gecko-dev/dom/media/VideoUtils.cpp

347 строки
12 KiB
C++
Исходник Ответственный История

Этот файл содержит невидимые символы Юникода!

Этот файл содержит невидимые символы Юникода, которые могут быть отображены не так, как показано ниже. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы показать скрытые символы.

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "VideoUtils.h"
#include "mozilla/Preferences.h"
#include "mozilla/Base64.h"
#include "mozilla/TaskQueue.h"
#include "mozilla/Telemetry.h"
#include "MediaResource.h"
#include "TimeUnits.h"
#include "nsMathUtils.h"
#include "nsSize.h"
#include "VorbisUtils.h"
#include "ImageContainer.h"
#include "mozilla/SharedThreadPool.h"
#include "nsIRandomGenerator.h"
#include "nsIServiceManager.h"
#include <stdint.h>
namespace mozilla {
using layers::PlanarYCbCrImage;
// Converts from number of audio frames to microseconds, given the specified
// audio rate.
CheckedInt64 FramesToUsecs(int64_t aFrames, uint32_t aRate) {
return (CheckedInt64(aFrames) * USECS_PER_S) / aRate;
}
media::TimeUnit FramesToTimeUnit(int64_t aFrames, uint32_t aRate) {
return (media::TimeUnit::FromMicroseconds(aFrames) * USECS_PER_S) / aRate;
}
// Converts from microseconds to number of audio frames, given the specified
// audio rate.
CheckedInt64 UsecsToFrames(int64_t aUsecs, uint32_t aRate) {
return (CheckedInt64(aUsecs) * aRate) / USECS_PER_S;
}
// Format TimeUnit as number of frames at given rate.
CheckedInt64 TimeUnitToFrames(const media::TimeUnit& aTime, uint32_t aRate) {
return UsecsToFrames(aTime.ToMicroseconds(), aRate);
}
nsresult SecondsToUsecs(double aSeconds, int64_t& aOutUsecs) {
if (aSeconds * double(USECS_PER_S) > INT64_MAX) {
return NS_ERROR_FAILURE;
}
aOutUsecs = int64_t(aSeconds * double(USECS_PER_S));
return NS_OK;
}
static int32_t ConditionDimension(float aValue)
{
// This will exclude NaNs and too-big values.
if (aValue > 1.0 && aValue <= INT32_MAX)
return int32_t(NS_round(aValue));
return 0;
}
void ScaleDisplayByAspectRatio(nsIntSize& aDisplay, float aAspectRatio)
{
if (aAspectRatio > 1.0) {
// Increase the intrinsic width
aDisplay.width = ConditionDimension(aAspectRatio * aDisplay.width);
} else {
// Increase the intrinsic height
aDisplay.height = ConditionDimension(aDisplay.height / aAspectRatio);
}
}
static int64_t BytesToTime(int64_t offset, int64_t length, int64_t durationUs) {
NS_ASSERTION(length > 0, "Must have positive length");
double r = double(offset) / double(length);
if (r > 1.0)
r = 1.0;
return int64_t(double(durationUs) * r);
}
media::TimeIntervals GetEstimatedBufferedTimeRanges(mozilla::MediaResource* aStream,
int64_t aDurationUsecs)
{
media::TimeIntervals buffered;
// Nothing to cache if the media takes 0us to play.
if (aDurationUsecs <= 0 || !aStream)
return buffered;
// Special case completely cached files. This also handles local files.
if (aStream->IsDataCachedToEndOfResource(0)) {
buffered +=
media::TimeInterval(media::TimeUnit::FromMicroseconds(0),
media::TimeUnit::FromMicroseconds(aDurationUsecs));
return buffered;
}
int64_t totalBytes = aStream->GetLength();
// If we can't determine the total size, pretend that we have nothing
// buffered. This will put us in a state of eternally-low-on-undecoded-data
// which is not great, but about the best we can do.
if (totalBytes <= 0)
return buffered;
int64_t startOffset = aStream->GetNextCachedData(0);
while (startOffset >= 0) {
int64_t endOffset = aStream->GetCachedDataEnd(startOffset);
// Bytes [startOffset..endOffset] are cached.
NS_ASSERTION(startOffset >= 0, "Integer underflow in GetBuffered");
NS_ASSERTION(endOffset >= 0, "Integer underflow in GetBuffered");
int64_t startUs = BytesToTime(startOffset, totalBytes, aDurationUsecs);
int64_t endUs = BytesToTime(endOffset, totalBytes, aDurationUsecs);
if (startUs != endUs) {
buffered +=
media::TimeInterval(media::TimeUnit::FromMicroseconds(startUs),
media::TimeUnit::FromMicroseconds(endUs));
}
startOffset = aStream->GetNextCachedData(endOffset);
}
return buffered;
}
int DownmixAudioToStereo(mozilla::AudioDataValue* buffer,
int channels, uint32_t frames)
{
int outChannels;
outChannels = 2;
#ifdef MOZ_SAMPLE_TYPE_FLOAT32
// Downmix matrix. Per-row normalization 1 for rows 3,4 and 2 for rows 5-8.
