssertNoDuplicateContinuations(nsIFrame* aContainer,
const nsFrameList& aFrameList)
{
for (nsIFrame* f : aFrameList) {
// Check only later continuations of f; we deal with checking the
// earlier continuations when we hit those earlier continuations in
// the frame list.
for (nsIFrame *c = f; (c = c->GetNextInFlow());) {
NS_ASSERTION(c->GetParent() != aContainer ||
!aFrameList.ContainsFrame(c),
"Two continuations of the same frame in the same "
"frame list");
}
}
}
// Is one of aFrame's ancestors a letter frame?
static bool
IsInLetterFrame(nsIFrame *aFrame)
{
for (nsIFrame *f = aFrame->GetParent(); f; f = f->GetParent()) {
if (f->GetType() == nsGkAtoms::letterFrame) {
return true;
}
}
return false;
}
/* static */ void
nsLayoutUtils::AssertTreeOnlyEmptyNextInFlows(nsIFrame *aSubtreeRoot)
{
NS_ASSERTION(aSubtreeRoot->GetPrevInFlow(),
"frame tree not empty, but caller reported complete status");
// Also assert that text frames map no text.
int32_t start, end;
nsresult rv = aSubtreeRoot->GetOffsets(start, end);
NS_ASSERTION(NS_SUCCEEDED(rv), "GetOffsets failed");
// In some cases involving :first-letter, we'll partially unlink a
// continuation in the middle of a continuation chain from its
// previous and next continuations before destroying it, presumably so
// that we don't also destroy the later continuations. Once we've
// done this, GetOffsets returns incorrect values.
// For examples, see list of tests in
// https://bugzilla.mozilla.org/show_bug.cgi?id=619021#c29
NS_ASSERTION(start == end || IsInLetterFrame(aSubtreeRoot),
"frame tree not empty, but caller reported complete status");
nsIFrame::ChildListIterator lists(aSubtreeRoot);
for (; !lists.IsDone(); lists.Next()) {
nsFrameList::Enumerator childFrames(lists.CurrentList());
for (; !childFrames.AtEnd(); childFrames.Next()) {
nsLayoutUtils::AssertTreeOnlyEmptyNextInFlows(childFrames.get());
}
}
}
#endif
static void
GetFontFacesForFramesInner(nsIFrame* aFrame, nsFontFaceList* aFontFaceList)
{
NS_PRECONDITION(aFrame, "NULL frame pointer");
if (aFrame->GetType() == nsGkAtoms::textFrame) {
if (!aFrame->GetPrevContinuation()) {
nsLayoutUtils::GetFontFacesForText(aFrame, 0, INT32_MAX, true,
aFontFaceList);
}
return;
}
nsIFrame::ChildListID childLists[] = { nsIFrame::kPrincipalList,
nsIFrame::kPopupList };
for (size_t i = 0; i < ArrayLength(childLists); ++i) {
nsFrameList children(aFrame->GetChildList(childLists[i]));
for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next()) {
nsIFrame* child = e.get();
child = nsPlaceholderFrame::GetRealFrameFor(child);
GetFontFacesForFramesInner(child, aFontFaceList);
}
}
}
/* static */
nsresult
nsLayoutUtils::GetFontFacesForFrames(nsIFrame* aFrame,
nsFontFaceList* aFontFaceList)
{
NS_PRECONDITION(aFrame, "NULL frame pointer");
while (aFrame) {
GetFontFacesForFramesInner(aFrame, aFontFaceList);
aFrame = GetNextContinuationOrIBSplitSibling(aFrame);
}
return NS_OK;
}
/* static */
nsresult
nsLayoutUtils::GetFontFacesForText(nsIFrame* aFrame,
int32_t aStartOffset, int32_t aEndOffset,
bool aFollowContinuations,
nsFontFaceList* aFontFaceList)
{
NS_PRECONDITION(aFrame, "NULL frame pointer");
if (aFrame->GetType() != nsGkAtoms::textFrame) {
return NS_OK;
}
nsTextFrame* curr = static_cast<nsTextFrame*>(aFrame);
do {
int32_t fstart = std::max(curr->GetContentOffset(), aStartOffset);
int32_t fend = std::min(curr->GetContentEnd(), aEndOffset);
if (fstart >= fend) {
curr = static_cast<nsTextFrame*>(curr->GetNextContinuation());
continue;
}
// curr is overlapping with the offset we want
gfxSkipCharsIterator iter = curr->EnsureTextRun(nsTextFrame::eInflated);
gfxTextRun* textRun = curr->GetTextRun(nsTextFrame::eInflated);
NS_ENSURE_TRUE(textRun, NS_ERROR_OUT_OF_MEMORY);
// include continuations in the range that share the same textrun
nsTextFrame* next = nullptr;
if (aFollowContinuations && fend < aEndOffset) {
next = static_cast<nsTextFrame*>(curr->GetNextContinuation());
while (next && next->GetTextRun(nsTextFrame::eInflated) == textRun) {
fend = std::min(next->GetContentEnd(), aEndOffset);
next = fend < aEndOffset ?
static_cast<nsTextFrame*>(next->GetNextContinuation()) : nullptr;
}
}
uint32_t skipStart = iter.ConvertOriginalToSkipped(fstart);
uint32_t skipEnd = iter.ConvertOriginalToSkipped(fend);
aFontFaceList->AddFontsFromTextRun(textRun, skipStart, skipEnd - skipStart);
curr = next;
} while (aFollowContinuations && curr);
return NS_OK;
}
/* static */
size_t
nsLayoutUtils::SizeOfTextRunsForFrames(nsIFrame* aFrame,
MallocSizeOf aMallocSizeOf,
bool clear)
{
NS_PRECONDITION(aFrame, "NULL frame pointer");
size_t total = 0;
if (aFrame->GetType() == nsGkAtoms::textFrame) {
nsTextFrame* textFrame = static_cast<nsTextFrame*>(aFrame);
for (uint32_t i = 0; i < 2; ++i) {
gfxTextRun *run = textFrame->GetTextRun(
(i != 0) ? nsTextFrame::eInflated : nsTextFrame::eNotInflated);
if (run) {
if (clear) {
run->ResetSizeOfAccountingFlags();
} else {
total += run->MaybeSizeOfIncludingThis(aMallocSizeOf);
}
}
}
return total;
}
nsAutoTArray<nsIFrame::ChildList,4> childListArray;
aFrame->GetChildLists(&childListArray);
for (nsIFrame::ChildListArrayIterator childLists(childListArray);
!childLists.IsDone(); childLists.Next()) {
for (nsFrameList::Enumerator e(childLists.CurrentList());
!e.AtEnd(); e.Next()) {
total += SizeOfTextRunsForFrames(e.get(), aMallocSizeOf, clear);
}
}
return total;
}
/* static */
void
nsLayoutUtils::Initialize()
{
Preferences::AddUintVarCache(&sFontSizeInflationMaxRatio,
"font.size.inflation.maxRatio");
Preferences::AddUintVarCache(&sFontSizeInflationEmPerLine,
"font.size.inflation.emPerLine");
Preferences::AddUintVarCache(&sFontSizeInflationMinTwips,
