зеркало из https://github.com/mozilla/kaldi.git
sandbox/dan2: Improvements to discriminative training script (RE modify-learning-rates) and recipe for Switchboard.
git-svn-id: https://svn.code.sf.net/p/kaldi/code/sandbox/dan2@3259 5e6a8d80-dfce-4ca6-a32a-6e07a63d50c8
This commit is contained in:
Родитель
ffa7897b7e
Коммит
f7c89eae5f
|
@ -99,6 +99,15 @@ for x in exp/{mono,tri,sgmm,nnet}*/decode*; do [ -d $x ] && grep WER $x/wer_* |
|
|||
%WER 17.9 | 1831 21395 | 83.8 10.8 5.5 1.7 17.9 55.8 | exp/nnet6a_gpu/decode_eval2000_sw1_fsh_tgpr/score_13/eval2000.ctm.swbd.filt.sys
|
||||
%WER 18.4 | 1831 21395 | 83.6 11.4 5.0 2.1 18.4 56.1 | exp/nnet6a_gpu/decode_eval2000_sw1_tg/score_11/eval2000.ctm.swbd.filt.sys
|
||||
|
||||
# Discriminative training on top of 5c (14.6 still not as Good as Karel's 14.1 number with this LM, but getting closer).
|
||||
%WER 15.0 | 1831 21395 | 87.3 9.0 3.7 2.3 15.0 52.2 | exp/nnet6c_mpe_gpu/decode_eval2000_sw1_fsh_tgpr_epoch1/score_15/eval2000.ctm.swbd.filt.sys
|
||||
%WER 14.8 | 1831 21395 | 87.3 8.9 3.8 2.2 14.8 51.9 | exp/nnet6c_mpe_gpu/decode_eval2000_sw1_fsh_tgpr_epoch2/score_16/eval2000.ctm.swbd.filt.sys
|
||||
%WER 14.7 | 1831 21395 | 87.5 8.9 3.6 2.2 14.7 51.7 | exp/nnet6c_mpe_gpu/decode_eval2000_sw1_fsh_tgpr_epoch3/score_16/eval2000.ctm.swbd.filt.sys
|
||||
%WER 14.6 | 1831 21395 | 87.6 8.9 3.6 2.2 14.6 51.5 | exp/nnet6c_mpe_gpu/decode_eval2000_sw1_fsh_tgpr_epoch4/score_16/eval2000.ctm.swbd.filt.sys
|
||||
%WER 15.2 | 1831 21395 | 87.1 9.1 3.8 2.3 15.2 53.1 | exp/nnet6c_mpe_gpu/decode_eval2000_sw1_tg_epoch1/score_15/eval2000.ctm.swbd.filt.sys
|
||||
%WER 15.1 | 1831 21395 | 87.4 9.1 3.5 2.5 15.1 52.6 | exp/nnet6c_mpe_gpu/decode_eval2000_sw1_tg_epoch2/score_13/eval2000.ctm.swbd.filt.sys
|
||||
%WER 15.0 | 1831 21395 | 87.5 9.0 3.5 2.5 15.0 52.4 | exp/nnet6c_mpe_gpu/decode_eval2000_sw1_tg_epoch3/score_14/eval2000.ctm.swbd.filt.sys
|
||||
%WER 14.9 | 1831 21395 | 87.4 9.1 3.5 2.4 14.9 52.3 | exp/nnet6c_mpe_gpu/decode_eval2000_sw1_tg_epoch4/score_15/eval2000.ctm.swbd.filt.sys
|
||||
|
||||
|
||||
|
||||
|
@ -113,5 +122,3 @@ for x in exp/{mono,tri,sgmm,nnet}*/decode*; do [ -d $x ] && grep WER $x/wer_* |
|
|||
# Final system rescored by sw1_fsh trigram (unpruned)
|
||||
%WER 13.4 | 1831 21395 | 88.4 8.2 3.4 1.8 13.4 49.2 | exp/tri4b_pretrain-dbn_dnn_smbr_iter1-lats/decode_eval2000_sw1_fsh_tg.3_it2/score_14/eval2000.ctm.swbd.filt.sys
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -28,24 +28,12 @@ set -e # exit on error.
