Added GPU implementation of 2-point conical gradient.

Review URL: https://codereview.appspot.com/6354062

git-svn-id: http://skia.googlecode.com/svn/trunk@4442 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
rileya@google.com 2012-07-03 13:43:35 +00:00
Родитель dbc5d28979
Коммит 3e33258cd1
6 изменённых файлов: 412 добавлений и 13 удалений

Просмотреть файл

@ -212,8 +212,18 @@ public:
// space
// 2: the second radius minus the first radius
// in pre-transformed space.
kTwoPointConical_BitmapType,
//<! Matrix transforms to space where (0,0) is
// the center of the starting circle. The second
// circle will be centered (x, 0) where x may be
// 0.
// Three extra parameters are returned:
// 0: x-offset of second circle center
// to first.
// 1: radius of first circle
// 2: the second radius minus the first radius
kLast_BitmapType = kTwoPointRadial_BitmapType
kLast_BitmapType = kTwoPointConical_BitmapType
};
/** Optional methods for shaders that can pretend to be a bitmap/texture
to play along with opengl. Default just returns kNone_BitmapType and

Просмотреть файл

@ -26,7 +26,7 @@ static void draw_gradient2(SkCanvas* canvas, const SkRect& rect, SkScalar delta)
SkPoint c1 = { l + 3 * w / 5, t + h / 2 };
SkScalar r0 = w / 5;
SkScalar r1 = 2 * w / 5;
SkShader* s = SkGradientShader::CreateTwoPointRadial(c0, r0, c1, r1, colors,
SkShader* s = SkGradientShader::CreateTwoPointConical(c0, r0, c1, r1, colors,
pos, SK_ARRAY_COUNT(pos),
SkShader::kClamp_TileMode);
SkPaint paint;

Просмотреть файл

@ -2304,6 +2304,47 @@ public:
return true;
}
virtual BitmapType asABitmap(SkBitmap* bitmap,
SkMatrix* matrix,
TileMode* xy,
SkScalar* twoPointRadialParams) const {
SkPoint diff = fCenter2 - fCenter1;
SkScalar diffRadius = fRadius2 - fRadius1;
SkScalar startRadius = fRadius1;
SkScalar diffLen = 0;
if (bitmap) {
this->commonAsABitmap(bitmap);
}
if (matrix || twoPointRadialParams) {
diffLen = diff.length();
}
if (matrix) {
if (diffLen) {
SkScalar invDiffLen = SkScalarInvert(diffLen);
// rotate to align circle centers with the x-axis
matrix->setSinCos(-SkScalarMul(invDiffLen, diff.fY),
SkScalarMul(invDiffLen, diff.fX));
} else {
matrix->reset();
}
matrix->preTranslate(-fCenter1.fX, -fCenter1.fY);
}
if (xy) {
xy[0] = fTileMode;
xy[1] = kClamp_TileMode;
}
if (NULL != twoPointRadialParams) {
twoPointRadialParams[0] = diffLen;
twoPointRadialParams[1] = startRadius;
twoPointRadialParams[2] = diffRadius;
}
return kTwoPointConical_BitmapType;
}
SkShader::GradientType asAGradient(GradientInfo* info) const SK_OVERRIDE {
if (info) {
commonAsAGradient(info);

Просмотреть файл

@ -411,7 +411,9 @@ SK_COMPILE_ASSERT(SkShader::kRadial_BitmapType == 2, shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kSweep_BitmapType == 3, shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kTwoPointRadial_BitmapType == 4,
shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kLast_BitmapType == 4, shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kTwoPointConical_BitmapType == 5,
shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kLast_BitmapType == 5, shader_type_mismatch);
namespace {
@ -545,6 +547,13 @@ inline bool skPaint2GrPaintShader(SkGpuDevice* dev,
twoPointParams[2] < 0))->unref();
sampler->setFilter(GrSamplerState::kBilinear_Filter);
break;
case SkShader::kTwoPointConical_BitmapType:
sampler->setCustomStage(new
GrConical2Gradient(twoPointParams[0],
twoPointParams[1],
twoPointParams[2]))->unref();
sampler->setFilter(GrSamplerState::kBilinear_Filter);
break;
default:
if (skPaint.isFilterBitmap()) {
sampler->setFilter(GrSamplerState::kBilinear_Filter);

