зеркало из https://github.com/mozilla/libprio.git
679 строки
16 KiB
C
679 строки
16 KiB
C
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "mp_gf2m.h"
|
|
#include "mp_gf2m-priv.h"
|
|
#include "mplogic.h"
|
|
#include "mpi-priv.h"
|
|
|
|
const mp_digit mp_gf2m_sqr_tb[16] =
|
|
{
|
|
0, 1, 4, 5, 16, 17, 20, 21,
|
|
64, 65, 68, 69, 80, 81, 84, 85
|
|
};
|
|
|
|
/* Multiply two binary polynomials mp_digits a, b.
|
|
* Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1.
|
|
* Output in two mp_digits rh, rl.
|
|
*/
|
|
#if MP_DIGIT_BITS == 32
|
|
void
|
|
s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
|
|
{
|
|
register mp_digit h, l, s;
|
|
mp_digit tab[8], top2b = a >> 30;
|
|
register mp_digit a1, a2, a4;
|
|
|
|
a1 = a & (0x3FFFFFFF);
|
|
a2 = a1 << 1;
|
|
a4 = a2 << 1;
|
|
|
|
tab[0] = 0;
|
|
tab[1] = a1;
|
|
tab[2] = a2;
|
|
tab[3] = a1 ^ a2;
|
|
tab[4] = a4;
|
|
tab[5] = a1 ^ a4;
|
|
tab[6] = a2 ^ a4;
|
|
tab[7] = a1 ^ a2 ^ a4;
|
|
|
|
s = tab[b & 0x7];
|
|
l = s;
|
|
s = tab[b >> 3 & 0x7];
|
|
l ^= s << 3;
|
|
h = s >> 29;
|
|
s = tab[b >> 6 & 0x7];
|
|
l ^= s << 6;
|
|
h ^= s >> 26;
|
|
s = tab[b >> 9 & 0x7];
|
|
l ^= s << 9;
|
|
h ^= s >> 23;
|
|
s = tab[b >> 12 & 0x7];
|
|
l ^= s << 12;
|
|
h ^= s >> 20;
|
|
s = tab[b >> 15 & 0x7];
|
|
l ^= s << 15;
|
|
h ^= s >> 17;
|
|
s = tab[b >> 18 & 0x7];
|
|
l ^= s << 18;
|
|
h ^= s >> 14;
|
|
s = tab[b >> 21 & 0x7];
|
|
l ^= s << 21;
|
|
h ^= s >> 11;
|
|
s = tab[b >> 24 & 0x7];
|
|
l ^= s << 24;
|
|
h ^= s >> 8;
|
|
s = tab[b >> 27 & 0x7];
|
|
l ^= s << 27;
|
|
h ^= s >> 5;
|
|
s = tab[b >> 30];
|
|
l ^= s << 30;
|
|
h ^= s >> 2;
|
|
|
|
/* compensate for the top two bits of a */
|
|
|
|
if (top2b & 01) {
|
|
l ^= b << 30;
|
|
h ^= b >> 2;
|
|
}
|
|
if (top2b & 02) {
|
|
l ^= b << 31;
|
|
h ^= b >> 1;
|
|
}
|
|
|
|
*rh = h;
|
|
*rl = l;
|
|
}
|
|
#else
|
|
void
|
|
s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
|
|
{
|
|
register mp_digit h, l, s;
|
|
mp_digit tab[16], top3b = a >> 61;
|
|
register mp_digit a1, a2, a4, a8;
|
|
|
|
a1 = a & (0x1FFFFFFFFFFFFFFFULL);
|
|
a2 = a1 << 1;
|
|
a4 = a2 << 1;
|
|
a8 = a4 << 1;
|
|
tab[0] = 0;
|
|
tab[1] = a1;
|
|
tab[2] = a2;
|
|
tab[3] = a1 ^ a2;
|
|
tab[4] = a4;
|
|
tab[5] = a1 ^ a4;
|
|
tab[6] = a2 ^ a4;
|
|
tab[7] = a1 ^ a2 ^ a4;
|
|
tab[8] = a8;
|
|
tab[9] = a1 ^ a8;
|
|
tab[10] = a2 ^ a8;
|
|
tab[11] = a1 ^ a2 ^ a8;
|
|
tab[12] = a4 ^ a8;
|
|
tab[13] = a1 ^ a4 ^ a8;
|
|
tab[14] = a2 ^ a4 ^ a8;
|
|
tab[15] = a1 ^ a2 ^ a4 ^ a8;
|
|
|
|
s = tab[b & 0xF];
|
|
l = s;
|
|
s = tab[b >> 4 & 0xF];
|
|
l ^= s << 4;
|
|
h = s >> 60;
|
|
s = tab[b >> 8 & 0xF];
|
|
l ^= s << 8;
|
|
h ^= s >> 56;
|
|
s = tab[b >> 12 & 0xF];
|
|
l ^= s << 12;
|
