Move segment mask from SkPath to SkPathRef

https://codereview.chromium.org/105083003/



git-svn-id: http://skia.googlecode.com/svn/trunk@12660 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
robertphillips@google.com 2013-12-12 23:03:51 +00:00
Родитель c7a8507e97
Коммит 6b8dbb668f
5 изменённых файлов: 284 добавлений и 128 удалений

Просмотреть файл

@ -83,7 +83,7 @@ public:
*/ */
void toggleInverseFillType() { void toggleInverseFillType() {
fFillType ^= 2; fFillType ^= 2;
} }
enum Convexity { enum Convexity {
kUnknown_Convexity, kUnknown_Convexity,
@ -446,8 +446,8 @@ public:
@param dy3 The amount to add to the y-coordinate of the last point on @param dy3 The amount to add to the y-coordinate of the last point on
this contour, to specify the end point of a cubic curve this contour, to specify the end point of a cubic curve
*/ */
void rCubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, void rCubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2,
SkScalar x3, SkScalar y3); SkScalar x3, SkScalar y3);
/** Append the specified arc to the path as a new contour. If the start of /** Append the specified arc to the path as a new contour. If the start of
the path is different from the path's current last point, then an the path is different from the path's current last point, then an
@ -461,8 +461,8 @@ public:
treated mod 360. treated mod 360.
@param forceMoveTo If true, always begin a new contour with the arc @param forceMoveTo If true, always begin a new contour with the arc
*/ */
void arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, void arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle,
bool forceMoveTo); bool forceMoveTo);
/** Append a line and arc to the current path. This is the same as the /** Append a line and arc to the current path. This is the same as the
PostScript call "arct". PostScript call "arct".
@ -778,7 +778,7 @@ public:
* set if the path contains 1 or more segments of that type. * set if the path contains 1 or more segments of that type.
* Returns 0 for an empty path (no segments). * Returns 0 for an empty path (no segments).
*/ */
uint32_t getSegmentMasks() const { return fSegmentMask; } uint32_t getSegmentMasks() const { return fPathRef->getSegmentMasks(); }
enum Verb { enum Verb {
kMove_Verb, //!< iter.next returns 1 point kMove_Verb, //!< iter.next returns 1 point
@ -942,14 +942,15 @@ private:
#endif #endif
kConvexity_SerializationShift = 16, // requires 8 bits kConvexity_SerializationShift = 16, // requires 8 bits
kFillType_SerializationShift = 8, // requires 8 bits kFillType_SerializationShift = 8, // requires 8 bits
kSegmentMask_SerializationShift = 0 // requires 4 bits #ifndef DELETE_THIS_CODE_WHEN_SKPS_ARE_REBUILT_AT_V16_AND_ALL_OTHER_INSTANCES_TOO
kOldSegmentMask_SerializationShift = 0 // requires 4 bits
#endif
}; };
SkAutoTUnref<SkPathRef> fPathRef; SkAutoTUnref<SkPathRef> fPathRef;
int fLastMoveToIndex; int fLastMoveToIndex;
uint8_t fFillType; uint8_t fFillType;
uint8_t fSegmentMask;
mutable uint8_t fConvexity; mutable uint8_t fConvexity;
mutable uint8_t fDirection; mutable uint8_t fDirection;
#ifdef SK_BUILD_FOR_ANDROID #ifdef SK_BUILD_FOR_ANDROID

Просмотреть файл

@ -62,30 +62,24 @@ public:
/** /**
* Adds the verb and allocates space for the number of points indicated by the verb. The * Adds the verb and allocates space for the number of points indicated by the verb. The
* return value is a pointer to where the points for the verb should be written. * return value is a pointer to where the points for the verb should be written.
* 'weight' is only used if 'verb' is kConic_Verb
*/ */
SkPoint* growForVerb(int /*SkPath::Verb*/ verb) { SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight = 0) {
SkDEBUGCODE(fPathRef->validate();) SkDEBUGCODE(fPathRef->validate();)
return fPathRef->growForVerb(verb); return fPathRef->growForVerb(verb, weight);
} }
SkPoint* growForConic(SkScalar w);
/** /**
* Allocates space for additional verbs and points and returns pointers to the new verbs and * Allocates space for multiple instances of a particular verb and the
* points. verbs will point one beyond the first new verb (index it using [~<i>]). pts points * requisite points & weights.
* at the first new point (indexed normally [<i>]). * The return pointer points at the first new point (indexed normally [<i>]).
* If 'verb' is kConic_Verb, 'weights' will return a pointer to the
* space for the conic weights (indexed normally).
