зеркало из https://github.com/mozilla/moz-skia.git
shape ops work in progress
good checkpoint: nearly all tests pass solidly here git-svn-id: http://skia.googlecode.com/svn/trunk@7420 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
Родитель
e219baf747
Коммит
85ec74ca54
|
@ -206,7 +206,10 @@ void computeDelta(const Cubic& c1, double t1, double scale1, const Cubic& c2, do
|
|||
delta2 = cubicDelta(dxy2, tangent2, scale2 / precisionUnit);
|
||||
}
|
||||
|
||||
#if SK_DEBUG
|
||||
int debugDepth;
|
||||
#endif
|
||||
|
||||
// this flavor approximates the cubics with quads to find the intersecting ts
|
||||
// OPTIMIZE: if this strategy proves successful, the quad approximations, or the ts used
|
||||
// to create the approximations, could be stored in the cubic segment
|
||||
|
@ -217,14 +220,14 @@ int debugDepth;
|
|||
// t range ala is linear inner. The range can be figured by taking the dx/dy and determining
|
||||
// the fraction that matches the precision. That fraction is the change in t for the smaller cubic.
|
||||
static bool intersect2(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2,
|
||||
double t2s, double t2e, Intersections& i) {
|
||||
double t2s, double t2e, double precisionScale, Intersections& i) {
|
||||
Cubic c1, c2;
|
||||
sub_divide(cubic1, t1s, t1e, c1);
|
||||
sub_divide(cubic2, t2s, t2e, c2);
|
||||
SkTDArray<double> ts1;
|
||||
cubic_to_quadratics(c1, calcPrecision(c1), ts1);
|
||||
cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1);
|
||||
SkTDArray<double> ts2;
|
||||
cubic_to_quadratics(c2, calcPrecision(c2), ts2);
|
||||
cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2);
|
||||
double t1Start = t1s;
|
||||
int ts1Count = ts1.count();
|
||||
for (int i1 = 0; i1 <= ts1Count; ++i1) {
|
||||
|
@ -277,14 +280,22 @@ static bool intersect2(const Cubic& cubic1, double t1s, double t1e, const Cubic&
|
|||
} else {
|
||||
double dt1, dt2;
|
||||
computeDelta(cubic1, to1, (t1e - t1s), cubic2, to2, (t2e - t2s), dt1, dt2);
|
||||
double scale = precisionScale;
|
||||
if (dt1 > 0.125 || dt2 > 0.125) {
|
||||
scale /= 2;
|
||||
SkDebugf("%s scale=%1.9g\n", __FUNCTION__, scale);
|
||||
}
|
||||
#if SK_DEBUG
|
||||
++debugDepth;
|
||||
assert(debugDepth < 10);
|
||||
#endif
|
||||
i.swap();
|
||||
intersect2(cubic2, SkTMax(to2 - dt2, 0.), SkTMin(to2 + dt2, 1.),
|
||||
cubic1, SkTMax(to1 - dt1, 0.), SkTMin(to1 + dt1, 1.), i);
|
||||
cubic1, SkTMax(to1 - dt1, 0.), SkTMin(to1 + dt1, 1.), scale, i);
|
||||
i.swap();
|
||||
#if SK_DEBUG
|
||||
--debugDepth;
|
||||
|
||||
#endif
|
||||
}
|
||||
}
|
||||
t2Start = t2;
|
||||
|
@ -336,9 +347,11 @@ static bool intersectEnd(const Cubic& cubic1, bool start, const Cubic& cubic2, c
|
|||
tMin = std::min(tMin, local2.fT[0][index]);
|
||||
tMax = std::max(tMax, local2.fT[0][index]);
|
||||
}
|
||||
#if SK_DEBUG
|
||||
debugDepth = 0;
|
||||
#endif
|
||||
return intersect2(cubic1, start ? 0 : 1, start ? 1.0 / precisionUnit : 1 - 1.0 / precisionUnit,
|
||||
cubic2, tMin, tMax, i);
|
||||
cubic2, tMin, tMax, 1, i);
|
||||
}
|
||||
|
||||
// FIXME: add intersection of convex null on cubics' ends with the opposite cubic. The hull line
|
||||
|
@ -346,16 +359,20 @@ static bool intersectEnd(const Cubic& cubic1, bool start, const Cubic& cubic2, c
|
|||
// line segments intersect the cubic, then use the intersections to construct a subdivision for
|
||||
// quadratic curve fitting.
|
||||
bool intersect2(const Cubic& c1, const Cubic& c2, Intersections& i) {
|
||||
#if SK_DEBUG
|
||||
debugDepth = 0;
|
||||
bool result = intersect2(c1, 0, 1, c2, 0, 1, i);
|
||||
#endif
|
||||
bool result = intersect2(c1, 0, 1, c2, 0, 1, 1, i);
|
||||
// FIXME: pass in cached bounds from caller
|
||||
_Rect c1Bounds, c2Bounds;
|
||||
c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ?