"font.size.inflation.minTwips");
Preferences::AddUintVarCache(&sFontSizeInflationLineThreshold,
"font.size.inflation.lineThreshold");
Preferences::AddIntVarCache(&sFontSizeInflationMappingIntercept,
"font.size.inflation.mappingIntercept");
Preferences::AddBoolVarCache(&sFontSizeInflationForceEnabled,
"font.size.inflation.forceEnabled");
Preferences::AddBoolVarCache(&sFontSizeInflationDisabledInMasterProcess,
"font.size.inflation.disabledInMasterProcess");
Preferences::AddBoolVarCache(&sInvalidationDebuggingIsEnabled,
"nglayout.debug.invalidation");
Preferences::AddBoolVarCache(&sCSSVariablesEnabled,
"layout.css.variables.enabled");
Preferences::AddBoolVarCache(&sInterruptibleReflowEnabled,
"layout.interruptible-reflow.enabled");
Preferences::AddBoolVarCache(&sSVGTransformOriginEnabled,
"svg.transform-origin.enabled");
Preferences::RegisterCallback(GridEnabledPrefChangeCallback,
GRID_ENABLED_PREF_NAME);
GridEnabledPrefChangeCallback(GRID_ENABLED_PREF_NAME, nullptr);
Preferences::RegisterCallback(RubyEnabledPrefChangeCallback,
RUBY_ENABLED_PREF_NAME);
RubyEnabledPrefChangeCallback(RUBY_ENABLED_PREF_NAME, nullptr);
Preferences::RegisterCallback(StickyEnabledPrefChangeCallback,
STICKY_ENABLED_PREF_NAME);
StickyEnabledPrefChangeCallback(STICKY_ENABLED_PREF_NAME, nullptr);
Preferences::RegisterCallback(TextAlignTrueEnabledPrefChangeCallback,
TEXT_ALIGN_TRUE_ENABLED_PREF_NAME);
Preferences::RegisterCallback(DisplayContentsEnabledPrefChangeCallback,
DISPLAY_CONTENTS_ENABLED_PREF_NAME);
DisplayContentsEnabledPrefChangeCallback(DISPLAY_CONTENTS_ENABLED_PREF_NAME,
nullptr);
TextAlignTrueEnabledPrefChangeCallback(TEXT_ALIGN_TRUE_ENABLED_PREF_NAME,
nullptr);
nsComputedDOMStyle::RegisterPrefChangeCallbacks();
}
/* static */
void
nsLayoutUtils::Shutdown()
{
if (sContentMap) {
delete sContentMap;
sContentMap = nullptr;
}
Preferences::UnregisterCallback(GridEnabledPrefChangeCallback,
GRID_ENABLED_PREF_NAME);
Preferences::UnregisterCallback(RubyEnabledPrefChangeCallback,
RUBY_ENABLED_PREF_NAME);
Preferences::UnregisterCallback(StickyEnabledPrefChangeCallback,
STICKY_ENABLED_PREF_NAME);
nsComputedDOMStyle::UnregisterPrefChangeCallbacks();
}
/* static */
void
nsLayoutUtils::RegisterImageRequest(nsPresContext* aPresContext,
imgIRequest* aRequest,
bool* aRequestRegistered)
{
if (!aPresContext) {
return;
}
if (aRequestRegistered && *aRequestRegistered) {
// Our request is already registered with the refresh driver, so
// no need to register it again.
return;
}
if (aRequest) {
if (!aPresContext->RefreshDriver()->AddImageRequest(aRequest)) {
NS_WARNING("Unable to add image request");
return;
}
if (aRequestRegistered) {
*aRequestRegistered = true;
}
}
}
/* static */
void
nsLayoutUtils::RegisterImageRequestIfAnimated(nsPresContext* aPresContext,
imgIRequest* aRequest,
bool* aRequestRegistered)
{
if (!aPresContext) {
return;
}
if (aRequestRegistered && *aRequestRegistered) {
// Our request is already registered with the refresh driver, so
// no need to register it again.
return;
}
if (aRequest) {
nsCOMPtr<imgIContainer> image;
if (NS_SUCCEEDED(aRequest->GetImage(getter_AddRefs(image)))) {
// Check to verify that the image is animated. If so, then add it to the
// list of images tracked by the refresh driver.
bool isAnimated = false;
nsresult rv = image->GetAnimated(&isAnimated);
if (NS_SUCCEEDED(rv) && isAnimated) {
if (!aPresContext->RefreshDriver()->AddImageRequest(aRequest)) {
NS_WARNING("Unable to add image request");
return;
}
if (aRequestRegistered) {
*aRequestRegistered = true;
}
}
}
}
}
/* static */
void
nsLayoutUtils::DeregisterImageRequest(nsPresContext* aPresContext,
imgIRequest* aRequest,
bool* aRequestRegistered)
{
if (!aPresContext) {
return;
}
// Deregister our imgIRequest with the refresh driver to
// complete tear-down, but only if it has been registered
if (aRequestRegistered && !*aRequestRegistered) {
return;
}
if (aRequest) {
nsCOMPtr<imgIContainer> image;
if (NS_SUCCEEDED(aRequest->GetImage(getter_AddRefs(image)))) {
aPresContext->RefreshDriver()->RemoveImageRequest(aRequest);
if (aRequestRegistered) {
*aRequestRegistered = false;
}
}
}
}
/* static */
void
nsLayoutUtils::PostRestyleEvent(Element* aElement,
nsRestyleHint aRestyleHint,
nsChangeHint aMinChangeHint)
{
nsIDocument* doc = aElement->GetComposedDoc();
if (doc) {
nsCOMPtr<nsIPresShell> presShell = doc->GetShell();
if (presShell) {
presShell->GetPresContext()->RestyleManager()->PostRestyleEvent(
aElement, aRestyleHint, aMinChangeHint);
}
}
}
nsSetAttrRunnable::nsSetAttrRunnable(nsIContent* aContent, nsIAtom* aAttrName,
const nsAString& aValue)
: mContent(aContent),
mAttrName(aAttrName),
mValue(aValue)
{
NS_ASSERTION(aContent && aAttrName, "Missing stuff, prepare to crash");
}
nsSetAttrRunnable::nsSetAttrRunnable(nsIContent* aContent, nsIAtom* aAttrName,
int32_t aValue)
: mContent(aContent),
mAttrName(aAttrName)
{
NS_ASSERTION(aContent && aAttrName, "Missing stuff, prepare to crash");
mValue.AppendInt(aValue);
}
NS_IMETHODIMP
nsSetAttrRunnable::Run()
{
return mContent->SetAttr(kNameSpaceID_None, mAttrName, mValue, true);
}
nsUnsetAttrRunnable::nsUnsetAttrRunnable(nsIContent* aContent,
nsIAtom* aAttrName)
: mContent(aContent),
mAttrName(aAttrName)
{
NS_ASSERTION(aContent && aAttrName, "Missing stuff, prepare to crash");
}
NS_IMETHODIMP
nsUnsetAttrRunnable::Run()
{
return mContent->UnsetAttr(kNameSpaceID_None, mAttrName, true);
}
/**
* Compute the minimum font size inside of a container with the given
* width, such that **when the user zooms the container to fill the full
* width of the device**, the fonts satisfy our minima.