*/ */
void grow(int newVerbs, int newPts, uint8_t** verbs, SkPoint** pts) { SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb,
SkASSERT(NULL != verbs); int numVbs,
SkASSERT(NULL != pts); SkScalar** weights = NULL) {
SkDEBUGCODE(fPathRef->validate();) return fPathRef->growForRepeatedVerb(verb, numVbs, weights);
int oldVerbCnt = fPathRef->fVerbCnt;
int oldPointCnt = fPathRef->fPointCnt;
SkASSERT(verbs && pts);
fPathRef->grow(newVerbs, newPts);
*verbs = fPathRef->fVerbs - oldVerbCnt;
*pts = fPathRef->fPoints + oldPointCnt;
SkDEBUGCODE(fPathRef->validate();)
} }
/** /**
@ -123,6 +117,13 @@ public:
return SkToBool(fIsFinite); return SkToBool(fIsFinite);
} }
/**
* Returns a mask, where each bit corresponding to a SegmentMask is
* set if the path contains 1 or more segments of that type.
* Returns 0 for an empty path (no segments).
*/
uint32_t getSegmentMasks() const { return fSegmentMask; }
/** Returns true if the path is an oval. /** Returns true if the path is an oval.
* *
* @param rect returns the bounding rect of this oval. It's a circle * @param rect returns the bounding rect of this oval. It's a circle
@ -199,6 +200,7 @@ public:
int countPoints() const { SkDEBUGCODE(this->validate();) return fPointCnt; } int countPoints() const { SkDEBUGCODE(this->validate();) return fPointCnt; }
int countVerbs() const { SkDEBUGCODE(this->validate();) return fVerbCnt; } int countVerbs() const { SkDEBUGCODE(this->validate();) return fVerbCnt; }
int countWeights() const { SkDEBUGCODE(this->validate();) return fConicWeights.count(); }
/** /**
* Returns a pointer one beyond the first logical verb (last verb in memory order). * Returns a pointer one beyond the first logical verb (last verb in memory order).
@ -226,7 +228,7 @@ public:
/** /**
* Convenience methods for getting to a verb or point by index. * Convenience methods for getting to a verb or point by index.
*/ */
uint8_t atVerb(int index) { uint8_t atVerb(int index) const {
SkASSERT((unsigned) index < (unsigned) fVerbCnt); SkASSERT((unsigned) index < (unsigned) fVerbCnt);
return this->verbs()[~index]; return this->verbs()[~index];
} }
@ -240,12 +242,12 @@ public:
/** /**
* Writes the path points and verbs to a buffer. * Writes the path points and verbs to a buffer.
*/ */
void writeToBuffer(SkWBuffer* buffer); void writeToBuffer(SkWBuffer* buffer) const;
/** /**
* Gets the number of bytes that would be written in writeBuffer() * Gets the number of bytes that would be written in writeBuffer()
*/ */
uint32_t writeSize(); uint32_t writeSize() const;
/** /**
* Gets an ID that uniquely identifies the contents of the path ref. If two path refs have the * Gets an ID that uniquely identifies the contents of the path ref. If two path refs have the
@ -258,6 +260,7 @@ private:
enum SerializationOffsets { enum SerializationOffsets {
kIsFinite_SerializationShift = 25, // requires 1 bit kIsFinite_SerializationShift = 25, // requires 1 bit
kIsOval_SerializationShift = 24, // requires 1 bit kIsOval_SerializationShift = 24, // requires 1 bit
kSegmentMask_SerializationShift = 0 // requires 4 bits
}; };
SkPathRef() { SkPathRef() {
@ -268,6 +271,7 @@ private:
fPoints = NULL; fPoints = NULL;
fFreeSpace = 0; fFreeSpace = 0;
fGenerationID = kEmptyGenID; fGenerationID = kEmptyGenID;
fSegmentMask = 0;
fIsOval = false; fIsOval = false;
SkDEBUGCODE(fEditorsAttached = 0;) SkDEBUGCODE(fEditorsAttached = 0;)
SkDEBUGCODE(this->validate();) SkDEBUGCODE(this->validate();)
@ -311,6 +315,7 @@ private:
fBoundsIsDirty = true; // this also invalidates fIsFinite fBoundsIsDirty = true; // this also invalidates fIsFinite
fGenerationID = 0; fGenerationID = 0;
fSegmentMask = 0;
fIsOval = false; fIsOval = false;
size_t newSize = sizeof(uint8_t) * verbCount + sizeof(SkPoint) * pointCount; size_t newSize = sizeof(uint8_t) * verbCount + sizeof(SkPoint) * pointCount;
@ -340,26 +345,19 @@ private:
} }
/** /**
* Increases the verb count by newVerbs and the point count be newPoints. New verbs and points * Increases the verb count by numVbs and point count by the required amount.
* are uninitialized. * The new points are uninitialized. All the new verbs are set to the specified
* verb. If 'verb' is kConic_Verb, 'weights' will return a pointer to the
* uninitialized conic weights.
*/ */
void grow(int newVerbs, int newPoints) { SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb, int numVbs, SkScalar** weights);
SkDEBUGCODE(this->validate();)
size_t space = newVerbs * sizeof(uint8_t) + newPoints * sizeof (SkPoint);
this->makeSpace(space);
fVerbCnt += newVerbs;
fPointCnt += newPoints;
fFreeSpace -= space;
fBoundsIsDirty = true; // this also invalidates fIsFinite
SkDEBUGCODE(this->validate();)
}
/** /**
* Increases the verb count 1, records the new verb, and creates room for the requisite number * Increases the verb count 1, records the new verb, and creates room for the requisite number
* of additional points. A pointer to the first point is returned. Any new points are * of additional points. A pointer to the first point is returned. Any new points are
* uninitialized. * uninitialized.
*/ */
SkPoint* growForVerb(int /*SkPath::Verb*/ verb); SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight);
/** /**
* Ensures that the free space available in the path ref is >= size. The verb and point counts * Ensures that the free space available in the path ref is >= size. The verb and point counts
@ -425,6 +423,7 @@ private:
}; };
mutable SkRect fBounds; mutable SkRect fBounds;
uint8_t fSegmentMask;
mutable uint8_t fBoundsIsDirty; mutable uint8_t fBoundsIsDirty;
mutable SkBool8 fIsFinite; // only meaningful if bounds are valid mutable SkBool8 fIsFinite; // only meaningful if bounds are valid
mutable SkBool8 fIsOval; mutable SkBool8 fIsOval;

Просмотреть файл

@ -15,11 +15,6 @@
#include "SkRRect.h" #include "SkRRect.h"
#include "SkThread.h" #include "SkThread.h"
// This value is just made-up for now. When count is 4, calling memset was much
// slower than just writing the loop. This seems odd, and hopefully in the
// future this we appear to have been a fluke...
#define MIN_COUNT_FOR_MEMSET_TO_BE_FAST 16
//////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////
/** /**
@ -143,7 +138,6 @@ void SkPath::resetFields() {
//fPathRef is assumed to have been emptied by the caller. //fPathRef is assumed to have been emptied by the caller.
fLastMoveToIndex = INITIAL_LASTMOVETOINDEX_VALUE; fLastMoveToIndex = INITIAL_LASTMOVETOINDEX_VALUE;
fFillType = kWinding_FillType; fFillType = kWinding_FillType;
fSegmentMask = 0;
fConvexity = kUnknown_Convexity; fConvexity = kUnknown_Convexity;
fDirection = kUnknown_Direction; fDirection = kUnknown_Direction;
@ -182,7 +176,6 @@ void SkPath::copyFields(const SkPath& that) {
//fPathRef is assumed to have been set by the caller. //fPathRef is assumed to have been set by the caller.
fLastMoveToIndex = that.fLastMoveToIndex; fLastMoveToIndex = that.fLastMoveToIndex;
fFillType = that.fFillType; fFillType = that.fFillType;
fSegmentMask = that.fSegmentMask;
fConvexity = that.fConvexity; fConvexity = that.fConvexity;
fDirection = that.fDirection; fDirection = that.fDirection;
} }
@ -190,14 +183,8 @@ void SkPath::copyFields(const SkPath& that) {
bool operator==(const SkPath& a, const SkPath& b) { bool operator==(const SkPath& a, const SkPath& b) {
// note: don't need to look at isConvex or bounds, since just comparing the // note: don't need to look at isConvex or bounds, since just comparing the
// raw data is sufficient. // raw data is sufficient.
// We explicitly check fSegmentMask as a quick-reject. We could skip it,
// since it is only a cache of info in the fVerbs, but its a fast way to
// notice a difference
return &a == &b || return &a == &b ||
(a.fFillType == b.fFillType && a.fSegmentMask == b.fSegmentMask && (a.fFillType == b.fFillType && *a.fPathRef.get() == *b.fPathRef.get());
*a.fPathRef.get() == *b.fPathRef.get());
} }
void SkPath::swap(SkPath& that) { void SkPath::swap(SkPath& that) {
@ -207,7 +194,6 @@ void SkPath::swap(SkPath& that) {
fPathRef.swap(&that.fPathRef); fPathRef.swap(&that.fPathRef);
SkTSwap<int>(fLastMoveToIndex, that.fLastMoveToIndex); SkTSwap<int>(fLastMoveToIndex, that.fLastMoveToIndex);
SkTSwap<uint8_t>(fFillType, that.fFillType); SkTSwap<uint8_t>(fFillType, that.fFillType);
SkTSwap<uint8_t>(fSegmentMask, that.fSegmentMask);
SkTSwap<uint8_t>(fConvexity, that.fConvexity); SkTSwap<uint8_t>(fConvexity, that.fConvexity);
SkTSwap<uint8_t>(fDirection, that.fDirection); SkTSwap<uint8_t>(fDirection, that.fDirection);
#ifdef SK_BUILD_FOR_ANDROID #ifdef SK_BUILD_FOR_ANDROID
@ -674,7 +660,6 @@ void SkPath::lineTo(SkScalar x, SkScalar y) {
SkPathRef::Editor ed(&fPathRef); SkPathRef::Editor ed(&fPathRef);
ed.growForVerb(kLine_Verb)->set(x, y); ed.growForVerb(kLine_Verb)->set(x, y);
fSegmentMask |= kLine_SegmentMask;
DIRTY_AFTER_EDIT; DIRTY_AFTER_EDIT;
} }
@ -695,7 +680,6 @@ void SkPath::quadTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) {
SkPoint* pts = ed.growForVerb(kQuad_Verb); SkPoint* pts = ed.growForVerb(kQuad_Verb);
pts[0].set(x1, y1); pts[0].set(x1, y1);
pts[1].set(x2, y2); pts[1].set(x2, y2);
fSegmentMask |= kQuad_SegmentMask;
DIRTY_AFTER_EDIT; DIRTY_AFTER_EDIT;
} }
@ -723,10 +707,9 @@ void SkPath::conicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2,
this->injectMoveToIfNeeded(); this->injectMoveToIfNeeded();
SkPathRef::Editor ed(&fPathRef); SkPathRef::Editor ed(&fPathRef);
SkPoint* pts = ed.growForConic(w); SkPoint* pts = ed.growForVerb(kConic_Verb, w);
pts[0].set(x1, y1); pts[0].set(x1, y1);
pts[1].set(x2, y2); pts[1].set(x2, y2);
fSegmentMask |= kConic_SegmentMask;
DIRTY_AFTER_EDIT; DIRTY_AFTER_EDIT;
} }
@ -751,7 +734,6 @@ void SkPath::cubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2,
pts[0].set(x1, y1); pts[0].set(x1, y1);
pts[1].set(x2, y2); pts[1].set(x2, y2);
pts[2].set(x3, y3); pts[2].set(x3, y3);
fSegmentMask |= kCubic_SegmentMask;
DIRTY_AFTER_EDIT; DIRTY_AFTER_EDIT;
} }
@ -838,29 +820,19 @@ void SkPath::addPoly(const SkPoint pts[], int count, bool close) {
return; return;
} }
SkPathRef::Editor ed(&fPathRef); fLastMoveToIndex = fPathRef->countPoints();
fLastMoveToIndex = ed.pathRef()->countPoints();
uint8_t* vb;
SkPoint* p;
// +close makes room for the extra kClose_Verb
ed.grow(count + close, count, &vb, &p);
memcpy(p, pts, count * sizeof(SkPoint)); // +close makes room for the extra kClose_Verb
vb[~0] = kMove_Verb; SkPathRef::Editor ed(&fPathRef, count+close, count);
ed.growForVerb(kMove_Verb)->set(pts[0].fX, pts[0].fY);
if (count > 1) { if (count > 1) {
// cast to unsigned, so if MIN_COUNT_FOR_MEMSET_TO_BE_FAST is defined to SkPoint* p = ed.growForRepeatedVerb(kLine_Verb, count - 1);
// be 0, the compiler will remove the test/branch entirely. memcpy(p, &pts[1], (count-1) * sizeof(SkPoint));
if ((unsigned)count >= MIN_COUNT_FOR_MEMSET_TO_BE_FAST) {
memset(vb - count, kLine_Verb, count - 1);
} else {
for (int i = 1; i < count; ++i) {
vb[~i] = kLine_Verb;
}
}
fSegmentMask |= kLine_SegmentMask;
} }
if (close) { if (close) {
vb[~count] = kClose_Verb; ed.growForVerb(kClose_Verb);
} }
DIRTY_AFTER_EDIT; DIRTY_AFTER_EDIT;
@ -1343,11 +1315,21 @@ void SkPath::addArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle
SkPoint pts[kSkBuildQuadArcStorage]; SkPoint pts[kSkBuildQuadArcStorage];
int count = build_arc_points(oval, startAngle, sweepAngle, pts); int count = build_arc_points(oval, startAngle, sweepAngle, pts);
this->incReserve(count); SkDEBUGCODE(this->validate();)
this->moveTo(pts[0]); SkASSERT(count & 1);
for (int i = 1; i < count; i += 2) {
this->quadTo(pts[i], pts[i+1]); fLastMoveToIndex = fPathRef->countPoints();
SkPathRef::Editor ed(&fPathRef, 1+(count-1)/2, count);
ed.growForVerb(kMove_Verb)->set(pts[0].fX, pts[0].fY);
if (count > 1) {
SkPoint* p = ed.growForRepeatedVerb(kQuad_Verb, (count-1)/2);
memcpy(p, &pts[1], (count-1) * sizeof(SkPoint));
} }
DIRTY_AFTER_EDIT;
SkDEBUGCODE(this->validate();)
} }
/* /*
@ -1671,7 +1653,6 @@ void SkPath::transform(const SkMatrix& matrix, SkPath* dst) const {
if (this != dst) { if (this != dst) {
dst->fFillType = fFillType; dst->fFillType = fFillType;
dst->fSegmentMask = fSegmentMask;
dst->fConvexity = fConvexity; dst->fConvexity = fConvexity;
} }
@ -2045,7 +2026,6 @@ size_t SkPath::writeToMemory(void* storage) const {
int32_t packed = (fConvexity << kConvexity_SerializationShift) | int32_t packed = (fConvexity << kConvexity_SerializationShift) |
(fFillType << kFillType_SerializationShift) | (fFillType << kFillType_SerializationShift) |
(fSegmentMask << kSegmentMask_SerializationShift) |
(fDirection << kDirection_SerializationShift) (fDirection << kDirection_SerializationShift)
#ifndef DELETE_THIS_CODE_WHEN_SKPS_ARE_REBUILT_AT_V16_AND_ALL_OTHER_INSTANCES_TOO #ifndef DELETE_THIS_CODE_WHEN_SKPS_ARE_REBUILT_AT_V16_AND_ALL_OTHER_INSTANCES_TOO
| (0x1 << kNewFormat_SerializationShift) | (0x1 << kNewFormat_SerializationShift)
@ -2070,7 +2050,6 @@ size_t SkPath::readFromMemory(const void* storage, size_t length) {
fConvexity = (packed >> kConvexity_SerializationShift) & 0xFF; fConvexity = (packed >> kConvexity_SerializationShift) & 0xFF;
fFillType = (packed >> kFillType_SerializationShift) & 0xFF; fFillType = (packed >> kFillType_SerializationShift) & 0xFF;
fSegmentMask = (packed >> kSegmentMask_SerializationShift) & 0xF;
fDirection = (packed >> kDirection_SerializationShift) & 0x3; fDirection = (packed >> kDirection_SerializationShift) & 0x3;
#ifndef DELETE_THIS_CODE_WHEN_SKPS_ARE_REBUILT_AT_V16_AND_ALL_OTHER_INSTANCES_TOO #ifndef DELETE_THIS_CODE_WHEN_SKPS_ARE_REBUILT_AT_V16_AND_ALL_OTHER_INSTANCES_TOO
bool newFormat = (packed >> kNewFormat_SerializationShift) & 1; bool newFormat = (packed >> kNewFormat_SerializationShift) & 1;
@ -2201,34 +2180,6 @@ void SkPath::validate() const {
} }
} }
} }
uint32_t mask = 0;
const uint8_t* verbs = const_cast<const SkPathRef*>(fPathRef.get())->verbs();
for (int i = 0; i < fPathRef->countVerbs(); i++) {
switch (verbs[~i]) {
case kLine_Verb:
mask |= kLine_SegmentMask;
break;
case kQuad_Verb:
mask |= kQuad_SegmentMask;
break;
case kConic_Verb:
mask |= kConic_SegmentMask;
break;
case kCubic_Verb:
mask |= kCubic_SegmentMask;
case kMove_Verb: // these verbs aren't included in the segment mask.
case kClose_Verb:
break;
case kDone_Verb:
SkDEBUGFAIL("Done verb shouldn't be recorded.");
break;
default:
SkDEBUGFAIL("Unknown Verb");
break;
}
}
SkASSERT(mask == fSegmentMask);
#endif // SK_DEBUG_PATH #endif // SK_DEBUG_PATH
} }
#endif // SK_DEBUG #endif // SK_DEBUG

Просмотреть файл

@ -28,13 +28,6 @@ SkPathRef::Editor::Editor(SkAutoTUnref<SkPathRef>* pathRef,
SkDEBUGCODE(sk_atomic_inc(&fPathRef->fEditorsAttached);) SkDEBUGCODE(sk_atomic_inc(&fPathRef->fEditorsAttached);)
} }
SkPoint* SkPathRef::Editor::growForConic(SkScalar w) {
SkDEBUGCODE(fPathRef->validate();)
SkPoint* pts = fPathRef->growForVerb(SkPath::kConic_Verb);
*fPathRef->fConicWeights.append() = w;
return pts;
}
////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////
void SkPathRef::CreateEmptyImpl(SkPathRef** empty) { void SkPathRef::CreateEmptyImpl(SkPathRef** empty) {
*empty = SkNEW(SkPathRef); *empty = SkNEW(SkPathRef);
@ -105,6 +98,8 @@ void SkPathRef::CreateTransformedCopy(SkAutoTUnref<SkPathRef>* dst,
(*dst)->fBoundsIsDirty = true; (*dst)->fBoundsIsDirty = true;
} }
(*dst)->fSegmentMask = src.fSegmentMask;
// It's an oval only if it stays a rect. // It's an oval only if it stays a rect.
(*dst)->fIsOval = src.fIsOval && matrix.rectStaysRect(); (*dst)->fIsOval = src.fIsOval && matrix.rectStaysRect();
@ -118,6 +113,7 @@ SkPathRef* SkPathRef::CreateFromBuffer(SkRBuffer* buffer
) { ) {
SkPathRef* ref = SkNEW(SkPathRef); SkPathRef* ref = SkNEW(SkPathRef);
bool isOval; bool isOval;
uint8_t segmentMask;
int32_t packed; int32_t packed;
if (!buffer->readS32(&packed)) { if (!buffer->readS32(&packed)) {
@ -130,9 +126,11 @@ SkPathRef* SkPathRef::CreateFromBuffer(SkRBuffer* buffer
#ifndef DELETE_THIS_CODE_WHEN_SKPS_ARE_REBUILT_AT_V16_AND_ALL_OTHER_INSTANCES_TOO #ifndef DELETE_THIS_CODE_WHEN_SKPS_ARE_REBUILT_AT_V16_AND_ALL_OTHER_INSTANCES_TOO
if (newFormat) { if (newFormat) {
#endif #endif
segmentMask = (packed >> kSegmentMask_SerializationShift) & 0xF;
isOval = (packed >> kIsOval_SerializationShift) & 1; isOval = (packed >> kIsOval_SerializationShift) & 1;
#ifndef DELETE_THIS_CODE_WHEN_SKPS_ARE_REBUILT_AT_V16_AND_ALL_OTHER_INSTANCES_TOO #ifndef DELETE_THIS_CODE_WHEN_SKPS_ARE_REBUILT_AT_V16_AND_ALL_OTHER_INSTANCES_TOO
} else { } else {
segmentMask = (oldPacked >> SkPath::kOldSegmentMask_SerializationShift) & 0xF;
isOval = (oldPacked >> SkPath::kOldIsOval_SerializationShift) & 1; isOval = (oldPacked >> SkPath::kOldIsOval_SerializationShift) & 1;
} }
#endif #endif
@ -159,6 +157,9 @@ SkPathRef* SkPathRef::CreateFromBuffer(SkRBuffer* buffer
return NULL; return NULL;
} }
ref->fBoundsIsDirty = false; ref->fBoundsIsDirty = false;
// resetToSize clears fSegmentMask and fIsOval
ref->fSegmentMask = segmentMask;
ref->fIsOval = isOval; ref->fIsOval = isOval;
return ref; return ref;
} }
@ -172,6 +173,7 @@ void SkPathRef::Rewind(SkAutoTUnref<SkPathRef>* pathRef) {
(*pathRef)->fFreeSpace = (*pathRef)->currSize(); (*pathRef)->fFreeSpace = (*pathRef)->currSize();
(*pathRef)->fGenerationID = 0; (*pathRef)->fGenerationID = 0;
(*pathRef)->fConicWeights.rewind(); (*pathRef)->fConicWeights.rewind();
(*pathRef)->fSegmentMask = 0;
(*pathRef)->fIsOval = false; (*pathRef)->fIsOval = false;
SkDEBUGCODE((*pathRef)->validate();) SkDEBUGCODE((*pathRef)->validate();)
} else { } else {
@ -185,6 +187,14 @@ void SkPathRef::Rewind(SkAutoTUnref<SkPathRef>* pathRef) {
bool SkPathRef::operator== (const SkPathRef& ref) const { bool SkPathRef::operator== (const SkPathRef& ref) const {
SkDEBUGCODE(this->validate();) SkDEBUGCODE(this->validate();)
SkDEBUGCODE(ref.validate();) SkDEBUGCODE(ref.validate();)
// We explicitly check fSegmentMask as a quick-reject. We could skip it,
// since it is only a cache of info in the fVerbs, but its a fast way to
// notice a difference
if (fSegmentMask != ref.fSegmentMask) {
return false;
}
bool genIDMatch = fGenerationID && fGenerationID == ref.fGenerationID; bool genIDMatch = fGenerationID && fGenerationID == ref.fGenerationID;
#ifdef SK_RELEASE #ifdef SK_RELEASE
if (genIDMatch) { if (genIDMatch) {
@ -222,7 +232,7 @@ bool SkPathRef::operator== (const SkPathRef& ref) const {
return true; return true;
} }
void SkPathRef::writeToBuffer(SkWBuffer* buffer) { void SkPathRef::writeToBuffer(SkWBuffer* buffer) const {
SkDEBUGCODE(this->validate();) SkDEBUGCODE(this->validate();)
SkDEBUGCODE(size_t beforePos = buffer->pos();) SkDEBUGCODE(size_t beforePos = buffer->pos();)
@ -231,7 +241,8 @@ void SkPathRef::writeToBuffer(SkWBuffer* buffer) {
const SkRect& bounds = this->getBounds(); const SkRect& bounds = this->getBounds();
int32_t packed = ((fIsFinite & 1) << kIsFinite_SerializationShift) | int32_t packed = ((fIsFinite & 1) << kIsFinite_SerializationShift) |
((fIsOval & 1) << kIsOval_SerializationShift); ((fIsOval & 1) << kIsOval_SerializationShift) |
(fSegmentMask << kSegmentMask_SerializationShift);
buffer->write32(packed); buffer->write32(packed);
// TODO: write gen ID here. Problem: We don't know if we're cross process or not from // TODO: write gen ID here. Problem: We don't know if we're cross process or not from
@ -248,7 +259,7 @@ void SkPathRef::writeToBuffer(SkWBuffer* buffer) {
SkASSERT(buffer->pos() - beforePos == (size_t) this->writeSize()); SkASSERT(buffer->pos() - beforePos == (size_t) this->writeSize());
} }
uint32_t SkPathRef::writeSize() { uint32_t SkPathRef::writeSize() const {
return uint32_t(5 * sizeof(uint32_t) + return uint32_t(5 * sizeof(uint32_t) +
fVerbCnt * sizeof(uint8_t) + fVerbCnt * sizeof(uint8_t) +
fPointCnt * sizeof(SkPoint) + fPointCnt * sizeof(SkPoint) +
@ -273,11 +284,91 @@ void SkPathRef::copy(const SkPathRef& ref,
fBounds = ref.fBounds; fBounds = ref.fBounds;
fIsFinite = ref.fIsFinite; fIsFinite = ref.fIsFinite;
} }
fSegmentMask = ref.fSegmentMask;
fIsOval = ref.fIsOval; fIsOval = ref.fIsOval;
SkDEBUGCODE(this->validate();) SkDEBUGCODE(this->validate();)
} }
SkPoint* SkPathRef::growForVerb(int /* SkPath::Verb*/ verb) { SkPoint* SkPathRef::growForRepeatedVerb(int /*SkPath::Verb*/ verb,
int numVbs,
SkScalar** weights) {
// This value is just made-up for now. When count is 4, calling memset was much
// slower than just writing the loop. This seems odd, and hopefully in the
// future this will appear to have been a fluke...
static const unsigned int kMIN_COUNT_FOR_MEMSET_TO_BE_FAST = 16;
SkDEBUGCODE(this->validate();)
int pCnt;
bool dirtyAfterEdit = true;
switch (verb) {
case SkPath::kMove_Verb:
pCnt = numVbs;
dirtyAfterEdit = false;
break;
case SkPath::kLine_Verb:
fSegmentMask |= SkPath::kLine_SegmentMask;
pCnt = numVbs;
break;
case SkPath::kQuad_Verb:
fSegmentMask |= SkPath::kQuad_SegmentMask;
pCnt = 2 * numVbs;
break;
case SkPath::kConic_Verb:
fSegmentMask |= SkPath::kConic_SegmentMask;
pCnt = 2 * numVbs;
break;
case SkPath::kCubic_Verb:
fSegmentMask |= SkPath::kCubic_SegmentMask;
pCnt = 3 * numVbs;
break;
case SkPath::kClose_Verb:
SkDEBUGFAIL("growForRepeatedVerb called for kClose_Verb");
pCnt = 0;
dirtyAfterEdit = false;
break;
case SkPath::kDone_Verb:
SkDEBUGFAIL("growForRepeatedVerb called for kDone");
// fall through
default:
SkDEBUGFAIL("default should not be reached");
pCnt = 0;
dirtyAfterEdit = false;
}
size_t space = numVbs * sizeof(uint8_t) + pCnt * sizeof (SkPoint);
this->makeSpace(space);
SkPoint* ret = fPoints + fPointCnt;
uint8_t* vb = fVerbs - fVerbCnt;
// cast to unsigned, so if kMIN_COUNT_FOR_MEMSET_TO_BE_FAST is defined to
// be 0, the compiler will remove the test/branch entirely.
if ((unsigned)numVbs >= kMIN_COUNT_FOR_MEMSET_TO_BE_FAST) {
memset(vb - numVbs, verb, numVbs);
} else {
for (int i = 0; i < numVbs; ++i) {
vb[~i] = verb;
}
}
fVerbCnt += numVbs;
fPointCnt += pCnt;
fFreeSpace -= space;
fBoundsIsDirty = true; // this also invalidates fIsFinite
if (dirtyAfterEdit) {
fIsOval = false;
}
if (SkPath::kConic_Verb == verb) {
SkASSERT(NULL != weights);
*weights = fConicWeights.append(numVbs);
}
SkDEBUGCODE(this->validate();)
return ret;
}
SkPoint* SkPathRef::growForVerb(int /* SkPath::Verb*/ verb, SkScalar weight) {
SkDEBUGCODE(this->validate();) SkDEBUGCODE(this->validate();)
int pCnt; int pCnt;
bool dirtyAfterEdit = true; bool dirtyAfterEdit = true;
@ -287,14 +378,19 @@ SkPoint* SkPathRef::growForVerb(int /* SkPath::Verb*/ verb) {
dirtyAfterEdit = false; dirtyAfterEdit = false;
break; break;
case SkPath::kLine_Verb: case SkPath::kLine_Verb:
fSegmentMask |= SkPath::kLine_SegmentMask;
pCnt = 1; pCnt = 1;
break; break;
case SkPath::kQuad_Verb: case SkPath::kQuad_Verb:
// fall through fSegmentMask |= SkPath::kQuad_SegmentMask;
pCnt = 2;
break;
case SkPath::kConic_Verb: case SkPath::kConic_Verb:
fSegmentMask |= SkPath::kConic_SegmentMask;
pCnt = 2; pCnt = 2;
break; break;
case SkPath::kCubic_Verb: case SkPath::kCubic_Verb:
fSegmentMask |= SkPath::kCubic_SegmentMask;
pCnt = 3; pCnt = 3;
break; break;
case SkPath::kClose_Verb: case SkPath::kClose_Verb:
@ -320,6 +416,11 @@ SkPoint* SkPathRef::growForVerb(int /* SkPath::Verb*/ verb) {
if (dirtyAfterEdit) { if (dirtyAfterEdit) {
fIsOval = false; fIsOval = false;
} }
if (SkPath::kConic_Verb == verb) {
*fConicWeights.append() = weight;
}
SkDEBUGCODE(this->validate();) SkDEBUGCODE(this->validate();)
return ret; return ret;
} }
@ -369,5 +470,36 @@ void SkPathRef::validate() const {
} }
SkASSERT(SkToBool(fIsFinite) == isFinite); SkASSERT(SkToBool(fIsFinite) == isFinite);
} }
#ifdef SK_DEBUG_PATH
uint32_t mask = 0;
for (int i = 0; i < fVerbCnt; ++i) {
switch (fVerbs[~i]) {
case SkPath::kMove_Verb:
break;
case SkPath::kLine_Verb:
mask |= SkPath::kLine_SegmentMask;
break;
case SkPath::kQuad_Verb:
mask |= SkPath::kQuad_SegmentMask;
break;
case SkPath::kConic_Verb:
mask |= SkPath::kConic_SegmentMask;
break;
case SkPath::kCubic_Verb:
mask |= SkPath::kCubic_SegmentMask;
break;
case SkPath::kClose_Verb:
break;
case SkPath::kDone_Verb:
SkDEBUGFAIL("Done verb shouldn't be recorded.");
break;
default:
SkDEBUGFAIL("Unknown Verb");
break;
}
}
SkASSERT(mask == fSegmentMask);
#endif // SK_DEBUG_PATH
} }
#endif #endif

Просмотреть файл

@ -3138,6 +3138,78 @@ static void test_contains(skiatest::Reporter* reporter) {
} }
} }
static void test_pathref(skiatest::Reporter* reporter) {
static const int kRepeatCnt = 10;
SkPathRef* pathRef = SkPathRef::CreateEmpty();
SkAutoTUnref<SkPathRef> pathRef2(SkPathRef::CreateEmpty());
SkMatrix mat;
mat.setTranslate(10, 10);
SkPathRef::CreateTransformedCopy(&pathRef2, *pathRef, mat);
SkPathRef::Editor ed(&pathRef2);
{
ed.growForRepeatedVerb(SkPath::kMove_Verb, kRepeatCnt);
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef2->countVerbs());
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef2->countPoints());
REPORTER_ASSERT(reporter, 0 == pathRef2->getSegmentMasks());
for (int i = 0; i < kRepeatCnt; ++i) {
REPORTER_ASSERT(reporter, SkPath::kMove_Verb == pathRef2->atVerb(i));
}
ed.resetToSize(0, 0, 0);
}
{
ed.growForRepeatedVerb(SkPath::kLine_Verb, kRepeatCnt);
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef2->countVerbs());
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef2->countPoints());
REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == pathRef2->getSegmentMasks());
for (int i = 0; i < kRepeatCnt; ++i) {
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == pathRef2->atVerb(i));
}
ed.resetToSize(0, 0, 0);
}
{
ed.growForRepeatedVerb(SkPath::kQuad_Verb, kRepeatCnt);
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef2->countVerbs());
REPORTER_ASSERT(reporter, 2*kRepeatCnt == pathRef2->countPoints());
REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == pathRef2->getSegmentMasks());
for (int i = 0; i < kRepeatCnt; ++i) {
REPORTER_ASSERT(reporter, SkPath::kQuad_Verb == pathRef2->atVerb(i));
}
ed.resetToSize(0, 0, 0);
}
{
SkScalar* weights = NULL;
ed.growForRepeatedVerb(SkPath::kConic_Verb, kRepeatCnt, &weights);
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef2->countVerbs());
REPORTER_ASSERT(reporter, 2*kRepeatCnt == pathRef2->countPoints());
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef2->countWeights());
REPORTER_ASSERT(reporter, SkPath::kConic_SegmentMask == pathRef2->getSegmentMasks());
REPORTER_ASSERT(reporter, NULL != weights);
for (int i = 0; i < kRepeatCnt; ++i) {
REPORTER_ASSERT(reporter, SkPath::kConic_Verb == pathRef2->atVerb(i));
}
ed.resetToSize(0, 0, 0);
}
{
ed.growForRepeatedVerb(SkPath::kCubic_Verb, kRepeatCnt);
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef2->countVerbs());
REPORTER_ASSERT(reporter, 3*kRepeatCnt == pathRef2->countPoints());
REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == pathRef2->getSegmentMasks());
for (int i = 0; i < kRepeatCnt; ++i) {
REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == pathRef2->atVerb(i));
}
ed.resetToSize(0, 0, 0);
}
}
static void test_operatorEqual(skiatest::Reporter* reporter) { static void test_operatorEqual(skiatest::Reporter* reporter) {
SkPath a; SkPath a;
SkPath b; SkPath b;
@ -3297,5 +3369,6 @@ DEF_TEST(Path, reporter) {
test_conicTo_special_case(reporter); test_conicTo_special_case(reporter);
test_get_point(reporter); test_get_point(reporter);
test_contains(reporter); test_contains(reporter);
test_pathref(reporter);
PathTest_Private::TestPathTo(reporter); PathTest_Private::TestPathTo(reporter);
} }