|
||||
c2Bounds.setBounds(c2);
|
||||
result |= intersectEnd(c1, false, c2, c2Bounds, i);
|
||||
result |= intersectEnd(c1, true, c2, c2Bounds, i);
|
||||
i.swap();
|
||||
result |= intersectEnd(c2, false, c1, c1Bounds, i);
|
||||
result |= intersectEnd(c2, true, c1, c1Bounds, i);
|
||||
i.swap();
|
||||
return result;
|
||||
}
|
||||
|
||||
|
|
|
@ -98,6 +98,15 @@ static void oneOff(const Cubic& cubic1, const Cubic& cubic2) {
|
|||
}
|
||||
|
||||
static const Cubic testSet[] = {
|
||||
{{0, 0}, {0, 1}, {1, 1}, {1, 0}},
|
||||
{{1, 0}, {0, 0}, {0, 1}, {1, 1}},
|
||||
|
||||
{{95.837747722788592, 45.025976907939643}, {16.564570095652982, 0.72959763963222402}, {63.209855865319199, 68.047528419665767}, {57.640240647662544, 59.524565264361243}},
|
||||
{{51.593891741518817, 38.53849970667553}, {62.34752929878772, 74.924924725166022}, {74.810149322641152, 34.17966562983564}, {29.368398119401373, 94.66719277886078}},
|
||||
|
||||
{{39.765160968417838, 33.060396198677083}, {5.1922921581157908, 66.854301452103215}, {31.619281802149157, 25.269248720849514}, {81.541621071073038, 70.025341524754353}},
|
||||
{{46.078911165743556, 48.259962651999651}, {20.24450549867214, 49.403916182650214}, {0.26325131778756683, 24.46489805563581}, {15.915006546264051, 83.515023059917155}},
|
||||
|
||||
{{65.454505973241524, 93.881892270353575}, {45.867360264932437, 92.723972719499827}, {2.1464054482739447, 74.636369140183717}, {33.774068594804994, 40.770872887582925}},
|
||||
{{72.963387832494163, 95.659300729473728}, {11.809496633619768, 82.209921247423594}, {13.456139067865974, 57.329313623406605}, {36.060621606214262, 70.867335643091849}},
|
||||
|
||||
|
@ -295,7 +304,7 @@ void CubicIntersection_RandTestOld() {
|
|||
|
||||
void CubicIntersection_RandTest() {
|
||||
srand(0);
|
||||
const int tests = 1000000; // 10000000;
|
||||
const int tests = 10000000;
|
||||
for (int test = 0; test < tests; ++test) {
|
||||
Cubic cubic1, cubic2;
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
|
|
|
@ -151,14 +151,11 @@ bool isLinear(const Cubic& cubic, int startIndex, int endIndex) {
|
|||
lineParameters.cubicEndPoints(cubic, startIndex, endIndex);
|
||||
// FIXME: maybe it's possible to avoid this and compare non-normalized
|
||||
lineParameters.normalize();
|
||||
int mask = other_two(startIndex, endIndex);
|
||||
int inner1 = startIndex ^ mask;
|
||||
int inner2 = endIndex ^ mask;
|
||||
double distance = lineParameters.controlPtDistance(cubic, inner1);
|
||||
double distance = lineParameters.controlPtDistance(cubic, 1);
|
||||
if (!approximately_zero(distance)) {
|
||||
return false;
|
||||
}
|
||||
distance = lineParameters.controlPtDistance(cubic, inner2);
|
||||
distance = lineParameters.controlPtDistance(cubic, 2);
|
||||
return approximately_zero(distance);
|
||||
}
|
||||
|
||||
|
|
|
@ -28,6 +28,7 @@ int UlpsDiff(float A, float B);
|
|||
const double FLT_EPSILON_CUBED = FLT_EPSILON * FLT_EPSILON * FLT_EPSILON;
|
||||
const double FLT_EPSILON_SQUARED = FLT_EPSILON * FLT_EPSILON;
|
||||
const double FLT_EPSILON_SQRT = sqrt(FLT_EPSILON);
|
||||
const double FLT_EPSILON_INVERSE = 1 / FLT_EPSILON;
|
||||
|
||||
inline bool approximately_zero(double x) {
|
||||
|
||||
|
@ -56,6 +57,10 @@ inline bool approximately_zero_sqrt(double x) {
|
|||
return fabs(x) < FLT_EPSILON_SQRT;
|
||||
}
|
||||
|
||||
inline bool approximately_zero_inverse(double x) {
|
||||
return fabs(x) > FLT_EPSILON_INVERSE;
|
||||
}
|
||||
|
||||
// Use this for comparing Ts in the range of 0 to 1. For general numbers (larger and smaller) use
|
||||
// AlmostEqualUlps instead.