*/
static nscoord
MinimumFontSizeFor(nsPresContext* aPresContext, WritingMode aWritingMode,
nscoord aContainerISize)
{
nsIPresShell* presShell = aPresContext->PresShell();
uint32_t emPerLine = presShell->FontSizeInflationEmPerLine();
uint32_t minTwips = presShell->FontSizeInflationMinTwips();
if (emPerLine == 0 && minTwips == 0) {
return 0;
}
// Clamp the container width to the device dimensions
nscoord iFrameISize = aWritingMode.IsVertical()
? aPresContext->GetVisibleArea().height
: aPresContext->GetVisibleArea().width;
nscoord effectiveContainerISize = std::min(iFrameISize, aContainerISize);
nscoord byLine = 0, byInch = 0;
if (emPerLine != 0) {
byLine = effectiveContainerISize / emPerLine;
}
if (minTwips != 0) {
// REVIEW: Is this giving us app units and sizes *not* counting
// viewport scaling?
gfxSize screenSize = aPresContext->ScreenSizeInchesForFontInflation();
float deviceISizeInches = aWritingMode.IsVertical()
? screenSize.height : screenSize.width;
byInch = NSToCoordRound(effectiveContainerISize /
(deviceISizeInches * 1440 /
minTwips ));
}
return std::max(byLine, byInch);
}
/* static */ float
nsLayoutUtils::FontSizeInflationInner(const nsIFrame *aFrame,
nscoord aMinFontSize)
{
// Note that line heights should be inflated by the same ratio as the
// font size of the same text; thus we operate only on the font size
// even when we're scaling a line height.
nscoord styleFontSize = aFrame->StyleFont()->mFont.size;
if (styleFontSize <= 0) {
// Never scale zero font size.
return 1.0;
}
if (aMinFontSize <= 0) {
// No need to scale.
return 1.0;
}
// If between this current frame and its font inflation container there is a
// non-inline element with fixed width or height, then we should not inflate
// fonts for this frame.
for (const nsIFrame* f = aFrame;
f && !f->IsContainerForFontSizeInflation();
f = f->GetParent()) {
nsIContent* content = f->GetContent();
nsIAtom* fType = f->GetType();
nsIFrame* parent = f->GetParent();
// Also, if there is more than one frame corresponding to a single
// content node, we want the outermost one.
if (!(parent && parent->GetContent() == content) &&
// ignore width/height on inlines since they don't apply
fType != nsGkAtoms::inlineFrame &&
// ignore width on radios and checkboxes since we enlarge them and
// they have width/height in ua.css
fType != nsGkAtoms::formControlFrame) {
// ruby annotations should have the same inflation as its
// grandparent, which is the ruby frame contains the annotation.
if (fType == nsGkAtoms::rubyTextFrame) {
MOZ_ASSERT(parent &&
parent->GetType() == nsGkAtoms::rubyTextContainerFrame);
nsIFrame* grandparent = parent->GetParent();
MOZ_ASSERT(grandparent &&
grandparent->GetType() == nsGkAtoms::rubyFrame);
return FontSizeInflationFor(grandparent);
}
nsStyleCoord stylePosWidth = f->StylePosition()->mWidth;
nsStyleCoord stylePosHeight = f->StylePosition()->mHeight;
if (stylePosWidth.GetUnit() != eStyleUnit_Auto ||
stylePosHeight.GetUnit() != eStyleUnit_Auto) {
return 1.0;
}
}
}
int32_t interceptParam = nsLayoutUtils::FontSizeInflationMappingIntercept();
float maxRatio = (float)nsLayoutUtils::FontSizeInflationMaxRatio() / 100.0f;
float ratio = float(styleFontSize) / float(aMinFontSize);
float inflationRatio;
// Given a minimum inflated font size m, a specified font size s, we want to
// find the inflated font size i and then return the ratio of i to s (i/s).
if (interceptParam >= 0) {
// Since the mapping intercept parameter P is greater than zero, we use it
// to determine the point where our mapping function intersects the i=s
// line. This means that we have an equation of the form:
//
// i = m + s·(P/2)/(1 + P/2), if s <= (1 + P/2)·m
// i = s, if s >= (1 + P/2)·m
float intercept = 1 + float(interceptParam)/2.0f;
if (ratio >= intercept) {
// If we're already at 1+P/2 or more times the minimum, don't scale.
return 1.0;
}
// The point (intercept, intercept) is where the part of the i vs. s graph
// that's not slope 1 meets the i=s line. (This part of the
// graph is a line from (0, m), to that point). We calculate the
// intersection point to be ((1+P/2)m, (1+P/2)m), where P is the
// intercept parameter above. We then need to return i/s.
inflationRatio = (1.0f + (ratio * (intercept - 1) / intercept)) / ratio;
} else {
// This is the case where P is negative. We essentially want to implement
// the case for P=infinity here, so we make i = s + m, which means that
// i/s = s/s + m/s = 1 + 1/ratio
inflationRatio = 1 + 1.0f / ratio;
}
if (maxRatio > 1.0 && inflationRatio > maxRatio) {
return maxRatio;
} else {
return inflationRatio;
}
}
static bool
ShouldInflateFontsForContainer(const nsIFrame *aFrame)
{
// We only want to inflate fonts for text that is in a place
// with room to expand. The question is what the best heuristic for
// that is...
// For now, we're going to use NS_FRAME_IN_CONSTRAINED_BSIZE, which
// indicates whether the frame is inside something with a constrained
// block-size (propagating down the tree), but the propagation stops when
// we hit overflow-y [or -x, for vertical mode]: scroll or auto.
const nsStyleText* styleText = aFrame->StyleText();
return styleText->mTextSizeAdjust != NS_STYLE_TEXT_SIZE_ADJUST_NONE &&
!(aFrame->GetStateBits() & NS_FRAME_IN_CONSTRAINED_BSIZE) &&
// We also want to disable font inflation for containers that have
// preformatted text.
// MathML cells need special treatment. See bug 1002526 comment 56.
(styleText->WhiteSpaceCanWrap(aFrame) ||
aFrame->IsFrameOfType(nsIFrame::eMathML));
}
nscoord
nsLayoutUtils::InflationMinFontSizeFor(const nsIFrame *aFrame)
{
nsPresContext *presContext = aFrame->PresContext();
if (!FontSizeInflationEnabled(presContext) ||
presContext->mInflationDisabledForShrinkWrap) {
return 0;
}
for (const nsIFrame *f = aFrame; f; f = f->GetParent()) {
if (f->IsContainerForFontSizeInflation()) {
if (!ShouldInflateFontsForContainer(f)) {
return 0;
}
nsFontInflationData *data =
nsFontInflationData::FindFontInflationDataFor(aFrame);
// FIXME: The need to null-check here is sort of a bug, and might
// lead to incorrect results.
if (!data || !data->InflationEnabled()) {
return 0;
}
return MinimumFontSizeFor(aFrame->PresContext(),
aFrame->GetWritingMode(),
data->EffectiveISize());
}
}
MOZ_ASSERT(false, "root should always be container");
return 0;
}
float
nsLayoutUtils::FontSizeInflationFor(const nsIFrame *aFrame)
{
if (aFrame->IsSVGText()) {
const nsIFrame* container = aFrame;
while (container->GetType() != nsGkAtoms::svgTextFrame) {
container = container->GetParent();
}
NS_ASSERTION(container, "expected to find an ancestor SVGTextFrame");
return
static_cast<const SVGTextFrame*>(container)->GetFontSizeScaleFactor();
}
if (!FontSizeInflationEnabled(aFrame->PresContext())) {
return 1.0f;
}
return FontSizeInflationInner(aFrame, InflationMinFontSizeFor(aFrame));
}
/* static */ bool
nsLayoutUtils::FontSizeInflationEnabled(nsPresContext *aPresContext)
{
nsIPresShell* presShell = aPresContext->GetPresShell();
if (!presShell) {
return false;
}
return presShell->FontSizeInflationEnabled();
}
/* static */ nsRect
nsLayoutUtils::GetBoxShadowRectForFrame(nsIFrame* aFrame,
const nsSize& aFrameSize)
{
nsCSSShadowArray* boxShadows = aFrame->StyleBorder()->mBoxShadow;
if (!boxShadows) {
return nsRect();
}
bool nativeTheme;
const nsStyleDisplay* styleDisplay = aFrame->StyleDisplay();
nsITheme::Transparency transparency;
if (aFrame->IsThemed(styleDisplay, &transparency)) {
// For opaque (rectangular) theme widgets we can take the generic
// border-box path with border-radius disabled.
nativeTheme = transparency != nsITheme::eOpaque;
} else {
nativeTheme = false;
}
nsRect frameRect = nativeTheme ?