|
h ^= s >> 52;
|
|
s = tab[b >> 16 & 0xF];
|
|
l ^= s << 16;
|
|
h ^= s >> 48;
|
|
s = tab[b >> 20 & 0xF];
|
|
l ^= s << 20;
|
|
h ^= s >> 44;
|
|
s = tab[b >> 24 & 0xF];
|
|
l ^= s << 24;
|
|
h ^= s >> 40;
|
|
s = tab[b >> 28 & 0xF];
|
|
l ^= s << 28;
|
|
h ^= s >> 36;
|
|
s = tab[b >> 32 & 0xF];
|
|
l ^= s << 32;
|
|
h ^= s >> 32;
|
|
s = tab[b >> 36 & 0xF];
|
|
l ^= s << 36;
|
|
h ^= s >> 28;
|
|
s = tab[b >> 40 & 0xF];
|
|
l ^= s << 40;
|
|
h ^= s >> 24;
|
|
s = tab[b >> 44 & 0xF];
|
|
l ^= s << 44;
|
|
h ^= s >> 20;
|
|
s = tab[b >> 48 & 0xF];
|
|
l ^= s << 48;
|
|
h ^= s >> 16;
|
|
s = tab[b >> 52 & 0xF];
|
|
l ^= s << 52;
|
|
h ^= s >> 12;
|
|
s = tab[b >> 56 & 0xF];
|
|
l ^= s << 56;
|
|
h ^= s >> 8;
|
|
s = tab[b >> 60];
|
|
l ^= s << 60;
|
|
h ^= s >> 4;
|
|
|
|
/* compensate for the top three bits of a */
|
|
|
|
if (top3b & 01) {
|
|
l ^= b << 61;
|
|
h ^= b >> 3;
|
|
}
|
|
if (top3b & 02) {
|
|
l ^= b << 62;
|
|
h ^= b >> 2;
|
|
}
|
|
if (top3b & 04) {
|
|
l ^= b << 63;
|
|
h ^= b >> 1;
|
|
}
|
|
|
|
*rh = h;
|
|
*rl = l;
|
|
}
|
|
#endif
|
|
|
|
/* Compute xor-multiply of two binary polynomials (a1, a0) x (b1, b0)
|
|
* result is a binary polynomial in 4 mp_digits r[4].
|
|
* The caller MUST ensure that r has the right amount of space allocated.
|
|
*/
|
|
void
|
|
s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1,
|
|
const mp_digit b0)
|
|
{
|
|
mp_digit m1, m0;
|
|
/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
|
|
s_bmul_1x1(r + 3, r + 2, a1, b1);
|
|
s_bmul_1x1(r + 1, r, a0, b0);
|
|
s_bmul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
|
|
/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
|
|
r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
|
|
r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
|
|
}
|
|
|
|
/* Compute xor-multiply of two binary polynomials (a2, a1, a0) x (b2, b1, b0)
|
|
* result is a binary polynomial in 6 mp_digits r[6].
|
|
* The caller MUST ensure that r has the right amount of space allocated.
|
|
*/
|
|
void
|
|
s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0,
|
|
const mp_digit b2, const mp_digit b1, const mp_digit b0)
|
|
{
|
|
mp_digit zm[4];
|
|
|
|
s_bmul_1x1(r + 5, r + 4, a2, b2); /* fill top 2 words */
|
|
s_bmul_2x2(zm, a1, a2 ^ a0, b1, b2 ^ b0); /* fill middle 4 words */
|
|
s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */
|
|
|
|
zm[3] ^= r[3];
|
|
zm[2] ^= r[2];
|
|
zm[1] ^= r[1] ^ r[5];
|
|
zm[0] ^= r[0] ^ r[4];
|
|
|
|
r[5] ^= zm[3];
|
|
r[4] ^= zm[2];
|
|
r[3] ^= zm[1];
|
|
r[2] ^= zm[0];
|
|
}
|
|
|
|
/* Compute xor-multiply of two binary polynomials (a3, a2, a1, a0) x (b3, b2, b1, b0)
|
|
* result is a binary polynomial in 8 mp_digits r[8].
