diff --git a/bench/MatrixBench.cpp b/bench/MatrixBench.cpp index cae562241..8fe9e34e4 100644 --- a/bench/MatrixBench.cpp +++ b/bench/MatrixBench.cpp @@ -7,6 +7,7 @@ */ #include "SkBenchmark.h" #include "SkMatrix.h" +#include "SkMatrixUtils.h" #include "SkRandom.h" #include "SkString.h" @@ -345,6 +346,34 @@ class ScaleTransDoubleMatrixBench : public MatrixBench { typedef MatrixBench INHERITED; }; +class DecomposeMatrixBench : public MatrixBench { +public: + DecomposeMatrixBench(void* param) : INHERITED(param, "decompose") {} + +protected: + virtual void onPreDraw() { + for (int i = 0; i < 10; ++i) { + SkScalar rot0 = (fRandom.nextBool()) ? fRandom.nextRangeF(-180, 180) : 0.0f; + SkScalar sx = fRandom.nextRangeF(-3000.f, 3000.f); + SkScalar sy = (fRandom.nextBool()) ? fRandom.nextRangeF(-3000.f, 3000.f) : sx; + SkScalar rot1 = fRandom.nextRangeF(-180, 180); + fMatrix[i].setRotate(rot0); + fMatrix[i].postScale(sx, sy); + fMatrix[i].postRotate(rot1); + } + } + virtual void performTest() { + SkPoint rotation1, scale, rotation2; + for (int i = 0; i < 10; ++i) { + (void) SkDecomposeUpper2x2(fMatrix[i], &rotation1, &scale, &rotation2); + } + } +private: + SkMatrix fMatrix[10]; + SkMWCRandom fRandom; + typedef MatrixBench INHERITED; +}; + class InvertMapRectMatrixBench : public MatrixBench { public: InvertMapRectMatrixBench(void* param, const char* name, int flags) @@ -408,6 +437,8 @@ DEF_BENCH( return new FloatConcatMatrixBench(p); ) DEF_BENCH( return new FloatDoubleConcatMatrixBench(p); ) DEF_BENCH( return new DoubleConcatMatrixBench(p); ) DEF_BENCH( return new GetTypeMatrixBench(p); ) +DEF_BENCH( return new DecomposeMatrixBench(p); ) + DEF_BENCH( return new InvertMapRectMatrixBench(p, "invert_maprect_identity", 0); ) DEF_BENCH(return new InvertMapRectMatrixBench(p, diff --git a/src/core/SkMatrix.cpp b/src/core/SkMatrix.cpp index e5d48f022..e3e43ca69 100644 --- a/src/core/SkMatrix.cpp +++ b/src/core/SkMatrix.cpp @@ -2007,13 +2007,18 @@ bool SkTreatAsSprite(const SkMatrix& mat, int width, int height, return isrc == idst; } +// A square matrix M can be decomposed (via polar decomposition) into two matrices -- +// an orthogonal matrix Q and a symmetric matrix S. In turn we can decompose S into U*W*U^T, +// where U is another orthogonal matrix and W is a scale matrix. These can be recombined +// to give M = (Q*U)*W*U^T, i.e., the product of two orthogonal matrices and a scale matrix. +// +// The one wrinkle is that traditionally Q may contain a reflection -- the +// calculation has been rejiggered to put that reflection into W. bool SkDecomposeUpper2x2(const SkMatrix& matrix, - SkScalar* rotation0, - SkScalar* xScale, SkScalar* yScale, - SkScalar* rotation1) { + SkPoint* rotation1, + SkPoint* scale, + SkPoint* rotation2) { - // borrowed from Jim Blinn's article "Consider the Lowly 2x2 Matrix" - // Note: he uses row vectors, so we have to do some swapping of terms SkScalar A = matrix[SkMatrix::kMScaleX]; SkScalar B = matrix[SkMatrix::kMSkewX]; SkScalar C = matrix[SkMatrix::kMSkewY]; @@ -2023,70 +2028,82 @@ bool SkDecomposeUpper2x2(const SkMatrix& matrix, return false; } - SkScalar E = SK_ScalarHalf*(A + D); - SkScalar F = SK_ScalarHalf*(A - D); - SkScalar G = SK_ScalarHalf*(C + B); - SkScalar H = SK_ScalarHalf*(C - B); + double w1, w2; + SkScalar cos1, sin1; + SkScalar cos2, sin2; - SkScalar sqrt0 = SkScalarSqrt(E*E + H*H); - SkScalar sqrt1 = SkScalarSqrt(F*F + G*G); + // do polar decomposition (M = Q*S) + SkScalar cosQ, sinQ; + double Sa, Sb, Sd; + // if M is already symmetric (i.e., M = I*S) + if (SkScalarNearlyEqual(B, C)) { + cosQ = SK_Scalar1; + sinQ = 0; - SkScalar xs, ys, r0, r1; - - xs = sqrt0 + sqrt1; - ys = sqrt0 - sqrt1; - // can't