aFrame->GetVisualOverflowRectRelativeToSelf() :
nsRect(nsPoint(0, 0), aFrameSize);
nsRect shadows;
int32_t A2D = aFrame->PresContext()->AppUnitsPerDevPixel();
for (uint32_t i = 0; i < boxShadows->Length(); ++i) {
nsRect tmpRect = frameRect;
nsCSSShadowItem* shadow = boxShadows->ShadowAt(i);
// inset shadows are never painted outside the frame
if (shadow->mInset)
continue;
tmpRect.MoveBy(nsPoint(shadow->mXOffset, shadow->mYOffset));
tmpRect.Inflate(shadow->mSpread);
tmpRect.Inflate(
nsContextBoxBlur::GetBlurRadiusMargin(shadow->mRadius, A2D));
shadows.UnionRect(shadows, tmpRect);
}
return shadows;
}
/* static */ void
nsLayoutUtils::UpdateImageVisibilityForFrame(nsIFrame* aImageFrame)
{
#ifdef DEBUG
nsIAtom* type = aImageFrame->GetType();
MOZ_ASSERT(type == nsGkAtoms::imageFrame ||
type == nsGkAtoms::imageControlFrame ||
type == nsGkAtoms::svgImageFrame, "wrong type of frame");
#endif
nsCOMPtr<nsIImageLoadingContent> content = do_QueryInterface(aImageFrame->GetContent());
if (!content) {
return;
}
nsIPresShell* presShell = aImageFrame->PresContext()->PresShell();
if (presShell->AssumeAllImagesVisible()) {
presShell->EnsureImageInVisibleList(content);
return;
}
bool visible = true;
nsIFrame* f = aImageFrame->GetParent();
nsRect rect = aImageFrame->GetContentRectRelativeToSelf();
nsIFrame* rectFrame = aImageFrame;
while (f) {
nsIScrollableFrame* sf = do_QueryFrame(f);
if (sf) {
nsRect transformedRect =
nsLayoutUtils::TransformFrameRectToAncestor(rectFrame, rect, f);
if (!sf->IsRectNearlyVisible(transformedRect)) {
visible = false;
break;
}
// Move transformedRect to be contained in the scrollport as best we can
// (it might not fit) to pretend that it was scrolled into view.
nsRect scrollPort = sf->GetScrollPortRect();
if (transformedRect.XMost() > scrollPort.XMost()) {
transformedRect.x -= transformedRect.XMost() - scrollPort.XMost();
}
if (transformedRect.x < scrollPort.x) {
transformedRect.x = scrollPort.x;
}
if (transformedRect.YMost() > scrollPort.YMost()) {
transformedRect.y -= transformedRect.YMost() - scrollPort.YMost();
}
if (transformedRect.y < scrollPort.y) {
transformedRect.y = scrollPort.y;
}
transformedRect.width = std::min(transformedRect.width, scrollPort.width);
transformedRect.height = std::min(transformedRect.height, scrollPort.height);
rect = transformedRect;
rectFrame = f;
}
nsIFrame* parent = f->GetParent();
if (!parent) {
parent = nsLayoutUtils::GetCrossDocParentFrame(f);
if (parent && parent->PresContext()->IsChrome()) {
break;
}
}
f = parent;
}
if (visible) {
presShell->EnsureImageInVisibleList(content);
} else {
presShell->RemoveImageFromVisibleList(content);
}
}
/* static */ bool
nsLayoutUtils::GetContentViewerSize(nsPresContext* aPresContext,
LayoutDeviceIntSize& aOutSize)
{
nsCOMPtr<nsIDocShell> docShell = aPresContext->GetDocShell();
if (!docShell) {
return false;
}
nsCOMPtr<nsIContentViewer> cv;
docShell->GetContentViewer(getter_AddRefs(cv));
if (!cv) {
return false;
}
nsIntRect bounds;
cv->GetBounds(bounds);
aOutSize = LayoutDeviceIntRect::FromUntyped(bounds).Size();
return true;
}
static bool
UpdateCompositionBoundsForRCDRSF(ParentLayerRect& aCompBounds,
nsPresContext* aPresContext,
const nsRect& aFrameBounds,
bool aScaleContentViewerSize,
const LayoutDeviceToLayerScale2D& aCumulativeResolution)
{
nsIFrame* rootFrame = aPresContext->PresShell()->GetRootFrame();
if (!rootFrame) {
return false;
}
#ifdef MOZ_WIDGET_ANDROID
nsIWidget* widget = rootFrame->GetNearestWidget();
#else
nsView* view = rootFrame->GetView();
nsIWidget* widget = view ? view->GetWidget() : nullptr;
#endif
if (widget) {
nsIntRect widgetBounds;
widget->GetBounds(widgetBounds);
widgetBounds.MoveTo(0, 0);
aCompBounds = ParentLayerRect(ViewAs<ParentLayerPixel>(widgetBounds));
return true;
}
LayoutDeviceIntSize contentSize;
if (nsLayoutUtils::GetContentViewerSize(aPresContext, contentSize)) {
LayoutDeviceToParentLayerScale scale;
if (aScaleContentViewerSize && aPresContext->GetParentPresContext()) {
scale = LayoutDeviceToParentLayerScale(
aPresContext->GetParentPresContext()->PresShell()->GetCumulativeResolution());
}
aCompBounds.SizeTo(contentSize * scale);
return true;
}
return false;
}
/* static */ nsMargin
nsLayoutUtils::ScrollbarAreaToExcludeFromCompositionBoundsFor(nsIFrame* aScrollFrame)
{
if (!aScrollFrame || !aScrollFrame->GetScrollTargetFrame()) {
return nsMargin();
}
nsPresContext* presContext = aScrollFrame->PresContext();
nsIPresShell* presShell = presContext->GetPresShell();
if (!presShell) {
return nsMargin();
}
bool isRootScrollFrame = aScrollFrame == presShell->GetRootScrollFrame();
bool isRootContentDocRootScrollFrame = isRootScrollFrame
&& presContext->IsRootContentDocument();
if (!isRootContentDocRootScrollFrame) {
return nsMargin();
}
if (LookAndFeel::GetInt(LookAndFeel::eIntID_UseOverlayScrollbars)) {
return nsMargin();
}
nsIScrollableFrame* scrollableFrame = aScrollFrame->GetScrollTargetFrame();
if (!scrollableFrame) {
return nsMargin();
}
return scrollableFrame->GetActualScrollbarSizes();
}
/* static */ nsSize
nsLayoutUtils::CalculateCompositionSizeForFrame(nsIFrame* aFrame, bool aSubtractScrollbars)
{
// If we have a scrollable frame, restrict the composition bounds to its
// scroll port. The scroll port excludes the frame borders and the scroll
// bars, which we don't want to be part of the composition bounds.