Просмотреть файл

@ -323,6 +323,307 @@ bool GrRadial2Gradient::isEqual(const GrCustomStage& sBase) const {
/////////////////////////////////////////////////////////////////////
class GrGLConical2Gradient : public GrGLProgramStage {
public:
GrGLConical2Gradient(const GrProgramStageFactory& factory,
const GrCustomStage&);
virtual ~GrGLConical2Gradient() { }
virtual void setupVariables(GrGLShaderBuilder* state,
int stage) SK_OVERRIDE;
virtual void emitVS(GrGLShaderBuilder* state,
const char* vertexCoords) SK_OVERRIDE;
virtual void emitFS(GrGLShaderBuilder* state,
const char* outputColor,
const char* inputColor,
const char* samplerName) SK_OVERRIDE;
virtual void initUniforms(const GrGLInterface*, int programID) SK_OVERRIDE;
virtual void setData(const GrGLInterface*,
const GrGLTexture&,
const GrCustomStage&,
int stageNum) SK_OVERRIDE;
static StageKey GenKey(const GrCustomStage& s) {
return (static_cast<const GrConical2Gradient&>(s).isDegenerate());
}
protected:
const GrGLShaderVar* fVSParamVar;
GrGLint fVSParamLocation;
const GrGLShaderVar* fFSParamVar;
GrGLint fFSParamLocation;
const char* fVSVaryingName;
const char* fFSVaryingName;
bool fIsDegenerate;
// @{
/// Values last uploaded as uniforms
GrScalar fCachedCenter;
GrScalar fCachedRadius;
GrScalar fCachedDiffRadius;
// @}
private:
typedef GrGLProgramStage INHERITED;
};
GrGLConical2Gradient::GrGLConical2Gradient(
const GrProgramStageFactory& factory,
const GrCustomStage& baseData)
: INHERITED(factory)
, fVSParamVar(NULL)
, fFSParamVar(NULL)
, fVSVaryingName(NULL)
, fFSVaryingName(NULL)
, fCachedCenter(GR_ScalarMax)
, fCachedRadius(-GR_ScalarMax)
, fCachedDiffRadius(-GR_ScalarMax) {
const GrConical2Gradient& data =
static_cast<const GrConical2Gradient&>(baseData);
fIsDegenerate = data.isDegenerate();
}
void GrGLConical2Gradient::setupVariables(GrGLShaderBuilder* state, int stage) {
// 2 copies of uniform array, 1 for each of vertex & fragment shader,
// to work around Xoom bug. Doesn't seem to cause performance decrease
// in test apps, but need to keep an eye on it.
fVSParamVar = &state->addUniform(
GrGLShaderBuilder::kVertex_VariableLifetime,
kFloat_GrSLType, "uConical2VSParams", stage, 6);
fFSParamVar = &state->addUniform(
GrGLShaderBuilder::kFragment_VariableLifetime,
kFloat_GrSLType, "uConical2FSParams", stage, 6);
fVSParamLocation = GrGLProgramStage::kUseUniform;
fFSParamLocation = GrGLProgramStage::kUseUniform;
// For radial gradients without perspective we can pass the linear
// part of the quadratic as a varying.
if (state->fVaryingDims == state->fCoordDims) {
state->addVarying(kFloat_GrSLType, "Conical2BCoeff", stage,
&fVSVaryingName, &fFSVaryingName);
}
}
void GrGLConical2Gradient::emitVS(GrGLShaderBuilder* state,
const char* vertexCoords) {
GrStringBuilder* code = &state->fVSCode;
GrStringBuilder p2; // distance between centers
GrStringBuilder p3; // start radius
GrStringBuilder p5; // difference in radii (r1 - r0)
fVSParamVar->appendArrayAccess(2, &p2);
fVSParamVar->appendArrayAccess(3, &p3);
fVSParamVar->appendArrayAccess(5, &p5);
// For radial gradients without perspective we can pass the linear
// part of the quadratic as a varying.
if (state->fVaryingDims == state->fCoordDims) {
// r2Var = -2 * (r2Parm[2] * varCoord.x - r2Param[3] * r2Param[5])
code->appendf("\t%s = -2.0 * (%s * %s.x + %s * %s);\n",
fVSVaryingName, p2.c_str(),
vertexCoords, p3.c_str(), p5.c_str());
}
}
void GrGLConical2Gradient::emitFS(GrGLShaderBuilder* state,
const char* outputColor,
const char* inputColor,
const char* samplerName) {
GrStringBuilder* code = &state->fFSCode;
GrStringBuilder cName("c");
GrStringBuilder ac4Name("ac4");
GrStringBuilder dName("d");
GrStringBuilder qName("q");
GrStringBuilder r0Name("r0");
GrStringBuilder r1Name("r1");
GrStringBuilder tName("t");
GrStringBuilder p0; // 4a
GrStringBuilder p1; // 1/(2a)
GrStringBuilder p2; // distance between centers
GrStringBuilder p3; // start radius
GrStringBuilder p4; // start radius squared
GrStringBuilder p5; // difference in radii (r1 - r0)
fFSParamVar->appendArrayAccess(0, &p0);
fFSParamVar->appendArrayAccess(1, &p1);
fFSParamVar->appendArrayAccess(2, &p2);
fFSParamVar->appendArrayAccess(3, &p3);
fFSParamVar->appendArrayAccess(4, &p4);
fFSParamVar->appendArrayAccess(5, &p5);
// If we we're able to interpolate the linear component,
// bVar is the varying; otherwise compute it
GrStringBuilder bVar;
if (state->fCoordDims == state->fVaryingDims) {
bVar = fFSVaryingName;
GrAssert(2 == state->fVaryingDims);
} else {
GrAssert(3 == state->fVaryingDims);
bVar = "b";
code->appendf("\tfloat %s = -2.0 * (%s * %s.x + %s * %s);\n",
bVar.c_str(), p2.c_str(), state->fSampleCoords.c_str(),