have zero yScale, must be degenerate - SkASSERT(!SkScalarNearlyZero(ys)); - - // uniformly scaled rotation - if (SkScalarNearlyZero(F) && SkScalarNearlyZero(G)) { - SkASSERT(!SkScalarNearlyZero(E) || !SkScalarNearlyZero(H)); - r0 = SkScalarATan2(H, E); - r1 = 0; - // uniformly scaled reflection - } else if (SkScalarNearlyZero(E) && SkScalarNearlyZero(H)) { - SkASSERT(!SkScalarNearlyZero(F) || !SkScalarNearlyZero(G)); - r0 = -SkScalarATan2(G, F); - r1 = 0; + Sa = A; + Sb = B; + Sd = D; } else { - SkASSERT(!SkScalarNearlyZero(E) || !SkScalarNearlyZero(H)); - SkASSERT(!SkScalarNearlyZero(F) || !SkScalarNearlyZero(G)); + cosQ = A + D; + sinQ = C - B; + SkScalar reciplen = SK_Scalar1/SkScalarSqrt(cosQ*cosQ + sinQ*sinQ); + cosQ *= reciplen; + sinQ *= reciplen; - SkScalar arctan0 = SkScalarATan2(H, E); - SkScalar arctan1 = SkScalarATan2(G, F); - r0 = SK_ScalarHalf*(arctan0 - arctan1); - r1 = SK_ScalarHalf*(arctan0 + arctan1); + // S = Q^-1*M + // we don't calc Sc since it's symmetric + Sa = A*cosQ + C*sinQ; + Sb = B*cosQ + D*sinQ; + Sd = -B*sinQ + D*cosQ; + } - // simplify the results - const SkScalar kHalfPI = SK_ScalarHalf*SK_ScalarPI; - if (SkScalarNearlyEqual(SkScalarAbs(r0), kHalfPI)) { - SkScalar tmp = xs; - xs = ys; - ys = tmp; - - r1 += r0; - r0 = 0; - } else if (SkScalarNearlyEqual(SkScalarAbs(r1), kHalfPI)) { - SkScalar tmp = xs; - xs = ys; - ys = tmp; - - r0 += r1; - r1 = 0; + // Now we need to compute eigenvalues of S (our scale factors) + // and eigenvectors (bases for our rotation) + // From this, should be able to reconstruct S as U*W*U^T + if (SkScalarNearlyZero(Sb)) { + // already diagonalized + cos1 = SK_Scalar1; + sin1 = 0; + w1 = Sa; + w2 = Sd; + cos2 = cosQ; + sin2 = sinQ; + } else { + double diff = Sa - Sd; + double discriminant = sqrt(diff*diff + 4.0*Sb*Sb); + double trace = Sa + Sd; + if (diff > 0) { + w1 = 0.5*(trace + discriminant); + w2 = 0.5*(trace - discriminant); + } else { + w1 = 0.5*(trace - discriminant); + w2 = 0.5*(trace + discriminant); } + + cos1 = Sb; sin1 = w1 - Sa; + SkScalar reciplen = SK_Scalar1/SkScalarSqrt(cos1*cos1 + sin1*sin1); + cos1 *= reciplen; + sin1 *= reciplen; + + // rotation 2 is composition of Q and U + cos2 = cos1*cosQ - sin1*sinQ; + sin2 = sin1*cosQ + cos1*sinQ; + + // rotation 1 is U^T + sin1 = -sin1; } - if (NULL != xScale) { - *xScale = xs; - } - if (NULL != yScale) { - *yScale = ys; - } - if (NULL != rotation0) { - *rotation0 = r0; + if (NULL != scale) { + scale->fX = w1; + scale->fY = w2; } if (NULL != rotation1) { - *rotation1 = r1; + rotation1->fX = cos1; + rotation1->fY = sin1; + } + if (NULL != rotation2) { + rotation2->fX = cos2; + rotation2->fY = sin2; } return true; diff --git a/src/core/SkMatrixUtils.h b/src/core/SkMatrixUtils.h index 37341f289..3fc1440e1 100644 --- a/src/core/SkMatrixUtils.h +++ b/src/core/SkMatrixUtils.h @@ -40,15 +40,15 @@ static inline bool SkTreatAsSpriteFilter(const SkMatrix& matrix, return SkTreatAsSprite(matrix, width, height, kSkSubPixelBitsForBilerp); } -/** Decomposes the upper-left 2x2 of the matrix into a rotation, followed by a non-uniform scale, - followed by another rotation. Returns true if successful. - If the scale factors are uniform, then rotation1 will be 0. - If there is a reflection, yScale will be negative. - Returns false if the matrix is degenerate. +/** Decomposes the upper-left 2x2 of the matrix into a rotation (represented by + the cosine and sine of the rotation angle), followed by a non-uniform scale, + followed by another rotation. If there is a reflection, one of the scale + factors will be negative. + Returns true if successful. Returns false if the matrix is degenerate. */ bool SkDecomposeUpper2x2(const