nsIScrollableFrame* scrollableFrame = aFrame->GetScrollTargetFrame();
nsRect rect = scrollableFrame ? scrollableFrame->GetScrollPortRect() : aFrame->GetRect();
nsSize size = rect.Size();
nsPresContext* presContext = aFrame->PresContext();
nsIPresShell* presShell = presContext->PresShell();
bool isRootContentDocRootScrollFrame = presContext->IsRootContentDocument()
&& aFrame == presShell->GetRootScrollFrame();
if (isRootContentDocRootScrollFrame) {
ParentLayerRect compBounds;
LayoutDeviceToLayerScale2D cumulativeResolution(
presShell->GetCumulativeResolution()
* nsLayoutUtils::GetTransformToAncestorScale(aFrame));
if (UpdateCompositionBoundsForRCDRSF(compBounds, presContext, rect,
false, cumulativeResolution)) {
int32_t auPerDevPixel = presContext->AppUnitsPerDevPixel();
size = nsSize(compBounds.width * auPerDevPixel, compBounds.height * auPerDevPixel);
}
}
if (aSubtractScrollbars) {
nsMargin margins = ScrollbarAreaToExcludeFromCompositionBoundsFor(aFrame);
size.width -= margins.LeftRight();
size.height -= margins.TopBottom();
}
return size;
}
/* static */ CSSSize
nsLayoutUtils::CalculateRootCompositionSize(nsIFrame* aFrame,
bool aIsRootContentDocRootScrollFrame,
const FrameMetrics& aMetrics)
{
if (aIsRootContentDocRootScrollFrame) {
return ViewAs<LayerPixel>(aMetrics.GetCompositionBounds().Size(),
PixelCastJustification::ParentLayerToLayerForRootComposition)
* LayerToScreenScale(1.0f)
/ aMetrics.DisplayportPixelsPerCSSPixel();
}
nsPresContext* presContext = aFrame->PresContext();
ScreenSize rootCompositionSize;
nsPresContext* rootPresContext =
presContext->GetToplevelContentDocumentPresContext();
if (!rootPresContext) {
rootPresContext = presContext->GetRootPresContext();
}
nsIPresShell* rootPresShell = nullptr;
if (rootPresContext) {
rootPresShell = rootPresContext->PresShell();
if (nsIFrame* rootFrame = rootPresShell->GetRootFrame()) {
LayoutDeviceToLayerScale2D cumulativeResolution(
rootPresShell->GetCumulativeResolution()
* nsLayoutUtils::GetTransformToAncestorScale(rootFrame));
ParentLayerRect compBounds;
if (UpdateCompositionBoundsForRCDRSF(compBounds, rootPresContext,
rootFrame->GetRect(), true, cumulativeResolution)) {
rootCompositionSize = ViewAs<ScreenPixel>(compBounds.Size(),
PixelCastJustification::ScreenIsParentLayerForRoot);
} else {
int32_t rootAUPerDevPixel = rootPresContext->AppUnitsPerDevPixel();
LayerSize frameSize =
(LayoutDeviceRect::FromAppUnits(rootFrame->GetRect(), rootAUPerDevPixel)
* cumulativeResolution).Size();
rootCompositionSize = frameSize * LayerToScreenScale(1.0f);
}
}
} else {
nsIWidget* widget = aFrame->GetNearestWidget();
nsIntRect widgetBounds;
widget->GetBounds(widgetBounds);
rootCompositionSize = ScreenSize(ViewAs<ScreenPixel>(widgetBounds.Size()));
}
// Adjust composition size for the size of scroll bars.
nsIFrame* rootRootScrollFrame = rootPresShell ? rootPresShell->GetRootScrollFrame() : nullptr;
nsMargin scrollbarMargins = ScrollbarAreaToExcludeFromCompositionBoundsFor(rootRootScrollFrame);
LayoutDeviceMargin margins = LayoutDeviceMargin::FromAppUnits(scrollbarMargins,
rootPresContext->AppUnitsPerDevPixel());
// Scrollbars are not subject to resolution scaling, so LD pixels = layer pixels for them.
rootCompositionSize.width -= margins.LeftRight();
rootCompositionSize.height -= margins.TopBottom();
return rootCompositionSize / aMetrics.DisplayportPixelsPerCSSPixel();
}
/* static */ nsRect
nsLayoutUtils::CalculateScrollableRectForFrame(nsIScrollableFrame* aScrollableFrame, nsIFrame* aRootFrame)
{
nsRect contentBounds;
if (aScrollableFrame) {
contentBounds = aScrollableFrame->GetScrollRange();
// We ifndef the below code for Fennec because it requires special behaviour
// on the APZC side. Because Fennec has it's own PZC implementation which doesn't
// provide the special behaviour, this code will cause it to break. We can remove
// the ifndef once Fennec switches over to APZ or if we add the special handling
// to Fennec
#if !defined(MOZ_WIDGET_ANDROID) || defined(MOZ_ANDROID_APZ)
nsPoint scrollPosition = aScrollableFrame->GetScrollPosition();
if (aScrollableFrame->GetScrollbarStyles().mVertical == NS_STYLE_OVERFLOW_HIDDEN) {
contentBounds.y = scrollPosition.y;
contentBounds.height = 0;
}
if (aScrollableFrame->GetScrollbarStyles().mHorizontal == NS_STYLE_OVERFLOW_HIDDEN) {
contentBounds.x = scrollPosition.x;
contentBounds.width = 0;
}
#endif
contentBounds.width += aScrollableFrame->GetScrollPortRect().width;
contentBounds.height += aScrollableFrame->GetScrollPortRect().height;
} else {
contentBounds = aRootFrame->GetRect();
}
return contentBounds;
}
/* static */ nsRect
nsLayoutUtils::CalculateExpandedScrollableRect(nsIFrame* aFrame)
{
nsRect scrollableRect =
CalculateScrollableRectForFrame(aFrame->GetScrollTargetFrame(),
aFrame->PresContext()->PresShell()->GetRootFrame());
nsSize compSize = CalculateCompositionSizeForFrame(aFrame);
if (aFrame == aFrame->PresContext()->PresShell()->GetRootScrollFrame()) {
// the composition size for the root scroll frame does not include the
// local resolution, so we adjust.
float res = aFrame->PresContext()->PresShell()->GetResolution();
compSize.width = NSToCoordRound(compSize.width / res);
compSize.height = NSToCoordRound(compSize.height / res);
}
if (scrollableRect.width < compSize.width) {
scrollableRect.x = std::max(0,
scrollableRect.x - (compSize.width - scrollableRect.width));
scrollableRect.width = compSize.width;
}
if (scrollableRect.height < compSize.height) {
scrollableRect.y = std::max(0,
scrollableRect.y - (compSize.height - scrollableRect.height));
scrollableRect.height = compSize.height;
}
return scrollableRect;
}
/* static */ void
nsLayoutUtils::DoLogTestDataForPaint(LayerManager* aManager,
ViewID aScrollId,
const std::string& aKey,
const std::string& aValue)
{
if (aManager->GetBackendType() == LayersBackend::LAYERS_CLIENT) {
static_cast<ClientLayerManager*>(aManager)->LogTestDataForCurrentPaint(aScrollId, aKey, aValue);
}
}
/* static */ bool
nsLayoutUtils::IsAPZTestLoggingEnabled()
{
return gfxPrefs::APZTestLoggingEnabled();
}
nsLayoutUtils::SurfaceFromElementResult::SurfaceFromElementResult()
// Use safe default values here
: mIsWriteOnly(true)
, mIsStillLoading(false)
, mHasSize(false)
, mCORSUsed(false)
, mIsPremultiplied(true)
{
}
bool
nsLayoutUtils::IsNonWrapperBlock(nsIFrame* aFrame)
{
return GetAsBlock(aFrame) && !aFrame->IsBlockWrapper();
}
bool
nsLayoutUtils::NeedsPrintPreviewBackground(nsPresContext* aPresContext)
{
return aPresContext->IsRootPaginatedDocument() &&
(aPresContext->Type() == nsPresContext::eContext_PrintPreview ||
aPresContext->Type() == nsPresContext::eContext_PageLayout);
}
AutoMaybeDisableFontInflation::AutoMaybeDisableFontInflation(nsIFrame *aFrame)
{
// FIXME: Now that inflation calculations are based on the flow
// root's NCA's (nearest common ancestor of its inflatable
// descendants) width, we could probably disable inflation in
// fewer cases than we currently do.
