Remove gpu shader optimatization for solid white or trans black colors

Running test on the added bench which draws a grid of all white paths, all blue paths, or alternating checkered white/blue paths.

With optimization in (ms):
         White       Blue        Checkered
Linux    ~80         ~80         ~160
N7       ~800        ~1100       ~1500
Moto-e   ~830        ~1100       ~2500

Without optimization in (ms):
         White       Blue        Checkered
Linux    ~80         ~80         ~80
N7       ~1100       ~1100       ~1100
Moto-e   ~1100       ~1100       ~1500

BUG=skia:
R=bsalomon@google.com

Author: egdaniel@google.com

Review URL: https://codereview.chromium.org/375823005
This commit is contained in:
egdaniel 2014-07-11 08:57:40 -07:00 коммит произвёл Commit bot
Родитель 133931f4ab
Коммит 5f78d2251a
5 изменённых файлов: 204 добавлений и 26 удалений

Просмотреть файл

@ -0,0 +1,199 @@
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Benchmark.h"
#include "SkCanvas.h"
#include "SkGradientShader.h"
#include "SkPaint.h"
#include "SkString.h"
enum ColorPattern {
kWhite_ColorPattern,
kBlue_ColorPattern,
kOpaqueBitmap_ColorPattern,
kAlphaBitmap_ColorPattern,
};
static const struct ColorPatternData{
SkColor fColor;
bool fIsBitmap;
const char* fName;
} gColorPatterns[] = {
// Keep this in same order as ColorPattern enum
{ SK_ColorWHITE, false, "white" }, // kWhite_ColorPattern
{ SK_ColorBLUE, false, "blue" }, // kBlue_ColorPattern
{ SK_ColorWHITE, true, "obaqueBitMap" }, // kOpaqueBitmap_ColorPattern
{ 0x10000000, true, "alphaBitmap" }, // kAlphaBitmap_ColorPattern
};
enum DrawType {
kRect_DrawType,
kPath_DrawType,
};
static void makebm(SkBitmap* bm, int w, int h) {
bm->allocN32Pixels(w, h);
bm->eraseColor(SK_ColorTRANSPARENT);
SkCanvas canvas(*bm);
SkScalar s = SkIntToScalar(SkMin32(w, h));
static const SkPoint kPts0[] = { { 0, 0 }, { s, s } };
static const SkPoint kPts1[] = { { s/2, 0 }, { s/2, s } };
static const SkScalar kPos[] = { 0, SK_Scalar1/2, SK_Scalar1 };
static const SkColor kColors0[] = {0x80F00080, 0xF0F08000, 0x800080F0 };
static const SkColor kColors1[] = {0xF08000F0, 0x8080F000, 0xF000F080 };
SkPaint paint;
paint.setShader(SkGradientShader::CreateLinear(kPts0, kColors0, kPos,
SK_ARRAY_COUNT(kColors0), SkShader::kClamp_TileMode))->unref();
canvas.drawPaint(paint);
paint.setShader(SkGradientShader::CreateLinear(kPts1, kColors1, kPos,
SK_ARRAY_COUNT(kColors1), SkShader::kClamp_TileMode))->unref();
canvas.drawPaint(paint);
}
/**
* This bench draws a grid of either rects or filled paths, with two alternating color patterns.
* This color patterns are passed in as enums to the class. The options are:
* 1) solid white color
* 2) solid blue color
* 3) opaque bitmap
* 4) partial alpha bitmap
* The same color pattern can be set for both arguments to create a uniform pattern on all draws.
*
* The bench is used to test a few things. First it can test any optimizations made for a specific
* color pattern (for example drawing an opaque bitmap versus one with partial alpha). Also it can
* be used to test the cost of program switching and/or batching when alternating between different
* patterns when on the gpu.
*/
class AlternatingColorPatternBench : public Benchmark {
public:
enum {
NX = 5,
NY = 5,
NUM_DRAWS = NX * NY,
};
SkPath fPaths[NUM_DRAWS];
SkRect fRects[NUM_DRAWS];
U8CPU fAlphas[NUM_DRAWS];