SkMatrix& matrix, - SkScalar* rotation0, - SkScalar* xScale, SkScalar* yScale, - SkScalar* rotation1); + SkPoint* rotation1, + SkPoint* scale, + SkPoint* rotation2); #endif diff --git a/tests/Matrix44Test.cpp b/tests/Matrix44Test.cpp index 67af60df9..6c29a5596 100644 --- a/tests/Matrix44Test.cpp +++ b/tests/Matrix44Test.cpp @@ -513,10 +513,10 @@ static void TestMatrix44(skiatest::Reporter* reporter) { // test mixed-valued matrix inverse mat.reset(); - mat.setScale(1.0e-10, 3.0, 1.0e+10); + mat.setScale(1.0e-11, 3.0, 1.0e+11); rot.setRotateDegreesAbout(0, 0, -1, 90); mat.postConcat(rot); - mat.postTranslate(1.0e+10, 3.0, 1.0e-10); + mat.postTranslate(1.0e+11, 3.0, 1.0e-11); REPORTER_ASSERT(reporter, mat.invert(NULL)); mat.invert(&inverse); iden1.setConcat(mat, inverse); diff --git a/tests/MatrixTest.cpp b/tests/MatrixTest.cpp index 878573032..c225565cc 100644 --- a/tests/MatrixTest.cpp +++ b/tests/MatrixTest.cpp @@ -350,11 +350,13 @@ static void test_matrix_is_similarity(skiatest::Reporter* reporter) { static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b, SkScalar tolerance = SK_ScalarNearlyZero) { // from Bruce Dawson + // absolute check SkScalar diff = SkScalarAbs(a - b); if (diff < tolerance) { return true; } + // relative check a = SkScalarAbs(a); b = SkScalarAbs(b); SkScalar largest = (b > a) ? b : a; @@ -366,9 +368,32 @@ static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b, return false; } +static bool check_matrix_recomposition(const SkMatrix& mat, + const SkPoint& rotation1, + const SkPoint& scale, + const SkPoint& rotation2) { + SkScalar c1 = rotation1.fX; + SkScalar s1 = rotation1.fY; + SkScalar scaleX = scale.fX; + SkScalar scaleY = scale.fY; + SkScalar c2 = rotation2.fX; + SkScalar s2 = rotation2.fY; + + // We do a relative check here because large scale factors cause problems with an absolute check + bool result = scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], + scaleX*c1*c2 - scaleY*s1*s2) && + scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], + -scaleX*s1*c2 - scaleY*c1*s2) && + scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], + scaleX*c1*s2 + scaleY*s1*c2) && + scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], + -scaleX*s1*s2 + scaleY*c1*c2); + return result; +} + static void test_matrix_decomposition(skiatest::Reporter* reporter) { SkMatrix mat; - SkScalar rotation0, scaleX, scaleY, rotation1; + SkPoint rotation1, scale, rotation2; const float kRotation0 = 15.5f; const float kRotation1 = -50.f; @@ -377,150 +402,108 @@ static void test_matrix_decomposition(skiatest::Reporter* reporter) { // identity mat.reset(); - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1)); - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // make sure it doesn't crash if we pass in NULLs - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL, NULL)); + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL)); // rotation only mat.setRotate(kRotation0); - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0))); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1)); - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // uniform scale only mat.setScale(kScale0, kScale0); - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // anisotropic scale only mat.setScale(kScale1, kScale0); - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // rotation then uniform scale mat.setRotate(kRotation1); mat.postScale(kScale0, kScale0); - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1))); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // uniform scale then rotation mat.setScale(kScale0, kScale0); mat.postRotate(kRotation1); - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1))); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // rotation