зеркало из https://github.com/mozilla/moz-skia.git
shape ops work in progress
git-svn-id: http://skia.googlecode.com/svn/trunk@4118 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
Родитель
99840553cd
Коммит
a3f05facab
|
@ -1,4 +1,4 @@
|
|||
#include "DataTypes.h"
|
||||
#include "CurveIntersection.h"
|
||||
#include "Extrema.h"
|
||||
|
||||
static int isBoundedByEndPoints(double a, double b, double c, double d)
|
||||
|
|
|
@ -59,8 +59,7 @@ static int horizontal_line(const Cubic& cubic, Cubic& reduction) {
|
|||
}
|
||||
|
||||
// check to see if it is a quadratic or a line
|
||||
static int check_quadratic(const Cubic& cubic, Cubic& reduction,
|
||||
int minX, int maxX, int minY, int maxY) {
|
||||
static int check_quadratic(const Cubic& cubic, Cubic& reduction) {
|
||||
double dx10 = cubic[1].x - cubic[0].x;
|
||||
double dx23 = cubic[2].x - cubic[3].x;
|
||||
double midX = cubic[0].x + dx10 * 3 / 2;
|
||||
|
@ -228,7 +227,7 @@ int reduceOrder(const Cubic& cubic, Cubic& reduction, ReduceOrder_Flags allowQua
|
|||
if (result) {
|
||||
return result;
|
||||
}
|
||||
if (allowQuadratics && (result = check_quadratic(cubic, reduction, minX, maxX, minY, maxY))) {
|
||||
if (allowQuadratics && (result = check_quadratic(cubic, reduction))) {
|
||||
return result;
|
||||
}
|
||||
memcpy(reduction, cubic, sizeof(Cubic));
|
||||
|
|
|
@ -53,8 +53,7 @@ double t_at(const _Line& line, const _Point& pt) {
|
|||
return (pt.y - line[0].y) / dy;
|
||||
}
|
||||
|
||||
static void setMinMax(double x, double y1, double y2, int flags,
|
||||
double& minX, double& maxX) {
|
||||
static void setMinMax(double x, int flags, double& minX, double& maxX) {
|
||||
if (minX > x && (flags & (kFindTopMin | kFindBottomMin))) {
|
||||
minX = x;
|
||||
}
|
||||
|
@ -81,13 +80,13 @@ void x_at(const _Point& p1, const _Point& p2, double top, double bottom,
|
|||
if (topFlags && (top <= p1.y && top >= p2.y
|
||||
|| top >= p1.y && top <= p2.y)) {
|
||||
double x = p1.x + (top - p1.y) * slope;
|
||||
setMinMax(x, p1.y, p2.y, topFlags, minX, maxX);
|
||||
setMinMax(x, topFlags, minX, maxX);
|
||||
}
|
||||
int bottomFlags = flags & (kFindBottomMin | kFindBottomMax);
|
||||
if (bottomFlags && (bottom <= p1.y && bottom >= p2.y
|
||||
|| bottom >= p1.y && bottom <= p2.y)) {
|
||||
double x = p1.x + (bottom - p1.y) * slope;
|
||||
setMinMax(x, p1.y, p2.y, bottomFlags, minX, maxX);
|
||||
setMinMax(x, bottomFlags, minX, maxX);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
|
||||
#include "Intersection_Tests.h"
|
||||
|
||||
int main(int argc, char* argv) {
|
||||
int main(int /*argc*/, char* /*argv*/) {
|
||||
Intersection_Tests();
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -899,7 +899,7 @@ struct InEdge {
|
|||
InEdge* edge = edges.push_back_n(1);
|
||||
int verbCount = verbEnd - verbStart;
|
||||
edge->fIntercepts.push_back_n(verbCount);
|
||||
uint8_t* verbs = &fVerbs[verbStart];
|
||||
// uint8_t* verbs = &fVerbs[verbStart];
|
||||
for (int ceptIdx = 0; ceptIdx < verbCount; ++ceptIdx) {
|
||||
edge->fIntercepts[ceptIdx] = fIntercepts[verbStart + ceptIdx];
|
||||
}
|
||||
|
@ -1052,7 +1052,7 @@ struct InEdge {
|
|||
if (!tCount) {
|
||||
continue;
|
||||
}
|
||||
size_t tIndex = -1;
|
||||
size_t tIndex = (size_t) -1;
|
||||
SkScalar y = pts[0].fY;
|
||||
int lastSplit = 0;
|
||||
int firstSplit = -1;
|
||||
|
@ -1692,7 +1692,7 @@ public:
|
|||
return false;
|
||||
}
|
||||
|
||||
bool swapUnordered(const ActiveEdge* edge, SkScalar bottom) const {
|
||||
bool swapUnordered(const ActiveEdge* edge, SkScalar /* bottom */) const {
|
||||
SkASSERT(fVerb != SkPath::kLine_Verb
|
||||
|| edge->fVerb != SkPath::kLine_Verb);
|
||||
if (fDone || edge->fDone) {
|
||||
|
@ -1924,9 +1924,9 @@ static void addBottomT(InEdge** currentPtr, InEdge** lastPtr,
|
|||
}
|
||||
}
|
||||
|
||||
#if DEBUG_ADD_INTERSECTING_TS
|
||||
static void debugShowLineIntersection(int pts, const WorkEdge& wt,
|
||||
const WorkEdge& wn, const double wtTs[2], const double wnTs[2]) {
|
||||
#if DEBUG_ADD_INTERSECTING_TS
|
||||
if (!pts) {
|
||||
return;
|
||||
}
|
||||
|
@ -1947,8 +1947,12 @@ static void debugShowLineIntersection(int pts, const WorkEdge& wt,
|
|||
if (pts == 2) {
|
||||
SkDebugf("%s wnTs[1]=%g\n", __FUNCTION__, wnTs[1]);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
static void debugShowLineIntersection(int , const WorkEdge& ,
|
||||
const WorkEdge& , const double [2], const double [2]) {
|
||||
}
|
||||
#endif
|
||||
|
||||
static void addIntersectingTs(InEdge** currentPtr, InEdge** lastPtr) {
|
||||
InEdge** testPtr = currentPtr - 1;
|
||||
|
@ -2140,7 +2144,7 @@ static SkScalar computeInterceptBottom(SkTDArray<ActiveEdge>& activeEdges,
|
|||
|
||||
static SkScalar findBottom(InEdge** currentPtr,
|
||||
InEdge** edgeListEnd, SkTDArray<ActiveEdge>* activeEdges, SkScalar y,
|
||||
bool asFill, InEdge**& testPtr) {
|
||||
bool /*asFill*/, InEdge**& testPtr) {
|
||||
InEdge* current = *currentPtr;
|
||||
SkScalar bottom = current->fBounds.fBottom;
|
||||
|
||||
|
@ -2445,13 +2449,17 @@ static SkScalar adjustCoincident(SkTDArray<ActiveEdge*>& edgeList,
|
|||
}
|
||||
|
||||
// stitch edge and t range that satisfies operation
|
||||
static void stitchEdge(SkTDArray<ActiveEdge*>& edgeList, SkScalar y,
|
||||
static void stitchEdge(SkTDArray<ActiveEdge*>& edgeList, SkScalar
|
||||
#if DEBUG_STITCH_EDGE
|
||||
y
|
||||
#endif
|
||||
,
|
||||
SkScalar bottom, int windingMask, bool fill, OutEdgeBuilder& outBuilder) {
|
||||
int winding = 0;
|
||||
ActiveEdge** activeHandle = edgeList.begin() - 1;
|
||||
ActiveEdge** lastActive = edgeList.end();
|
||||
const int tab = 7; // FIXME: debugging only
|
||||
#if DEBUG_STITCH_EDGE
|
||||
const int tab = 7; // FIXME: debugging only
|
||||
SkDebugf("%s y=%1.9g bottom=%1.9g\n", __FUNCTION__, y, bottom);
|
||||
#endif
|
||||
while (++activeHandle != lastActive) {
|
||||
|
@ -2588,15 +2596,19 @@ static void stitchEdge(SkTDArray<ActiveEdge*>& edgeList, SkScalar y,
|
|||
}
|
||||
}
|
||||
|
||||
#if DEBUG_DUMP
|
||||
static void dumpEdgeList(const SkTDArray<InEdge*>& edgeList,
|
||||
const InEdge& edgeSentinel) {
|
||||
#if DEBUG_DUMP
|
||||
InEdge** debugPtr = edgeList.begin();
|
||||
do {
|
||||
(*debugPtr++)->dump();
|
||||
} while (*debugPtr != &edgeSentinel);
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
static void dumpEdgeList(const SkTDArray<InEdge*>& ,
|
||||
const InEdge& ) {
|
||||
}
|
||||
#endif
|
||||
|
||||
void simplify(const SkPath& path, bool asFill, SkPath& simple) {
|
||||
// returns 1 for evenodd, -1 for winding, regardless of inverse-ness
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
|
||||
static bool gShowPath = false;
|
||||
static bool gComparePaths = true;
|
||||
static bool gDrawLastAsciiPaths = true;
|
||||
//static bool gDrawLastAsciiPaths = true;
|
||||
static bool gDrawAllAsciiPaths = false;
|
||||
static bool gShowAsciiPaths = false;
|
||||
static bool gComparePathsAssert = true;
|
||||
|
@ -92,9 +92,6 @@ static int pathsDrawTheSame(const SkPath& one, const SkPath& two,
|
|||
return errors;
|
||||
}
|
||||
|
||||
void bitmapInit(SkBitmap& bits) {
|
||||
}
|
||||
|
||||
bool drawAsciiPaths(const SkPath& one, const SkPath& two,
|
||||
bool drawPaths) {
|
||||
if (!drawPaths) {
|
||||
|
@ -149,7 +146,8 @@ bool drawAsciiPaths(const SkPath& one, const SkPath& two,
|
|||
}
|
||||
|
||||
static int scaledDrawTheSame(const SkPath& one, const SkPath& two,
|
||||
int a, int b, bool drawPaths, SkBitmap& bitmap, SkCanvas* canvas) {
|
||||
SkScalar a, SkScalar b, bool drawPaths, SkBitmap& bitmap,
|
||||
SkCanvas* canvas) {
|
||||
SkMatrix scale;
|
||||
scale.reset();
|
||||
float aScale = 1.21f;
|
||||
|
|
|
@ -39,4 +39,4 @@
|
|||
mantissa >>= 1;
|
||||
exponent++;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
#include "DataTypes.h"
|
||||
#include "CurveIntersection.h"
|
||||
#include "Intersections.h"
|
||||
#include "LineIntersection.h"
|
||||
#include <algorithm> // used for std::swap
|
||||
|
@ -170,7 +170,7 @@ int horizontalIntersect(const _Line& line, double left, double right,
|
|||
return result;
|
||||
}
|
||||
|
||||
int verticalIntersect(const _Line& line, double x, double tRange[2]) {
|
||||
static int verticalIntersect(const _Line& line, double x, double tRange[2]) {
|
||||
double min = line[0].x;
|
||||
double max = line[1].x;
|
||||
if (min > max) {
|
||||
|
|
|
@ -51,7 +51,10 @@ void sub_divide(const _Line& line, double t1, double t2, _Line& dst) {
|
|||
// =0 for P2 on the line
|
||||
// <0 for P2 right of the line
|
||||
// See: the January 2001 Algorithm on Area of Triangles
|
||||
#if 0
|
||||
float isLeft( _Point P0, _Point P1, _Point P2 )
|
||||
{
|
||||
return (float) ((P1.x - P0.x)*(P2.y - P0.y) - (P2.x - P0.x)*(P1.y - P0.y));
|
||||
}
|
||||
#endif
|
||||
|
||||
|
|
|
@ -19,7 +19,7 @@ static void oneOffTest() {
|
|||
bezier_clip(quad1, quad2, minT, maxT);
|
||||
}
|
||||
|
||||
void standardTestCases() {
|
||||
static void standardTestCases() {
|
||||
for (size_t index = 0; index < quadraticTests_count; ++index) {
|
||||
const Quadratic& quad1 = quadraticTests[index][0];
|
||||
const Quadratic& quad2 = quadraticTests[index][1];
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
#include "DataTypes.h"
|
||||
#include "CurveIntersection.h"
|
||||
#include "Extrema.h"
|
||||
|
||||
static int isBoundedByEndPoints(double a, double b, double c)
|
||||
|
|
|
@ -90,4 +90,4 @@ static void oneOffTest() {
|
|||
void QuadraticIntersection_Test() {
|
||||
oneOffTest();
|
||||
standardTestCases();
|
||||
}
|
||||
}
|
||||
|
|
|
@ -4,4 +4,4 @@ void contourBounds(const SkPath& path, SkTDArray<SkRect>& boundsArray);
|
|||
void simplify(const SkPath& path, bool asFill, SkPath& simple);
|
||||
void simplifyx(const SkPath& path, SkPath& simple);
|
||||
|
||||
extern const bool gRunTestsInOneThread; // FIXME: remove once debugging is complete
|
||||
extern const bool gRunTestsInOneThread; // FIXME: remove once debugging is complete
|
||||
|
|
|
@ -424,12 +424,11 @@ public:
|
|||
// is the common origin, i.e., whether the center is at pts[0] or pts[verb]
|
||||
// practically, this should only be called by addAngle
|
||||
void set(const SkPoint* pts, SkPath::Verb verb, Segment* segment,
|
||||
int start, int end, bool coincident) {
|
||||
int start, int end) {
|
||||
SkASSERT(start != end);
|
||||
fSegment = segment;
|
||||
fStart = start;
|
||||
fEnd = end;
|
||||
fCoincident = coincident;
|
||||
fDx = pts[1].fX - pts[0].fX; // b - a
|
||||
fDy = pts[1].fY - pts[0].fY;
|
||||
if (verb == SkPath::kLine_Verb) {
|
||||
|
@ -450,11 +449,10 @@ public:
|
|||
// as lines, so must sort by derivatives as well
|
||||
// if flatness turns out to be a reasonable way to sort, use the below:
|
||||
void setFlat(const SkPoint* pts, SkPath::Verb verb, Segment* segment,
|
||||
int start, int end, bool coincident) {
|
||||
int start, int end) {
|
||||
fSegment = segment;
|
||||
fStart = start;
|
||||
fEnd = end;
|
||||
fCoincident = coincident;
|
||||
fDx = pts[1].fX - pts[0].fX; // b - a
|
||||
fDy = pts[1].fY - pts[0].fY;
|
||||
if (verb == SkPath::kLine_Verb) {
|
||||
|
@ -502,6 +500,11 @@ public:
|
|||
int sign() const {
|
||||
return SkSign32(fStart - fEnd);
|
||||
}
|
||||
|
||||
bool slopeEquals(const Angle& rh) const {
|
||||
return fDx == rh.fDx && fDy == rh.fDy;
|
||||
|
||||
}
|
||||
|
||||
int start() const {
|
||||
return fStart;
|
||||
|
@ -517,7 +520,6 @@ private:
|
|||
Segment* fSegment;
|
||||
int fStart;
|
||||
int fEnd;
|
||||
bool fCoincident;
|
||||
};
|
||||
|
||||
static void sortAngles(SkTDArray<Angle>& angles, SkTDArray<Angle*>& angleList) {
|
||||
|
@ -567,6 +569,7 @@ struct Span {
|
|||
double fT;
|
||||
Segment* fOther;
|
||||
double fOtherT; // value at fOther[fOtherIndex].fT
|
||||
mutable SkPoint const * fPt; // lazily computed as needed
|
||||
int fOtherIndex; // can't be used during intersection
|
||||
int fWinding; // accumulated from contours surrounding this one
|
||||
// OPTIMIZATION: coincident needs only 2 bits (values are -1, 0, 1)
|
||||
|
@ -582,8 +585,7 @@ public:
|
|||
#endif
|
||||
}
|
||||
|
||||
void addAngle(SkTDArray<Angle>& angles, int start, int end,
|
||||
bool coincident) {
|
||||
void addAngle(SkTDArray<Angle>& angles, int start, int end) {
|
||||
SkASSERT(start != end);
|
||||
int smaller = SkMin32(start, end);
|
||||
if (fTs[smaller].fDone) {
|
||||
|
@ -592,7 +594,7 @@ public:
|
|||
SkPoint edge[4];
|
||||
(*SegmentSubDivide[fVerb])(fPts, fTs[start].fT, fTs[end].fT, edge);
|
||||
Angle* angle = angles.append();
|
||||
angle->set(edge, fVerb, this, start, end, coincident);
|
||||
angle->set(edge, fVerb, this, start, end);
|
||||
}
|
||||
|
||||
void addCubic(const SkPoint pts[4]) {
|
||||
|
@ -634,9 +636,7 @@ public:
|
|||
}
|
||||
|
||||
void addMoveTo(int tIndex, SkPath& path) {
|
||||
SkPoint pt;
|
||||
double firstT = t(tIndex);
|
||||
xyAtT(firstT, &pt);
|
||||
const SkPoint& pt = xyAtT(&fTs[tIndex]);
|
||||
#if DEBUG_PATH_CONSTRUCTION
|
||||
SkDebugf("%s (%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY);
|
||||
#endif
|
||||
|
@ -655,6 +655,7 @@ public:
|
|||
fBounds.setQuadBounds(pts);
|
||||
}
|
||||
|
||||
// edges are sorted by T, then by coincidence
|
||||
int addT(double newT, Segment& other, int coincident) {
|
||||
// FIXME: in the pathological case where there is a ton of intercepts,
|
||||
// binary search?
|
||||
|
@ -668,7 +669,8 @@ public:
|
|||
// This could later limit segment tests to the two adjacent
|
||||
// neighbors, although it doesn't help with determining which
|
||||
// circular direction to go in.
|
||||
if (newT <= fTs[idx2].fT) {
|
||||
if (newT < fTs[idx2].fT || (newT == fTs[idx2].fT &&
|
||||
coincident <= fTs[idx2].fCoincident)) {
|
||||
insertedAt = idx2;
|
||||
span = fTs.insert(idx2);
|
||||
goto finish;
|
||||
|
@ -679,26 +681,24 @@ public:
|
|||
finish:
|
||||
span->fT = newT;
|
||||
span->fOther = &other;
|
||||
span->fPt = NULL;
|
||||
span->fWinding = 0;
|
||||
if (span->fDone = newT == 1) {
|
||||
++fDoneSpans;
|
||||
}
|
||||
span->fCoincident = coincident;
|
||||
fCoincident |= coincident;
|
||||
fCoincident |= coincident; // OPTIMIZATION: ever used?
|
||||
return insertedAt;
|
||||
}
|
||||
|
||||
void addTwoAngles(int start, int end, const SkPoint& endLoc,
|
||||
const Span* endSpan, bool startCo, SkTDArray<Angle>& angles) {
|
||||
void addTwoAngles(int start, int end, SkTDArray<Angle>& angles) {
|
||||
// add edge leading into junction
|
||||
addAngle(angles, end, start, startCo);
|
||||
addAngle(angles, end, start);
|
||||
// add edge leading away from junction
|
||||
bool coincident;
|
||||
int step = SkSign32(end - start);
|
||||
int tIndex = nextSpan(end, step, endLoc, endSpan, NULL, coincident);
|
||||
int tIndex = nextSpan(end, step);
|
||||
if (tIndex >= 0) {
|
||||
lastSpan(tIndex, step, endLoc, endSpan->fT, coincident);
|
||||
addAngle(angles, end, tIndex, coincident);
|
||||
addAngle(angles, end, tIndex);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -706,41 +706,41 @@ finish:
|
|||
return fBounds;
|
||||
}
|
||||
|
||||
void buildAngles(int index, int last, int step, const SkPoint& loc,
|
||||
SkTDArray<Angle>& angles) const {
|
||||
SkASSERT(index - last != 0);
|
||||
SkASSERT((index - last < 0) ^ (step < 0));
|
||||
int end = last + step;
|
||||
void buildAngles(int index, SkTDArray<Angle>& angles) const {
|
||||
SkASSERT(!done());
|
||||
double referenceT = fTs[index].fT;
|
||||
int lesser = index;
|
||||
while (--lesser >= 0 && referenceT == fTs[lesser].fT) {
|
||||
buildAnglesInner(lesser, angles);
|
||||
}
|
||||
do {
|
||||
Span* span = &fTs[index];
|
||||
Segment* other = span->fOther;
|
||||
if (other->done()) {
|
||||
continue;
|
||||
}
|
||||
// if there is only one live crossing, and no coincidence, continue
|
||||
// in the same direction
|
||||
// if there is coincidence, the only choice may be to reverse direction
|
||||
// find edge on either side of intersection
|
||||
int oIndex = span->fOtherIndex;
|
||||
Span* otherSpan = &other->fTs[oIndex];
|
||||
SkASSERT(otherSpan->fOther == this);
|
||||
// if done == -1, prior span has already been processed
|
||||
bool otherCo;
|
||||
int localStep = step;
|
||||
int next = other->nextSpan(oIndex, localStep, loc, otherSpan,
|
||||
NULL, otherCo);
|
||||
if (next < 0) {
|
||||
localStep = -step;
|
||||
next = other->nextSpan(oIndex, localStep, loc, otherSpan,
|
||||
NULL, otherCo);
|
||||
}
|
||||
other->lastSpan(next, localStep, loc, otherSpan->fT, otherCo);
|
||||
// add candidate into and away from junction
|
||||
other->addTwoAngles(next, oIndex, loc, span, otherCo, angles);
|
||||
|
||||
} while ((index += step) != end);
|
||||
buildAnglesInner(index, angles);
|
||||
} while (++index < fTs.count() && referenceT == fTs[index].fT);
|
||||
}
|
||||
|
||||
|
||||
void buildAnglesInner(int index, SkTDArray<Angle>& angles) const {
|
||||
Span* span = &fTs[index];
|
||||
Segment* other = span->fOther;
|
||||
if (other->done()) {
|
||||
return;
|
||||
}
|
||||
// if there is only one live crossing, and no coincidence, continue
|
||||
// in the same direction
|
||||
// if there is coincidence, the only choice may be to reverse direction
|
||||
// find edge on either side of intersection
|
||||
int oIndex = span->fOtherIndex;
|
||||
// if done == -1, prior span has already been processed
|
||||
int step = 1;
|
||||
int next = other->nextSpanEnd(oIndex, step);
|
||||
if (next < 0) {
|
||||
step = -step;
|
||||
next = other->nextSpanEnd(oIndex, step);
|
||||
}
|
||||
oIndex = other->coincidentEnd(oIndex, -step);
|
||||
// add candidate into and away from junction
|
||||
other->addTwoAngles(next, oIndex, angles);
|
||||
}
|
||||
|
||||
// figure out if the segment's ascending T goes clockwise or not
|
||||
// not enough context to write this as shown
|
||||
// instead, add all segments meeting at the top
|
||||
|
@ -752,49 +752,53 @@ finish:
|
|||
return false;
|
||||
}
|
||||
|
||||
bool coincident(int index, const Angle* angle) const {
|
||||
Span* span;
|
||||
double referenceT = fTs[index].fT;
|
||||
int lesser = index;
|
||||
while (--lesser >= 0 && referenceT == fTs[lesser].fT) {
|
||||
span = &fTs[lesser];
|
||||
if (span->fOther == angle->segment()) {
|
||||
goto checkOther;
|
||||
}
|
||||
static bool Coincident(const Angle* current, const Angle* next) {
|
||||
const Segment* segment = current->segment();
|
||||
const Span& span = segment->fTs[current->start()];
|
||||
if (!span.fCoincident) {
|
||||
return false;
|
||||
}
|
||||
do {
|
||||
span = &fTs[index];
|
||||
if (span->fOther == angle->segment()) {
|
||||
const Segment* nextSegment = next->segment();
|
||||
const Span& nextSpan = nextSegment->fTs[next->start()];
|
||||
if (!nextSpan.fCoincident) {
|
||||
return false;
|
||||
}
|
||||
// use angle dx/dy instead of other since 3 or more may be coincident
|
||||
return current->slopeEquals(*next);
|
||||
}
|
||||
|
||||
static bool CoincidentCancels(const Angle* current, const Angle* next) {
|
||||
return SkSign32(current->start() - current->end())
|
||||
!= SkSign32(next->start() - next->end());
|
||||
}
|
||||
|
||||
int coincidentEnd(int from, int step) const {
|
||||
double fromT = fTs[from].fT;
|
||||
int count = fTs.count();
|
||||
int to = from;
|
||||
while (step > 0 ? ++to < count : --to >= 0) {
|
||||
const Span& span = fTs[to];
|
||||
if (fromT != span.fT) {
|
||||
// FIXME: we assume that if the T changes, we don't care about
|
||||
// coincident -- but in nextSpan, we require that both the T
|
||||
// and actual loc change to represent a span. This asymettry may
|
||||
// be OK or may be trouble -- if trouble, probably will need to
|
||||
// detect coincidence earlier or sort differently
|
||||
break;
|
||||
}
|
||||
|
||||
} while (++index < fTs.count() && referenceT == fTs[index].fT);
|
||||
checkOther:
|
||||
SkASSERT(!span->fDone);
|
||||
return span->fCoincident;
|
||||
if (span.fCoincident == step) {
|
||||
return to;
|
||||
}
|
||||
SkASSERT(step > 0 || !span.fDone);
|
||||
}
|
||||
return from;
|
||||
}
|
||||
|
||||
|
||||
bool done() const {
|
||||
SkASSERT(fDoneSpans <= fTs.count());
|
||||
return fDoneSpans == fTs.count();
|
||||
}
|
||||
|
||||
int findCoincidentEnd(int start) const {
|
||||
int tCount = fTs.count();
|
||||
SkASSERT(start < tCount);
|
||||
const Span& span = fTs[start];
|
||||
SkASSERT(span.fCoincident);
|
||||
for (int index = start + 1; index < tCount; ++index) {
|
||||
const Span& match = fTs[index];
|
||||
if (match.fOther == span.fOther) {
|
||||
SkASSERT(match.fCoincident);
|
||||
return index;
|
||||
}
|
||||
}
|
||||
SkASSERT(0); // should never get here
|
||||
return -1;
|
||||
}
|
||||
|
||||
// start is the index of the beginning T of this edge
|
||||
// it is guaranteed to have an end which describes a non-zero length (?)
|
||||
// winding -1 means ccw, 1 means cw
|
||||
|
@ -806,7 +810,6 @@ finish:
|
|||
int count = fTs.count();
|
||||
SkASSERT(startIndex < endIndex ? startIndex < count - 1
|
||||
: startIndex > 0);
|
||||
Span* startSpan = &fTs[startIndex];
|
||||
// FIXME:
|
||||
// since Ts can be stepped either way, done markers must be careful
|
||||
// not to assume that segment was only ascending in T. This shouldn't
|
||||
|
@ -815,27 +818,19 @@ finish:
|
|||
|
||||
|
||||
int step = SkSign32(endIndex - startIndex);
|
||||
SkPoint startLoc; // OPTIMIZATION: store this in the t span?
|
||||
xyAtT(startSpan->fT, &startLoc);
|
||||
SkPoint endLoc;
|
||||
bool startCo;
|
||||
int end = nextSpan(startIndex, step, startLoc, startSpan, &endLoc,
|
||||
startCo);
|
||||
int end = nextSpanEnd(startIndex, step);
|
||||
SkASSERT(end >= 0);
|
||||
|
||||
// preflight for coincidence -- if present, it may change winding
|
||||
// considerations and whether reversed edges can be followed
|
||||
bool many;
|
||||
int last = lastSpan(end, step, endLoc, fTs[end].fT, startCo, &many);
|
||||
|
||||
|
||||
// Discard opposing direction candidates if no coincidence was found.
|
||||
Span* endSpan = &fTs[end];
|
||||
Segment* other;
|
||||
if (!many) {
|
||||
if (isSimple(end, step)) {
|
||||
// mark the smaller of startIndex, endIndex done, and all adjacent
|
||||
// spans with the same T value (but not 'other' spans)
|
||||
markDone(SkMin32(startIndex, endIndex), winding);
|
||||
SkASSERT(!startCo);
|
||||
// move in winding direction until edge in correct direction
|
||||
// balance wrong direction edges before finding correct one
|
||||
// this requres that the intersection is angularly sorted
|
||||
|
@ -847,13 +842,12 @@ finish:
|
|||
SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count());
|
||||
return other;
|
||||
}
|
||||
|
||||
// more than one viable candidate -- measure angles to find best
|
||||
SkTDArray<Angle> angles;
|
||||
SkASSERT(startIndex - endIndex != 0);
|
||||
SkASSERT((startIndex - endIndex < 0) ^ (step < 0));
|
||||
addTwoAngles(startIndex, end, endLoc, endSpan, startCo, angles);
|
||||
buildAngles(end, last, step, endLoc, angles);
|
||||
addTwoAngles(startIndex, end, angles);
|
||||
buildAngles(end, angles);
|
||||
SkTDArray<Angle*> sorted;
|
||||
sortAngles(angles, sorted);
|
||||
// find the starting edge
|
||||
|
@ -881,38 +875,50 @@ finish:
|
|||
int startWinding = winding;
|
||||
int nextIndex = firstIndex;
|
||||
const Angle* nextAngle;
|
||||
Segment* nextSegment;
|
||||
do {
|
||||
if (++nextIndex == angleCount) {
|
||||
nextIndex = 0;
|
||||
}
|
||||
SkASSERT(nextIndex != firstIndex); // should never wrap around
|
||||
nextAngle = sorted[nextIndex];
|
||||
nextSegment = nextAngle->segment();
|
||||
bool pairCoincides = Coincident(angle, nextAngle);
|
||||
int maxWinding = winding;
|
||||
winding -= nextAngle->sign();
|
||||
if (abs(maxWinding) < abs(winding)) {
|
||||
maxWinding = winding;
|
||||
}
|
||||
other = nextAngle->segment();
|
||||
if (!winding) {
|
||||
if (!startCo || !coincident(startIndex, nextAngle)) {
|
||||
if (!pairCoincides || !CoincidentCancels(angle, nextAngle)) {
|
||||
break;
|
||||
}
|
||||
markAndChaseCoincident(startIndex, endIndex, other);
|
||||
markAndChaseCoincident(startIndex, endIndex, nextSegment);
|
||||
return NULL;
|
||||
}
|
||||
if (pairCoincides) {
|
||||
bool markNext = abs(maxWinding) < abs(winding);
|
||||
if (markNext) {
|
||||
nextSegment->markDone(SkMin32(nextAngle->start(),
|
||||
nextAngle->end()), winding);
|
||||
} else {
|
||||
angle->segment()->markDone(SkMin32(angle->start(),
|
||||
angle->end()), maxWinding);
|
||||
}
|
||||
}
|
||||
// if the winding is non-zero, nextAngle does not connect to
|
||||
// current chain. If we haven't done so already, mark the angle
|
||||
// as done, record the winding value, and mark connected unambiguous
|
||||
// segments as well.
|
||||
if (other->winding(nextAngle) == 0) {
|
||||
other->markAndChaseWinding(nextAngle, maxWinding);
|
||||
else if (nextSegment->winding(nextAngle) == 0) {
|
||||
if (abs(maxWinding) < abs(winding)) {
|
||||
maxWinding = winding;
|
||||
}
|
||||
nextSegment->markAndChaseWinding(nextAngle, maxWinding);
|
||||
}
|
||||
|
||||
angle = nextAngle;
|
||||
} while (true);
|
||||
markDone(SkMin32(startIndex, endIndex), startWinding);
|
||||
nextStart = nextAngle->start();
|
||||
nextEnd = nextAngle->end();
|
||||
return other;
|
||||
return nextSegment;
|
||||
}
|
||||
|
||||
|
||||
|
@ -958,9 +964,8 @@ finish:
|
|||
return;
|
||||
}
|
||||
} while (true); // require t=0, x, 1 at minimum
|
||||
SkPoint matchPt;
|
||||
// OPTIMIZATION: defer matchPt until qualifying toCount is found?
|
||||
xyAtT(match->fT, &matchPt);
|
||||
const SkPoint* matchPt = &xyAtT(match);
|
||||
// look for a pair of nearby T values that map to the same (x,y) value
|
||||
// if found, see if the pair of other segments share a common point. If
|
||||
// so, the span from here to there is coincident.
|
||||
|
@ -974,9 +979,8 @@ finish:
|
|||
if (toCount < 3) { // require t=0, x, 1 at minimum
|
||||
continue;
|
||||
}
|
||||
SkPoint testPt;
|
||||
xyAtT(test->fT, &testPt);
|
||||
if (matchPt != testPt) {
|
||||
const SkPoint* testPt = &xyAtT(test);
|
||||
if (*matchPt != *testPt) {
|
||||
matchIndex = index;
|
||||
moCount = toCount;
|
||||
match = test;
|
||||
|
@ -1042,6 +1046,7 @@ finish:
|
|||
|| !tOther->isLinear(toStart, toEnd)) {
|
||||
continue;
|
||||
}
|
||||
// FIXME: may need to resort if we depend on coincidence first, last
|
||||
mOther->fTs[moStart].fCoincident = -1;
|
||||
tOther->fTs[toStart].fCoincident = -1;
|
||||
mOther->fTs[moEnd].fCoincident = 1;
|
||||
|
@ -1057,6 +1062,7 @@ finish:
|
|||
// topmost tangent from y-min to first pt is closer to horizontal
|
||||
int firstT = 0;
|
||||
int lastT = 0;
|
||||
int firstCoinT = 0;
|
||||
SkScalar topY = fPts[0].fY;
|
||||
int count = fTs.count();
|
||||
int index;
|
||||
|
@ -1066,9 +1072,12 @@ finish:
|
|||
SkScalar yIntercept = t == 1 ? fPts[fVerb].fY : yAtT(t);
|
||||
if (topY > yIntercept) {
|
||||
topY = yIntercept;
|
||||
firstT = lastT = index;
|
||||
firstT = lastT = firstCoinT = index;
|
||||
} else if (topY == yIntercept) {
|
||||
lastT = index;
|
||||
if (span.fCoincident) {
|
||||
firstCoinT = index;
|
||||
}
|
||||
}
|
||||
}
|
||||
// if there's only a pair of segments, go with the endpoint chosen above
|
||||
|
@ -1078,22 +1087,19 @@ finish:
|
|||
return this;
|
||||
}
|
||||
// sort the edges to find the leftmost
|
||||
SkPoint startLoc; // OPTIMIZATION: store this in the t span?
|
||||
const Span* startSpan = &fTs[firstT];
|
||||
xyAtT(startSpan->fT, &startLoc);
|
||||
SkPoint endLoc;
|
||||
bool nextCo;
|
||||
int end = nextSpan(firstT, 1, startLoc, startSpan, &endLoc, nextCo);
|
||||
int step = 1;
|
||||
int end = nextSpan(firstT, step);
|
||||
if (end == -1) {
|
||||
end = nextSpan(firstT, -1, startLoc, startSpan, &endLoc, nextCo);
|
||||
step = -1;
|
||||
end = nextSpan(firstT, step);
|
||||
SkASSERT(end != -1);
|
||||
}
|
||||
// if the topmost T is not on end, or is three-way or more, find left
|
||||
// look for left-ness from tLeft to firstT (matching y of other)
|
||||
SkTDArray<Angle> angles;
|
||||
SkASSERT(firstT - end != 0);
|
||||
addTwoAngles(end, firstT, endLoc, &fTs[firstT], nextCo, angles);
|
||||
buildAngles(firstT, lastT, 1, startLoc, angles);
|
||||
addTwoAngles(end, firstCoinT, angles);
|
||||
buildAngles(firstT, angles);
|
||||
SkTDArray<Angle*> sorted;
|
||||
sortAngles(angles, sorted);
|
||||
Segment* leftSegment = sorted[0]->segment();
|
||||
|
@ -1155,11 +1161,11 @@ finish:
|
|||
Segment* next;
|
||||
Segment* nextOther;
|
||||
if (step < 0) {
|
||||
next = start->fT <= 0 ? NULL : this;
|
||||
nextOther = other->fTs[start->fOtherIndex].fT >= 1 ? NULL : other;
|
||||
next = start->fT == 0 ? NULL : this;
|
||||
nextOther = other->fTs[start->fOtherIndex].fT == 1 ? NULL : other;
|
||||
} else {
|
||||
next = end->fT >= 1 ? NULL : this;
|
||||
nextOther = other->fTs[end->fOtherIndex].fT <= 0 ? NULL : other;
|
||||
next = end->fT == 1 ? NULL : this;
|
||||
nextOther = other->fTs[end->fOtherIndex].fT == 0 ? NULL : other;
|
||||
}
|
||||
SkASSERT(!next || !nextOther);
|
||||
for (index = 0; index < count; ++index) {
|
||||
|
@ -1167,10 +1173,10 @@ finish:
|
|||
if (span.fCoincident || span.fOther == other) {
|
||||
continue;
|
||||
}
|
||||
bool checkNext = !next && (step < 0 ? span.fT <= 0
|
||||
&& span.fOtherT >= 1 : span.fT >= 1 && span.fOtherT <= 0);
|
||||
bool checkNext = !next && (step < 0 ? span.fT == 0
|
||||
&& span.fOtherT == 1 : span.fT == 1 && span.fOtherT == 0);
|
||||
bool checkOther = !nextOther && (step < 0 ? span.fT == start->fT
|
||||
&& span.fOtherT <= 0 : span.fT == end->fT && span.fOtherT >= 1);
|
||||
&& span.fOtherT == 0 : span.fT == end->fT && span.fOtherT == 1);
|
||||
if (!checkNext && !checkOther) {
|
||||
continue;
|
||||
}
|
||||
|
@ -1187,11 +1193,11 @@ finish:
|
|||
if (!oSpan.fCoincident) {
|
||||
continue;
|
||||
}
|
||||
if (checkNext && (oSpan.fT <= 0 ^ step < 0)) {
|
||||
if (checkNext && (oSpan.fT == 0 ^ step < 0)) {
|
||||
next = oSegment;
|
||||
checkNext = false;
|
||||
}
|
||||
if (checkOther && (oSpan.fT >= 1 ^ step < 0)) {
|
||||
if (checkOther && (oSpan.fT == 1 ^ step < 0)) {
|
||||
nextOther = oSegment;
|
||||
checkOther = false;
|
||||
}
|
||||
|
@ -1206,18 +1212,16 @@ finish:
|
|||
|
||||
// OPTIMIZATION: uses tail recursion. Unwise?
|
||||
void innerChase(int index, int step, int winding) {
|
||||
SkPoint loc; // OPTIMIZATION: store this in the t span?
|
||||
bool coincident;
|
||||
int end = nextSpan(index, step, &loc, coincident);
|
||||
int end = nextSpan(index, step);
|
||||
bool many;
|
||||
lastSpan(end, step, loc, fTs[end].fT, coincident, &many);
|
||||
lastSpan(end, step, &many);
|
||||
if (many) {
|
||||
return;
|
||||
}
|
||||
Span* endSpan = &fTs[end];
|
||||
Segment* other = endSpan->fOther;
|
||||
index = endSpan->fOtherIndex;
|
||||
int otherEnd = other->nextSpan(index, step, &loc, coincident);
|
||||
int otherEnd = other->nextSpan(index, step);
|
||||
other->innerChase(index, step, winding);
|
||||
other->markDone(SkMin32(index, otherEnd), winding);
|
||||
}
|
||||
|
@ -1248,6 +1252,29 @@ finish:
|
|||
return CubicIsLinear(cPart);
|
||||
}
|
||||
}
|
||||
|
||||
bool isSimple(int index, int step) const {
|
||||
int count = fTs.count();
|
||||
if (count == 2) {
|
||||
return true;
|
||||
}
|
||||
double spanT = fTs[index].fT;
|
||||
if (spanT > 0 && spanT < 1) {
|
||||
return false;
|
||||
}
|
||||
if (step < 0) {
|
||||
const Span& secondSpan = fTs[1];
|
||||
if (secondSpan.fT == 0) {
|
||||
return false;
|
||||
}
|
||||
return xyAtT(&fTs[0]) != xyAtT(&secondSpan);
|
||||
}
|
||||
const Span& penultimateSpan = fTs[count - 2];
|
||||
if (penultimateSpan.fT == 1) {
|
||||
return false;
|
||||
}
|
||||
return xyAtT(&fTs[count - 1]) != xyAtT(&penultimateSpan);
|
||||
}
|
||||
|
||||
bool isHorizontal() const {
|
||||
return fBounds.fTop == fBounds.fBottom;
|
||||
|
@ -1258,27 +1285,25 @@ finish:
|
|||
}
|
||||
|
||||
// last does not check for done spans because done is only set for the start
|
||||
int lastSpan(int end, int step, const SkPoint& startLoc,
|
||||
double startT, bool& coincident, bool* manyPtr = NULL) const {
|
||||
int lastSpan(int end, int step, bool* manyPtr = NULL) const {
|
||||
int last = end;
|
||||
int count = fTs.count();
|
||||
SkPoint lastLoc;
|
||||
int found = 0;
|
||||
const Span& endSpan = fTs[end];
|
||||
double endT = endSpan.fT;
|
||||
do {
|
||||
end = last;
|
||||
if (fTs[end].fCoincident == -step) {
|
||||
coincident = true;
|
||||
}
|
||||
if (step > 0 ? ++last >= count : --last < 0) {
|
||||
break;
|
||||
}
|
||||
const Span& lastSpan = fTs[last];
|
||||
if (lastSpan.fT == startT) {
|
||||
if (lastSpan.fT == endT) {
|
||||
++found;
|
||||
continue;
|
||||
}
|
||||
xyAtT(lastSpan.fT, &lastLoc);
|
||||
if (startLoc != lastLoc) {
|
||||
const SkPoint& lastLoc = xyAtT(&lastSpan);
|
||||
const SkPoint& endLoc = xyAtT(&endSpan);
|
||||
if (endLoc != lastLoc) {
|
||||
break;
|
||||
}
|
||||
++found;
|
||||
|
@ -1333,70 +1358,45 @@ finish:
|
|||
}
|
||||
|
||||
// note the assert logic looks for unexpected done of span start
|
||||
// FIXME: compute fromLoc on the fly
|
||||
int nextSpan(int from, int step, const SkPoint& fromLoc,
|
||||
const Span* fromSpan, SkPoint* toLoc, bool& coincident) const {
|
||||
coincident = false;
|
||||
SkASSERT(!done());
|
||||
int count = fTs.count();
|
||||
int to = from;
|
||||
while (step > 0 ? ++to < count : --to >= 0) {
|
||||
Span* span = &fTs[to];
|
||||
if (span->fCoincident == step) {
|
||||
coincident = true;
|
||||
}
|
||||
if (fromSpan->fT == span->fT) {
|
||||
continue;
|
||||
}
|
||||
SkPoint loc;
|
||||
xyAtT(span->fT, &loc);
|
||||
if (fromLoc == loc) {
|
||||
continue;
|
||||
}
|
||||
SkASSERT(step < 0 || !fTs[from].fDone);
|
||||
SkASSERT(step > 0 || !span->fDone);
|
||||
if (toLoc) {
|
||||
*toLoc = loc;
|
||||
}
|
||||
return to;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
// This has callers for two different situations: one establishes the end
|
||||
// of the current span, and one establishes the beginning of the next span
|
||||
// (thus the name). When this is looking for the end of the current span,
|
||||
// coincidence is found when the beginning Ts contain -step and the end
|
||||
// contains step. When it is looking for the beginning of the next, the
|
||||
// first Ts found can be ignored and the last Ts should contain -step.
|
||||
|
||||
int nextSpan(int from, int step, SkPoint* toLoc, bool& coincident) const {
|
||||
const Span& fromSpan = fTs[from];
|
||||
coincident = false;
|
||||
int nextSpan(int from, int step) const {
|
||||
SkASSERT(!done());
|
||||
const Span& fromSpan = fTs[from];
|
||||
int count = fTs.count();
|
||||
int to = from;
|
||||
SkPoint fromLoc;
|
||||
fromLoc.fX = SK_ScalarNaN;
|
||||
while (step > 0 ? ++to < count : --to >= 0) {
|
||||
const Span& span = fTs[to];
|
||||
if (span.fCoincident == step) {
|
||||
coincident = true;
|
||||
}
|
||||
if (fromSpan.fT == span.fT) {
|
||||
continue;
|
||||
}
|
||||
SkPoint loc;
|
||||
xyAtT(span.fT, &loc);
|
||||
if (SkScalarIsNaN(fromLoc.fX)) {
|
||||
xyAtT(fromSpan.fT, &fromLoc);
|
||||
}
|
||||
const SkPoint& loc = xyAtT(&span);
|
||||
const SkPoint& fromLoc = xyAtT(&fromSpan);
|
||||
if (fromLoc == loc) {
|
||||
continue;
|
||||
}
|
||||
SkASSERT(step < 0 || !fromSpan.fDone);
|
||||
SkASSERT(step > 0 || !span.fDone);
|
||||
if (toLoc) {
|
||||
*toLoc = loc;
|
||||
}
|
||||
return to;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
// once past current span, if step>0, look for coicident==1
|
||||
// if step<0, look for coincident==-1
|
||||
int nextSpanEnd(int from, int step) const {
|
||||
int result = nextSpan(from, step);
|
||||
if (result < 0) {
|
||||
return result;
|
||||
}
|
||||
return coincidentEnd(result, step);
|
||||
}
|
||||
|
||||
const SkPoint* pts() const {
|
||||
return fPts;
|
||||
}
|
||||
|
@ -1407,10 +1407,13 @@ finish:
|
|||
fTs.reset();
|
||||
}
|
||||
|
||||
// OPTIMIZATION: mark as debugging only if used solely by tests
|
||||
const Span& span(int tIndex) const {
|
||||
return fTs[tIndex];
|
||||
}
|
||||
|
||||
// OPTIMIZATION: mark as debugging only if used solely by tests
|
||||
double t(int tIndex) const {
|
||||
SkASSERT(tIndex >= 0);
|
||||
SkASSERT(tIndex < fTs.count());
|
||||
return fTs[tIndex].fT;
|
||||
}
|
||||
|
||||
|
@ -1435,9 +1438,19 @@ finish:
|
|||
return (*SegmentXAtT[fVerb])(fPts, t);
|
||||
}
|
||||
|
||||
void xyAtT(double t, SkPoint* pt) const {
|
||||
SkASSERT(t >= 0 && t <= 1);
|
||||
(*SegmentXYAtT[fVerb])(fPts, t, pt);
|
||||
const SkPoint& xyAtT(const Span* span) const {
|
||||
if (!span->fPt) {
|
||||
if (span->fT == 0) {
|
||||
span->fPt = &fPts[0];
|
||||
} else if (span->fT == 1) {
|
||||
span->fPt = &fPts[fVerb];
|
||||
} else {
|
||||
SkPoint* pt = fIntersections.append();
|
||||
(*SegmentXYAtT[fVerb])(fPts, span->fT, pt);
|
||||
span->fPt = pt;
|
||||
}
|
||||
}
|
||||
return *span->fPt;
|
||||
}
|
||||
|
||||
SkScalar yAtT(double t) const {
|
||||
|
@ -1469,6 +1482,10 @@ private:
|
|||
SkPath::Verb fVerb;
|
||||
Bounds fBounds;
|
||||
SkTDArray<Span> fTs; // two or more (always includes t=0 t=1)
|
||||
// OPTIMIZATION:if intersections array is a pointer, the it could only
|
||||
// be allocated as needed instead of always initialized -- though maybe
|
||||
// the initialization is lightweight enough that it hardly matters
|
||||
mutable SkTDArray<SkPoint> fIntersections;
|
||||
// FIXME: coincident only needs two bits (-1, 0, 1)
|
||||
int fCoincident; // non-zero if some coincident span inside
|
||||
int fDoneSpans; // used for quick check that segment is finished
|
||||
|
@ -2100,16 +2117,25 @@ static bool addIntersectTs(Contour* test, Contour* next) {
|
|||
SkASSERT(0);
|
||||
}
|
||||
// in addition to recording T values, record matching segment
|
||||
int coincident = pts == 2 && wn.segmentType() <= Work::kLine_Segment
|
||||
&& wt.segmentType() <= Work::kLine_Segment ? -1 :0;
|
||||
int testCoin;
|
||||
int nextCoin;
|
||||
if (pts == 2 && wn.segmentType() <= Work::kLine_Segment
|
||||
&& wt.segmentType() <= Work::kLine_Segment) {
|
||||
// pass coincident so that smaller T is -1, larger T is 1
|
||||
testCoin = ts.fT[swap][0] < ts.fT[swap][1] ? -1 : 1;
|
||||
nextCoin = ts.fT[!swap][0] < ts.fT[!swap][1] ? -1 : 1;
|
||||
} else {
|
||||
testCoin = nextCoin = 0;
|
||||
}
|
||||
for (int pt = 0; pt < pts; ++pt) {
|
||||
SkASSERT(ts.fT[0][pt] >= 0 && ts.fT[0][pt] <= 1);
|
||||
SkASSERT(ts.fT[1][pt] >= 0 && ts.fT[1][pt] <= 1);
|
||||
int testTAt = wt.addT(ts.fT[swap][pt], wn, coincident);
|
||||
int nextTAt = wn.addT(ts.fT[!swap][pt], wt, coincident);
|
||||
int testTAt = wt.addT(ts.fT[swap][pt], wn, testCoin);
|
||||
int nextTAt = wn.addT(ts.fT[!swap][pt], wt, nextCoin);
|
||||
wt.addOtherT(testTAt, ts.fT[!swap][pt], nextTAt);
|
||||
wn.addOtherT(nextTAt, ts.fT[swap][pt], testTAt);
|
||||
coincident = -coincident;
|
||||
testCoin = -testCoin;
|
||||
nextCoin = -nextCoin;
|
||||
}
|
||||
} while (wn.advance());
|
||||
} while (wt.advance());
|
||||
|
|
|
@ -61,9 +61,9 @@ static void testLines(bool testFlat) {
|
|||
for (x = 0; x < lineCount; ++x) {
|
||||
SimplifyAngleTest::Angle* angle = angles.append();
|
||||
if (testFlat) {
|
||||
angle->setFlat(lines[x], SkPath::kLine_Verb, 0, x, x + 1, false);
|
||||
angle->setFlat(lines[x], SkPath::kLine_Verb, 0, x, x + 1);
|
||||
} else {
|
||||
angle->set(lines[x], SkPath::kLine_Verb, 0, x, x + 1, false);
|
||||
angle->set(lines[x], SkPath::kLine_Verb, 0, x, x + 1);
|
||||
}
|
||||
double arcTan = atan2(lines[x][0].fX - lines[x][1].fX,
|
||||
lines[x][0].fY - lines[x][1].fY);
|
||||
|
@ -112,9 +112,9 @@ static void testQuads(bool testFlat) {
|
|||
for (x = 0; x < quadCount; ++x) {
|
||||
SimplifyAngleTest::Angle* angle = angles.append();
|
||||
if (testFlat) {
|
||||
angle->setFlat(quads[x], SkPath::kQuad_Verb, 0, x, x + 1, false);
|
||||
angle->setFlat(quads[x], SkPath::kQuad_Verb, 0, x, x + 1);
|
||||
} else {
|
||||
angle->set(quads[x], SkPath::kQuad_Verb, 0, x, x + 1, false);
|
||||
angle->set(quads[x], SkPath::kQuad_Verb, 0, x, x + 1);
|
||||
}
|
||||
}
|
||||
for (x = 0; x < quadCount; ++x) {
|
||||
|
@ -138,9 +138,9 @@ static void testCubics(bool testFlat) {
|
|||
for (size_t x = 0; x < cubicCount; ++x) {
|
||||
SimplifyAngleTest::Angle* angle = angles.append();
|
||||
if (testFlat) {
|
||||
angle->setFlat(cubics[x], SkPath::kCubic_Verb, 0, x, x + 1, false);
|
||||
angle->setFlat(cubics[x], SkPath::kCubic_Verb, 0, x, x + 1);
|
||||
} else {
|
||||
angle->set(cubics[x], SkPath::kCubic_Verb, 0, x, x + 1, false);
|
||||
angle->set(cubics[x], SkPath::kCubic_Verb, 0, x, x + 1);
|
||||
}
|
||||
angleList.push(angle);
|
||||
}
|
||||
|
@ -180,4 +180,4 @@ void SimplifyAngle_Test() {
|
|||
(*tests[index])(true);
|
||||
firstTestComplete = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -29,13 +29,11 @@ static const SimplifyFindNextTest::Segment* testCommon(
|
|||
fixOtherTIndex(contourList);
|
||||
SimplifyFindNextTest::Segment& segment = contours[0].fSegments[0];
|
||||
SkPoint pts[2];
|
||||
double startT = segment.t(endIndex);
|
||||
segment.xyAtT(startT, &pts[0]);
|
||||
pts[0] = segment.xyAtT(&segment.span(endIndex));
|
||||
int nextStart, nextEnd;
|
||||
SimplifyFindNextTest::Segment* next = segment.findNext(winding,
|
||||
startIndex, endIndex, nextStart, nextEnd);
|
||||
double endT = next->t(nextStart);
|
||||
next->xyAtT(endT, &pts[1]);
|
||||
pts[1] = next->xyAtT(&segment.span(nextStart));
|
||||
SkASSERT(pts[0] == pts[1]);
|
||||
return next;
|
||||
}
|
||||
|
|
|
@ -51,7 +51,7 @@ static void test(const SkPath& path, SkScalar x1, SkScalar y1,
|
|||
testCommon(contours, index, end);
|
||||
SkPoint pts[2];
|
||||
double firstT = topSegment->t(index);
|
||||
topSegment->xyAtT(firstT, &pts[0]);
|
||||
pts[0] = topSegment->xyAtT(&topSegment->span(index));
|
||||
int direction = index < end ? 1 : -1;
|
||||
do {
|
||||
index += direction;
|
||||
|
@ -59,7 +59,7 @@ static void test(const SkPath& path, SkScalar x1, SkScalar y1,
|
|||
if (nextT == firstT) {
|
||||
continue;
|
||||
}
|
||||
topSegment->xyAtT(nextT, &pts[1]);
|
||||
pts[1] = topSegment->xyAtT(&topSegment->span(index));
|
||||
if (pts[0] != pts[1]) {
|
||||
break;
|
||||
}
|
||||
|
|
|
@ -104,7 +104,7 @@ static void (*tests[])() = {
|
|||
|
||||
static const size_t testCount = sizeof(tests) / sizeof(tests[0]);
|
||||
|
||||
static void (*firstTest)() = testLine5;
|
||||
static void (*firstTest)() = 0;
|
||||
static bool skipAll = false;
|
||||
|
||||
void SimplifyNew_Test() {
|
||||
|
@ -119,6 +119,7 @@ void SimplifyNew_Test() {
|
|||
}
|
||||
bool firstTestComplete = false;
|
||||
for ( ; index < testCount; ++index) {
|
||||
SkDebugf("%s [%d]\n", __FUNCTION__, index + 1);
|
||||
(*tests[index])();
|
||||
firstTestComplete = true;
|
||||
}
|
||||
|
|
|
@ -163,4 +163,4 @@ and/or to determine whether one curve is to the inside or outside of another.
|
|||
According to Mike/Rob, the flatness for quadratics increases by 4 for each
|
||||
subdivision, and a crude guess of the curvature can be had by comparing P1 to
|
||||
(P0+P2)/2. By looking at the ULPS of the numbers, I can guess what value of
|
||||
T may be far enough that the curves diverge but don't cross.
|
||||
T may be far enough that the curves diverge but don't cross.
|
||||
|
|
Загрузка…
Ссылка в новой задаче