зеркало из https://github.com/mozilla/kaldi.git
829432d05b | ||
---|---|---|
.. | ||
conf | ||
local | ||
EXAMPLE.vietnamese | ||
README.txt | ||
RESULTS | ||
RESULTS.txt | ||
babel.html | ||
cmd.sh | ||
path.sh | ||
run-1-main-extend-lex.sh | ||
run-1-main.sh | ||
run-2-segmentation.sh | ||
run-2a-nnet-cpu.sh | ||
run-2a-nnet-ensemble-gpu.sh | ||
run-2a-nnet-gpu-realign.sh | ||
run-2a-nnet-gpu.sh | ||
run-2a-nnet-mpe.sh | ||
run-2b-bnf.sh | ||
run-3b-bnf-nnet.sh | ||
run-3b-bnf-sgmm.sh | ||
run-4-anydecode.sh | ||
run-4b-anydecode-bnf.sh | ||
run-6-combine.sh | ||
steps | ||
utils |
README.txt
How to setup the BABEL database training environment ==================================================== a) Preparation: you need to make sure the BABEL data and the F4DE scoring software is set up as it is in JHU, or change this setup accordingly. This will probably be hard and will involve some trial and error. Some relevant pathnames can be found in conf/lang/* and ./path.sh Link one of the config files in conf/languages to ./lang.conf. E.g.: ln -s conf/languages/105-turkish-limitedLP.official.conf lang.conf b) If you plan to work on one or more languages, the following approach is advised. aa) create empty directory somewhere according to your choice ( mkdir 206-zulu-llp; cd 206-zulu-llp ) ab) copy cmd.sh and path.sh (you will probably need to do some changes in these) especially pay attention to KALDI_ROOT in path.sh and possibly switch to using run.pl in cmd.sh ( cp /path/to/kaldi/egs/babel/s5b/{cmd.sh,path.sh} . ) ac) symlink all the directories here to that directory ( ln -s /path/to/kaldi/egs/babel/s5b/{conf,steps,utils,local} . ) ad) link the necessary scripts ( see below ) { ln -s /path/to/kaldi/egs/babel/s5b/run-1-main.sh . } ae) link the appropriate language-specific config file to lang.conf in each directory. ( 206-zulu-llp$ ln -s conf/lang/206-zulu-limitedLP.official.conf lang.conf ) Running the training scripts =================================================== You run the scripts in order, i.e. run-1-main.sh run-2a-nnet.sh and run-2-bnf.sh may be run in parallel, but run-2-bnf.sh should be run on a machine that has a GPU. run-3-bnf-system.sh trains an SGMM system on top of bottleneck features from run-2-bnf.sh run-4-test.sh is decoding with provided segmentation (we get this from CMU) run-5-anydecode.sh seems to be decoding with the segmentation provided Official NIST submission preparation ================================================== The make_release.sh script might come handy. The scripts evaluates the performance of the sgmm2_mmi_b.0.1 system on the eval.uem dataset and chooses the same set of parameters to determine the path inside the test.uem dataset. ./make_release.sh --relname defaultJHU --lp FullLP --lr BaseLR --ar NTAR \ conf/languages/106-tagalog-fullLP.official.conf /export/babel/data/releases ./run-1-main.sh ./run-2a-nnet-ensemble-gpu.sh ./run-2b-bnf.sh --semisupervised false --ali-dir exp/tri5_ali/ ./run-3b-bnf-sgmm.sh --semisupervised false ./run-3b-bnf-nnet.sh --semisupervised false ./run-2-segmentation.sh ./run-4-anydecode.sh --dir dev2h.seg ./run-4b-anydecode-bnf.sh --dir dev2h.seg --semisupervised false --extra-kws true ./run-4-anydecode.sh --dir unsup.seg --skip-kws true --skip-stt true ./run-4b-anydecode-bnf.sh --dir unsup.seg --skip-kws true --skip-stt true --semisupervised false