then uniform scale+reflection mat.setRotate(kRotation0); mat.postScale(kScale1, -kScale1); - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0))); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale1)); - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // uniform scale+reflection, then rotate mat.setScale(kScale0, -kScale0); mat.postRotate(kRotation1); - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(-kRotation1))); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale0)); - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // rotation then anisotropic scale mat.setRotate(kRotation1); mat.postScale(kScale1, kScale0); - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1))); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); + // rotation then anisotropic scale + mat.setRotate(90); + mat.postScale(kScale1, kScale0); + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); + // anisotropic scale then rotation mat.setScale(kScale1, kScale0); mat.postRotate(kRotation0); - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation1, SkDegreesToRadians(kRotation0))); + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); + + // anisotropic scale then rotation + mat.setScale(kScale1, kScale0); + mat.postRotate(90); + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // rotation, uniform scale, then different rotation mat.setRotate(kRotation1); mat.postScale(kScale0, kScale0); mat.postRotate(kRotation0); - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, - SkDegreesToRadians(kRotation0 + kRotation1))); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0)); - REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0)); - REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1)); + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // rotation, anisotropic scale, then different rotation mat.setRotate(kRotation0); mat.postScale(kScale1, kScale0); mat.postRotate(kRotation1); - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); - // Because of the shear/skew we won't get the same results, so we need to multiply it out. - // Generating the matrices requires doing a radian-to-degree calculation, then degree-to-radian - // calculation (in setRotate()), which adds error, so this just computes the matrix elements - // directly. - SkScalar c0; - SkScalar s0 = SkScalarSinCos(rotation0, &c0); - SkScalar c1; - SkScalar s1 = SkScalarSinCos(rotation1, &c1); - // We do a relative check here because large scale factors cause problems with an absolute check - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], - scaleX*c0*c1 - scaleY*s0*s1)); - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], - -scaleX*s0*c1 - scaleY*c0*s1)); - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], - scaleX*c0*s1 + scaleY*s0*c1)); - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], - -scaleX*s0*s1 + scaleY*c0*c1)); + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); + + // rotation, anisotropic scale + reflection, then different rotation + mat.setRotate(kRotation0); + mat.postScale(-kScale1, kScale0); + mat.postRotate(kRotation1); + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // try some random matrices SkMWCRandom rand; for (int m = 0; m < 1000; ++m) { - SkScalar rot0 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI); + SkScalar rot0 = rand.nextRangeF(-180, 180); SkScalar sx = rand.nextRangeF(-3000.f, 3000.f); SkScalar sy = rand.nextRangeF(-3000.f, 3000.f); - SkScalar rot1 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI); + SkScalar rot1 = rand.nextRangeF(-180, 180); mat.setRotate(rot0); mat.postScale(sx, sy); mat.postRotate(rot1); - if (SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)) { - SkScalar c0; - SkScalar s0 = SkScalarSinCos(rotation0, &c0); - SkScalar c1; - SkScalar s1 = SkScalarSinCos(rotation1, &c1); - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], - scaleX*c0*c1 - scaleY*s0*s1)); - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], - -scaleX*s0*c1 - scaleY*c0*s1)); - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], - scaleX*c0*s1 + scaleY*s0*c1)); - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], - -scaleX*s0*s1 + scaleY*c0*c1)); + if (SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)) { + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); } else { // if the matrix is degenerate, the basis vectors should be near-parallel or near-zero SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] - @@ -531,65 +514,31 @@ static void test_matrix_decomposition(skiatest::Reporter* reporter) { // translation shouldn't affect this mat.postTranslate(-1000.f, 1000.f); - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); - s0 = SkScalarSinCos(rotation0, &c0); - s1 = SkScalarSinCos(rotation1, &c1); - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], - scaleX*c0*c1 - scaleY*s0*s1)); - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], - -scaleX*s0*c1 - scaleY*c0*s1)); - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], - scaleX*c0*s1 + scaleY*s0*c1)); - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], - -scaleX*s0*s1 + scaleY*c0*c1)); + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // perspective shouldn't affect this mat[SkMatrix::kMPersp0] = 12.f; mat[SkMatrix::kMPersp1] = 4.f; mat[SkMatrix::kMPersp2] = 1872.f; - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); - s0 = SkScalarSinCos(rotation0, &c0); - s1 = SkScalarSinCos(rotation1, &c1); - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], - scaleX*c0*c1 - scaleY*s0*s1)); - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], - -scaleX*s0*c1 - scaleY*c0*s1)); - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], - scaleX*c0*s1 + scaleY*s0*c1)); - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], - -scaleX*s0*s1 + scaleY*c0*c1)); - - // rotation, anisotropic scale + reflection, then different rotation - mat.setRotate(kRotation0); - mat.postScale(-kScale1, kScale0); - mat.postRotate(kRotation1); - REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); - s0 = SkScalarSinCos(rotation0, &c0); - s1 = SkScalarSinCos(rotation1, &c1); - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX], - scaleX*c0*c1 - scaleY*s0*s1)); - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX], - -scaleX*s0*c1 - scaleY*c0*s1)); - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY], - scaleX*c0*s1 + scaleY*s0*c1)); - REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY], - -scaleX*s0*s1 + scaleY*c0*c1)); + REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); + REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2)); // degenerate matrices // mostly zero entries mat.reset(); mat[SkMatrix::kMScaleX] = 0.f; - REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); + REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); mat.reset(); mat[SkMatrix::kMScaleY] = 0.f; - REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); + REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); mat.reset(); // linearly dependent entries mat[SkMatrix::kMScaleX] = 1.f; mat[SkMatrix::kMSkewX] = 2.f; mat[SkMatrix::kMSkewY] = 4.f; mat[SkMatrix::kMScaleY] = 8.f; - REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)); + REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)); } // For test_matrix_homogeneous, below.