|
|||
# likely generate very thin lattices. Note: the transform-dir is important to
|
||||
# specify, since this system is on top of fMLLR features.
|
||||
|
||||
nj=$(cat exp/tri4b/num_jobs)
|
||||
|
||||
if [ $stage -le 0 ]; then
|
||||
steps/nnet2/make_denlats.sh --cmd "$decode_cmd -l mem_free=1G,ram_free=1G" \
|
||||
--nj $nj --sub-split 20 --num-threads 6 --parallel-opts "-pe smp 6" \
|
||||
--transform-dir exp/tri4b \
|
||||
data/train_nodup data/lang exp/nnet5c_gpu exp/nnet5c_gpu_denlats
|
||||
fi
|
||||
|
||||
if [ $stage -le 1 ]; then
|
||||
steps/nnet2/align.sh --cmd "$decode_cmd $gpu_opts" --use-gpu yes \
|
||||
--transform-dir exp/tri4b \
|
||||
--nj $nj data/train_nodup data/lang exp/nnet5c_gpu exp/nnet5c_gpu_ali
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ]; then
|
||||
steps/nnet2/train_discriminative.sh --cmd "$decode_cmd" --learning-rate 0.000002 \
|
||||
--num-epochs 2 \
|
||||
--modify-learning-rates true --last-layer-factor 0.1 \
|
||||
--num-epochs 4 --cleanup false \
|
||||
--num-jobs-nnet 4 --stage $train_stage \
|
||||
--transform-dir exp/tri4b \
|
||||
--num-threads 1 --parallel-opts "$gpu_opts" data/train data/lang \
|
||||
|
@ -53,7 +41,7 @@ if [ $stage -le 2 ]; then
|
|||
fi
|
||||
|
||||
if [ $stage -le 3 ]; then
|
||||
for epoch in 1 2; do
|
||||
for epoch in 1 2 3 4; do
|
||||
for lm_suffix in tg fsh_tgpr; do
|
||||
steps/nnet2/decode.sh --cmd "$decode_cmd" --nj 30 --iter epoch$epoch \
|
||||
--config conf/decode.config --transform-dir exp/tri4b/decode_eval2000_sw1_${lm_suffix} \
|
||||
|
@ -63,5 +51,5 @@ if [ $stage -le 3 ]; then
|
|||
fi
|
||||
|
||||
|
||||
exit 0;
|
||||
|
||||
exit 0;
|
||||
|
|
|
@ -22,7 +22,8 @@ num_jobs_nnet=4 # Number of neural net jobs to run in parallel. Note: this
|
|||
samples_per_iter=400000 # measured in frames, not in "examples"
|
||||
|
||||
spk_vecs_dir=
|
||||
|
||||
modify_learning_rates=false
|
||||
last_layer_factor=1.0 # relates to modify-learning-rates
|
||||
shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples
|
||||
# on each iter. You could set it to 0 or to a large value for complete
|
||||
# randomization, but this would both consume memory and cause spikes in
|
||||
|
@ -78,6 +79,8 @@ if [ $# != 6 ]; then
|
|||
echo " # the middle."
|
||||
echo " --criterion <criterion|smbr> # Training criterion: may be smbr, mmi or mpfe"
|
||||
echo " --boost <boost|0.0> # Boosting factor for MMI (e.g., 0.1)"
|
||||
echo " --modify-learning-rates <true,false|false> # If true, modify learning rates to try to equalize relative"
|
||||
echo " # changes across layers."
|
||||
echo " --degs-dir <dir|""> # Directory for discriminative examples, e.g. exp/foo/degs"
|
||||
exit 1;
|
||||
fi
|
||||
|
@ -283,6 +286,11 @@ while [ $x -lt $num_iters ]; do
|
|||
$cmd $dir/log/average.$x.log \
|
||||
nnet-am-average $nnets_list $dir/$[$x+1].mdl || exit 1;
|
||||
|
||||
if $modify_learning_rates; then
|
||||
$cmd $dir/log/modify_learning_rates.$x.log \
|
||||
nnet-modify-learning-rates --last-layer-factor=$last_layer_factor $dir/$x.mdl \
|
||||
$dir/$[$x+1].mdl $dir/$[$x+1].mdl
|
||||
fi
|
||||
rm $nnets_list
|
||||
fi
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче