Revert r7901 & r7899 to allow DEPS roll

git-svn-id: http://skia.googlecode.com/svn/trunk@7909 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
robertphillips@google.com 2013-02-28 23:08:28 +00:00
Родитель 2b1b8c083b
Коммит af3a3b9fb1
21 изменённых файлов: 638 добавлений и 739 удалений

Просмотреть файл

@ -36,25 +36,12 @@ bool GrAndroidPathRenderer::onDrawPath(const SkPath& origPath,
android::uirenderer::PathRenderer::ConvexPathVertices(origPath, stroke, antiAlias, NULL,
&vertices);
// set vertex attributes depending on anti-alias
GrDrawState* drawState = target->drawState();
if (antiAlias) {
// position + coverage
GrVertexAttrib attribs[] = {
GrVertexAttrib(kVec2f_GrVertexAttribType, 0),
GrVertexAttrib(kVec4ub_GrVertexAttribType, sizeof(GrPoint))
};
drawState->setVertexAttribs(attribs, SK_ARRAY_COUNT(attribs));
drawState->setAttribIndex(GrDrawState::kPosition_AttribIndex, 0);
drawState->setAttribIndex(GrDrawState::kCoverage_AttribIndex, 1);
drawState->setAttribBindings(GrDrawState::kCoverage_AttribBindingsBit);
} else {
drawState->setDefaultVertexAttribs();
}
// set vertex layout depending on anti-alias
GrVertexLayout layout = antiAlias ? GrDrawState::kCoverage_VertexLayoutBit : 0;
// allocate our vert buffer
int vertCount = vertices.getSize();
GrDrawTarget::AutoReleaseGeometry geo(target, vertCount, 0);
GrDrawTarget::AutoReleaseGeometry geo(target, layout, vertCount, 0);
if (!geo.succeeded()) {
GrPrintf("Failed to get space for vertices!\n");
return false;
@ -62,7 +49,6 @@ bool GrAndroidPathRenderer::onDrawPath(const SkPath& origPath,
// copy android verts to our vertex buffer
if (antiAlias) {
GrAssert(sizeof(ColorVertex) == drawState->getVertexSize());
ColorVertex* outVert = reinterpret_cast<ColorVertex*>(geo.vertices());
android::uirenderer::AlphaVertex* inVert =
reinterpret_cast<android::uirenderer::AlphaVertex*>(vertices.getBuffer());
@ -77,7 +63,7 @@ bool GrAndroidPathRenderer::onDrawPath(const SkPath& origPath,
++inVert;
}
} else {
size_t vsize = drawState->getVertexSize();
size_t vsize = GrDrawState::VertexSize(layout);
size_t copySize = vsize*vertCount;
memcpy(geo.vertices(), vertices.getBuffer(), copySize);
}

Просмотреть файл

@ -111,11 +111,11 @@ bool GrStrokePathRenderer::onDrawPath(const SkPath& origPath,
// Allocate vertices
const int nbQuads = origPath.countPoints() + 1; // Could be "-1" if path is not closed
GrVertexLayout layout = 0; // Just 3D points
const int extraVerts = isMiter || isBevel ? 1 : 0;
const int maxVertexCount = nbQuads * (4 + extraVerts);
const int maxIndexCount = nbQuads * (6 + extraVerts * 3); // Each extra vert adds a triangle
target->drawState()->setDefaultVertexAttribs();
GrDrawTarget::AutoReleaseGeometry arg(target, maxVertexCount, maxIndexCount);
GrDrawTarget::AutoReleaseGeometry arg(target, layout, maxVertexCount, maxIndexCount);
if (!arg.succeeded()) {
return false;
}
@ -126,7 +126,7 @@ bool GrStrokePathRenderer::onDrawPath(const SkPath& origPath,
// Transform the path into a list of triangles
SkPath::Iter iter(origPath, false);
SkPoint pts[4];
const SkScalar radius = SkScalarMul(width, 0.5f);
const SkScalar radius = SkScalarMul(width, 0.5);
SkPoint *firstPt = verts, *lastPt = NULL;
SkVector firstDir, dir;
firstDir.set(0, 0);

Просмотреть файл

@ -223,20 +223,7 @@ public:
}
}
T* begin() {
return fItemArray;
}
const T* begin() const {
return fItemArray;
}
T* end() {
return fItemArray ? fItemArray + fCount : NULL;
}
const T* end() const {
return fItemArray ? fItemArray + fCount : NULL;;
}
/**
/**
* Get the i^th element.
*/
T& operator[] (int i) {

Просмотреть файл

@ -32,6 +32,7 @@ public:
private:
GrPaint fPaint;
GrVertexLayout fVertexLayout;
GrContext* fContext;
GrDrawTarget* fDrawTarget;

Просмотреть файл

@ -194,6 +194,12 @@ typedef intptr_t GrBackendContext;
///////////////////////////////////////////////////////////////////////////////
/**
* Type used to describe format of vertices in arrays
* Values are defined in GrDrawTarget
*/
typedef int GrVertexLayout;
/**
* Geometric primitives used for drawing.
*/

Просмотреть файл

@ -453,6 +453,9 @@ bool GrAAConvexPathRenderer::onDrawPath(const SkPath& origPath,
}
const SkMatrix* vm = &adcd.getOriginalMatrix();
GrVertexLayout layout = 0;
layout |= GrDrawState::kEdge_VertexLayoutBit;
// We use the fact that SkPath::transform path does subdivision based on
// perspective. Otherwise, we apply the view matrix when copying to the
// segment representation.
@ -478,22 +481,11 @@ bool GrAAConvexPathRenderer::onDrawPath(const SkPath& origPath,
return false;
}
// position + edge
static const GrVertexAttrib kAttribs[] = {
GrVertexAttrib(kVec2f_GrVertexAttribType, 0),
GrVertexAttrib(kVec4f_GrVertexAttribType, sizeof(GrPoint))
};
static const GrAttribBindings bindings = GrDrawState::kEdge_AttribBindingsBit;
drawState->setVertexAttribs(kAttribs, SK_ARRAY_COUNT(kAttribs));
drawState->setAttribIndex(GrDrawState::kPosition_AttribIndex, 0);
drawState->setAttribIndex(GrDrawState::kEdge_AttribIndex, 1);
drawState->setAttribBindings(bindings);
drawState->setVertexLayout(layout);
GrDrawTarget::AutoReleaseGeometry arg(target, vCount, iCount);
if (!arg.succeeded()) {
return false;
}
GrAssert(sizeof(QuadVertex) == drawState->getVertexSize());
verts = reinterpret_cast<QuadVertex*>(arg.vertices());
idxs = reinterpret_cast<uint16_t*>(arg.indices());

Просмотреть файл

@ -495,20 +495,15 @@ bool GrAAHairLinePathRenderer::createGeom(
int* lineCnt,
int* quadCnt,
GrDrawTarget::AutoReleaseGeometry* arg) {
GrDrawState* drawState = target->drawState();
int rtHeight = drawState->getRenderTarget()->height();
const GrDrawState& drawState = target->getDrawState();
int rtHeight = drawState.getRenderTarget()->height();
GrIRect devClipBounds;
target->getClip()->getConservativeBounds(drawState->getRenderTarget(),
target->getClip()->getConservativeBounds(drawState.getRenderTarget(),
&devClipBounds);
// position + edge
static const GrVertexAttrib kAttribs[] = {
GrVertexAttrib(kVec2f_GrVertexAttribType, 0),
GrVertexAttrib(kVec4f_GrVertexAttribType, sizeof(GrPoint))
};
static const GrAttribBindings kBindings = GrDrawState::kEdge_AttribBindingsBit;
SkMatrix viewM = drawState->getViewMatrix();
GrVertexLayout layout = GrDrawState::kEdge_VertexLayoutBit;
SkMatrix viewM = drawState.getViewMatrix();
PREALLOC_PTARRAY(128) lines;
PREALLOC_PTARRAY(128) quads;
@ -519,10 +514,7 @@ bool GrAAHairLinePathRenderer::createGeom(
*lineCnt = lines.count() / 2;
int vertCnt = kVertsPerLineSeg * *lineCnt + kVertsPerQuad * *quadCnt;
target->drawState()->setVertexAttribs(kAttribs, SK_ARRAY_COUNT(kAttribs));
target->drawState()->setAttribIndex(GrDrawState::kPosition_AttribIndex, 0);
target->drawState()->setAttribIndex(GrDrawState::kEdge_AttribIndex, 1);
target->drawState()->setAttribBindings(kBindings);
target->drawState()->setVertexLayout(layout);
GrAssert(sizeof(Vertex) == target->getDrawState().getVertexSize());
if (!arg->set(target, vertCnt, 0)) {