|
||||
inline bool approximately_equal(double x, double y) {
|
||||
|
@ -247,11 +252,11 @@ struct _Rect {
|
|||
}
|
||||
|
||||
bool intersects(_Rect& r) const {
|
||||
assert(left < right);
|
||||
assert(top < bottom);
|
||||
assert(r.left < r.right);
|
||||
assert(r.top < r.bottom);
|
||||
return r.left < right && left < r.right && r.top < bottom && top < r.bottom;
|
||||
assert(left <= right);
|
||||
assert(top <= bottom);
|
||||
assert(r.left <= r.right);
|
||||
assert(r.top <= r.bottom);
|
||||
return r.left <= right && left <= r.right && r.top <= bottom && top <= r.bottom;
|
||||
}
|
||||
|
||||
void set(const _Point& pt) {
|
||||
|
|
|
@ -15,13 +15,13 @@ void cubecode_test(int test);
|
|||
void Intersection_Tests() {
|
||||
int testsRun = 0;
|
||||
|
||||
QuadraticIntersection_Test();
|
||||
SimplifyNew_Test();
|
||||
CubicToQuadratics_Test();
|
||||
CubicIntersection_OneOffTest();
|
||||
QuadraticIntersection_Test();
|
||||
QuarticRoot_Test();
|
||||
CubicIntersection_RandTest();
|
||||
SimplifyNew_Test();
|
||||
CubicsToQuadratics_RandTest();
|
||||
CubicToQuadratics_Test();
|
||||
Simplify4x4RectsThreaded_Test(testsRun);
|
||||
Simplify4x4QuadraticsThreaded_Test(testsRun);
|
||||
QuadLineIntersectThreaded_Test(testsRun);
|
||||
|
|
|
@ -13,6 +13,10 @@
|
|||
#include "QuadraticUtilities.h"
|
||||
#include "TSearch.h"
|
||||
|
||||
#if SK_DEBUG
|
||||
#include "LineUtilities.h"
|
||||
#endif
|
||||
|
||||
/* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F
|
||||
* and given x = at^2 + bt + c (the parameterized form)
|
||||
* y = dt^2 + et + f
|
||||
|
@ -141,8 +145,11 @@ static bool pointInTriangle(const _Point& pt, const _Line* testLines[]) {
|
|||
return (u >= 0) && (v >= 0) && (u + v < 1);
|
||||
}
|
||||
|
||||
// returns false if there's more than one intercept or the intercept doesn't match the point
|
||||
// returns true if the intercept was successfully added or if the
|
||||
// original quads need to be subdivided
|
||||
static bool addIntercept(const Quadratic& q1, const Quadratic& q2, double tMin, double tMax,
|
||||
Intersections& i) {
|
||||
Intersections& i, bool* subDivide) {
|
||||
double tMid = (tMin + tMax) / 2;
|
||||
_Point mid;
|
||||
xy_at_t(q2, tMid, mid.x, mid.y);
|
||||
|
@ -156,10 +163,15 @@ static bool addIntercept(const Quadratic& q1, const Quadratic& q2, double tMin,
|
|||
line[1].y += dxdy.y;
|
||||
Intersections rootTs;
|
||||
int roots = intersect(q1, line, rootTs);
|
||||
if (roots == 0) {
|
||||
if (subDivide) {
|
||||
*subDivide = true;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
if (roots == 2) {
|
||||
return false;
|
||||
}
|
||||
SkASSERT(roots == 1);
|
||||
_Point pt2;
|
||||
xy_at_t(q1, rootTs.fT[0][0], pt2.x, pt2.y);
|
||||
if (!pt2.approximatelyEqual(mid)) {
|
||||
|
@ -170,7 +182,7 @@ static bool addIntercept(const Quadratic& q1, const Quadratic& q2, double tMin,
|
|||
}
|
||||
|
||||
static bool isLinearInner(const Quadratic& q1, double t1s, double t1e, const Quadratic& q2,
|
||||
double t2s, double t2e, Intersections& i) {
|
||||
double t2s, double t2e, Intersections& i, bool* subDivide) {
|
||||
Quadratic hull;
|
||||
sub_divide(q1, t1s, t1e, hull);
|
||||
_Line line = {hull[2], hull[0]};
|
||||
|
@ -182,6 +194,12 @@ static bool isLinearInner(const Quadratic& q1, double t1s, double t1e, const Qua
|
|||
int roots = intersect(q2, *testLines[index], rootTs);
|
||||
for (int idx2 = 0; idx2 < roots; ++idx2) {
|
||||
double t = rootTs.fT[0][idx2];
|
||||
#if SK_DEBUG
|
||||
_Point qPt, lPt;
|
||||
xy_at_t(q2, t, qPt.x, qPt.y);
|
||||
xy_at_t(*testLines[index], rootTs.fT[1][idx2], lPt.x, lPt.y);
|
||||
SkASSERT(qPt.approximatelyEqual(lPt));
|
||||
#endif
|
||||
if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) {
|
||||
continue;
|
||||
}
|
||||
|
@ -227,25 +245,25 @@ static bool isLinearInner(const Quadratic& q1, double t1s, double t1e, const Qua
|
|||
|
||||
}
|
||||
if (split == 0) { // there's one point
|
||||
if (addIntercept(q1, q2, tMin, tMax, i)) {
|
||||
if (addIntercept(q1, q2, tMin, tMax, i, subDivide)) {
|
||||
return true;
|
||||
}
|
||||