// MathML cells need special treatment. See bug 1002526 comment 56.
if (aFrame->IsContainerForFontSizeInflation() &&
!aFrame->IsFrameOfType(nsIFrame::eMathML)) {
mPresContext = aFrame->PresContext();
mOldValue = mPresContext->mInflationDisabledForShrinkWrap;
mPresContext->mInflationDisabledForShrinkWrap = true;
} else {
// indicate we have nothing to restore
mPresContext = nullptr;
}
}
AutoMaybeDisableFontInflation::~AutoMaybeDisableFontInflation()
{
if (mPresContext) {
mPresContext->mInflationDisabledForShrinkWrap = mOldValue;
}
}
namespace mozilla {
Rect NSRectToRect(const nsRect& aRect, double aAppUnitsPerPixel)
{
// Note that by making aAppUnitsPerPixel a double we're doing floating-point
// division using a larger type and avoiding rounding error.
return Rect(Float(aRect.x / aAppUnitsPerPixel),
Float(aRect.y / aAppUnitsPerPixel),
Float(aRect.width / aAppUnitsPerPixel),
Float(aRect.height / aAppUnitsPerPixel));
}
Rect NSRectToSnappedRect(const nsRect& aRect, double aAppUnitsPerPixel,
const gfx::DrawTarget& aSnapDT)
{
// Note that by making aAppUnitsPerPixel a double we're doing floating-point
// division using a larger type and avoiding rounding error.
Rect rect(Float(aRect.x / aAppUnitsPerPixel),
Float(aRect.y / aAppUnitsPerPixel),
Float(aRect.width / aAppUnitsPerPixel),
Float(aRect.height / aAppUnitsPerPixel));
MaybeSnapToDevicePixels(rect, aSnapDT, true);
return rect;
}
void StrokeLineWithSnapping(const nsPoint& aP1, const nsPoint& aP2,
int32_t aAppUnitsPerDevPixel,
DrawTarget& aDrawTarget,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aDrawOptions)
{
Point p1 = NSPointToPoint(aP1, aAppUnitsPerDevPixel);
Point p2 = NSPointToPoint(aP2, aAppUnitsPerDevPixel);
SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget,
aStrokeOptions.mLineWidth);
aDrawTarget.StrokeLine(p1, p2, aPattern, aStrokeOptions, aDrawOptions);
}
namespace layout {
void
MaybeSetupTransactionIdAllocator(layers::LayerManager* aManager, nsView* aView)
{
if (aManager->GetBackendType() == layers::LayersBackend::LAYERS_CLIENT) {
layers::ClientLayerManager *manager = static_cast<layers::ClientLayerManager*>(aManager);
nsRefreshDriver *refresh = aView->GetViewManager()->GetPresShell()->GetPresContext()->RefreshDriver();
manager->SetTransactionIdAllocator(refresh);
}
}
} // namespace layout
} // namespace mozilla
/* static */ bool
nsLayoutUtils::IsOutlineStyleAutoEnabled()
{
static bool sOutlineStyleAutoEnabled;
static bool sOutlineStyleAutoPrefCached = false;
if (!sOutlineStyleAutoPrefCached) {
sOutlineStyleAutoPrefCached = true;
Preferences::AddBoolVarCache(&sOutlineStyleAutoEnabled,
"layout.css.outline-style-auto.enabled",
false);
}
return sOutlineStyleAutoEnabled;
}
/* static */ void
nsLayoutUtils::SetBSizeFromFontMetrics(const nsIFrame* aFrame,
nsHTMLReflowMetrics& aMetrics,
const LogicalMargin& aFramePadding,
WritingMode aLineWM,
WritingMode aFrameWM)
{
nsRefPtr<nsFontMetrics> fm;
float inflation = nsLayoutUtils::FontSizeInflationFor(aFrame);
nsLayoutUtils::GetFontMetricsForFrame(aFrame, getter_AddRefs(fm), inflation);
if (fm) {
// Compute final height of the frame.
//
// Do things the standard css2 way -- though it's hard to find it
// in the css2 spec! It's actually found in the css1 spec section
// 4.4 (you will have to read between the lines to really see
// it).
//
// The height of our box is the sum of our font size plus the top
// and bottom border and padding. The height of children do not
// affect our height.
aMetrics.SetBlockStartAscent(aLineWM.IsLineInverted() ? fm->MaxDescent()
: fm->MaxAscent());
aMetrics.BSize(aLineWM) = fm->MaxHeight();
} else {
NS_WARNING("Cannot get font metrics - defaulting sizes to 0");
aMetrics.SetBlockStartAscent(aMetrics.BSize(aLineWM) = 0);
}
aMetrics.SetBlockStartAscent(aMetrics.BlockStartAscent() +
aFramePadding.BStart(aFrameWM));
aMetrics.BSize(aLineWM) += aFramePadding.BStartEnd(aFrameWM);
}
/* static */ bool
nsLayoutUtils::HasApzAwareListeners(EventListenerManager* aElm)
{
if (!aElm) {
return false;
}
return aElm->HasListenersFor(nsGkAtoms::ontouchstart) ||
aElm->HasListenersFor(nsGkAtoms::ontouchmove) ||
aElm->HasListenersFor(nsGkAtoms::onwheel) ||
aElm->HasListenersFor(nsGkAtoms::onDOMMouseScroll) ||
aElm->HasListenersFor(nsHtml5Atoms::onmousewheel) ||
aElm->HasListenersFor(nsGkAtoms::onMozMousePixelScroll);
}
/* static */ bool
nsLayoutUtils::HasDocumentLevelListenersForApzAwareEvents(nsIPresShell* aShell)
{
if (nsIDocument* doc = aShell->GetDocument()) {
WidgetEvent event(true, eVoidEvent);
nsTArray<EventTarget*> targets;
nsresult rv = EventDispatcher::Dispatch(doc, nullptr, &event, nullptr,
nullptr, nullptr, &targets);
NS_ENSURE_SUCCESS(rv, false);
for (size_t i = 0; i < targets.Length(); i++) {
if (HasApzAwareListeners(targets[i]->GetExistingListenerManager())) {
return true;
}
}
}
return false;
}
/* static */ float
nsLayoutUtils::GetResolution(nsIPresShell* aPresShell)
{
nsIScrollableFrame* sf = aPresShell->GetRootScrollFrameAsScrollable();
if (sf) {
return sf->GetResolution();
}
return aPresShell->GetResolution();
}
/* static */ void
nsLayoutUtils::SetResolutionAndScaleTo(nsIPresShell* aPresShell, float aResolution)
{
nsIScrollableFrame* sf = aPresShell->GetRootScrollFrameAsScrollable();
if (sf) {
sf->SetResolutionAndScaleTo(aResolution);
aPresShell->SetResolutionAndScaleTo(aResolution);
}
}
static void
MaybeReflowForInflationScreenSizeChange(nsPresContext *aPresContext)
{
if (aPresContext) {
nsIPresShell* presShell = aPresContext->GetPresShell();
bool fontInflationWasEnabled = presShell->FontSizeInflationEnabled();
presShell->NotifyFontSizeInflationEnabledIsDirty();
bool changed = false;
if (presShell && presShell->FontSizeInflationEnabled() &&
presShell->FontSizeInflationMinTwips() != 0) {
aPresContext->ScreenSizeInchesForFontInflation(&changed);
}
changed = changed ||
(fontInflationWasEnabled != presShell->FontSizeInflationEnabled());
if (changed) {
nsCOMPtr<nsIDocShell> docShell = aPresContext->GetDocShell();
if (docShell) {
nsCOMPtr<nsIContentViewer> cv;
docShell->GetContentViewer(getter_AddRefs(cv));
if (cv) {
nsTArray<nsCOMPtr<nsIContentViewer> > array;
cv->AppendSubtree(array);
for (uint32_t i = 0, iEnd = array.Length(); i < iEnd; ++i) {
nsCOMPtr<nsIPresShell> shell;
nsCOMPtr<nsIContentViewer> cv = array[i];
cv->GetPresShell(getter_AddRefs(shell));
if (shell) {
nsIFrame *rootFrame = shell->GetRootFrame();
if (rootFrame) {
shell->FrameNeedsReflow(rootFrame,
nsIPresShell::eStyleChange,
NS_FRAME_IS_DIRTY);
}
}
}
}
}
}
}
}
/* static */ void
nsLayoutUtils::SetScrollPositionClampingScrollPortSize(nsIPresShell* aPresShell, CSSSize aSize)
{
MOZ_ASSERT(aSize.width >= 0.0 && aSize.height >= 0.0);
aPresShell->SetScrollPositionClampingScrollPortSize(
nsPresContext::CSSPixelsToAppUnits(aSize.width),
nsPresContext::CSSPixelsToAppUnits(aSize.height));
// When the "font.size.inflation.minTwips" preference is set, the
// layout depends on the size of the screen. Since when the size
// of the screen changes, the scroll position clamping scroll port
// size also changes, we hook in the needed updates here rather
// than adding a separate notification just for this change.