Просмотреть файл

@ -13,15 +13,14 @@ SK_DEFINE_INST_COUNT(GrAARectRenderer)
namespace {
static void aa_rect_attributes(bool useCoverage, GrAttribBindings* bindings,
GrDrawState::AttribIndex* index) {
static GrVertexLayout aa_rect_layout(bool useCoverage) {
GrVertexLayout layout = 0;
if (useCoverage) {
*bindings = GrDrawState::kCoverage_AttribBindingsBit;
*index = GrDrawState::kCoverage_AttribIndex;
layout |= GrDrawState::kCoverage_VertexLayoutBit;
} else {
*bindings = GrDrawState::kColor_AttribBindingsBit;
*index = GrDrawState::kColor_AttribIndex;
layout |= GrDrawState::kColor_VertexLayoutBit;
}
return layout;
}
static void set_inset_fan(GrPoint* pts, size_t stride,
@ -30,12 +29,6 @@ static void set_inset_fan(GrPoint* pts, size_t stride,
r.fRight - dx, r.fBottom - dy, stride);
}
// position + color/coverage
static const GrVertexAttrib kVertexAttribs[] = {
GrVertexAttrib(kVec2f_GrVertexAttribType, 0),
GrVertexAttrib(kVec4ub_GrVertexAttribType, sizeof(GrPoint))
};
};
void GrAARectRenderer::reset() {
@ -132,15 +125,8 @@ void GrAARectRenderer::fillAARect(GrGpu* gpu,
GrDrawTarget* target,
const GrRect& devRect,
bool useVertexCoverage) {
GrDrawState* drawState = target->drawState();
GrAttribBindings bindings;
GrDrawState::AttribIndex attribIndex;
aa_rect_attributes(useVertexCoverage, &bindings, &attribIndex);
drawState->setVertexAttribs(kVertexAttribs, SK_ARRAY_COUNT(kVertexAttribs));
drawState->setAttribBindings(bindings);
drawState->setAttribIndex(GrDrawState::kPosition_AttribIndex, 0);
drawState->setAttribIndex(attribIndex, 1);
GrVertexLayout layout = aa_rect_layout(useVertexCoverage);
target->drawState()->setVertexLayout(layout);
GrDrawTarget::AutoReleaseGeometry geo(target, 8, 0);
if (!geo.succeeded()) {
@ -155,8 +141,7 @@ void GrAARectRenderer::fillAARect(GrGpu* gpu,
}
intptr_t verts = reinterpret_cast<intptr_t>(geo.vertices());
size_t vsize = drawState->getVertexSize();
GrAssert(sizeof(GrPoint) + sizeof(GrColor) == vsize);
size_t vsize = target->getDrawState().getVertexSize();
GrPoint* fan0Pos = reinterpret_cast<GrPoint*>(verts);
GrPoint* fan1Pos = reinterpret_cast<GrPoint*>(verts + 4 * vsize);
@ -192,8 +177,6 @@ void GrAARectRenderer::strokeAARect(GrGpu* gpu,
const GrRect& devRect,
const GrVec& devStrokeSize,
bool useVertexCoverage) {
GrDrawState* drawState = target->drawState();
const SkScalar& dx = devStrokeSize.fX;
const SkScalar& dy = devStrokeSize.fY;
const SkScalar rx = SkScalarMul(dx, SK_ScalarHalf);
@ -212,14 +195,8 @@ void GrAARectRenderer::strokeAARect(GrGpu* gpu,
this->fillAARect(gpu, target, r, useVertexCoverage);
return;
}
GrAttribBindings bindings;
GrDrawState::AttribIndex attribIndex;
aa_rect_attributes(useVertexCoverage, &bindings, &attribIndex);
drawState->setVertexAttribs(kVertexAttribs, SK_ARRAY_COUNT(kVertexAttribs));
drawState->setAttribBindings(bindings);
drawState->setAttribIndex(GrDrawState::kPosition_AttribIndex, 0);
drawState->setAttribIndex(attribIndex, 1);
GrVertexLayout layout = aa_rect_layout(useVertexCoverage);
target->drawState()->setVertexLayout(layout);
GrDrawTarget::AutoReleaseGeometry geo(target, 16, 0);
if (!geo.succeeded()) {
@ -233,8 +210,7 @@ void GrAARectRenderer::strokeAARect(GrGpu* gpu,
}
intptr_t verts = reinterpret_cast<intptr_t>(geo.vertices());
size_t vsize = drawState->getVertexSize();
GrAssert(sizeof(GrPoint) + sizeof(GrColor) == vsize);
size_t vsize = target->getDrawState().getVertexSize();
// We create vertices for four nested rectangles. There are two ramps from 0 to full
// coverage, one on the exterior of the stroke and the other on the interior.