static const float dmatrix[6][8][2]= {
/*3*/{{0.5858f,0},{0.4142f,0.4142f},{0, 0.5858f}},
/*4*/{{0.4226f,0},{0, 0.4226f},{0.366f,0.2114f},{0.2114f,0.366f}},
/*5*/{{0.6510f,0},{0.4600f,0.4600f},{0, 0.6510f},{0.5636f,0.3254f},{0.3254f,0.5636f}},
/*6*/{{0.5290f,0},{0.3741f,0.3741f},{0, 0.5290f},{0.4582f,0.2645f},{0.2645f,0.4582f},{0.3741f,0.3741f}},
/*7*/{{0.4553f,0},{0.3220f,0.3220f},{0, 0.4553f},{0.3943f,0.2277f},{0.2277f,0.3943f},{0.2788f,0.2788f},{0.3220f,0.3220f}},
/*8*/{{0.3886f,0},{0.2748f,0.2748f},{0, 0.3886f},{0.3366f,0.1943f},{0.1943f,0.3366f},{0.3366f,0.1943f},{0.1943f,0.3366f},{0.2748f,0.2748f}},
};
// Re-write the buffer with downmixed data
for (uint32_t i = 0; i < frames; i++) {
float sampL = 0.0;
float sampR = 0.0;
for (int j = 0; j < channels; j++) {
sampL+=buffer[i*channels+j]*dmatrix[channels-3][j][0];
sampR+=buffer[i*channels+j]*dmatrix[channels-3][j][1];
}
buffer[i*outChannels]=sampL;
buffer[i*outChannels+1]=sampR;
}
#else
// Downmix matrix. Per-row normalization 1 for rows 3,4 and 2 for rows 5-8.
// Coefficients in Q14.
static const int16_t dmatrix[6][8][2]= {
/*3*/{{9598, 0},{6786,6786},{0, 9598}},
/*4*/{{6925, 0},{0, 6925},{5997,3462},{3462,5997}},
/*5*/{{10663,0},{7540,7540},{0, 10663},{9234,5331},{5331,9234}},
/*6*/{{8668, 0},{6129,6129},{0, 8668},{7507,4335},{4335,7507},{6129,6129}},
/*7*/{{7459, 0},{5275,5275},{0, 7459},{6460,3731},{3731,6460},{4568,4568},{5275,5275}},
/*8*/{{6368, 0},{4502,4502},{0, 6368},{5514,3184},{3184,5514},{5514,3184},{3184,5514},{4502,4502}}
};
// Re-write the buffer with downmixed data
for (uint32_t i = 0; i < frames; i++) {
int32_t sampL = 0;
int32_t sampR = 0;
for (int j = 0; j < channels; j++) {
sampL+=buffer[i*channels+j]*dmatrix[channels-3][j][0];
sampR+=buffer[i*channels+j]*dmatrix[channels-3][j][1];
}
sampL = (sampL + 8192)>>14;
buffer[i*outChannels] = static_cast<mozilla::AudioDataValue>(MOZ_CLIP_TO_15(sampL));
sampR = (sampR + 8192)>>14;
buffer[i*outChannels+1] = static_cast<mozilla::AudioDataValue>(MOZ_CLIP_TO_15(sampR));
}
#endif
return outChannels;
}
bool
IsVideoContentType(const nsCString& aContentType)
{
NS_NAMED_LITERAL_CSTRING(video, "video");
if (FindInReadable(video, aContentType)) {
return true;
}
return false;
}
bool
IsValidVideoRegion(const nsIntSize& aFrame, const nsIntRect& aPicture,
const nsIntSize& aDisplay)
{
return
aFrame.width <= PlanarYCbCrImage::MAX_DIMENSION &&
aFrame.height <= PlanarYCbCrImage::MAX_DIMENSION &&
aFrame.width * aFrame.height <= MAX_VIDEO_WIDTH * MAX_VIDEO_HEIGHT &&
aFrame.width * aFrame.height != 0 &&
aPicture.width <= PlanarYCbCrImage::MAX_DIMENSION &&
aPicture.x < PlanarYCbCrImage::MAX_DIMENSION &&
aPicture.x + aPicture.width < PlanarYCbCrImage::MAX_DIMENSION &&
aPicture.height <= PlanarYCbCrImage::MAX_DIMENSION &&
aPicture.y < PlanarYCbCrImage::MAX_DIMENSION &&
aPicture.y + aPicture.height < PlanarYCbCrImage::MAX_DIMENSION &&
aPicture.width * aPicture.height <= MAX_VIDEO_WIDTH * MAX_VIDEO_HEIGHT &&
aPicture.width * aPicture.height != 0 &&
aDisplay.width <= PlanarYCbCrImage::MAX_DIMENSION &&
aDisplay.height <= PlanarYCbCrImage::MAX_DIMENSION &&
aDisplay.width * aDisplay.height <= MAX_VIDEO_WIDTH * MAX_VIDEO_HEIGHT &&
aDisplay.width * aDisplay.height != 0;
}
already_AddRefed<SharedThreadPool> GetMediaThreadPool(MediaThreadType aType)
{
const char *name;
switch (aType) {
case MediaThreadType::PLATFORM_DECODER:
name = "MediaPDecoder";
break;
default:
MOZ_ASSERT(false);
case MediaThreadType::PLAYBACK:
name = "MediaPlayback";
break;
}
return SharedThreadPool::
Get(nsDependentCString(name),
Preferences::GetUint("media.num-decode-threads", 12));
}
bool
ExtractH264CodecDetails(const nsAString& aCodec,
int16_t& aProfile,
int16_t& aLevel)
{
// H.264 codecs parameters have a type defined as avcN.PPCCLL, where
// N = avc type. avc3 is avcc with SPS & PPS implicit (within stream)
// PP = profile_idc, CC = constraint_set flags, LL = level_idc.
