3fe94ae482 | ||
---|---|---|
.. | ||
data | ||
scripts | ||
.gitignore | ||
README.md | ||
clean.sh | ||
run-me.sh |
README.md
Example for training with Marian
Files and scripts in this folder have been adapted from the Romanian-English sample from https://github.com/rsennrich/wmt16-scripts. We also add the back-translated data from http://data.statmt.org/rsennrich/wmt16_backtranslations/ as desribed in http://www.aclweb.org/anthology/W16-2323. The resulting system should be competitive or even slightly better than reported in the Edinburgh WMT2016 paper.
To execute the complete example type:
./run-me.sh
which downloads the Romanian-English training files and preprocesses them (tokenization, truecasing, segmentation into subwords units).
To use with a different GPU than device 0 or more GPUs (here 0 1 2 3) type the command below. Training time on 1 NVIDIA GTX 1080 GPU should be roughly 24 hours.
./run-me.sh 0 1 2 3
Next it executes a training run with marian
:
../../build/marian \
--devices $GPUS \
--type amun \
--model model/model.npz \
--train-sets data/corpus.bpe.ro data/corpus.bpe.en \
--vocabs model/vocab.ro.yml model/vocab.en.yml \
--dim-vocabs 66000 50000 \
--mini-batch-fit -w 3000 \
--layer-normalization --dropout-rnn 0.2 --dropout-src 0.1 --dropout-trg 0.1 \
--early-stopping 5 \
--valid-freq 10000 --save-freq 10000 --disp-freq 1000 \
--valid-metrics cross-entropy translation \
--valid-sets data/newsdev2016.bpe.ro data/newsdev2016.bpe.en \
--valid-script-path ./scripts/validate.sh \
--log model/train.log --valid-log model/valid.log \
--overwrite --keep-best \
--seed 1111 --exponential-smoothing \
--normalize=1 --beam-size 12 --quiet-translation
After training (the training should stop if cross-entropy on the validation set
stops improving) the model with the highest translation validation score is used
to translate the WMT2016 dev set and test set with marian-decoder
:
cat data/newsdev2016.bpe.ro \
| ../../build/marian-decoder -c model/model.npz.best-translation.npz.decoder.yml -d $GPUS \
-b 12 -n1 --mini-batch 64 --maxi-batch 10 --maxi-batch-sort src -w 2500 \
| sed 's/\@\@ //g' \
| ../tools/moses-scripts/scripts/recaser/detruecase.perl \
| ../tools/moses-scripts/scripts/tokenizer/detokenizer.perl -l en \
> data/newsdev2016.ro.output
after which BLEU scores for the dev and test set are reported. Results should be somewhere in the area of:
newsdev2016:
BLEU = 35.88, 67.4/42.3/28.8/20.2 (BP=1.000, ratio=1.012, hyp_len=51085, ref_len=50483)
newstest2016:
BLEU = 34.53, 66.0/40.7/27.5/19.2 (BP=1.000, ratio=1.015, hyp_len=49258, ref_len=48531)
Custom validation script
The validation script scripts/validate.sh
is a quick example how to write a
custom validation script. The training pauses until the validation script
finishes executing. A validation script should not output anything to stdout
apart from the final single score (last line):
#!/bin/bash
cat $1 \
| sed 's/\@\@ //g' \
| ../tools/moses-scripts/scripts/recaser/detruecase.perl \
| ../tools/moses-scripts/scripts/tokenizer/detokenize.perl -l en \
| ../tools/moses-scripts/scripts/generic/multi-bleu-detok.perl data/newsdev2016.en \
| sed -r 's/BLEU = ([0-9.]+),.*/\1/'