|
|
* The caller MUST ensure that r has the right amount of space allocated.
|
|
*/
|
|
void
|
|
s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1,
|
|
const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1,
|
|
const mp_digit b0)
|
|
{
|
|
mp_digit zm[4];
|
|
|
|
s_bmul_2x2(r + 4, a3, a2, b3, b2); /* fill top 4 words */
|
|
s_bmul_2x2(zm, a3 ^ a1, a2 ^ a0, b3 ^ b1, b2 ^ b0); /* fill middle 4 words */
|
|
s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */
|
|
|
|
zm[3] ^= r[3] ^ r[7];
|
|
zm[2] ^= r[2] ^ r[6];
|
|
zm[1] ^= r[1] ^ r[5];
|
|
zm[0] ^= r[0] ^ r[4];
|
|
|
|
r[5] ^= zm[3];
|
|
r[4] ^= zm[2];
|
|
r[3] ^= zm[1];
|
|
r[2] ^= zm[0];
|
|
}
|
|
|
|
/* Compute addition of two binary polynomials a and b,
|
|
* store result in c; c could be a or b, a and b could be equal;
|
|
* c is the bitwise XOR of a and b.
|
|
*/
|
|
mp_err
|
|
mp_badd(const mp_int *a, const mp_int *b, mp_int *c)
|
|
{
|
|
mp_digit *pa, *pb, *pc;
|
|
mp_size ix;
|
|
mp_size used_pa, used_pb;
|
|
mp_err res = MP_OKAY;
|
|
|
|
/* Add all digits up to the precision of b. If b had more
|
|
* precision than a initially, swap a, b first
|
|
*/
|
|
if (MP_USED(a) >= MP_USED(b)) {
|
|
pa = MP_DIGITS(a);
|
|
pb = MP_DIGITS(b);
|
|
used_pa = MP_USED(a);
|
|
used_pb = MP_USED(b);
|
|
} else {
|
|
pa = MP_DIGITS(b);
|
|
pb = MP_DIGITS(a);
|
|
used_pa = MP_USED(b);
|
|
used_pb = MP_USED(a);
|
|
}
|
|
|
|
/* Make sure c has enough precision for the output value */
|
|
MP_CHECKOK(s_mp_pad(c, used_pa));
|
|
|
|
/* Do word-by-word xor */
|
|
pc = MP_DIGITS(c);
|
|
for (ix = 0; ix < used_pb; ix++) {
|
|
(*pc++) = (*pa++) ^ (*pb++);
|
|
}
|
|
|
|
/* Finish the rest of digits until we're actually done */
|
|
for (; ix < used_pa; ++ix) {
|
|
*pc++ = *pa++;
|
|
}
|
|
|
|
MP_USED(c) = used_pa;
|
|
MP_SIGN(c) = ZPOS;
|
|
s_mp_clamp(c);
|
|
|
|
CLEANUP:
|
|
return res;
|
|
}
|
|
|
|
#define s_mp_div2(a) MP_CHECKOK(mpl_rsh((a), (a), 1));
|
|
|
|
/* Compute binary polynomial multiply d = a * b */
|
|
static void
|
|
s_bmul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
|
|
{
|
|
mp_digit a_i, a0b0, a1b1, carry = 0;
|
|
while (a_len--) {
|
|
a_i = *a++;
|
|
s_bmul_1x1(&a1b1, &a0b0, a_i, b);
|
|
*d++ = a0b0 ^ carry;
|
|
carry = a1b1;
|
|
}
|
|
*d = carry;
|
|
}
|
|
|
|
/* Compute binary polynomial xor multiply accumulate d ^= a * b */
|
|
static void
|
|
s_bmul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
|
|
{
|
|
mp_digit a_i, a0b0, a1b1, carry = 0;
|
|
while (a_len--) {
|
|
a_i = *a++;
|
|
s_bmul_1x1(&a1b1, &a0b0, a_i, b);
|
|
*d++ ^= a0b0 ^ carry;
|
|
carry = a1b1;
|
|
}
|
|
*d ^= carry;
|
|
}
|
|
|
|
/* Compute binary polynomial xor multiply c = a * b.
|
|
* All parameters may be identical.