SkColor fColors[NUM_DRAWS];
SkShader* fShaders[NUM_DRAWS];
SkString fName;
ColorPatternData fPattern1;
ColorPatternData fPattern2;
DrawType fDrawType;
SkBitmap fBmp;
SkShader* fBmShader;
AlternatingColorPatternBench(ColorPattern pattern1, ColorPattern pattern2, DrawType drawType) {
fPattern1 = gColorPatterns[pattern1];
fPattern2 = gColorPatterns[pattern2];
fName.printf("colorPattern_%s_%s_%s",
fPattern1.fName, fPattern2.fName,
kRect_DrawType == drawType ? "rect" : "path");
fDrawType = drawType;
}
virtual ~AlternatingColorPatternBench() {
fBmShader->unref();
}
protected:
virtual const char* onGetName() SK_OVERRIDE {
return fName.c_str();
}
virtual void onPreDraw() {
int w = 40;
int h = 40;
makebm(&fBmp, w, h);
fBmShader = SkShader::CreateBitmapShader(fBmp,
SkShader::kRepeat_TileMode,
SkShader::kRepeat_TileMode);
int offset = 2;
int count = 0;
for (int j = 0; j < NY; ++j) {
for (int i = 0; i < NX; ++i) {
int x = (w + offset) * i;
int y = (h * offset) * j;
if (kRect_DrawType == fDrawType) {
fRects[count].set(SkIntToScalar(x), SkIntToScalar(y),
SkIntToScalar(x + w), SkIntToScalar(y + h));
} else {
fPaths[count].moveTo(SkIntToScalar(x), SkIntToScalar(y));
fPaths[count].rLineTo(SkIntToScalar(w), 0);
fPaths[count].rLineTo(0, SkIntToScalar(h));
fPaths[count].rLineTo(SkIntToScalar(-w + 1), 0);
}
if (0 == count % 2) {
fColors[count] = fPattern1.fColor;
fShaders[count] = fPattern1.fIsBitmap ? fBmShader : NULL;
} else {
fColors[count] = fPattern2.fColor;
fShaders[count] = fPattern2.fIsBitmap ? fBmShader : NULL;
}
++count;
}
}
}
virtual void onDraw(const int loops, SkCanvas* canvas) SK_OVERRIDE {
SkPaint paint;
paint.setAntiAlias(false);
paint.setFilterLevel(SkPaint::kLow_FilterLevel);
for (int i = 0; i < loops; ++i) {
for (int j = 0; j < NUM_DRAWS; ++j) {
paint.setColor(fColors[j]);
paint.setShader(fShaders[j]);
if (kRect_DrawType == fDrawType) {
canvas->drawRect(fRects[j], paint);
} else {
canvas->drawPath(fPaths[j], paint);
}
}
}
}
private:
typedef Benchmark INHERITED;
};
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
(kWhite_ColorPattern, kWhite_ColorPattern,
kPath_DrawType)); )
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
(kBlue_ColorPattern, kBlue_ColorPattern,
kPath_DrawType)); )
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
(kWhite_ColorPattern, kBlue_ColorPattern,
kPath_DrawType)); )
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
(kOpaqueBitmap_ColorPattern, kOpaqueBitmap_ColorPattern,
kPath_DrawType)); )
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
(kAlphaBitmap_ColorPattern, kAlphaBitmap_ColorPattern,
kPath_DrawType)); )
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
(kOpaqueBitmap_ColorPattern, kAlphaBitmap_ColorPattern,
kPath_DrawType)); )
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
(kOpaqueBitmap_ColorPattern, kOpaqueBitmap_ColorPattern,
kRect_DrawType)); )
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
(kAlphaBitmap_ColorPattern, kAlphaBitmap_ColorPattern,
kRect_DrawType)); )
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
(kOpaqueBitmap_ColorPattern, kAlphaBitmap_ColorPattern,
kRect_DrawType)); )

Просмотреть файл

@ -23,6 +23,7 @@
'../bench/Benchmark.h',
'../bench/AAClipBench.cpp',
'../bench/AlternatingColorPatternBench.cpp',
'../bench/BitmapBench.cpp',
'../bench/BitmapRectBench.cpp',
'../bench/BitmapScaleBench.cpp',

Просмотреть файл

@ -178,12 +178,8 @@ void GrGLProgram::setColor(const GrDrawState& drawState,
}
sharedState->fConstAttribColorIndex = -1;
break;
case GrGLProgramDesc::kSolidWhite_ColorInput:
case GrGLProgramDesc::kTransBlack_ColorInput:
sharedState->fConstAttribColorIndex = -1;
break;
default:
SkFAIL("Unknown color type.");
SkFAIL("Unexpected color type.");
}
} else {
sharedState->fConstAttribColorIndex = -1;
@ -218,11 +214,10 @@ void GrGLProgram::setCoverage(const GrDrawState& drawState,
sharedState->fConstAttribCoverageIndex = -1;
break;
case GrGLProgramDesc::kSolidWhite_ColorInput:
case GrGLProgramDesc::kTransBlack_ColorInput:
sharedState->fConstAttribCoverageIndex = -1;
break;
default:
SkFAIL("Unknown coverage type.");
SkFAIL("Unexpected coverage type.");
}
} else {
sharedState->fConstAttribCoverageIndex = -1;

Просмотреть файл

@ -89,11 +89,6 @@ void GrGLProgramDesc::Build(const GrDrawState& drawState,
bool requiresLocalCoordAttrib = !(skipCoverage && skipColor) &&
drawState.hasLocalCoordAttribute();
bool colorIsTransBlack = SkToBool(blendOpts & GrDrawState::kEmitTransBlack_BlendOptFlag);
bool colorIsSolidWhite = (blendOpts & GrDrawState::kEmitCoverage_BlendOptFlag) ||
(!requiresColorAttrib && 0xffffffff == drawState.getColor()) ||
(!inputColorIsUsed);
int numEffects = (skipColor ? 0 : (drawState.numColorStages() - firstEffectiveColorStage)) +
(skipCoverage ? 0 : (drawState.numCoverageStages() - firstEffectiveCoverageStage));
@ -148,11 +143,7 @@ void GrGLProgramDesc::Build(const GrDrawState& drawState,
#endif
bool defaultToUniformInputs = GR_GL_NO_CONSTANT_ATTRIBUTES || gpu->caps()->pathRenderingSupport();
if (colorIsTransBlack) {
header->fColorInput = kTransBlack_ColorInput;
} else if (colorIsSolidWhite) {
header->fColorInput = kSolidWhite_ColorInput;
} else if (defaultToUniformInputs && !requiresColorAttrib) {
if (defaultToUniformInputs && !requiresColorAttrib) {
header->fColorInput = kUniform_ColorInput;
} else {
header->fColorInput = kAttribute_ColorInput;
@ -161,9 +152,7 @@ void GrGLProgramDesc::Build(const GrDrawState& drawState,
bool covIsSolidWhite = !requiresCoverageAttrib && 0xffffffff == drawState.getCoverageColor();
if (skipCoverage) {
header->fCoverageInput = kTransBlack_ColorInput;
} else if (covIsSolidWhite || !inputCoverageIsUsed) {
if (covIsSolidWhite || !inputCoverageIsUsed) {
header->fCoverageInput = kSolidWhite_ColorInput;
} else if (defaultToUniformInputs && !requiresCoverageAttrib) {
header->fCoverageInput = kUniform_ColorInput;

Просмотреть файл

@ -164,10 +164,6 @@ bool GrGLShaderBuilder::genProgram(const GrEffectStage* colorStages[],
this->addUniform(GrGLShaderBuilder::kFragment_Visibility, kVec4f_GrSLType, "Color",
&name);
inputColor = GrGLSLExpr4(name);
} else if (GrGLProgramDesc::kSolidWhite_ColorInput == header.fColorInput) {
inputColor = GrGLSLExpr4(1);
} else if (GrGLProgramDesc::kTransBlack_ColorInput == header.fColorInput) {
inputColor = GrGLSLExpr4(0);
}
if (GrGLProgramDesc::kUniform_ColorInput == header.fCoverageInput) {
@ -178,8 +174,6 @@ bool GrGLShaderBuilder::genProgram(const GrEffectStage* colorStages[],
inputCoverage = GrGLSLExpr4(name);
} else if (GrGLProgramDesc::kSolidWhite_ColorInput == header.fCoverageInput) {
inputCoverage = GrGLSLExpr4(1);
} else if (GrGLProgramDesc::kTransBlack_ColorInput == header.fCoverageInput) {
inputCoverage = GrGLSLExpr4(0);
}
if (k110_GrGLSLGeneration != fGpu->glslGeneration()) {