nsPresContext* presContext = aPresShell->GetPresContext();
MaybeReflowForInflationScreenSizeChange(presContext);
}
/* static */ FrameMetrics
nsLayoutUtils::ComputeFrameMetrics(nsIFrame* aForFrame,
nsIFrame* aScrollFrame,
nsIContent* aContent,
const nsIFrame* aReferenceFrame,
Layer* aLayer,
ViewID aScrollParentId,
const nsRect& aViewport,
const Maybe<nsRect>& aClipRect,
bool aIsRootContent,
const ContainerLayerParameters& aContainerParameters)
{
nsPresContext* presContext = aForFrame->PresContext();
int32_t auPerDevPixel = presContext->AppUnitsPerDevPixel();
nsIPresShell* presShell = presContext->GetPresShell();
FrameMetrics metrics;
metrics.SetViewport(CSSRect::FromAppUnits(aViewport));
ViewID scrollId = FrameMetrics::NULL_SCROLL_ID;
if (aContent) {
scrollId = nsLayoutUtils::FindOrCreateIDFor(aContent);
nsRect dp;
if (nsLayoutUtils::GetDisplayPort(aContent, &dp)) {
metrics.SetDisplayPort(CSSRect::FromAppUnits(dp));
nsLayoutUtils::LogTestDataForPaint(aLayer->Manager(), scrollId, "displayport",
metrics.GetDisplayPort());
}
if (nsLayoutUtils::GetCriticalDisplayPort(aContent, &dp)) {
metrics.SetCriticalDisplayPort(CSSRect::FromAppUnits(dp));
}
DisplayPortMarginsPropertyData* marginsData =
static_cast<DisplayPortMarginsPropertyData*>(aContent->GetProperty(nsGkAtoms::DisplayPortMargins));
if (marginsData) {
metrics.SetDisplayPortMargins(marginsData->mMargins);
}
}
nsIScrollableFrame* scrollableFrame = nullptr;
if (aScrollFrame)
scrollableFrame = aScrollFrame->GetScrollTargetFrame();
metrics.SetScrollableRect(CSSRect::FromAppUnits(
nsLayoutUtils::CalculateScrollableRectForFrame(scrollableFrame, aForFrame)));
if (scrollableFrame) {
nsPoint scrollPosition = scrollableFrame->GetScrollPosition();
metrics.SetScrollOffset(CSSPoint::FromAppUnits(scrollPosition));
nsPoint smoothScrollPosition = scrollableFrame->LastScrollDestination();
metrics.SetSmoothScrollOffset(CSSPoint::FromAppUnits(smoothScrollPosition));
// If the frame was scrolled since the last layers update, and by
// something other than the APZ code, we want to tell the APZ to update
// its scroll offset.
nsIAtom* lastScrollOrigin = scrollableFrame->LastScrollOrigin();
if (lastScrollOrigin && lastScrollOrigin != nsGkAtoms::apz) {
metrics.SetScrollOffsetUpdated(scrollableFrame->CurrentScrollGeneration());
}
nsIAtom* lastSmoothScrollOrigin = scrollableFrame->LastSmoothScrollOrigin();
if (lastSmoothScrollOrigin) {
metrics.SetSmoothScrollOffsetUpdated(scrollableFrame->CurrentScrollGeneration());
}
nsSize lineScrollAmount = scrollableFrame->GetLineScrollAmount();
LayoutDeviceIntSize lineScrollAmountInDevPixels =
LayoutDeviceIntSize::FromAppUnitsRounded(lineScrollAmount, presContext->AppUnitsPerDevPixel());
metrics.SetLineScrollAmount(lineScrollAmountInDevPixels);
nsSize pageScrollAmount = scrollableFrame->GetPageScrollAmount();
LayoutDeviceIntSize pageScrollAmountInDevPixels =
LayoutDeviceIntSize::FromAppUnitsRounded(pageScrollAmount, presContext->AppUnitsPerDevPixel());
metrics.SetPageScrollAmount(pageScrollAmountInDevPixels);
if (!aScrollFrame->GetParent() ||
EventStateManager::CanVerticallyScrollFrameWithWheel(aScrollFrame->GetParent()))
{
metrics.SetAllowVerticalScrollWithWheel();
}
metrics.SetUsesContainerScrolling(scrollableFrame->UsesContainerScrolling());
}
// If we have the scrollparent being the same as the scroll id, the
// compositor-side code could get into an infinite loop while building the
// overscroll handoff chain.
MOZ_ASSERT(aScrollParentId == FrameMetrics::NULL_SCROLL_ID || scrollId != aScrollParentId);
metrics.SetScrollId(scrollId);
metrics.SetIsRootContent(aIsRootContent);
metrics.SetScrollParentId(aScrollParentId);
if (scrollId != FrameMetrics::NULL_SCROLL_ID && !presContext->GetParentPresContext()) {
if ((aScrollFrame && (aScrollFrame == presShell->GetRootScrollFrame())) ||
aContent == presShell->GetDocument()->GetDocumentElement()) {
metrics.SetIsLayersIdRoot(true);
}
}
// Only the root scrollable frame for a given presShell should pick up
// the presShell's resolution. All the other frames are 1.0.
if (aScrollFrame == presShell->GetRootScrollFrame()) {
metrics.SetPresShellResolution(presShell->GetResolution());
} else {
metrics.SetPresShellResolution(1.0f);
}
// The cumulative resolution is the resolution at which the scroll frame's
// content is actually rendered. It includes the pres shell resolutions of
// all the pres shells from here up to the root, as well as any css-driven
// resolution. We don't need to compute it as it's already stored in the
// container parameters.
metrics.SetCumulativeResolution(aContainerParameters.Scale());
LayoutDeviceToScreenScale2D resolutionToScreen(
presShell->GetCumulativeResolution()
* nsLayoutUtils::GetTransformToAncestorScale(aScrollFrame ? aScrollFrame : aForFrame));
metrics.SetExtraResolution(metrics.GetCumulativeResolution() / resolutionToScreen);
metrics.SetDevPixelsPerCSSPixel(CSSToLayoutDeviceScale(
(float)nsPresContext::AppUnitsPerCSSPixel() / auPerDevPixel));
// Initially, AsyncPanZoomController should render the content to the screen
// at the painted resolution.
const LayerToParentLayerScale layerToParentLayerScale(1.0f);
metrics.SetZoom(metrics.GetCumulativeResolution() * metrics.GetDevPixelsPerCSSPixel()
* layerToParentLayerScale);
// Calculate the composition bounds as the size of the scroll frame and
// its origin relative to the reference frame.
