glean/docs/chart-distributions.js

590 строки
21 KiB
JavaScript
Исходник Ответственный История

Этот файл содержит неоднозначные символы Юникода!

Этот файл содержит неоднозначные символы Юникода, которые могут быть перепутаны с другими в текущей локали. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы подсветить эти символы.

// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.
"use strict"
// Do not show dataset legend for graph,
// defining this in the Chart options doesn't seem to work
Chart.defaults.global.legend = false;
const DATA_SAMPLE_COUNT = 20000;
/**
* Build and replace the previous chart with a new one.
*
* @param {String} kind The kind of histogram that should be build, possible values are "functional", "exponential" or "linear"
* @param {Object} props The properties related to the given histogram, keys differ based in the kind
* @param {String} dataOption The chosen way to build data, possible values are "normally-distributed", "log-normally-distributed", "uniformly-distributed" or "custom"
* @param {String} customData In case `dataOption` is "custom", this should contain a String containing a JSON array of numbers
* @param {HTMLElement} legend The HTML element that should contain the text of the chart legend
* @param {HTMLElement} chartSpace The HTML element that should contain the chart
* @param {function} transformation Option function to be applied to generated values
*/
function buildChart (kind, props, dataOption, customData, chartLegend, chartSpace, transformation) {
const { buckets, data, percentages, mean } = buildData(kind, props, dataOption, customData, transformation);
if (kind != "functional") {
chartLegend.innerHTML = `Using these parameters, the widest bucket's width is <b>${getWidestBucketWidth(buckets)}</b>.`;
} else {
chartLegend.innerHTML = `
Using these parameters, the maximum bucket is <b>${buckets[buckets.length - 1]}</b>.
<br /><br />
The mean of the recorded data is <b>${formatNumber(mean)}</b>.
`;
}
// Clear chart for re-drawing,
// here we need to re-create the whole canvas
// otherwise we keep rebuilding the new graph on top of the previous
// and that causes hover madness
const canvas = document.createElement("canvas");
chartSpace.innerHTML = "";
chartSpace.appendChild(canvas);
// Draw the chart
const ctx = canvas.getContext("2d");
new Chart(ctx, {
type: "bar",
data: {
labels: buckets,
datasets: [{
barPercentage: .95,
categoryPercentage: 1,
backgroundColor: "rgba(76, 138, 196, 1)",
hoverBackgroundColor: "rgba(0, 89, 171, 1)",
data: percentages
}],
},
options: {
responsive: true,
scales: {
yAxes: [{
ticks: {
beginAtZero: true,
callback: value => `${value}%`
},
scaleLabel: {
display: true,
labelString: "Percentages of samples"
}
}],
xAxes: [{
ticks: {
autoSkip: false,
minRotation: 50,
maxRotation: 50,
beginAtZero: true,
callback: (value, index, values) => {
const interval = Math.floor(values.length / 25)
if (interval > 0 && index % interval != 0) {
return ""
} else {
return value
}
}
},
scaleLabel: {
display: true,
labelString: "Buckets"
}
}]
},
tooltips: {
mode: "index",
callbacks: {
title: () => null,
label: item => {
const index = item.index
const lastIndex = percentages.length - 1
const percentage = percentages[index].toFixed(2)
const value = formatNumber(data[index])
if (kind == "functional") {
return index == lastIndex ? `${value} samples (${percentage}%) where sample value > ${buckets[lastIndex]} (overflow)`
: `${value} samples (${percentage}%) where ${buckets[index]} ≤ sample value < ${buckets[index + 1]}`
} else {
return index == 0 ? `${value} samples (${percentage}%) where sample value < ${buckets[0]} (underflow)`
: index == lastIndex ? `${value} samples (${percentage}%) where sample value > ${buckets[lastIndex]} (overflow)`
: `${value} samples (${percentage}%) where ${buckets[index]} ≤ sample value < ${buckets[index + 1]}`
}
},
}
}
}
});
}
/**
* Build the data to be rendered in the charts.
*
* @param {String} kind The kind of histogram that should be build, possible values are "functional", "exponential" or "linear"
* @param {Object} props The properties related to the given histogram, keys differ based in the kind
* @param {String} dataOption The chosen way to build data, possible values are "normally-distributed", "log-normally-distributed", "uniformly-distributed" or "custom"
* @param {String} customData In case `dataOption` is "custom", this should contain a String containing a JSON array of numbers
* @param {function} transformation Option function to be applied to generated values
*
* @returns {Object} An object containing the bucket and values of a histogram
*/
function buildData (kind, props, dataOption, customData, transformation) {
if (kind == "functional") {
return buildDataFunctional(props, dataOption, customData, transformation);
} else {
return buildDataPreComputed(kind, props, dataOption, customData, transformation);
}
}
/**
* Build sample data or parse custom data.