|
|
*/
|
|
mp_err
|
|
mp_bmul(const mp_int *a, const mp_int *b, mp_int *c)
|
|
{
|
|
mp_digit *pb, b_i;
|
|
mp_int tmp;
|
|
mp_size ib, a_used, b_used;
|
|
mp_err res = MP_OKAY;
|
|
|
|
MP_DIGITS(&tmp) = 0;
|
|
|
|
ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
|
|
|
|
if (a == c) {
|
|
MP_CHECKOK(mp_init_copy(&tmp, a));
|
|
if (a == b)
|
|
b = &tmp;
|
|
a = &tmp;
|
|
} else if (b == c) {
|
|
MP_CHECKOK(mp_init_copy(&tmp, b));
|
|
b = &tmp;
|
|
}
|
|
|
|
if (MP_USED(a) < MP_USED(b)) {
|
|
const mp_int *xch = b; /* switch a and b if b longer */
|
|
b = a;
|
|
a = xch;
|
|
}
|
|
|
|
MP_USED(c) = 1;
|
|
MP_DIGIT(c, 0) = 0;
|
|
MP_CHECKOK(s_mp_pad(c, USED(a) + USED(b)));
|
|
|
|
pb = MP_DIGITS(b);
|
|
s_bmul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c));
|
|
|
|
/* Outer loop: Digits of b */
|
|
a_used = MP_USED(a);
|
|
b_used = MP_USED(b);
|
|
MP_USED(c) = a_used + b_used;
|
|
for (ib = 1; ib < b_used; ib++) {
|
|
b_i = *pb++;
|
|
|
|
/* Inner product: Digits of a */
|
|
if (b_i)
|
|
s_bmul_d_add(MP_DIGITS(a), a_used, b_i, MP_DIGITS(c) + ib);
|
|
else
|
|
MP_DIGIT(c, ib + a_used) = b_i;
|
|
}
|
|
|
|
s_mp_clamp(c);
|
|
|
|
SIGN(c) = ZPOS;
|
|
|
|
CLEANUP:
|
|
mp_clear(&tmp);
|
|
return res;
|
|
}
|
|
|
|
/* Compute modular reduction of a and store result in r.
|
|
* r could be a.
|
|
* For modular arithmetic, the irreducible polynomial f(t) is represented
|
|
* as an array of int[], where f(t) is of the form:
|
|
* f(t) = t^p[0] + t^p[1] + ... + t^p[k]
|
|
* where m = p[0] > p[1] > ... > p[k] = 0.
|
|
*/
|
|
mp_err
|
|
mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r)
|
|
{
|
|
int j, k;
|
|
int n, dN, d0, d1;
|
|
mp_digit zz, *z, tmp;
|
|
mp_size used;
|
|
mp_err res = MP_OKAY;
|
|
|
|
/* The algorithm does the reduction in place in r,
|
|
* if a != r, copy a into r first so reduction can be done in r
|
|
*/
|
|
if (a != r) {
|
|
MP_CHECKOK(mp_copy(a, r));
|
|
}
|
|
z = MP_DIGITS(r);
|
|
|
|
/* start reduction */
|
|
/*dN = p[0] / MP_DIGIT_BITS; */
|
|
dN = p[0] >> MP_DIGIT_BITS_LOG_2;
|
|
used = MP_USED(r);
|
|
|
|
for (j = used - 1; j > dN;) {
|
|
|
|
zz = z[j];
|
|
if (zz == 0) {
|
|
j--;
|
|
continue;
|
|
}
|
|
z[j] = 0;
|
|
|
|
for (k = 1; p[k] > 0; k++) {
|
|
/* reducing component t^p[k] */
|
|
n = p[0] - p[k];
|
|
/*d0 = n % MP_DIGIT_BITS; */
|
|
d0 = n & MP_DIGIT_BITS_MASK;
|
|
d1 = MP_DIGIT_BITS - d0;
|
|
/*n /= MP_DIGIT_BITS; */
|
|
n >>= MP_DIGIT_BITS_LOG_2;
|
|
z[j - n] ^= (zz >> d0);
|
|
if (d0)
|
|
z[j - n - 1] ^= (zz << d1);
|
|
}
|
|
|
|
/* reducing component t^0 */