Просмотреть файл

@ -352,16 +352,8 @@ GrTexture* GrContext::createResizedTexture(const GrTextureDesc& desc,
GrTextureParams params(SkShader::kClamp_TileMode, needsFiltering);
drawState->createTextureEffect(0, clampedTexture, SkMatrix::I(), params);
// position + texture coordinate
static const GrVertexAttrib kVertexAttribs[] = {
GrVertexAttrib(kVec2f_GrVertexAttribType, 0),
GrVertexAttrib(kVec2f_GrVertexAttribType, sizeof(GrPoint))
};
static const GrAttribBindings kAttribBindings = GrDrawState::ExplicitTexCoordAttribBindingsBit(0);
drawState->setAttribBindings(kAttribBindings);
drawState->setVertexAttribs(kVertexAttribs, SK_ARRAY_COUNT(kVertexAttribs));
drawState->setAttribIndex(GrDrawState::kPosition_AttribIndex, 0);
drawState->setAttribIndex(GrDrawState::kTexCoord_AttribIndex, 1);
static const GrVertexLayout layout = GrDrawState::StageTexCoordVertexLayoutBit(0);
drawState->setVertexLayout(layout);
GrDrawTarget::AutoReleaseGeometry arg(fGpu, 4, 0);
if (arg.succeeded()) {
@ -786,7 +778,7 @@ void GrContext::drawRect(const GrPaint& paint,
// unitSquareVertexBuffer()
static const int worstCaseVertCount = 10;
target->drawState()->setDefaultVertexAttribs();
target->drawState()->setVertexLayout(GrDrawState::kDefault_VertexLayout);
GrDrawTarget::AutoReleaseGeometry geo(target, worstCaseVertCount, 0);
if (!geo.succeeded()) {
@ -829,7 +821,7 @@ void GrContext::drawRect(const GrPaint& paint,
}
GrDrawState* drawState = target->drawState();
target->drawState()->setDefaultVertexAttribs();
drawState->setVertexLayout(GrDrawState::kDefault_VertexLayout);
target->setVertexSourceToBuffer(sqVB);
SkMatrix m;
m.setAll(rect.width(), 0, rect.fLeft,
@ -895,7 +887,7 @@ void GrContext::drawRectToRect(const GrPaint& paint,
GrPrintf("Failed to create static rect vb.\n");
return;
}
drawState->setDefaultVertexAttribs();
drawState->setVertexLayout(GrDrawState::kDefault_VertexLayout);
target->setVertexSourceToBuffer(sqVB);
target->drawNonIndexed(kTriangleFan_GrPrimitiveType, 0, 4);
#else
@ -920,55 +912,37 @@ void GrContext::drawVertices(const GrPaint& paint,
GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW);
GrDrawState::AutoStageDisable atr(fDrawState);
GrDrawState* drawState = target->drawState();
GrVertexAttribArray<3> attribs;
size_t currentOffset = 0;
int colorOffset = -1, texOffset = -1;
GrAttribBindings bindings = GrDrawState::kDefault_AttribBindings;
// set position attribute
drawState->setAttribIndex(GrDrawState::kPosition_AttribIndex, attribs.count());
attribs.push_back(GrVertexAttrib(kVec2f_GrVertexAttribType, currentOffset));
currentOffset += sizeof(GrPoint);
// set up optional texture coordinate attributes
GrVertexLayout layout = 0;
if (NULL != texCoords) {
bindings |= GrDrawState::ExplicitTexCoordAttribBindingsBit(0);
drawState->setAttribIndex(GrDrawState::kTexCoord_AttribIndex, attribs.count());
attribs.push_back(GrVertexAttrib(kVec2f_GrVertexAttribType, currentOffset));
texOffset = currentOffset;
currentOffset += sizeof(GrPoint);
layout |= GrDrawState::StageTexCoordVertexLayoutBit(0);
}
// set up optional color attributes
if (NULL != colors) {
bindings |= GrDrawState::kColor_AttribBindingsBit;
drawState->setAttribIndex(GrDrawState::kColor_AttribIndex, attribs.count());
attribs.push_back(GrVertexAttrib(kVec4ub_GrVertexAttribType, currentOffset));
colorOffset = currentOffset;
currentOffset += sizeof(GrColor);
layout |= GrDrawState::kColor_VertexLayoutBit;
}
target->drawState()->setVertexLayout(layout);
drawState->setVertexAttribs(attribs.begin(), attribs.count());
drawState->setAttribBindings(bindings);
size_t vertexSize = drawState->getVertexSize();
GrAssert(vertexSize == currentOffset);
int vertexSize = target->getDrawState().getVertexSize();
if (sizeof(GrPoint) != vertexSize) {
if (!geo.set(target, vertexCount, 0)) {
GrPrintf("Failed to get space for vertices!\n");
return;
}
int texOffset;
int colorOffset;
GrDrawState::VertexSizeAndOffsets(layout,
&texOffset,
&colorOffset,
NULL,
NULL);
void* curVertex = geo.vertices();
for (int i = 0; i < vertexCount; ++i) {
*((GrPoint*)curVertex) = positions[i];
if (texOffset >= 0) {
if (texOffset > 0) {
*(GrPoint*)((intptr_t)curVertex + texOffset) = texCoords[i];
}
if (colorOffset >= 0) {
if (colorOffset > 0) {
*(GrColor*)((intptr_t)curVertex + colorOffset) = colors[i];
}
curVertex = (void*)((intptr_t)curVertex + vertexSize);
@ -1071,17 +1045,8 @@ void GrContext::internalDrawOval(const GrPaint& paint,
return;
}
// position + edge
static const GrVertexAttrib kVertexAttribs[] = {
GrVertexAttrib(kVec2f_GrVertexAttribType, 0),
GrVertexAttrib(kVec4f_GrVertexAttribType, sizeof(GrPoint))
};
static const GrAttribBindings kAttributeBindings = GrDrawState::kEdge_AttribBindingsBit;
drawState->setVertexAttribs(kVertexAttribs, SK_ARRAY_COUNT(kVertexAttribs));
drawState->setAttribIndex(GrDrawState::kPosition_AttribIndex, 0);
drawState->setAttribIndex(GrDrawState::kEdge_AttribIndex, 1);
drawState->setAttribBindings(kAttributeBindings);
GrVertexLayout layout = GrDrawState::kEdge_VertexLayoutBit;
drawState->setVertexLayout(layout);
GrAssert(sizeof(CircleVertex) == drawState->getVertexSize());
GrDrawTarget::AutoReleaseGeometry geo(target, 4, 0);

Просмотреть файл

@ -211,6 +211,7 @@ bool GrDefaultPathRenderer::createGeom(const SkPath& path,
return false;
}
GrVertexLayout layout = 0;
bool indexed = contourCnt > 1;
const bool isHairline = stroke.isHairlineStyle();
@ -232,7 +233,7 @@ bool GrDefaultPathRenderer::createGeom(const SkPath& path,
}
}
target->drawState()->setDefaultVertexAttribs();
target->drawState()->setVertexLayout(layout);
if (!arg->set(target, maxPts, maxIdxs)) {
return false;
}

Просмотреть файл

@ -57,150 +57,270 @@ namespace {
* they were just a series of immediate->memory moves.)
*
*/
void gen_tex_coord_mask(GrAttribBindings* texCoordMask) {
void gen_tex_coord_mask(GrVertexLayout* texCoordMask) {
*texCoordMask = 0;
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
*texCoordMask |= GrDrawState::ExplicitTexCoordAttribBindingsBit(s);
*texCoordMask |= GrDrawState::StageTexCoordVertexLayoutBit(s);
}
}
const GrAttribBindings kTexCoord_AttribBindingsMask = (1 << GrDrawState::kNumStages)-1;
const GrVertexLayout kTexCoordMask = (1 << GrDrawState::kNumStages)-1;
inline int num_tex_coords(GrVertexLayout layout) {
return (kTexCoordMask & layout) ? 1 : 0;
}
} //unnamed namespace
const size_t GrDrawState::kVertexAttribSizes[kGrVertexAttribTypeCount] = {
sizeof(float), // kFloat_GrVertexAttribType
2*sizeof(float), // kVec2_GrVertexAttribType
3*sizeof(float), // kVec3_GrVertexAttribType
4*sizeof(float), // kVec4_GrVertexAttribType
4*sizeof(char) // kCVec4_GrVertexAttribType
};
static const size_t kVec2Size = sizeof(GrPoint);
static size_t vertex_size(const GrVertexAttrib* attribs, int count) {
// this works as long as we're 4 byte-aligned
#if GR_DEBUG
uint32_t overlapCheck = 0;
#endif
GrAssert(count <= GrDrawState::kAttribIndexCount);
size_t size = 0;
for (int index = 0; index < count; ++index) {
size_t attribSize = GrDrawState::kVertexAttribSizes[attribs[index].fType];
size += attribSize;
#if GR_DEBUG
size_t dwordCount = attribSize >> 2;
uint32_t mask = (1 << dwordCount)-1;
size_t offsetShift = attribs[index].fOffset >> 2;
GrAssert(!(overlapCheck & (mask << offsetShift)));
overlapCheck |= (mask << offsetShift);
#endif
size_t GrDrawState::VertexSize(GrVertexLayout vertexLayout) {
size_t size = kVec2Size; // position
size += num_tex_coords(vertexLayout) * kVec2Size;
if (vertexLayout & kColor_VertexLayoutBit) {
size += sizeof(GrColor);
}
if (vertexLayout & kCoverage_VertexLayoutBit) {
size += sizeof(GrColor);
}
if (vertexLayout & kEdge_VertexLayoutBit) {
size += 4 * sizeof(SkScalar);
}
return size;
}
size_t GrDrawState::getVertexSize() const {
return vertex_size(fVertexAttribs.begin(), fVertexAttribs.count());
}
const GrAttribBindings GrDrawState::kAttribIndexMasks[kAttribIndexCount] = {
0, // position is not reflected in the bindings
kColor_AttribBindingsBit,
kCoverage_AttribBindingsBit,
kEdge_AttribBindingsBit,
kTexCoord_AttribBindingsMask
};
////////////////////////////////////////////////////////////////////////////////
void GrDrawState::setVertexAttribs(const GrVertexAttrib* attribs, int count) {
GrAssert(count <= GrDrawState::kAttribIndexCount);
fVertexAttribs.reset();
for (int index = 0; index < count; ++index) {
fVertexAttribs.push_back(attribs[index]);
/**
* Functions for computing offsets of various components from the layout
* bitfield.
*
* Order of vertex components:
* Position
* Tex Coord
* Color
* Coverage
*/
int GrDrawState::VertexStageCoordOffset(int stageIdx, GrVertexLayout vertexLayout) {
if (!StageUsesTexCoords(vertexLayout, stageIdx)) {
return 0;
}
return kVec2Size;
}
int GrDrawState::VertexColorOffset(GrVertexLayout vertexLayout) {
if (vertexLayout & kColor_VertexLayoutBit) {
return kVec2Size * (num_tex_coords(vertexLayout) + 1); //+1 for pos
}
return -1;
}
int GrDrawState::VertexCoverageOffset(GrVertexLayout vertexLayout) {
if (vertexLayout & kCoverage_VertexLayoutBit) {
int offset = kVec2Size * (num_tex_coords(vertexLayout) + 1);
if (vertexLayout & kColor_VertexLayoutBit) {
offset += sizeof(GrColor);
}
return offset;
}
return -1;
}
int GrDrawState::VertexEdgeOffset(GrVertexLayout vertexLayout) {
// edge pts are after the pos, tex coords, and color
if (vertexLayout & kEdge_VertexLayoutBit) {
int offset = kVec2Size * (num_tex_coords(vertexLayout) + 1); //+1 for pos
if (vertexLayout & kColor_VertexLayoutBit) {
offset += sizeof(GrColor);
}
if (vertexLayout & kCoverage_VertexLayoutBit) {
offset += sizeof(GrColor);
}
return offset;
}
return -1;
}
int GrDrawState::VertexSizeAndOffsets(
GrVertexLayout vertexLayout,
int* texCoordOffset,
int* colorOffset,
int* coverageOffset,
int* edgeOffset) {
int size = kVec2Size; // position
if (kTexCoordMask & vertexLayout) {
if (NULL != texCoordOffset) {
*texCoordOffset = size;
}
size += kVec2Size;
} else {
if (NULL != texCoordOffset) {
*texCoordOffset = -1;
}
}
if (kColor_VertexLayoutBit & vertexLayout) {
if (NULL != colorOffset) {
*colorOffset = size;
}
size += sizeof(GrColor);
} else {
if (NULL != colorOffset) {
*colorOffset = -1;
}
}
if (kCoverage_VertexLayoutBit & vertexLayout) {
if (NULL != coverageOffset) {
*coverageOffset = size;
}
size += sizeof(GrColor);
} else {
if (NULL != coverageOffset) {
*coverageOffset = -1;
}
}
if (kEdge_VertexLayoutBit & vertexLayout) {
if (NULL != edgeOffset) {
*edgeOffset = size;
}
size += 4 * sizeof(SkScalar);
} else {
if (NULL != edgeOffset) {
*edgeOffset = -1;
}
}
return size;
}
int GrDrawState::VertexSizeAndOffsetsByStage(
GrVertexLayout vertexLayout,
int texCoordOffsetsByStage[GrDrawState::kNumStages],
int* colorOffset,
int* coverageOffset,
int* edgeOffset) {
int texCoordOffset;
int size = VertexSizeAndOffsets(vertexLayout,
&texCoordOffset,
colorOffset,
coverageOffset,
edgeOffset);
if (NULL != texCoordOffsetsByStage) {
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
texCoordOffsetsByStage[s] = StageUsesTexCoords(vertexLayout, s) ?
texCoordOffset : 0;
}
}
return size;
}
////////////////////////////////////////////////////////////////////////////////
void GrDrawState::setDefaultVertexAttribs() {
fVertexAttribs.reset();
fVertexAttribs.push_back(GrVertexAttrib(kVec2f_GrVertexAttribType, 0));
fCommon.fAttribBindings = kDefault_AttribBindings;
fAttribIndices[kPosition_AttribIndex] = 0;
bool GrDrawState::VertexUsesTexCoords(GrVertexLayout vertexLayout) {
return SkToBool(kTexCoordMask & vertexLayout);
}
////////////////////////////////////////////////////////////////////////////////
bool GrDrawState::AttributesBindExplicitTexCoords(GrAttribBindings attribBindings) {
return SkToBool(kTexCoord_AttribBindingsMask & attribBindings);
}
////////////////////////////////////////////////////////////////////////////////
void GrDrawState::VertexAttributesUnitTest() {
void GrDrawState::VertexLayoutUnitTest() {
// Ensure that our tex coord mask is correct
GrAttribBindings texCoordMask;
GrVertexLayout texCoordMask;
gen_tex_coord_mask(&texCoordMask);
GrAssert(texCoordMask == kTexCoord_AttribBindingsMask);
GrAssert(texCoordMask == kTexCoordMask);
// not necessarily exhaustive
static bool run;
if (!run) {
run = true;
GrVertexAttribArray<6> attribs;
GrAssert(0 == vertex_size(attribs.begin(), attribs.count()));
attribs.push_back(GrVertexAttrib(kFloat_GrVertexAttribType, 0));
GrAssert(sizeof(float) == vertex_size(attribs.begin(), attribs.count()));
attribs[0].fType = kVec2f_GrVertexAttribType;
GrAssert(2*sizeof(float) == vertex_size(attribs.begin(), attribs.count()));
attribs[0].fType = kVec3f_GrVertexAttribType;
GrAssert(3*sizeof(float) == vertex_size(attribs.begin(), attribs.count()));
attribs[0].fType = kVec4f_GrVertexAttribType;
GrAssert(4*sizeof(float) == vertex_size(attribs.begin(), attribs.count()));
attribs[0].fType = kVec4ub_GrVertexAttribType;
GrAssert(4*sizeof(char) == vertex_size(attribs.begin(), attribs.count()));