i.swap();
|
||||
return isLinearInner(q2, tMin, tMax, q1, t1s, t1e, i);
|
||||
return isLinearInner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide);
|
||||
}
|
||||
// At this point, we have two ranges of t values -- treat each separately at the split
|
||||
bool result;
|
||||
if (addIntercept(q1, q2, tMin, tsFound[split - 1], i)) {
|
||||
if (addIntercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) {
|
||||
result = true;
|
||||
} else {
|
||||
i.swap();
|
||||
result = isLinearInner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i);
|
||||
result = isLinearInner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide);
|
||||
}
|
||||
if (addIntercept(q1, q2, tsFound[split], tMax, i)) {
|
||||
if (addIntercept(q1, q2, tsFound[split], tMax, i, subDivide)) {
|
||||
result = true;
|
||||
} else {
|
||||
i.swap();
|
||||
result |= isLinearInner(q2, tsFound[split], tMax, q1, t1s, t1e, i);
|
||||
result |= isLinearInner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDivide);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
@ -266,11 +284,11 @@ static bool isLinear(const Quadratic& q1, const Quadratic& q2, Intersections& i)
|
|||
if (!approximately_zero_sqrt(measure)) {
|
||||
return false;
|
||||
}
|
||||
return isLinearInner(q1, 0, 1, q2, 0, 1, i);
|
||||
return isLinearInner(q1, 0, 1, q2, 0, 1, i, NULL);
|
||||
}
|
||||
|
||||
// FIXME: if flat measure is sufficiently large, then probably the quartic solution failed
|
||||
static bool relaxedIsLinear(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
|
||||
static void relaxedIsLinear(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
|
||||
double m1 = flatMeasure(q1);
|
||||
double m2 = flatMeasure(q2);
|
||||
#if SK_DEBUG
|
||||
|
@ -280,12 +298,25 @@ static bool relaxedIsLinear(const Quadratic& q1, const Quadratic& q2, Intersecti
|
|||
}
|
||||
#endif
|
||||
i.reset();
|
||||
if (m1 < m2) {
|
||||
isLinearInner(q1, 0, 1, q2, 0, 1, i);
|
||||
return false;
|
||||
} else {
|
||||
isLinearInner(q2, 0, 1, q1, 0, 1, i);
|
||||
return true;
|
||||
const Quadratic& rounder = m2 < m1 ? q1 : q2;
|
||||
const Quadratic& flatter = m2 < m1 ? q2 : q1;
|
||||
bool subDivide = false;
|
||||
isLinearInner(flatter, 0, 1, rounder, 0, 1, i, &subDivide);
|
||||
if (subDivide) {
|
||||
QuadraticPair pair;
|
||||
chop_at(flatter, pair, 0.5);
|
||||
Intersections firstI, secondI;
|
||||
relaxedIsLinear(pair.first(), rounder, firstI);
|
||||
for (int index = 0; index < firstI.used(); ++index) {
|
||||
i.insert(firstI.fT[0][index] * 0.5, firstI.fT[1][index]);
|
||||
}
|
||||
relaxedIsLinear(pair.second(), rounder, secondI);
|
||||
for (int index = 0; index < secondI.used(); ++index) {
|
||||
i.insert(0.5 + secondI.fT[0][index] * 0.5, secondI.fT[1][index]);
|
||||
}
|
||||
}
|
||||
if (m2 < m1) {
|
||||
i.swapPts();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -428,9 +459,7 @@ bool intersect2(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
|
|||
}
|
||||
}
|
||||
if (i.fUsed && i.fUsed2 && !foundSomething) {
|
||||
if (relaxedIsLinear(q1, q2, i)) {
|
||||
i.swapPts();
|
||||
}
|
||||
relaxedIsLinear(q1, q2, i);
|
||||
return i.intersected();
|
||||
}
|
||||
double roots1Copy[4], roots2Copy[4];
|
||||
|
|
|
@ -97,7 +97,9 @@ int quadraticRootsValidT(double A, double B, double C, double t[2]) {
|
|||
|
||||
// unlike quadratic roots, this does not discard real roots <= 0 or >= 1
|
||||
int quadraticRootsReal(const double A, const double B, const double C, double s[2]) {
|
||||
if (approximately_zero(A)) {
|
||||
const double p = B / (2 * A);
|
||||
const double q = C / A;
|
||||
if (approximately_zero(A) && (approximately_zero_inverse(p) || approximately_zero_inverse(q))) {
|
||||
if (approximately_zero(B)) {
|
||||
s[0] = 0;
|
||||
return C == 0;
|
||||
|
@ -106,8 +108,6 @@ int quadraticRootsReal(const double A, const double B, const double C, double s[
|
|||
return 1;
|
||||
}
|
||||
/* normal form: x^2 + px + q = 0 */
|
||||
const double p = B / (2 * A);
|
||||
const double q = C / A;
|
||||
const double p2 = p * p;
|
||||
#if 0
|
||||
double D = AlmostEqualUlps(p2, q) ? 0 : p2 - q;
|
||||
|
|
|
@ -1017,12 +1017,14 @@ public:
|
|||
void cubicTo(const SkPoint& pt1, const SkPoint& pt2, const SkPoint& pt3) {
|
||||
lineTo();
|
||||
moveTo();
|
||||
fDefer[1] = pt3;
|
||||
nudge();
|
||||
fDefer[0] = fDefer[1];
|
||||
#if DEBUG_PATH_CONSTRUCTION
|
||||
SkDebugf("path.cubicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g,%1.9g);\n",
|
||||
pt1.fX, pt1.fY, pt2.fX, pt2.fY, pt3.fX, pt3.fY);
|
||||
pt1.fX, pt1.fY, pt2.fX, pt2.fY, fDefer[1].fX, fDefer[1].fY);
|
||||
#endif
|
||||
fPathPtr->cubicTo(pt1.fX, pt1.fY, pt2.fX, pt2.fY, pt3.fX, pt3.fY);
|
||||
fDefer[0] = fDefer[1] = pt3;
|
||||
fPathPtr->cubicTo(pt1.fX, pt1.fY, pt2.fX, pt2.fY, fDefer[1].fX, fDefer[1].fY);
|
||||
fEmpty = false;
|
||||
}
|
||||
|
||||
|
@ -1070,6 +1072,7 @@ public:
|
|||
return;
|
||||
}
|
||||
moveTo();
|
||||
nudge();
|
||||
fEmpty = false;
|
||||
#if DEBUG_PATH_CONSTRUCTION
|
||||
SkDebugf("path.lineTo(%1.9g,%1.9g);\n", fDefer[1].fX, fDefer[1].fY);
|
||||
|
@ -1081,16 +1084,26 @@ public:
|
|||
const SkPath* nativePath() const {
|
||||
return fPathPtr;
|
||||
}
|
||||
|
||||
void nudge() {
|
||||
if (fEmpty || !AlmostEqualUlps(fDefer[1].fX, fFirstPt.fX)
|
||||
|| !AlmostEqualUlps(fDefer[1].fY, fFirstPt.fY)) {
|
||||
return;
|
||||
}
|
||||
fDefer[1] = fFirstPt;
|
||||
}
|
||||
|
||||
void quadTo(const SkPoint& pt1, const SkPoint& pt2) {
|
||||
lineTo();
|
||||
moveTo();
|
||||
fDefer[1] = pt2;
|
||||
nudge();
|
||||
fDefer[0] = fDefer[1];
|
||||
#if DEBUG_PATH_CONSTRUCTION
|
||||
SkDebugf("path.quadTo(%1.9g,%1.9g, %1.9g,%1.9g);\n",
|
||||
pt1.fX, pt1.fY, pt2.fX, pt2.fY);
|
||||
pt1.fX, pt1.fY, fDefer[1].fX, fDefer[1].fY);
|
||||
#endif
|
||||
fPathPtr->quadTo(pt1.fX, pt1.fY, pt2.fX, pt2.fY);
|
||||
fDefer[0] = fDefer[1] = pt2;
|
||||
fPathPtr->quadTo(pt1.fX, pt1.fY, fDefer[1].fX, fDefer[1].fY);
|
||||
fEmpty = false;
|
||||
}
|
||||
|
||||
|
@ -5097,7 +5110,6 @@ static void debugShowCubicLineIntersection(int pts, const Work& wt,
|
|||
SkDebugf("\n");
|
||||
}
|
||||
|
||||
#if APPROXIMATE_CUBICS
|
||||
// FIXME: show more than two intersection points
|
||||
static void debugShowCubicQuadIntersection(int pts, const Work& wt,
|
||||
const Work& wn, const double wtTs[2], const double wnTs[2]) {
|
||||
|
@ -5112,7 +5124,7 @@ static void debugShowCubicQuadIntersection(int pts, const Work& wt,
|
|||
}
|
||||
SkPoint wtOutPt, wnOutPt;
|
||||
CubicXYAtT(wt.pts(), wtTs[0], &wtOutPt);
|
||||
CubicXYAtT(wn.pts(), wnTs[0], &wnOutPt);
|
||||
QuadXYAtT(wn.pts(), wnTs[0], &wnOutPt);
|
||||
SkDebugf("%s wtTs[0]=%1.9g (%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g) (%1.9g,%1.9g)",
|
||||
__FUNCTION__,
|
||||
wtTs[0], wt.pts()[0].fX, wt.pts()[0].fY, wt.pts()[1].fX, wt.pts()[1].fY,
|
||||
|
@ -5163,7 +5175,7 @@ static void debugShowCubicIntersection(int pts, const Work& wt,
|
|||
}
|
||||
SkDebugf("\n");
|
||||
}
|
||||
#endif
|
||||
|
||||
#else
|
||||
static void debugShowLineIntersection(int , const Work& ,
|
||||
const Work& , const double [2], const double [2]) {
|
||||
|
@ -5181,7 +5193,6 @@ static void debugShowCubicLineIntersection(int , const Work& ,
|
|||
const Work& , const double [2], const double [2]) {
|
||||
}
|
||||
|
||||
#if APPROXIMATE_CUBICS
|
||||
static void debugShowCubicQuadIntersection(int , const Work& ,
|
||||
const Work& , const double [2], const double [2]) {
|
||||
}
|
||||
|
@ -5190,7 +5201,6 @@ static void debugShowCubicIntersection(int , const Work& ,
|
|||
const Work& , const double [2], const double [2]) {
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
static bool addIntersectTs(Contour* test, Contour* next) {
|
||||
|
||||
|
@ -5340,6 +5350,7 @@ static bool addIntersectTs(Contour* test, Contour* next) {
|
|||
#else
|
||||
wt.promoteToCubic();
|
||||
pts = CubicIntersect(wt.cubic(), wn.pts(), ts);
|
||||
debugShowCubicIntersection(pts, wt, wn, ts.fT[0], ts.fT[1]);
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
|
@ -5370,16 +5381,13 @@ static bool addIntersectTs(Contour* test, Contour* next) {
|
|||
#else
|
||||
wn.promoteToCubic();
|
||||
pts = CubicIntersect(wt.pts(), wn.cubic(), ts);
|
||||
debugShowCubicIntersection(pts, wt, wn, ts.fT[0], ts.fT[1]);
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
case Work::kCubic_Segment: {
|
||||
#if APPROXIMATE_CUBICS
|
||||
pts = CubicIntersect(wt.pts(), wn.pts(), ts);
|
||||
debugShowCubicIntersection(pts, wt, wn, ts.fT[0], ts.fT[1]);
|
||||
#else
|
||||
pts = CubicIntersect(wt.pts(), wn.pts(), ts);
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
default:
|
||||
|
|
|
@ -3536,12 +3536,26 @@ static void testCubic1() {
|
|||
testSimplifyx(path);
|
||||
}
|
||||
|
||||
static void testQuadratic93() {
|
||||
SkPath path;
|
||||
path.moveTo(3, 0);
|
||||
path.quadTo(0, 1, 3, 2);
|
||||
path.lineTo(0, 3);
|
||||
path.close();
|
||||
path.moveTo(1, 0);
|
||||
path.lineTo(2, 0);
|
||||
path.quadTo(1, 1, 2, 2);
|
||||
path.close();
|
||||
testSimplifyx(path);
|
||||
}
|
||||
|
||||
static void (*firstTest)() = 0;
|
||||
|
||||
static struct {
|
||||
void (*fun)();
|
||||
const char* str;
|
||||
} tests[] = {
|
||||
TEST(testQuadratic93),
|
||||
TEST(testCubic1),
|
||||
TEST(testQuadralateral1),
|
||||
TEST(testLine85),
|
||||
|
@ -3870,6 +3884,8 @@ static struct {
|
|||
TEST(testLine1),
|
||||
};
|
||||
|
||||
static const size_t testCount = sizeof(tests) / sizeof(tests[0]);
|
||||
|
||||
static void testIntersect1() {
|
||||
SkPath one, two;
|
||||
one.addRect(0, 0, 6, 6, SkPath::kCW_Direction);
|
||||
|
@ -4034,8 +4050,6 @@ static void testOp8d() {
|
|||
testShapeOp(path, pathB, kDifference_Op);
|
||||
}
|
||||
|
||||
static const size_t testCount = sizeof(tests) / sizeof(tests[0]);
|
||||
|
||||
static struct {
|
||||
void (*fun)();
|
||||
const char* str;
|
||||
|
@ -4065,7 +4079,7 @@ static const size_t subTestCount = sizeof(subTests) / sizeof(subTests[0]);
|
|||
static void (*firstBinaryTest)() = testOp8d;
|
||||
|
||||
static bool skipAll = false;
|
||||
static bool runBinaryTestsFirst = true;
|
||||
static bool runBinaryTestsFirst = false;
|
||||
static bool runReverse = false;
|
||||
static void (*stopTest)() = 0;
|
||||
|
||||
|
|
|
@ -3317,11 +3317,23 @@ path.addRect(4, 13, 13, 16, SkPath::kCCW_Direction);
|
|||
path.close();
|
||||
</div>
|
||||
|
||||
<div id="testQuadratic93">
|
||||
path.moveTo(3, 0);
|
||||
path.quadTo(0, 1, 3, 2);
|
||||
path.lineTo(0, 3);
|
||||
path.close();
|
||||
path.moveTo(1, 0);
|
||||
path.lineTo(2, 0);
|
||||
path.quadTo(1, 1, 2, 2);
|
||||
path.close();
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
<script type="text/javascript">
|
||||
|
||||
var testDivs = [
|
||||
testQuadratic93,
|
||||
testCubic1,
|
||||
testQuadralateral1,
|
||||
testLine85,
|
||||
|
|
|
@ -1639,11 +1639,82 @@ $7 = {{x = 24.006224853920855, y = 72.621119847810419}, {x = 29.758671200376888,
|
|||
{{72.9633878,95.6593007}, {42.7738746,88.4730382}, {31.1932785,80.2458029}},
|
||||
</div>
|
||||
|
||||
<div id="cubic25">
|
||||
{{x = 39.765160968417838, y = 33.060396198677083}, {x = 5.1922921581157908, y = 66.854301452103215}, {x = 31.619281802149157, y = 25.269248720849514}, {x = 81.541621071073038, y = 70.025341524754353}}
|
||||
{{x = 46.078911165743556, y = 48.259962651999651}, {x = 20.24450549867214, y = 49.403916182650214}, {x = 0.26325131778756683, y = 24.46489805563581}, {x = 15.915006546264051, y = 83.515023059917155}}
|
||||
{{39.765161,33.0603962}, {30.6426004,41.804305}, {26.9359756,44.8138368}},
|
||||
{{26.9359756,44.8138368}, {21.5667569,48.8605535}, {26.2727712,47.6735862}},
|
||||
{{26.2727712,47.6735862}, {31.3832959,46.2642047}, {45.8264929,49.1528875}},
|
||||
{{45.8264929,49.1528875}, {60.2696898,52.0415702}, {81.5416211,70.0253415}},
|
||||
|
||||
{{46.0789112,48.2599627}, {35.5887068,48.1941457}, {27.2014026,45.6924463}},
|
||||
{{27.2014026,45.6924463}, {19.5490336,43.4817863}, {15.020365,44.2719744}},
|
||||
{{15.020365,44.2719744}, {10.4916964,45.0621625}, {10.3896311,53.6689795}},
|
||||
{{10.3896311,53.6689795}, {10.2875658,62.2757965}, {15.9150065,83.5150231}},
|
||||
</div>
|
||||
|
||||
<div id="cubic26">
|
||||
{{x = 95.837747722788592, y = 45.025976907939643}, {x = 16.564570095652982, y = 0.72959763963222402}, {x = 63.209855865319199, y = 68.047528419665767}, {x = 57.640240647662544, y = 59.524565264361243}}
|
||||
{{x = 51.593891741518817, y = 38.53849970667553}, {x = 62.34752929878772, y = 74.924924725166022}, {x = 74.810149322641152, y = 34.17966562983564}, {x = 29.368398119401373, y = 94.66719277886078}}
|
||||
{{95.8377477,45.0259769}, {72.4120612,32.1119735}, {61.9589898,30.3422249}},
|
||||
{{61.9589898,30.3422249}, {51.5059185,28.5724763}, {49.7502617,33.4480576}},
|
||||
{{49.7502617,33.4480576}, {47.9946048,38.3236388}, {50.6611618,45.345625}},
|
||||
{{50.6611618,45.345625}, {53.3277187,52.3676112}, {56.1412886,57.0370775}},
|
||||
{{56.1412886,57.0370775}, {58.9548585,61.7065438}, {57.6402406,59.5245653}},
|
||||
|
||||
{{51.5938917,38.5384997}, {54.39659,47.5609728}, {56.9124968,51.2509862}},
|
||||
{{56.9124968,51.2509862}, {59.4284036,54.9409997}, {60.7901347,55.8937858}},
|
||||
{{60.7901347,55.8937858}, {63.1940269,56.8659601}, {59.551481,59.5998651}},
|
||||
{{59.551481,59.5998651}, {56.8806183,61.8512737}, {49.6576236,69.6523525}},
|
||||
{{49.6576236,69.6523525}, {42.434629,77.4534313}, {29.3683981,94.6671928}},
|
||||
</div>
|
||||
|
||||
<div id="quad23">
|
||||
{{x = 56.14128857485079, y = 57.037077517172825}, {x = 58.954858484191291, y = 61.706543802985237}, {x = 57.640240647662544, y = 59.524565264361243}}
|
||||
{{x = 59.551480981235549, y = 59.599865066889976}, {x = 56.880618274428095, y = 61.851273706132794}, {x = 49.657623623535379, y = 69.652352522894546}}
|
||||
</div>
|
||||
|
||||
<div id="cubic27">
|
||||
{{x = 56.14128857485079, y = 57.037077517172825}, {x = 57.779490695232283, y = 59.900114769069532}, {x = 58.754163691193881, y = 61.229157895422141}, {x = 57.640240647662544, y = 59.524565264361243}}
|
||||
{{x = 56.14128857485079, y = 57.037077517172825}, {x = 58.954858484191291, y = 61.706543802985237}, {x = 57.640240647662544, y = 59.524565264361243}}
|
||||
</div>
|
||||
|
||||
<div id="testCubic1">
|
||||
{{0, 0}, {0, 1}, {1, 1}, {1, 0}},
|
||||
{{1, 0}, {0, 0}, {0, 1}, {1, 1}},
|
||||
|
||||
{{0,0}, {0.0185185185,0.5}, {0.259259259,0.666666667}},
|
||||
{{0.259259259,0.666666667}, {0.5,0.833333333}, {0.740740741,0.666666667}},
|
||||
{{0.740740741,0.666666667}, {0.981481481,0.5}, {1,0}},
|
||||
|
||||
{{1,0}, {0.5,0.0185185185}, {0.333333333,0.259259259}},
|
||||
{{0.333333333,0.259259259}, {0.166666667,0.5}, {0.333333333,0.740740741}},
|
||||
{{0.333333333,0.740740741}, {0.5,0.981481481}, {1,1}},
|
||||
</div>
|
||||
|
||||
<div id="testCubic1a">
|
||||
{{x = 0.30075438676757493, y = 0.69070348972827045}, {x = 0.30339450221247349, y = 0.69543451478800855}, {x = 0.30613761677734441, y = 0.7001387457168422}, {x = 0.30898373046218741, y = 0.70481409186990207}}
|
||||
{{x = 0.29518590813009821, y = 0.69101626953781281}, {x = 0.29986125428315819, y = 0.69386238322265548}, {x = 0.30456548521199123, y = 0.69660549778752689}, {x = 0.30929651027172955, y = 0.69924561323242507}}
|
||||
</div>
|
||||
|
||||
<div id="testCubic1b">
|
||||
{{x = 0.3039751936710845, y = 0.69622610811401087}, {x = 0.3037698832307662, y = 0.69610758676672113}}
|
||||
{{x = 0.3037698832307662, y = 0.69610758676672113}, {x = 0.30387252963474076, y = 0.69616688005807803}}
|
||||
{{x = 0.30387252963474076, y = 0.69616688005807803}, {x = 0.3039751936710845, y = 0.69622610811401087}}
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
<script type="text/javascript">
|
||||
|
||||
var testDivs = [
|
||||
testCubic1b,
|
||||
testCubic1a,
|
||||
testCubic1,
|
||||
cubic27,
|
||||
cubic26,
|
||||
quad23,
|
||||
cubic25,
|
||||
quad22,
|
||||
cubic24,
|
||||
quad21,
|
||||
|
@ -1857,8 +1928,7 @@ var scale, columns, rows, xStart, yStart;
|
|||
var ticks = 10;
|
||||
var at_x = 13 + 0.5;
|
||||
var at_y = 23 + 0.5;
|
||||
var init_decimal_places = 1; // make this 3 to show more precision
|
||||
var decimal_places;
|
||||
var decimal_places = 3;
|
||||
var tests = [];
|
||||
var testTitles = [];
|
||||
var testIndex = 0;
|
||||
|
@ -1869,6 +1939,7 @@ var curveT = -1;
|
|||
var drawCubics = true;
|
||||
var drawQuads = true;
|
||||
var drawControlLines = true;
|
||||
var xmin, xmax, ymin, ymax;
|
||||
|
||||
function parse(test, title) {
|
||||
var curveStrs = test.split("{{");
|
||||
|
@ -1900,10 +1971,10 @@ function init(test) {
|
|||
canvas.width = window.innerWidth - at_x;
|
||||
canvas.height = window.innerHeight - at_y;
|
||||
ctx = canvas.getContext('2d');
|
||||
var xmin = Infinity;
|
||||
var xmax = -Infinity;
|
||||
var ymin = Infinity;
|
||||
var ymax = -Infinity;
|
||||
xmin = Infinity;
|
||||
xmax = -Infinity;
|
||||
ymin = Infinity;
|
||||
ymax = -Infinity;
|
||||
for (var curves in test) {
|
||||
var curve = test[curves];
|
||||
var last = curve.length;
|
||||
|
@ -1923,14 +1994,18 @@ function init(test) {
|
|||
while (testW * subscale > 10 && testH * subscale > 10) {
|
||||
subscale /= 10;
|
||||
}
|
||||
calcFromScale();
|
||||
}
|
||||
|
||||
function calcFromScale() {
|
||||
xStart = Math.floor(xmin * subscale) / subscale;
|
||||
yStart = Math.floor(ymin * subscale) / subscale;
|
||||
var xEnd = Math.ceil(xmin * subscale) / subscale;
|
||||
var yEnd = Math.ceil(ymin * subscale) / subscale;
|
||||
var cCelsW = Math.floor(ctx.canvas.width / 10);
|
||||
var cCelsH = Math.floor(ctx.canvas.height / 10);
|
||||
testW = xEnd - xStart;
|
||||
testH = yEnd - yStart;
|
||||
var testW = xEnd - xStart;
|
||||
var testH = yEnd - yStart;
|
||||
var scaleWH = 1;
|
||||
while (cCelsW > testW * scaleWH * 10 && cCelsH > testH * scaleWH * 10) {
|
||||
scaleWH *= 10;
|
||||
|
@ -2009,6 +2084,10 @@ function draw(test, title, scale) {
|
|||
ctx.beginPath();
|
||||
ctx.moveTo(xoffset + curve[0] * unit, yoffset + curve[1] * unit);
|
||||
switch (curve.length) {
|
||||
case 4:
|
||||
ctx.lineTo(
|
||||
xoffset + curve[2] * unit, yoffset + curve[3] * unit);
|
||||
break;
|
||||
case 6:
|
||||
ctx.quadraticCurveTo(
|
||||
xoffset + curve[2] * unit, yoffset + curve[3] * unit,
|
||||
|
@ -2023,7 +2102,7 @@ function draw(test, title, scale) {
|
|||
}
|
||||
if (curves == 2) ctx.strokeStyle = curves ? "red" : "blue";
|
||||
ctx.stroke();
|
||||
if (drawControlLines) {
|
||||
if (drawControlLines && curve.length >= 6) {
|
||||
ctx.strokeStyle = "rgba(0,0,0, 0.3)";
|
||||
ctx.beginPath();
|
||||
ctx.moveTo(xoffset + curve[0] * unit, yoffset + curve[1] * unit);
|
||||
|
@ -2037,6 +2116,12 @@ function draw(test, title, scale) {
|
|||
var x, y;
|
||||
var t = curveT;
|
||||
switch (curve.length) {
|
||||
case 4:
|
||||
var a = 1 - t;
|
||||
var b = t;
|
||||
x = a * curve[0] + b * curve[2];
|
||||
y = a * curve[1] + b * curve[3];
|
||||
break;
|
||||
case 6:
|
||||
var one_t = 1 - t;
|
||||
var a = one_t * one_t;
|
||||
|
@ -2058,7 +2143,7 @@ function draw(test, title, scale) {
|
|||
break;
|
||||
}
|
||||
drawPoint(x, y, xoffset, yoffset, unit);
|
||||
var num = curveT.toFixed(3);
|
||||
var num = curveT.toFixed(decimal_places);
|
||||
ctx.beginPath();
|
||||
ctx.rect(200,10,200,10);
|
||||
ctx.fillStyle="white";
|
||||
|
@ -2106,6 +2191,17 @@ function doKeyPress(evt) {
|
|||
drawCubics ^= true;
|
||||
redraw();
|
||||
break;
|
||||
case 'd':
|
||||
decimal_places++;
|
||||
redraw();
|
||||
break;
|
||||
case 'D':
|
||||
decimal_places--;
|
||||
if (decimal_places < 1) {
|
||||
decimal_places = 1;
|
||||
}
|
||||
redraw();
|
||||
break;
|
||||
case 'l':
|
||||
drawControlLines ^= true;
|
||||
redraw();
|
||||
|
@ -2135,6 +2231,18 @@ function doKeyPress(evt) {
|
|||
drawQuads ^= true;
|
||||
redraw();
|
||||
break;
|
||||
case '-':
|
||||
case '_':
|
||||
subscale /= 2;
|
||||
calcFromScale();
|
||||
redraw();
|
||||
break;
|
||||
case '+':
|
||||
case '=':
|
||||
subscale *= 2;
|
||||
calcFromScale();
|
||||
redraw();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -2159,7 +2267,7 @@ function calcXY() {
|
|||
|
||||
function handleMouseOver() {
|
||||
calcXY();
|
||||
var num = mouseX.toFixed(3) + ", " + mouseY.toFixed(3);
|
||||
var num = mouseX.toFixed(decimal_places) + ", " + mouseY.toFixed(decimal_places);
|
||||
ctx.beginPath();
|
||||
ctx.rect(30,10,200,10);
|
||||
ctx.fillStyle="white";
|
||||
|
|
Загрузка…
Ссылка в новой задаче