|
|
n = dN;
|
|
/*d0 = p[0] % MP_DIGIT_BITS;*/
|
|
d0 = p[0] & MP_DIGIT_BITS_MASK;
|
|
d1 = MP_DIGIT_BITS - d0;
|
|
z[j - n] ^= (zz >> d0);
|
|
if (d0)
|
|
z[j - n - 1] ^= (zz << d1);
|
|
}
|
|
|
|
/* final round of reduction */
|
|
while (j == dN) {
|
|
|
|
/* d0 = p[0] % MP_DIGIT_BITS; */
|
|
d0 = p[0] & MP_DIGIT_BITS_MASK;
|
|
zz = z[dN] >> d0;
|
|
if (zz == 0)
|
|
break;
|
|
d1 = MP_DIGIT_BITS - d0;
|
|
|
|
/* clear up the top d1 bits */
|
|
if (d0) {
|
|
z[dN] = (z[dN] << d1) >> d1;
|
|
} else {
|
|
z[dN] = 0;
|
|
}
|
|
*z ^= zz; /* reduction t^0 component */
|
|
|
|
for (k = 1; p[k] > 0; k++) {
|
|
/* reducing component t^p[k]*/
|
|
/* n = p[k] / MP_DIGIT_BITS; */
|
|
n = p[k] >> MP_DIGIT_BITS_LOG_2;
|
|
/* d0 = p[k] % MP_DIGIT_BITS; */
|
|
d0 = p[k] & MP_DIGIT_BITS_MASK;
|
|
d1 = MP_DIGIT_BITS - d0;
|
|
z[n] ^= (zz << d0);
|
|
tmp = zz >> d1;
|
|
if (d0 && tmp)
|
|
z[n + 1] ^= tmp;
|
|
}
|
|
}
|
|
|
|
s_mp_clamp(r);
|
|
CLEANUP:
|
|
return res;
|
|
}
|
|
|
|
/* Compute the product of two polynomials a and b, reduce modulo p,
|
|
* Store the result in r. r could be a or b; a could be b.
|
|
*/
|
|
mp_err
|
|
mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[], mp_int *r)
|
|
{
|
|
mp_err res;
|
|
|
|
if (a == b)
|
|
return mp_bsqrmod(a, p, r);
|
|
if ((res = mp_bmul(a, b, r)) != MP_OKAY)
|
|
return res;
|
|
return mp_bmod(r, p, r);
|
|
}
|
|
|
|
/* Compute binary polynomial squaring c = a*a mod p .
|
|
* Parameter r and a can be identical.
|
|
*/
|
|
|
|
mp_err
|
|
mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r)
|
|
{
|
|
mp_digit *pa, *pr, a_i;
|
|
mp_int tmp;
|
|
mp_size ia, a_used;
|
|
mp_err res;
|
|
|
|
ARGCHK(a != NULL && r != NULL, MP_BADARG);
|
|
MP_DIGITS(&tmp) = 0;
|
|
|
|
if (a == r) {
|
|
MP_CHECKOK(mp_init_copy(&tmp, a));
|
|
a = &tmp;
|
|
}
|
|
|
|
MP_USED(r) = 1;
|
|
MP_DIGIT(r, 0) = 0;
|
|
MP_CHECKOK(s_mp_pad(r, 2 * USED(a)));
|
|
|
|
pa = MP_DIGITS(a);
|
|
pr = MP_DIGITS(r);
|
|
a_used = MP_USED(a);
|
|
MP_USED(r) = 2 * a_used;
|
|
|
|
for (ia = 0; ia < a_used; ia++) {
|
|
a_i = *pa++;
|
|
*pr++ = gf2m_SQR0(a_i);
|
|
*pr++ = gf2m_SQR1(a_i);
|
|
}
|
|
|
|
MP_CHECKOK(mp_bmod(r, p, r));
|
|
s_mp_clamp(r);
|
|
SIGN(r) = ZPOS;
|
|
|
|
CLEANUP:
|
|
mp_clear(&tmp);
|
|
return res;
|
|
}
|
|
|
|
/* Compute binary polynomial y/x mod p, y divided by x, reduce modulo p.
|
|
* Store the result in r. r could be x or y, and x could equal y.
|
|
* Uses algorithm Modular_Division_GF(2^m) from
|
|
* Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
|
|
* the Great Divide".