attribs.push_back(GrVertexAttrib(kVec2f_GrVertexAttribType, attribs[0].fOffset + 4*sizeof(char)));
GrAssert(4*sizeof(char) + 2*sizeof(float) == vertex_size(attribs.begin(), attribs.count()));
attribs.push_back(GrVertexAttrib(kVec3f_GrVertexAttribType, attribs[1].fOffset + 2*sizeof(float)));
GrAssert(4*sizeof(char) + 2*sizeof(float) + 3*sizeof(float) ==
vertex_size(attribs.begin(), attribs.count()));
attribs.push_back(GrVertexAttrib(kFloat_GrVertexAttribType, attribs[2].fOffset + 3*sizeof(float)));
GrAssert(4*sizeof(char) + 2*sizeof(float) + 3*sizeof(float) + sizeof(float) ==
vertex_size(attribs.begin(), attribs.count()));
attribs.push_back(GrVertexAttrib(kVec4f_GrVertexAttribType, attribs[3].fOffset + sizeof(float)));
GrAssert(4*sizeof(char) + 2*sizeof(float) + 3*sizeof(float) + sizeof(float) + 4*sizeof(float) ==
vertex_size(attribs.begin(), attribs.count()));
GrAttribBindings tcMask = 0;
GrAssert(!AttributesBindExplicitTexCoords(0));
GrVertexLayout tcMask = 0;
GrAssert(!VertexUsesTexCoords(0));
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
tcMask |= ExplicitTexCoordAttribBindingsBit(s);
GrAssert(AttributesBindExplicitTexCoords(tcMask));
GrAssert(StageBindsExplicitTexCoords(tcMask, s));
tcMask |= StageTexCoordVertexLayoutBit(s);
GrAssert(sizeof(GrPoint) == VertexStageCoordOffset(s, tcMask));
GrAssert(VertexUsesTexCoords(tcMask));
GrAssert(2*sizeof(GrPoint) == VertexSize(tcMask));
GrAssert(StageUsesTexCoords(tcMask, s));
for (int s2 = s + 1; s2 < GrDrawState::kNumStages; ++s2) {
GrAssert(!StageBindsExplicitTexCoords(tcMask, s2));
GrAssert(!StageUsesTexCoords(tcMask, s2));
#if GR_DEBUG
GrVertexLayout posAsTex = tcMask;
#endif
GrAssert(0 == VertexStageCoordOffset(s2, posAsTex));
GrAssert(2*sizeof(GrPoint) == VertexSize(posAsTex));
GrAssert(!StageUsesTexCoords(posAsTex, s2));
GrAssert(-1 == VertexEdgeOffset(posAsTex));
}
GrAssert(-1 == VertexEdgeOffset(tcMask));
GrAssert(-1 == VertexColorOffset(tcMask));
GrAssert(-1 == VertexCoverageOffset(tcMask));
#if GR_DEBUG
GrVertexLayout withColor = tcMask | kColor_VertexLayoutBit;
#endif
GrAssert(-1 == VertexCoverageOffset(withColor));
GrAssert(2*sizeof(GrPoint) == VertexColorOffset(withColor));
GrAssert(2*sizeof(GrPoint) + sizeof(GrColor) == VertexSize(withColor));
#if GR_DEBUG
GrVertexLayout withEdge = tcMask | kEdge_VertexLayoutBit;
#endif
GrAssert(-1 == VertexColorOffset(withEdge));
GrAssert(2*sizeof(GrPoint) == VertexEdgeOffset(withEdge));
GrAssert(4*sizeof(GrPoint) == VertexSize(withEdge));
#if GR_DEBUG
GrVertexLayout withColorAndEdge = withColor | kEdge_VertexLayoutBit;
#endif
GrAssert(2*sizeof(GrPoint) == VertexColorOffset(withColorAndEdge));
GrAssert(2*sizeof(GrPoint) + sizeof(GrColor) == VertexEdgeOffset(withColorAndEdge));
GrAssert(4*sizeof(GrPoint) + sizeof(GrColor) == VertexSize(withColorAndEdge));
#if GR_DEBUG
GrVertexLayout withCoverage = tcMask | kCoverage_VertexLayoutBit;
#endif
GrAssert(-1 == VertexColorOffset(withCoverage));
GrAssert(2*sizeof(GrPoint) == VertexCoverageOffset(withCoverage));
GrAssert(2*sizeof(GrPoint) + sizeof(GrColor) == VertexSize(withCoverage));
#if GR_DEBUG
GrVertexLayout withCoverageAndColor = tcMask | kCoverage_VertexLayoutBit |
kColor_VertexLayoutBit;
#endif
GrAssert(2*sizeof(GrPoint) == VertexColorOffset(withCoverageAndColor));
GrAssert(2*sizeof(GrPoint) + sizeof(GrColor) == VertexCoverageOffset(withCoverageAndColor));
GrAssert(2*sizeof(GrPoint) + 2 * sizeof(GrColor) == VertexSize(withCoverageAndColor));
}
GrAssert(kTexCoordMask == tcMask);
int stageOffsets[GrDrawState::kNumStages];
int colorOffset;
int edgeOffset;
int coverageOffset;
int size;
size = VertexSizeAndOffsetsByStage(tcMask,
stageOffsets, &colorOffset,
&coverageOffset, &edgeOffset);
GrAssert(2*sizeof(GrPoint) == size);
GrAssert(-1 == colorOffset);
GrAssert(-1 == coverageOffset);
GrAssert(-1 == edgeOffset);
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
GrAssert(sizeof(GrPoint) == stageOffsets[s]);
GrAssert(sizeof(GrPoint) == VertexStageCoordOffset(s, tcMask));
}
GrAssert(kTexCoord_AttribBindingsMask == tcMask);
}
}
////////////////////////////////////////////////////////////////////////////////
bool GrDrawState::StageBindsExplicitTexCoords(GrAttribBindings bindings, int stageIdx) {
return SkToBool(bindings & ExplicitTexCoordAttribBindingsBit(stageIdx));
bool GrDrawState::StageUsesTexCoords(GrVertexLayout layout, int stageIdx) {
return SkToBool(layout & StageTexCoordVertexLayoutBit(stageIdx));
}
bool GrDrawState::srcAlphaWillBeOne(GrAttribBindings bindings) const {
bool GrDrawState::srcAlphaWillBeOne(GrVertexLayout layout) const {
uint32_t validComponentFlags;
GrColor color;
// Check if per-vertex or constant color may have partial alpha
if (bindings & kColor_AttribBindingsBit) {
if (layout & kColor_VertexLayoutBit) {
validComponentFlags = 0;
color = 0; // not strictly necessary but we get false alarms from tools about uninit.
} else {
@ -246,7 +366,7 @@ bool GrDrawState::srcAlphaWillBeOne(GrAttribBindings bindings) const {
return (GrEffect::kA_ValidComponentFlag & validComponentFlags) && 0xff == GrColorUnpackA(color);
}
bool GrDrawState::hasSolidCoverage(GrAttribBindings bindings) const {
bool GrDrawState::hasSolidCoverage(GrVertexLayout layout) const {
// If we're drawing coverage directly then coverage is effectively treated as color.
if (this->isCoverageDrawing()) {
return true;
@ -255,7 +375,7 @@ bool GrDrawState::hasSolidCoverage(GrAttribBindings bindings) const {
GrColor coverage;
uint32_t validComponentFlags;
// Initialize to an unknown starting coverage if per-vertex coverage is specified.
if (bindings & kCoverage_AttribBindingsBit) {
if (layout & kCoverage_VertexLayoutBit) {
validComponentFlags = 0;
} else {
coverage = fCommon.fCoverage;
@ -297,7 +417,7 @@ bool GrDrawState::canTweakAlphaForCoverage() const {
GrDrawState::BlendOptFlags GrDrawState::getBlendOpts(bool forceCoverage,
GrBlendCoeff* srcCoeff,
GrBlendCoeff* dstCoeff) const {
GrAttribBindings bindings = this->getAttribBindings();
GrVertexLayout layout = this->getVertexLayout();
GrBlendCoeff bogusSrcCoeff, bogusDstCoeff;
if (NULL == srcCoeff) {
@ -315,14 +435,14 @@ GrDrawState::BlendOptFlags GrDrawState::getBlendOpts(bool forceCoverage,
*dstCoeff = kOne_GrBlendCoeff;
}
bool srcAIsOne = this->srcAlphaWillBeOne(bindings);
bool srcAIsOne = this->srcAlphaWillBeOne(layout);
bool dstCoeffIsOne = kOne_GrBlendCoeff == *dstCoeff ||
(kSA_GrBlendCoeff == *dstCoeff && srcAIsOne);
bool dstCoeffIsZero = kZero_GrBlendCoeff == *dstCoeff ||
(kISA_GrBlendCoeff == *dstCoeff && srcAIsOne);
bool covIsZero = !this->isCoverageDrawing() &&
!(bindings & GrDrawState::kCoverage_AttribBindingsBit) &&
!(layout & GrDrawState::kCoverage_VertexLayoutBit) &&
0 == this->getCoverage();
// When coeffs are (0,1) there is no reason to draw at all, unless
// stenciling is enabled. Having color writes disabled is effectively
@ -340,8 +460,8 @@ GrDrawState::BlendOptFlags GrDrawState::getBlendOpts(bool forceCoverage,
// edge aa or coverage stage
bool hasCoverage = forceCoverage ||
0xffffffff != this->getCoverage() ||
(bindings & GrDrawState::kCoverage_AttribBindingsBit) ||
(bindings & GrDrawState::kEdge_AttribBindingsBit);
(layout & GrDrawState::kCoverage_VertexLayoutBit) ||
(layout & GrDrawState::kEdge_VertexLayoutBit);
for (int s = this->getFirstCoverageStage();
!hasCoverage && s < GrDrawState::kNumStages;
++s) {