// We ignore the constraint_set flags, as it's not clear from any
// documentation what constraints the platform decoders support.
// See http://blog.pearce.org.nz/2013/11/what-does-h264avc1-codecs-parameters.html
// for more details.
if (aCodec.Length() != strlen("avc1.PPCCLL")) {
return false;
}
// Verify the codec starts with "avc1." or "avc3.".
const nsAString& sample = Substring(aCodec, 0, 5);
if (!sample.EqualsASCII("avc1.") && !sample.EqualsASCII("avc3.")) {
return false;
}
// Extract the profile_idc and level_idc.
nsresult rv = NS_OK;
aProfile = PromiseFlatString(Substring(aCodec, 5, 2)).ToInteger(&rv, 16);
NS_ENSURE_SUCCESS(rv, false);
aLevel = PromiseFlatString(Substring(aCodec, 9, 2)).ToInteger(&rv, 16);
NS_ENSURE_SUCCESS(rv, false);
if (aLevel == 9) {
aLevel = H264_LEVEL_1_b;
} else if (aLevel <= 5) {
aLevel *= 10;
}
// Capture the constraint_set flag value for the purpose of Telemetry.
// We don't NS_ENSURE_SUCCESS here because ExtractH264CodecDetails doesn't
// care about this, but we make sure constraints is above 4 (constraint_set5_flag)
// otherwise collect 0 for unknown.
uint8_t constraints = PromiseFlatString(Substring(aCodec, 7, 2)).ToInteger(&rv, 16);
Telemetry::Accumulate(Telemetry::VIDEO_CANPLAYTYPE_H264_CONSTRAINT_SET_FLAG,
constraints >= 4 ? constraints : 0);
// 244 is the highest meaningful profile value (High 4:4:4 Intra Profile)
// that can be represented as single hex byte, otherwise collect 0 for unknown.
Telemetry::Accumulate(Telemetry::VIDEO_CANPLAYTYPE_H264_PROFILE,
aProfile <= 244 ? aProfile : 0);
// Make sure aLevel represents a value between levels 1 and 5.2,
// otherwise collect 0 for unknown.
Telemetry::Accumulate(Telemetry::VIDEO_CANPLAYTYPE_H264_LEVEL,
(aLevel >= 10 && aLevel <= 52) ? aLevel : 0);
return true;
}
nsresult
GenerateRandomName(nsCString& aOutSalt, uint32_t aLength)
{
nsresult rv;
nsCOMPtr<nsIRandomGenerator> rg =
do_GetService("@mozilla.org/security/random-generator;1", &rv);
if (NS_FAILED(rv)) return rv;
// For each three bytes of random data we will get four bytes of ASCII.
const uint32_t requiredBytesLength =
static_cast<uint32_t>((aLength + 3) / 4 * 3);
uint8_t* buffer;
rv = rg->GenerateRandomBytes(requiredBytesLength, &buffer);
if (NS_FAILED(rv)) return rv;
nsAutoCString temp;
nsDependentCSubstring randomData(reinterpret_cast<const char*>(buffer),
requiredBytesLength);
rv = Base64Encode(randomData, temp);
free(buffer);
buffer = nullptr;
if (NS_FAILED (rv)) return rv;
aOutSalt = temp;
return NS_OK;
}
nsresult
GenerateRandomPathName(nsCString& aOutSalt, uint32_t aLength)
{
nsresult rv = GenerateRandomName(aOutSalt, aLength);
if (NS_FAILED(rv)) return rv;
// Base64 characters are alphanumeric (a-zA-Z0-9) and '+' and '/', so we need
// to replace illegal characters -- notably '/'
aOutSalt.ReplaceChar(FILE_PATH_SEPARATOR FILE_ILLEGAL_CHARACTERS, '_');
return NS_OK;
}
already_AddRefed<TaskQueue>
CreateMediaDecodeTaskQueue()
{
nsRefPtr<TaskQueue> queue = new TaskQueue(
GetMediaThreadPool(MediaThreadType::PLATFORM_DECODER));
return queue.forget();
}
already_AddRefed<FlushableTaskQueue>
CreateFlushableMediaDecodeTaskQueue()
{
nsRefPtr<FlushableTaskQueue> queue = new FlushableTaskQueue(
GetMediaThreadPool(MediaThreadType::PLATFORM_DECODER));
return queue.forget();
}
} // end namespace mozilla