|
|
*/
|
|
int
|
|
mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp,
|
|
const unsigned int p[], mp_int *r)
|
|
{
|
|
mp_int aa, bb, uu;
|
|
mp_int *a, *b, *u, *v;
|
|
mp_err res = MP_OKAY;
|
|
|
|
MP_DIGITS(&aa) = 0;
|
|
MP_DIGITS(&bb) = 0;
|
|
MP_DIGITS(&uu) = 0;
|
|
|
|
MP_CHECKOK(mp_init_copy(&aa, x));
|
|
MP_CHECKOK(mp_init_copy(&uu, y));
|
|
MP_CHECKOK(mp_init_copy(&bb, pp));
|
|
MP_CHECKOK(s_mp_pad(r, USED(pp)));
|
|
MP_USED(r) = 1;
|
|
MP_DIGIT(r, 0) = 0;
|
|
|
|
a = &aa;
|
|
b = &bb;
|
|
u = &uu;
|
|
v = r;
|
|
/* reduce x and y mod p */
|
|
MP_CHECKOK(mp_bmod(a, p, a));
|
|
MP_CHECKOK(mp_bmod(u, p, u));
|
|
|
|
while (!mp_isodd(a)) {
|
|
s_mp_div2(a);
|
|
if (mp_isodd(u)) {
|
|
MP_CHECKOK(mp_badd(u, pp, u));
|
|
}
|
|
s_mp_div2(u);
|
|
}
|
|
|
|
do {
|
|
if (mp_cmp_mag(b, a) > 0) {
|
|
MP_CHECKOK(mp_badd(b, a, b));
|
|
MP_CHECKOK(mp_badd(v, u, v));
|
|
do {
|
|
s_mp_div2(b);
|
|
if (mp_isodd(v)) {
|
|
MP_CHECKOK(mp_badd(v, pp, v));
|
|
}
|
|
s_mp_div2(v);
|
|
} while (!mp_isodd(b));
|
|
} else if ((MP_DIGIT(a, 0) == 1) && (MP_USED(a) == 1))
|
|
break;
|
|
else {
|
|
MP_CHECKOK(mp_badd(a, b, a));
|
|
MP_CHECKOK(mp_badd(u, v, u));
|
|
do {
|
|
s_mp_div2(a);
|
|
if (mp_isodd(u)) {
|
|
MP_CHECKOK(mp_badd(u, pp, u));
|
|
}
|
|
s_mp_div2(u);
|
|
} while (!mp_isodd(a));
|
|
}
|
|
} while (1);
|
|
|
|
MP_CHECKOK(mp_copy(u, r));
|
|
|
|
CLEANUP:
|
|
mp_clear(&aa);
|
|
mp_clear(&bb);
|
|
mp_clear(&uu);
|
|
return res;
|
|
}
|
|
|
|
/* Convert the bit-string representation of a polynomial a into an array
|
|
* of integers corresponding to the bits with non-zero coefficient.
|
|
* Up to max elements of the array will be filled. Return value is total
|
|
* number of coefficients that would be extracted if array was large enough.
|
|
*/
|
|
int
|
|
mp_bpoly2arr(const mp_int *a, unsigned int p[], int max)
|
|
{
|
|
int i, j, k;
|
|
mp_digit top_bit, mask;
|
|
|
|
top_bit = 1;
|
|
top_bit <<= MP_DIGIT_BIT - 1;
|
|
|
|
for (k = 0; k < max; k++)
|
|
p[k] = 0;
|
|
k = 0;
|
|
|
|
for (i = MP_USED(a) - 1; i >= 0; i--) {
|
|
mask = top_bit;
|
|
for (j = MP_DIGIT_BIT - 1; j >= 0; j--) {
|
|
if (MP_DIGITS(a)[i] & mask) {
|
|
if (k < max)
|
|
p[k] = MP_DIGIT_BIT * i + j;
|
|
k++;
|
|
}
|
|
mask >>= 1;
|
|
}
|
|
}
|
|
|
|
return k;
|
|
}
|
|
|
|
/* Convert the coefficient array representation of a polynomial to a
|
|
* bit-string. The array must be terminated by 0.
|
|
*/
|
|
mp_err
|
|
mp_barr2poly(const unsigned int p[], mp_int *a)
|
|
{
|
|
|
|
mp_err res = MP_OKAY;
|
|
int i;
|
|
|
|
mp_zero(a);
|
|
for (i = 0; p[i] > 0; i++) {
|
|
MP_CHECKOK(mpl_set_bit(a, p[i], 1));
|
|
}
|
|
MP_CHECKOK(mpl_set_bit(a, 0, 1));
|
|
|
|
CLEANUP:
|
|
return res;
|
|
}
|