Просмотреть файл

@ -23,41 +23,6 @@
class GrPaint;
/**
* Types used to describe format of vertices in arrays
*/
enum GrVertexAttribType {
kFloat_GrVertexAttribType = 0,
kVec2f_GrVertexAttribType,
kVec3f_GrVertexAttribType,
kVec4f_GrVertexAttribType,
kVec4ub_GrVertexAttribType, // vector of 4 unsigned bytes, e.g. colors
kLast_GrVertexAttribType = kVec4ub_GrVertexAttribType
};
static const int kGrVertexAttribTypeCount = kLast_GrVertexAttribType + 1;
struct GrVertexAttrib {
GrVertexAttrib() {}
GrVertexAttrib(GrVertexAttribType type, size_t offset) :
fType(type), fOffset(offset) {}
bool operator==(const GrVertexAttrib& other) const {
return fType == other.fType && fOffset == other.fOffset;
};
bool operator!=(const GrVertexAttrib& other) const { return !(*this == other); }
GrVertexAttribType fType;
size_t fOffset;
};
template <int N>
class GrVertexAttribArray : public SkSTArray<N, GrVertexAttrib, true> {};
/**
* Type used to describe how attributes bind to program usage
*/
typedef int GrAttribBindings;
class GrDrawState : public GrRefCnt {
public:
SK_DECLARE_INST_COUNT(GrDrawState)
@ -67,7 +32,7 @@ public:
* GrEffect. The effect produces an output color in the fragment shader. It's inputs are the
* output from the previous enabled stage and a position. The position is either derived from
* the interpolated vertex positions or explicit per-vertex coords, depending upon the
* GrAttribBindings used to draw.
* GrVertexLayout used to draw.
*
* The stages are divided into two sets, color-computing and coverage-computing. The final color
* stage produces the final pixel color. The coverage-computing stages function exactly as the
@ -75,7 +40,7 @@ public:
* coverage rather than as input to the src/dst color blend step.
*
* The input color to the first enabled color-stage is either the constant color or interpolated
* per-vertex colors, depending upon GrAttribBindings. The input to the first coverage stage is
* per-vertex colors, depending upon GrVertexLayout. The input to the first coverage stage is
* either a constant coverage (usually full-coverage), interpolated per-vertex coverage, or
* edge-AA computed coverage. (This latter is going away as soon as it can be rewritten as a
* GrEffect).
@ -94,7 +59,7 @@ public:
GrDrawState() {
#if GR_DEBUG
VertexAttributesUnitTest();
VertexLayoutUnitTest();
#endif
this->reset();
}
@ -117,9 +82,8 @@ public:
fRenderTarget.reset(NULL);
this->setDefaultVertexAttribs();
fCommon.fColor = 0xffffffff;
fCommon.fVertexLayout = kDefault_VertexLayout;
fCommon.fViewMatrix.reset();
fCommon.fSrcBlend = kOne_GrBlendCoeff;
fCommon.fDstBlend = kZero_GrBlendCoeff;
@ -143,50 +107,193 @@ public:
void setFromPaint(const GrPaint& paint);
///////////////////////////////////////////////////////////////////////////
/// @name Vertex Attributes
/// @name Vertex Layout
////
enum {
kVertexAttribCnt = 6,
/**
* The format of vertices is represented as a bitfield of flags.
* Flags that indicate the layout of vertex data. Vertices always contain
* positions and may also contain texture coordinates, per-vertex colors,
* and per-vertex coverage. Each stage can use any texture coordinates as
* its input texture coordinates or it may use the positions as texture
* coordinates.
*
* If no texture coordinates are specified for a stage then the stage is
* disabled.
*
* The order in memory is always (position, texture coords, color, coverage)
* with any unused fields omitted.
*/
/**
* Generates a bit indicating that a texture stage uses texture coordinates
*
* @param stageIdx the stage that will use texture coordinates.
*
* @return the bit to add to a GrVertexLayout bitfield.
*/
static int StageTexCoordVertexLayoutBit(int stageIdx) {
GrAssert(stageIdx < kNumStages);
return (1 << stageIdx);
}
static bool StageUsesTexCoords(GrVertexLayout layout, int stageIdx);
private:
// non-stage bits start at this index.
static const int STAGE_BIT_CNT = kNumStages;
public:
/**
* Additional Bits that can be specified in GrVertexLayout.
*/
enum VertexLayoutBits {
/* vertices have colors (GrColor) */
kColor_VertexLayoutBit = 1 << (STAGE_BIT_CNT + 0),
/* vertices have coverage (GrColor)
*/
kCoverage_VertexLayoutBit = 1 << (STAGE_BIT_CNT + 1),
/* Each vertex specificies an edge. Distance to the edge is used to
* compute a coverage. See GrDrawState::setVertexEdgeType().
*/
kEdge_VertexLayoutBit = 1 << (STAGE_BIT_CNT + 2),
// for below assert
kDummyVertexLayoutBit,
kHighVertexLayoutBit = kDummyVertexLayoutBit - 1
};
// make sure we haven't exceeded the number of bits in GrVertexLayout.
GR_STATIC_ASSERT(kHighVertexLayoutBit < ((uint64_t)1 << 8*sizeof(GrVertexLayout)));
enum VertexLayout {
kDefault_VertexLayout = 0
};
/**
* The format of vertices is represented as an array of vertex attribute
* pair, with each pair representing the type of the attribute and the
* offset in the vertex structure (see GrVertexAttrib, above).
*
* This will only set up the vertex geometry. To bind the attributes in
* the shaders, attribute indices and attribute bindings need to be set
* as well.
*/
/**
* Sets vertex attributes for next draw.
* Sets vertex layout for next draw.
*
* @param attribs the array of vertex attributes to set.
* @param count the number of attributes being set.
* limited to a count of kVertexAttribCnt.
* @param layout the vertex layout to set.
*/
void setVertexAttribs(const GrVertexAttrib attribs[], int count);
void setVertexLayout(GrVertexLayout layout) { fCommon.fVertexLayout = layout; }
const GrVertexAttrib* getVertexAttribs() const { return fVertexAttribs.begin(); }
int getVertexAttribCount() const { return fVertexAttribs.count(); }
GrVertexLayout getVertexLayout() const { return fCommon.fVertexLayout; }
size_t getVertexSize() const { return VertexSize(fCommon.fVertexLayout); }
size_t getVertexSize() const;
/**
* Sets default vertex attributes for next draw.
*
* This will also set default vertex attribute indices and bindings
*/
void setDefaultVertexAttribs();
////////////////////////////////////////////////////////////////////////////
// Helpers for picking apart vertex attributes
// Helpers for picking apart vertex layouts
// helper array to let us check the expected so we know what bound attrib indices
// we care about
static const size_t kVertexAttribSizes[kGrVertexAttribTypeCount];
/**
* Helper function to compute the size of a vertex from a vertex layout
* @return size of a single vertex.
*/
static size_t VertexSize(GrVertexLayout vertexLayout);
/**
* Helper function to compute the offset of texture coordinates in a vertex
* @return offset of texture coordinates in vertex layout or 0 if positions
* are used as texture coordinates for the stage.
*/
static int VertexStageCoordOffset(int stageIdx, GrVertexLayout vertexLayout);