*
* @param {String} dataOption The chosen way to build data, possible values are "normally-distributed", "log-normally-distributed", "uniformly-distributed" or "custom"
* @param {String} customData In case `dataOption` is "custom", this should contain a String containing a JSON array of numbers
* @param {Number} lower The lowest number the generated values may be, defaults to `1`
* @param {Number} upper The highest number the generated values may be, defaults to `100`
*
* @returns {Array} An array of values, this array has DATA_SAMPLE_COUNT length if not custom
*/
function buildSampleData (dataOption, customData, lower, upper) {
if (!lower) lower = 1;
if (!upper) upper = 100;
const values =
dataOption == "normally-distributed" ? normalRandomValues((lower + upper) / 2, (upper - lower) / 8, DATA_SAMPLE_COUNT)
: dataOption == "log-normally-distributed" ? logNormalRandomValues(Math.sqrt(Math.max(lower, 1) * upper), Math.pow(upper / Math.max(lower, 1), 1 / 8), DATA_SAMPLE_COUNT)
: dataOption == "uniformly-distributed" ? uniformValues(lower, upper, DATA_SAMPLE_COUNT)
: parseJSONString(customData);
return values;
}
/**
* Build the data to be rendered in the charts, in case histogram kind is "exponential" or "linear".
*
* @param {String} kind The kind of histogram that should be build, possible values are "functional", "exponential" or "linear"
* @param {Object} props The properties related to the given histogram, keys differ based in the kind
* @param {String} dataOption The chosen way to build data, possible values are "normally-distributed", "log-normally-distributed", "uniformly-distributed" or "custom"
* @param {String} customData In case `dataOption` is "custom", this should contain a String containing a JSON array of numbers
* @param {function} transformation Option function to be applied to generated values
*
* @returns {Object} An object containing the bucket and values of a histogram
*/
function buildDataPreComputed (kind, props, dataOption, customData, transformation) {
const { lowerBound, upperBound, bucketCount } = props;
const buckets = kind == "exponential"
? exponentialRange(lowerBound, upperBound, bucketCount)
: linearRange(lowerBound, upperBound, bucketCount);
const lowerBucket = buckets[0];
const upperBucket = buckets[buckets.length - 1];
const values = buildSampleData(dataOption, customData, lowerBucket, upperBucket)
.map(v => transformation && transformation(v));
const data = accumulateValuesIntoBucketsPreComputed(buckets, values)
return {
data,
buckets,
percentages: data.map(v => v * 100 / values.length),
};
}
/**
* Build the data to be rendered in the charts, in case histogram kind is "functional".
*
* @param {String} kind The kind of histogram that should be build, possible values are "functional", "exponential" or "linear"
* @param {Object} props The properties related to the given histogram, keys differ based in the kind
* @param {String} dataOption The chosen way to build data, possible values are "normally-distributed", "log-normally-distributed", "uniformly-distributed" or "custom"
* @param {String} customData In case `dataOption` is "custom", this should contain a String containing a JSON array of numbers
* @param {function} transformation Option function to be applied to generated values
*
* @returns {Object} An object containing the bucket and values of a histogram
*/
function buildDataFunctional(props, dataOption, customData, transformation) {
const { logBase, bucketsPerMagnitude, maximumValue } = props;
const values = buildSampleData(dataOption, customData)
.map(v => transformation && transformation(v));
const acc = accumulateValuesIntoBucketsFunctional(logBase, bucketsPerMagnitude, maximumValue, values);
const data = Object.values(acc)
return {
data,
buckets: Object.keys(acc),
percentages: data.map(v => v * 100 / values.length),
mean: values.reduce((sum, current) => sum + current) / values.length
};
}
/**
* Get the search params of the current URL.
*
* @returns {URLSearchParams} The search params object related to the current URL
*/
function searchParams() {
return (new URL(document.location)).searchParams;
}
/**
* Add a new param to the current pages URL, no relaoding
*
* @param {String} name The name of the param to set
* @param {String} value The value of the param to set
*/
function setURLSearchParam(name, value) {
let params = searchParams();
params.set(name, value);
history.pushState(null, null, `?${params.toString()}`);
}
/**
* Attempts to get a search param in the current pages URL with the same name as a given input,
* if such a param exists, set the value of the given input to the same value as the param found.
*
* @param {HTMLElement} input The input to update
*/
function setInputValueFromSearchParam(input) {
let param = searchParams().get(input.name);
if (param) input.value = param;
}
/**
* Finds the widest bucket in a list of buckets.
*
* The width of a bucket is defined by it's minimum value minus the previous buckets minimum value.
