kaldi/tools/extras/openfst-1.4.1.patch

228 строки
7.3 KiB
Diff

*** minimize.h
***************
*** 134,140 ****
typedef typename A::Weight Weight;
typedef ReverseArc<A> RevA;
! CyclicMinimizer(const ExpandedFst<A>& fst) {
Initialize(fst);
Compute(fst);
}
--- 134,147 ----
typedef typename A::Weight Weight;
typedef ReverseArc<A> RevA;
! CyclicMinimizer(const ExpandedFst<A>& fst):
! // tell the Partition data-member to expect multiple repeated
! // calls to SplitOn with the same element if we are non-deterministic.
! P_(fst.Properties(kIDeterministic, true) == 0) {
! if(fst.Properties(kIDeterministic, true) == 0)
! CHECK(Weight::Properties() & kIdempotent); // this minimization
! // algorithm for non-deterministic FSTs can only work with idempotent
! // semirings.
Initialize(fst);
Compute(fst);
}
***************
*** 315,321 ****
typedef typename A::StateId ClassId;
typedef typename A::Weight Weight;
! AcyclicMinimizer(const ExpandedFst<A>& fst) {
Initialize(fst);
Refine(fst);
}
--- 322,334 ----
typedef typename A::StateId ClassId;
typedef typename A::Weight Weight;
! AcyclicMinimizer(const ExpandedFst<A>& fst):
! // tell the Partition data-member to expect multiple repeated
! // calls to SplitOn with the same element if we are non-deterministic.
! partition_(fst.Properties(kIDeterministic, true) == 0) {
! if(fst.Properties(kIDeterministic, true) == 0)
! CHECK(Weight::Properties() & kIdempotent); // minimization for
! // non-deterministic FSTs can only work with idempotent semirings.
Initialize(fst);
Refine(fst);
}
***************
*** 531,543 ****
void Minimize(MutableFst<A>* fst,
MutableFst<A>* sfst = 0,
float delta = kDelta) {
! uint64 props = fst->Properties(kAcceptor | kIDeterministic|
! kWeighted | kUnweighted, true);
! if (!(props & kIDeterministic)) {
! FSTERROR() << "FST is not deterministic";
! fst->SetProperties(kError, kError);
! return;
! }
if (!(props & kAcceptor)) { // weighted transducer
VectorFst< GallicArc<A, STRING_LEFT> > gfst;
--- 544,550 ----
void Minimize(MutableFst<A>* fst,
MutableFst<A>* sfst = 0,
float delta = kDelta) {
! uint64 props = fst->Properties(kAcceptor | kWeighted | kUnweighted, true);
if (!(props & kAcceptor)) { // weighted transducer
VectorFst< GallicArc<A, STRING_LEFT> > gfst;
*** partition.h
***************
*** 43,50 ****
friend class PartitionIterator<T>;
struct Element {
! Element() : value(0), next(0), prev(0) {}
! Element(T v) : value(v), next(0), prev(0) {}
T value;
Element* next;
--- 43,50 ----
friend class PartitionIterator<T>;
struct Element {
! Element() : value(0), next(0), prev(0) {}
! Element(T v) : value(v), next(0), prev(0) {}
T value;
Element* next;
***************
*** 52,60 ****
};
public:
! Partition() {}
! Partition(T num_states) {
Initialize(num_states);
}
--- 52,62 ----
};
public:
! Partition(bool allow_repeated_split):
! allow_repeated_split_(allow_repeated_split) {}
! Partition(bool allow_repeated_split, T num_states):
! allow_repeated_split_(allow_repeated_split) {
Initialize(num_states);
}
***************
*** 137,152 ****
if (class_size_[class_id] == 1) return;
// first time class is split
! if (split_size_[class_id] == 0)
visited_classes_.push_back(class_id);
!
// increment size of split (set of element at head of chain)
split_size_[class_id]++;
!
// update split point
! if (class_split_[class_id] == 0)
! class_split_[class_id] = classes_[class_id];
! if (class_split_[class_id] == elements_[element_id])
class_split_[class_id] = elements_[element_id]->next;
// move to head of chain in same class
--- 139,154 ----
if (class_size_[class_id] == 1) return;
// first time class is split
! if (split_size_[class_id] == 0) {
visited_classes_.push_back(class_id);
! class_split_[class_id] = classes_[class_id];
! }
// increment size of split (set of element at head of chain)
split_size_[class_id]++;
!
// update split point
! if (class_split_[class_id] != 0
! && class_split_[class_id] == elements_[element_id])
class_split_[class_id] = elements_[element_id]->next;
// move to head of chain in same class
***************
*** 157,180 ****
// class indices of the newly created class. Returns the new_class id
// or -1 if no new class was created.
T SplitRefine(T class_id) {
// only split if necessary
! if (class_size_[class_id] == split_size_[class_id]) {
! class_split_[class_id] = 0;
split_size_[class_id] = 0;
return -1;
} else {
-
T new_class = AddClass();
size_t remainder = class_size_[class_id] - split_size_[class_id];
if (remainder < split_size_[class_id]) { // add smaller
- Element* split_el = class_split_[class_id];
classes_[new_class] = split_el;
- class_size_[class_id] = split_size_[class_id];
- class_size_[new_class] = remainder;
split_el->prev->next = 0;
split_el->prev = 0;
} else {
- Element* split_el = class_split_[class_id];
classes_[new_class] = classes_[class_id];
class_size_[class_id] = remainder;
class_size_[new_class] = split_size_[class_id];
--- 159,189 ----
// class indices of the newly created class. Returns the new_class id
// or -1 if no new class was created.
T SplitRefine(T class_id) {
+
+ Element* split_el = class_split_[class_id];
// only split if necessary
! //if (class_size_[class_id] == split_size_[class_id]) {
! if(split_el == NULL) { // we split on everything...
split_size_[class_id] = 0;
return -1;
} else {
T new_class = AddClass();
+
+ if(allow_repeated_split_) { // split_size_ is possibly
+ // inaccurate, so work it out exactly.
+ size_t split_count; Element *e;
+ for(split_count=0,e=classes_[class_id];
+ e != split_el; split_count++, e=e->next);
+ split_size_[class_id] = split_count;
+ }
size_t remainder = class_size_[class_id] - split_size_[class_id];
if (remainder < split_size_[class_id]) { // add smaller
classes_[new_class] = split_el;
split_el->prev->next = 0;
split_el->prev = 0;
+ class_size_[class_id] = split_size_[class_id];
+ class_size_[new_class] = remainder;
} else {
classes_[new_class] = classes_[class_id];
class_size_[class_id] = remainder;
class_size_[new_class] = split_size_[class_id];
***************
*** 245,254 ****
--- 254,269 ----
vector<T> class_size_;
// size of split for each class
+ // in the nondeterministic case, split_size_ is actually an upper
+ // bound on the size of split for each class.
vector<T> split_size_;
// set of visited classes to be used in split refine
vector<T> visited_classes_;
+
+ // true if input fst was deterministic: we can make
+ // certain assumptions in this case that speed up the algorithm.
+ bool allow_repeated_split_;
};