/**
* Helper function to compute the offset of the color in a vertex
* @return offset of color in vertex layout or -1 if the
* layout has no color.
*/
static int VertexColorOffset(GrVertexLayout vertexLayout);
/**
* Helper function to compute the offset of the coverage in a vertex
* @return offset of coverage in vertex layout or -1 if the
* layout has no coverage.
*/
static int VertexCoverageOffset(GrVertexLayout vertexLayout);
/**
* Helper function to compute the offset of the edge pts in a vertex
* @return offset of edge in vertex layout or -1 if the
* layout has no edge.
*/
static int VertexEdgeOffset(GrVertexLayout vertexLayout);
/**
* Helper function to determine if vertex layout contains explicit texture
* coordinates.
*
* @param vertexLayout layout to query
*
* @return true if vertex specifies texture coordinates,
* false otherwise.
*/
static bool VertexUsesTexCoords(GrVertexLayout vertexLayout);
/**
* Helper function to compute the size of each vertex and the offsets of
* texture coordinates and color.
*
* @param vertexLayout the layout to query
* @param texCoordOffset after return it is the offset of the
* tex coord index in the vertex or -1 if
* tex coords aren't used. (optional)
* @param colorOffset after return it is the offset of the
* color field in each vertex, or -1 if
* there aren't per-vertex colors. (optional)
* @param coverageOffset after return it is the offset of the
* coverage field in each vertex, or -1 if
* there aren't per-vertex coeverages.
* (optional)
* @param edgeOffset after return it is the offset of the
* edge eq field in each vertex, or -1 if
* there aren't per-vertex edge equations.
* (optional)
* @return size of a single vertex
*/
static int VertexSizeAndOffsets(GrVertexLayout vertexLayout,
int *texCoordOffset,
int *colorOffset,
int *coverageOffset,
int* edgeOffset);
/**
* Helper function to compute the size of each vertex and the offsets of
* texture coordinates and color. Determines tex coord offsets by stage
* rather than by index. (Each stage can be mapped to any t.c. index
* by StageTexCoordVertexLayoutBit.) If a stage uses positions for
* tex coords then that stage's offset will be 0 (positions are always at 0).
*
* @param vertexLayout the layout to query
* @param texCoordOffsetsByStage after return it is the offset of each
* tex coord index in the vertex or -1 if
* index isn't used. (optional)
* @param colorOffset after return it is the offset of the
* color field in each vertex, or -1 if
* there aren't per-vertex colors.
* (optional)
* @param coverageOffset after return it is the offset of the
* coverage field in each vertex, or -1 if
* there aren't per-vertex coeverages.
* (optional)
* @param edgeOffset after return it is the offset of the
* edge eq field in each vertex, or -1 if
* there aren't per-vertex edge equations.
* (optional)
* @return size of a single vertex
*/
static int VertexSizeAndOffsetsByStage(GrVertexLayout vertexLayout,
int texCoordOffsetsByStage[kNumStages],
int* colorOffset,
int* coverageOffset,
int* edgeOffset);
/**
* Determines whether src alpha is guaranteed to be one for all src pixels
*/
bool srcAlphaWillBeOne(GrVertexLayout) const;
/**
* Determines whether the output coverage is guaranteed to be one for all pixels hit by a draw.
*/
bool hasSolidCoverage(GrVertexLayout) const;
/**
* Accessing positions, texture coords, or colors, of a vertex within an
@ -197,7 +304,7 @@ public:
/**
* Gets a pointer to a GrPoint of a vertex's position or texture
* coordinate.
* @param vertices the vertex array
* @param vertices the vetex array
* @param vertexIndex the index of the vertex in the array
* @param vertexSize the size of each vertex in the array
* @param offset the offset in bytes of the vertex component.
@ -246,140 +353,7 @@ public:
vertexIndex * vertexSize);
}
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Attribute Bindings
////
/**
* The vertex data used by the current program is represented as a bitfield
* of flags. Programs always use positions and may also use texture
* coordinates, per-vertex colors, per-vertex coverage and edge data. Each
* stage can use the explicit texture coordinates as its input texture
* coordinates or it may use the positions as texture coordinates.
*/
/**
* Generates a bit indicating that a texture stage uses texture coordinates
*
* @param stageIdx the stage that will use texture coordinates.
*
* @return the bit to add to a GrAttribBindings bitfield.
*/
static int ExplicitTexCoordAttribBindingsBit(int stageIdx) {
GrAssert(stageIdx < kNumStages);
return (1 << stageIdx);
}
static bool StageBindsExplicitTexCoords(GrAttribBindings bindings, int stageIdx);
/**
* Additional Bits that can be specified in GrAttribBindings.
*/
enum AttribBindingsBits {
/* program uses colors (GrColor) */
kColor_AttribBindingsBit = 1 << (kNumStages + 0),
/* program uses coverage (GrColor)
*/
kCoverage_AttribBindingsBit = 1 << (kNumStages + 1),
/* program uses edge data. Distance to the edge is used to
* compute a coverage. See GrDrawState::setVertexEdgeType().
*/
kEdge_AttribBindingsBit = 1 << (kNumStages + 2),
// for below assert
kDummyAttribBindingsBit,
kHighAttribBindingsBit = kDummyAttribBindingsBit - 1
};
// make sure we haven't exceeded the number of bits in GrAttribBindings.
GR_STATIC_ASSERT(kHighAttribBindingsBit < ((uint64_t)1 << 8*sizeof(GrAttribBindings)));
enum AttribBindings {
kDefault_AttribBindings = 0
};
/**
* Sets attribute bindings for next draw.
*
* @param bindings the attribute bindings to set.
*/
void setAttribBindings(GrAttribBindings bindings) { fCommon.fAttribBindings = bindings; }
GrAttribBindings getAttribBindings() const { return fCommon.fAttribBindings; }
////////////////////////////////////////////////////////////////////////////
// Helpers for picking apart attribute bindings
/**
* Helper function to determine if program uses explicit texture
* coordinates.
*
* @param bindings attribute bindings to query
*
* @return true if program uses texture coordinates,
* false otherwise.
*/
static bool AttributesBindExplicitTexCoords(GrAttribBindings bindings);
/**
* Determines whether src alpha is guaranteed to be one for all src pixels
*/
bool srcAlphaWillBeOne(GrAttribBindings) const;
/**
* Determines whether the output coverage is guaranteed to be one for all pixels hit by a draw.
*/
bool hasSolidCoverage(GrAttribBindings) const;
static void VertexAttributesUnitTest();
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Vertex Attribute Indices
////
/**
* Vertex attribute indices map the data set in the vertex attribute array
* to the bindings specified in the attribute bindings. Each binding type
* has an associated index in the attribute array. This index is used to