*
* @param {Array} buckets An array of buckets
*
* @returns {Number} The length of the widest bucket found
*/
function getWidestBucketWidth (buckets) {
let widest = 0;
for (let i = 1; i < buckets.length; i++) {
const currentWidth = buckets[i] - buckets[i - 1];
if (currentWidth > widest) {
widest = currentWidth;
}
}
return widest;
}
/**
* Attemps to parse a string as JSON, if unsuccesfull returns an empty array.
*
* @param {String} data A string containing a JSON encoded array
*
* @returns {Array} The parsed array
*/
function parseJSONString (data) {
let result = [];
try {
result = JSON.parse(data);
} finally {
return result;
}
}
/**
* Fills up a given textarea with dummy data.
*
* @param {HTMLElement} textarea The textarea to fill up
*/
function fillUpTextareaWithDummyData (textarea) {
const lower = 1;
const upper = 100;
const dummyData = logNormalRandomValues(Math.sqrt(Math.max(lower, 1) * upper), Math.pow(upper / Math.max(lower, 1), 1 / 8), DATA_SAMPLE_COUNT);
const prettyDummyData = JSON.stringify(dummyData, undefined, 4);
textarea.value = prettyDummyData;
}
/**
* Precomputes the buckets for an exponential histogram.
*
* This is copied and adapted from glean-core/src/histograms/exponential.rs
*
* @param {Number} min The minimum value that can be recorded on this histogram
* @param {Number} max The maximum value that can be recorded on this histogram
* @param {Number} bucketCount The number of buckets on this histogram
*
* @return {Array} The array of calculated buckets
*/
function exponentialRange (min, max, bucketCount) {
let logMax = Math.log(max);
let ranges = [0];
let current = min;
if (current == 0) {
current = 1;
}
ranges.push(current);
for (let i = 2; i < bucketCount; i++) {
let logCurrent = Math.log(current);
let logRatio = (logMax - logCurrent) / (bucketCount - i);
let logNext = logCurrent + logRatio;
let nextValue = Math.round(Math.exp(logNext));
current = nextValue > current ? nextValue : current + 1;
ranges.push(current);
}
return ranges;
}
/**
* Precomputes the buckets for an exponential histogram.
*
* This is copied and adapted from glean-core/src/histograms/linear.rs
*
* @param {Number} min The minimum value that can be recorded on this histogram
* @param {Number} max The maximum value that can be recorded on this histogram
* @param {Number} bucketCount The number of buckets on this histogram
*
* @return {Array} The array of calculated buckets
*/
function linearRange (min, max, bucketCount) {
let ranges = [0];
min = Math.max(1, min);
for (let i = 1; i < bucketCount; i++) {
let range = Math.round((min * (bucketCount - 1 - i) + max * (i - 1)) / (bucketCount - 2));
ranges.push(range);
}
return ranges;
}
/**
* Accumulate an array of values into buckets for histograms with pre-computed buckets
*
* @param {Array} buckets An array of buckets for a given histogram
* @param {Array} values The values to be recorded on this histogram
*
* @return {Array} The array of recorded values
*/
function accumulateValuesIntoBucketsPreComputed (buckets, values) {
let result = new Array(buckets.length).fill(0);
for (const value of values) {
let placed = false;
for (let i = 0; i < buckets.length - 1; i++) {
if (buckets[i] <= value && value < buckets[i + 1]) {
placed = true;
result[i]++;
break;
}
}
// If the value was not placed it is after the buckets limit,
// thus it fits in the last bucket
if (!placed) {
result[result.length - 1]++;
}
}
return result;
}
/**
* Accumulate an array of values into buckets for histograms with dinamically created buckets.
*
* For these types of histograms bucketing is performed by a function, rather than pre-computed buckets.
* The bucket index of a given sample is determined with the following function:
*
* i = ⌊n log<sub>base</sub>(𝑥)⌋
*
* In other words, there are n buckets for each power of `base` magnitude.
*
* Based on glean-core/src/histograms/functional.rs
*
* @param {Number} logBase The log base for the bucketing algorithm
* @param {Array} bucketsPerMagnitude How many buckets to create per magnitude
* @param {Number} maximumValue The maximum value that can be recorded on this histogram
* @param {Array} values The values to be recorded on this histogram
*
* @return {Object} An object mapping buckets and recorded values of this histogram
*/
function accumulateValuesIntoBucketsFunctional (logBase, bucketsPerMagnitude, maximumValue, values) {
const exponent = Math.pow(logBase, 1 / bucketsPerMagnitude);
const sampleToBucketIndex = sample => Math.floor(log(sample + 1, exponent));;
const bucketIndexToBucketMinimum = index => Math.floor(Math.pow(exponent, index));
const sampleToBucketMinimum = sample => {
let bucketMinimum;
if (sample == 0) {
bucketMinimum = 0;
} else {
const bucketIndex = sampleToBucketIndex(sample);
bucketMinimum = bucketIndexToBucketMinimum(bucketIndex);
}
return bucketMinimum;
}
let result = {};
let min, max;
for (let value of values) {
// Cap on the maximum value
if (value > maximumValue) {
value = maximumValue;
}
const bucketMinimum = String(sampleToBucketMinimum(value));
if (!(bucketMinimum in result)) {
result[bucketMinimum] = 0;
}
result[bucketMinimum]++;
// Keep track of the max and min values accumulated,
// we will need them later
if (!min || value < min) min = value;
if (!max || value > max) max = value;
}
// Fill in missing buckets,
// this is based on the snapshot() function
const minBucket = sampleToBucketIndex(min);
const maxBucket = sampleToBucketIndex(max) + 1;
for (let idx = minBucket; idx <= maxBucket; idx++) {
let bucketMinimum = String(bucketIndexToBucketMinimum(idx));
if (!(bucketMinimum in result)) {
result[bucketMinimum] = 0;
}
}
return result;
}
/**
* Box-Muller transform in polar form.
*
* Values below zero will be truncated to 0.
*
* Copied over and adapted
* from https://github.com/mozilla/telemetry-dashboard/blob/bd7c213391d4118553b9ff1791ed0441bf912c60/histogram-simulator/simulator.js
*
* @param {Number} mu
* @param {Number} sigma
* @param {Number} count The length of the generated array
*
* @return {Array} An array of generated values
*/
function normalRandomValues (mu, sigma, count) {
let values = [];
let z0, z1, value;
for (let i = 0; values.length < count; i++) {
if (i % 2 === 0) {
let x1, x2, w;
do {
x1 = 2 * Math.random() - 1;
x2 = 2 * Math.random() - 1;
w = x1 * x1 + x2 * x2;
} while (w >= 1)
w = Math.sqrt((-2 * Math.log(w)) / w);
z0 = x1 * w;
z1 = x2 * w;
value = z0;
} else {
value = z1;
}
value = value * sigma + mu;
values.push(value);
}
return values.map(value => value >= 0 ? Math.floor(value) : 0);
}
/**
* Box-Muller transform in polar form for log-normal distributions
*
* Values below zero will be truncated to 0.
*
* Copied over and adapted
* from https://github.com/mozilla/telemetry-dashboard/blob/bd7c213391d4118553b9ff1791ed0441bf912c60/histogram-simulator/simulator.js
*
* @param {Number} mu
* @param {Number} sigma
* @param {Number} count The length of the generated array
*
* @return {Array} An array of generated values
*/
function logNormalRandomValues (mu, sigma, count) {
let values = [];
let z0, z1, value;
for (let i = 0; i < count; i++) {
if (i % 2 === 0) {
let x1, x2, w;
do {
x1 = 2 * Math.random() - 1;
x2 = 2 * Math.random() - 1;
w = x1 * x1 + x2 * x2;
} while (w >= 1)
w = Math.sqrt((-2 * Math.log(w)) / w);
z0 = x1 * w;
z1 = x2 * w;
value = z0;
} else {
value = z1;
}
value = Math.exp(value * Math.log(sigma) + Math.log(mu));
values.push(value);
}
return values.map(value => value >= 0 ? Math.floor(value) : 0);
}
/**
* A uniformly distributed array of random values
*
* @param {Number} min The minimum value this function may generate
* @param {Number} max The maximum value this function may generate
* @param {Number} count The length of the generated array
*
* @return {Array} An array of generated values
*/
function uniformValues (min, max, count) {
let values = [];
for (var i = 0; i <= count; i++) {
values.push(Math.random() * (max - min) + min);
}
return values;
}
/**
* Formats a number as a string.
*
* Copied over and adapted
* from https://github.com/mozilla/telemetry-dashboard/blob/bd7c213391d4118553b9ff1791ed0441bf912c60/histogram-simulator/simulator.js
*
* @param {Number} number The number to format
*
* @return {String} The formatted number
*/
function formatNumber(number) {
if (number == Infinity) return "Infinity";
if (number == -Infinity) return "-Infinity";
if (isNaN(number)) return "NaN";
const mag = Math.abs(number);
const exponent =
Math.log10 !== undefined ? Math.floor(Math.log10(mag))
: Math.floor(Math.log(mag) / Math.log(10));
const interval = Math.pow(10, Math.floor(exponent / 3) * 3);
const units = {
1000: "k",
1000000: "M",
1000000000: "B",
1000000000000: "T"
};
if (interval in units) {
return Math.round(number * 100 / interval) / 100 + units[interval];
}
return Math.round(number * 100) / 100;
}
/**
* Arbitrary base log function, Javascript doesn't have one
*
* @param {Number} number A numeric expression
* @param {base} base The log base
*
* @return {Number} The calculation result
*/
function log(number, base) {
return Math.log(number) / Math.log(base);
}