// If aScrollFrame is null, we are in a document without a root scroll frame,
// so it's a xul document. In this case, use the size of the viewport frame.
nsIFrame* frameForCompositionBoundsCalculation = aScrollFrame ? aScrollFrame : aForFrame;
nsRect compositionBounds(frameForCompositionBoundsCalculation->GetOffsetToCrossDoc(aReferenceFrame),
frameForCompositionBoundsCalculation->GetSize());
if (scrollableFrame) {
// If we have a scrollable frame, restrict the composition bounds to its
// scroll port. The scroll port excludes the frame borders and the scroll
// bars, which we don't want to be part of the composition bounds.
nsRect scrollPort = scrollableFrame->GetScrollPortRect();
compositionBounds = nsRect(compositionBounds.TopLeft() + scrollPort.TopLeft(),
scrollPort.Size());
}
ParentLayerRect frameBounds = LayoutDeviceRect::FromAppUnits(compositionBounds, auPerDevPixel)
* metrics.GetCumulativeResolution()
* layerToParentLayerScale;
if (aClipRect) {
ParentLayerRect rect = LayoutDeviceRect::FromAppUnits(*aClipRect, auPerDevPixel)
* metrics.GetCumulativeResolution()
* layerToParentLayerScale;
metrics.SetClipRect(Some(RoundedToInt(rect)));
}
// For the root scroll frame of the root content document (RCD-RSF), the above calculation
// will yield the size of the viewport frame as the composition bounds, which
// doesn't actually correspond to what is visible when
// nsIDOMWindowUtils::setCSSViewport has been called to modify the visible area of
// the prescontext that the viewport frame is reflowed into. In that case if our
// document has a widget then the widget's bounds will correspond to what is
// visible. If we don't have a widget the root view's bounds correspond to what
// would be visible because they don't get modified by setCSSViewport.
bool isRootScrollFrame = aScrollFrame == presShell->GetRootScrollFrame();
bool isRootContentDocRootScrollFrame = isRootScrollFrame
&& presContext->IsRootContentDocument();
if (isRootContentDocRootScrollFrame) {
UpdateCompositionBoundsForRCDRSF(frameBounds, presContext,
compositionBounds, true, metrics.GetCumulativeResolution());
}
nsMargin sizes = ScrollbarAreaToExcludeFromCompositionBoundsFor(aScrollFrame);
// Scrollbars are not subject to resolution scaling, so LD pixels = layer pixels for them.
ParentLayerMargin boundMargins = LayoutDeviceMargin::FromAppUnits(sizes, auPerDevPixel)
* LayoutDeviceToParentLayerScale(1.0f);
frameBounds.Deflate(boundMargins);
metrics.SetCompositionBounds(frameBounds);
metrics.SetRootCompositionSize(
nsLayoutUtils::CalculateRootCompositionSize(aScrollFrame ? aScrollFrame : aForFrame,
isRootContentDocRootScrollFrame, metrics));
if (gfxPrefs::APZPrintTree() || gfxPrefs::APZTestLoggingEnabled()) {
if (nsIContent* content = frameForCompositionBoundsCalculation->GetContent()) {
nsAutoString contentDescription;
content->Describe(contentDescription);
metrics.SetContentDescription(NS_LossyConvertUTF16toASCII(contentDescription));
nsLayoutUtils::LogTestDataForPaint(aLayer->Manager(), scrollId, "contentDescription",
metrics.GetContentDescription().get());
}
}
metrics.SetPresShellId(presShell->GetPresShellId());
// If the scroll frame's content is marked 'scrollgrab', record this
// in the FrameMetrics so APZ knows to provide the scroll grabbing
// behaviour.
if (aScrollFrame && nsContentUtils::HasScrollgrab(aScrollFrame->GetContent())) {
metrics.SetHasScrollgrab(true);
}
// Also compute and set the background color.
// This is needed for APZ overscrolling support.
if (aScrollFrame) {
if (isRootScrollFrame) {
metrics.SetBackgroundColor(presShell->GetCanvasBackground());
} else {
nsStyleContext* backgroundStyle;
if (nsCSSRendering::FindBackground(aScrollFrame, &backgroundStyle)) {
metrics.SetBackgroundColor(backgroundStyle->StyleBackground()->mBackgroundColor);
}
}
}
return metrics;
}
/* static */ bool
nsLayoutUtils::ContainsMetricsWithId(const Layer* aLayer, const ViewID& aScrollId)
{
for (uint32_t i = aLayer->GetFrameMetricsCount(); i > 0; i--) {
if (aLayer->GetFrameMetrics(i-1).GetScrollId() == aScrollId) {
return true;
}
}
for (Layer* child = aLayer->GetFirstChild(); child; child = child->GetNextSibling()) {
if (ContainsMetricsWithId(child, aScrollId)) {
return true;
}
}
return false;
}
/* static */ uint32_t
nsLayoutUtils::GetTouchActionFromFrame(nsIFrame* aFrame)
{
// If aFrame is null then return default value
if (!aFrame) {
return NS_STYLE_TOUCH_ACTION_AUTO;
}
// The touch-action CSS property applies to: all elements except:
// non-replaced inline elements, table rows, row groups, table columns, and column groups
bool isNonReplacedInlineElement = aFrame->IsFrameOfType(nsIFrame::eLineParticipant);
if (isNonReplacedInlineElement) {
return NS_STYLE_TOUCH_ACTION_AUTO;
}
const nsStyleDisplay* disp = aFrame->StyleDisplay();
bool isTableElement = disp->IsInnerTableStyle() &&
disp->mDisplay != NS_STYLE_DISPLAY_TABLE_CELL &&
disp->mDisplay != NS_STYLE_DISPLAY_TABLE_CAPTION;
if (isTableElement) {
return NS_STYLE_TOUCH_ACTION_AUTO;
}
return disp->mTouchAction;
}
/* static */ void
nsLayoutUtils::TransformToAncestorAndCombineRegions(
const nsRect& aBounds,
nsIFrame* aFrame,
const nsIFrame* aAncestorFrame,
nsRegion* aPreciseTargetDest,
nsRegion* aImpreciseTargetDest)
{
if (aBounds.IsEmpty()) {
return;
}
Matrix4x4 matrix = GetTransformToAncestor(aFrame, aAncestorFrame);
Matrix matrix2D;
bool isPrecise = (matrix.Is2D(&matrix2D)
&& !matrix2D.HasNonAxisAlignedTransform());
nsRect transformed = TransformFrameRectToAncestor(
aFrame, aBounds, aAncestorFrame);
nsRegion* dest = isPrecise ? aPreciseTargetDest : aImpreciseTargetDest;
dest->OrWith(transformed);
}
/* static */ bool
nsLayoutUtils::ShouldUseNoScriptSheet(nsIDocument* aDocument)
{
// also handle the case where print is done from print preview
// see bug #342439 for more details
if (aDocument->IsStaticDocument()) {
aDocument = aDocument->GetOriginalDocument();
}
return aDocument->IsScriptEnabled();
}
/* static */ bool
nsLayoutUtils::ShouldUseNoFramesSheet(nsIDocument* aDocument)
{
bool allowSubframes = true;
nsIDocShell* docShell = aDocument->GetDocShell();
if (docShell) {
docShell->GetAllowSubframes(&allowSubframes);
}
return !allowSubframes;
}
/* static */ void
nsLayoutUtils::GetFrameTextContent(nsIFrame* aFrame, nsAString& aResult)
{
aResult.Truncate();
AppendFrameTextContent(aFrame, aResult);
}
/* static */ void
nsLayoutUtils::AppendFrameTextContent(nsIFrame* aFrame, nsAString& aResult)
{
if (aFrame->GetType() == nsGkAtoms::textFrame) {
auto textFrame = static_cast<nsTextFrame*>(aFrame);
auto offset = textFrame->GetContentOffset();
auto length = textFrame->GetContentLength();
textFrame->GetContent()->
GetText()->AppendTo(aResult, offset, length);
} else {
for (nsIFrame* child : aFrame->PrincipalChildList()) {
AppendFrameTextContent(child, aResult);
}
}
}