p3.c_str(), p5.c_str());
}
// c = (x^2)+(y^2) - params[4]
code->appendf("\tfloat %s = dot(%s, %s) - %s;\n", cName.c_str(),
state->fSampleCoords.c_str(), state->fSampleCoords.c_str(),
p4.c_str());
// Non-degenerate case (quadratic)
if (!fIsDegenerate) {
// ac4 = params[0] * c
code->appendf("\tfloat %s = %s * %s;\n", ac4Name.c_str(), p0.c_str(),
cName.c_str());
// d = b^2 - ac4
code->appendf("\tfloat %s = %s * %s - %s;\n", dName.c_str(),
bVar.c_str(), bVar.c_str(), ac4Name.c_str());
// if discriminant is < 0, set to transparent black and return
code->appendf("\tif (%s < 0.0) {\n\t\tgl_FragColor = vec4(0.0,0.0,0.0,"
"0.0);\n\t\treturn;\n\t}\n", dName.c_str());
// intermediate value we'll use to compute the roots
// q = -0.5 * (b +/- sqrt(d))
code->appendf("\tfloat %s = -0.5f * (%s + (%s < 0.0 ? -1.0 : 1.0)"
" * sqrt(%s));\n", qName.c_str(), bVar.c_str(),
bVar.c_str(), dName.c_str());
// compute both roots
// r0 = q * params[1]
code->appendf("\tfloat %s = %s * %s;\n", r0Name.c_str(), qName.c_str(),
p1.c_str());
// r1 = c / q
code->appendf("\tfloat %s = %s / %s;\n", r1Name.c_str(), cName.c_str(),
qName.c_str());
// Note: If there are two roots that both generate radius(t) > 0, the
// Canvas spec says to choose the larger t.
// so we'll look at the larger one first:
code->appendf("\tfloat %s = max(%s, %s);\n", tName.c_str(),
r0Name.c_str(), r1Name.c_str());
// if r(t) for the larger root is <= 0, try the other one
code->appendf("\tif (%s * %s + %s <= 0.0) {\n", tName.c_str(),
p5.c_str(), p3.c_str());
code->appendf("\t\t%s = min(%s, %s);\n", tName.c_str(),
r0Name.c_str(), r1Name.c_str());
// if r(t) for the smaller root is also <= 0, set the fragment to
// transparent black and return
code->appendf("\t\tif (%s * %s + %s <= 0.0) {\n\t\t\tgl_FragColor = "
"vec4(0.0,0.0,0.0,0.0);\n\t\t\treturn;\n\t\t}\n",
tName.c_str(), p5.c_str(), p3.c_str());
code->appendf("\t}\n");
} else {
// linear case: t = -c/b
code->appendf("\tfloat %s = -(%s / %s);\n", tName.c_str(),
cName.c_str(), bVar.c_str());
// set the fragment to transparent black and return if r(t) is <= 0
code->appendf("\tif (%s * %s + %s <= 0.0) {\n\t\tgl_FragColor = vec4("
"0.0,0.0,0.0,0.0);\n\t\treturn;\n\t}\n", tName.c_str(),
p5.c_str(), p3.c_str());
}
state->fComplexCoord = true;
// x coord is: t
// y coord is 0.5 (texture is effectively 1D)
state->fSampleCoords.printf("\tvec2(%s, 0.5)", tName.c_str());
state->emitDefaultFetch(outputColor, samplerName);
}
void GrGLConical2Gradient::initUniforms(const GrGLInterface* gl, int programID) {
GR_GL_CALL_RET(gl, fVSParamLocation,
GetUniformLocation(programID, fVSParamVar->getName().c_str()));
GR_GL_CALL_RET(gl, fFSParamLocation,
GetUniformLocation(programID, fFSParamVar->getName().c_str()));
}
void GrGLConical2Gradient::setData(const GrGLInterface* gl,
const GrGLTexture& texture,
const GrCustomStage& baseData,
int stageNum) {
const GrConical2Gradient& data =
static_cast<const GrConical2Gradient&>(baseData);
GrAssert(data.isDegenerate() == fIsDegenerate);
GrScalar centerX1 = data.center();
GrScalar radius0 = data.radius();
GrScalar diffRadius = data.diffRadius();
if (fCachedCenter != centerX1 ||
fCachedRadius != radius0 ||
fCachedDiffRadius != diffRadius) {
GrScalar a = GrMul(centerX1, centerX1) - diffRadius * diffRadius;
// When we're in the degenerate (linear) case, the second
// value will be INF but the program doesn't read it. (We
// use the same 6 uniforms even though we don't need them
// all in the linear case just to keep the code complexity
// down).
float values[6] = {
GrScalarToFloat(a * 4),
1.f / (GrScalarToFloat(a)),
GrScalarToFloat(centerX1),
GrScalarToFloat(radius0),
GrScalarToFloat(SkScalarMul(radius0, radius0)),
GrScalarToFloat(diffRadius)
};
GR_GL_CALL(gl, Uniform1fv(fVSParamLocation, 6, values));
GR_GL_CALL(gl, Uniform1fv(fFSParamLocation, 6, values));
fCachedCenter = centerX1;
fCachedRadius = radius0;
fCachedDiffRadius = diffRadius;
}
}
/////////////////////////////////////////////////////////////////////
GrConical2Gradient::GrConical2Gradient(GrScalar center,
GrScalar radius,
GrScalar diffRadius)
: fCenterX1 (center)
, fRadius0 (radius)
, fDiffRadius (diffRadius) {
}
GrConical2Gradient::~GrConical2Gradient() {
}
const GrProgramStageFactory& GrConical2Gradient::getFactory() const {
return GrTProgramStageFactory<GrConical2Gradient>::getInstance();
}
bool GrConical2Gradient::isEqual(const GrCustomStage& sBase) const {
const GrConical2Gradient& s = static_cast<const GrConical2Gradient&>(sBase);
return (this->isDegenerate() == s.isDegenerate());
}
/////////////////////////////////////////////////////////////////////
class GrGLSweepGradient : public GrGLProgramStage {
public:

Просмотреть файл

@ -92,6 +92,44 @@ private:
typedef GrCustomStage INHERITED;
};
class GrGLConical2Gradient;
class GrConical2Gradient : public GrCustomStage {
public:
GrConical2Gradient(GrScalar center, GrScalar radius, GrScalar diffRadius);
virtual ~GrConical2Gradient();
static const char* Name() { return "Two-Point Conical Gradient"; }
virtual const GrProgramStageFactory& getFactory() const SK_OVERRIDE;
virtual bool isEqual(const GrCustomStage&) const SK_OVERRIDE;
// The radial gradient parameters can collapse to a linear (instead
// of quadratic) equation.
bool isDegenerate() const { return SkScalarAbs(fDiffRadius) ==
SkScalarAbs(fCenterX1); }
GrScalar center() const { return fCenterX1; }
GrScalar diffRadius() const { return fDiffRadius; }
GrScalar radius() const { return fRadius0; }
typedef GrGLConical2Gradient GLProgramStage;
private:
// @{
// Cache of values - these can change arbitrarily, EXCEPT
// we shouldn't change between degenerate and non-degenerate?!
GrScalar fCenterX1;
GrScalar fRadius0;
GrScalar fDiffRadius;
// @}
typedef GrCustomStage INHERITED;
};
class GrGLSweepGradient;
class GrSweepGradient : public GrCustomStage {