* look up the vertex attribute data from the array, and potentially as the
* attribute index if we're binding attributes in GL.
*
* Indices which do not have active attribute bindings will be ignored.
*/
enum AttribIndex {
kPosition_AttribIndex = 0,
kColor_AttribIndex,
kCoverage_AttribIndex,
kEdge_AttribIndex,
kTexCoord_AttribIndex,
kLast_AttribIndex = kTexCoord_AttribIndex
};
static const int kAttribIndexCount = kLast_AttribIndex + 1;
// these are used when vertex color and coverage isn't set
enum {
kColorOverrideAttribIndexValue = GrDrawState::kVertexAttribCnt,
kCoverageOverrideAttribIndexValue = GrDrawState::kVertexAttribCnt+1,
};
////////////////////////////////////////////////////////////////////////////
// Helpers to set attribute indices. These should match the index in the
// current attribute index array.
/**
* Sets index for next draw. This is used to look up the offset
* from the current vertex attribute array and to bind the attributes.
*
* @param index the attribute index we're setting
* @param value the value of the index
*/
void setAttribIndex(AttribIndex index, int value) { fAttribIndices[index] = value; }
int getAttribIndex(AttribIndex index) const { return fAttribIndices[index]; }
static void VertexLayoutUnitTest();
/// @}
@ -1030,7 +1004,7 @@ public:
/**
* Determines the interpretation per-vertex edge data when the
* kEdge_AttribBindingsBit is set (see GrDrawTarget). When per-vertex edges
* kEdge_VertexLayoutBit is set (see GrDrawTarget). When per-vertex edges
* are not specified the value of this setting has no effect.
*/
void setVertexEdgeType(VertexEdgeType type) {
@ -1185,25 +1159,13 @@ public:
return (NULL != fStages[s].getEffect());
}
// Most stages are usually not used, so conditionals here
// reduce the expected number of bytes touched by 50%.
bool operator ==(const GrDrawState& s) const {
if (fRenderTarget.get() != s.fRenderTarget.get() || fCommon != s.fCommon) {
return false;
}
if (fVertexAttribs.count() != s.fVertexAttribs.count()) {
return false;
}
for (int i = 0; i < fVertexAttribs.count(); ++i) {
if (fVertexAttribs[i] != s.fVertexAttribs[i]) {
return false;
}
}
for (int i = 0; i < kAttribIndexCount; ++i) {
if ((i == kPosition_AttribIndex ||
s.fCommon.fAttribBindings & kAttribIndexMasks[i]) &&
fAttribIndices[i] != s.fAttribIndices[i]) {
return false;
}
}
for (int i = 0; i < kNumStages; i++) {
bool enabled = this->isStageEnabled(i);
if (enabled != s.isStageEnabled(i)) {
@ -1220,10 +1182,6 @@ public:
GrDrawState& operator= (const GrDrawState& s) {
this->setRenderTarget(s.fRenderTarget.get());
fCommon = s.fCommon;
fVertexAttribs = s.fVertexAttribs;
for (int i = 0; i < kAttribIndexCount; i++) {
fAttribIndices[i] = s.fAttribIndices[i];
}
for (int i = 0; i < kNumStages; i++) {
if (s.isStageEnabled(i)) {
this->fStages[i] = s.fStages[i];
@ -1238,7 +1196,7 @@ private:
struct CommonState {
// These fields are roughly sorted by decreasing likelihood of being different in op==
GrColor fColor;
GrAttribBindings fAttribBindings;
GrVertexLayout fVertexLayout;
SkMatrix fViewMatrix;
GrBlendCoeff fSrcBlend;
GrBlendCoeff fDstBlend;
@ -1253,7 +1211,7 @@ private:
DrawFace fDrawFace;
bool operator== (const CommonState& other) const {
return fColor == other.fColor &&
fAttribBindings == other.fAttribBindings &&
fVertexLayout == other.fVertexLayout &&
fViewMatrix.cheapEqualTo(other.fViewMatrix) &&
fSrcBlend == other.fSrcBlend &&
fDstBlend == other.fDstBlend &&
@ -1298,10 +1256,6 @@ public:
// TODO: Here we will copy the GrRenderTarget pointer without taking a ref.
fRenderTarget = drawState.fRenderTarget.get();
SkSafeRef(fRenderTarget);
fVertexAttribs = drawState.fVertexAttribs;
for (int i = 0; i < kAttribIndexCount; i++) {
fAttribIndices[i] = drawState.fAttribIndices[i];
}
// Here we ref the effects directly rather than the effect-refs. TODO: When the effect-
// ref gets fully unref'ed it will cause the underlying effect to unref its resources
// and recycle them to the cache (if no one else is holding a ref to the resources).
@ -1315,10 +1269,6 @@ public:
GrAssert(fInitialized);
drawState->fCommon = fCommon;
drawState->setRenderTarget(fRenderTarget);
drawState->fVertexAttribs = fVertexAttribs;
for (int i = 0; i < kAttribIndexCount; i++) {
drawState->fAttribIndices[i] = fAttribIndices[i];
}
for (int i = 0; i < kNumStages; ++i) {
fStages[i].restoreTo(&drawState->fStages[i]);
}
@ -1328,20 +1278,6 @@ public:
if (fRenderTarget != state.fRenderTarget.get() || fCommon != state.fCommon) {
return false;
}
for (int i = 0; i < kAttribIndexCount; ++i) {
if ((i == kPosition_AttribIndex ||
state.fCommon.fAttribBindings & kAttribIndexMasks[i]) &&
fAttribIndices[i] != state.fAttribIndices[i]) {
return false;
}
}
if (fVertexAttribs.count() != state.fVertexAttribs.count()) {
return false;
}
for (int i = 0; i < fVertexAttribs.count(); ++i)
if (fVertexAttribs[i] != state.fVertexAttribs[i]) {
return false;
}
for (int i = 0; i < kNumStages; ++i) {
if (!fStages[i].isEqual(state.fStages[i])) {
return false;
@ -1351,25 +1287,17 @@ public:
}
private:
GrRenderTarget* fRenderTarget;
CommonState fCommon;
int fAttribIndices[kAttribIndexCount];
GrVertexAttribArray<kVertexAttribCnt> fVertexAttribs;
GrEffectStage::DeferredStage fStages[kNumStages];
GrRenderTarget* fRenderTarget;
CommonState fCommon;
GrEffectStage::DeferredStage fStages[kNumStages];
GR_DEBUGCODE(bool fInitialized;)
};
private:
// helper array to let us check the current bindings so we know what bound attrib indices
// we care about
static const GrAttribBindings kAttribIndexMasks[kAttribIndexCount];
SkAutoTUnref<GrRenderTarget> fRenderTarget;
CommonState fCommon;
int fAttribIndices[kAttribIndexCount];
GrVertexAttribArray<kVertexAttribCnt> fVertexAttribs;
GrEffectStage fStages[kNumStages];
SkAutoTUnref<GrRenderTarget> fRenderTarget;
CommonState fCommon;
GrEffectStage fStages[kNumStages];
typedef GrRefCnt INHERITED;
};

Просмотреть файл

@ -530,19 +530,11 @@ void GrDrawTarget::drawRect(const GrRect& rect,
const GrRect* srcRect,
const SkMatrix* srcMatrix,
int stage) {
GrAttribBindings bindings = 0;
GrVertexLayout layout = 0;
uint32_t explicitCoordMask = 0;
// position + (optional) texture coord
static const GrVertexAttrib kAttribs[] = {
GrVertexAttrib(kVec2f_GrVertexAttribType, 0),
GrVertexAttrib(kVec2f_GrVertexAttribType, sizeof(GrPoint))
};
int attribCount = 1;
if (NULL != srcRect) {
bindings |= GrDrawState::ExplicitTexCoordAttribBindingsBit(stage);
attribCount = 2;
this->drawState()->setAttribIndex(GrDrawState::kTexCoord_AttribIndex, 1);
layout |= GrDrawState::StageTexCoordVertexLayoutBit(stage);
explicitCoordMask = (1 << stage);
}
@ -551,26 +543,30 @@ void GrDrawTarget::drawRect(const GrRect& rect,
avmr.set(this->drawState(), *matrix, explicitCoordMask);
}
this->drawState()->setVertexAttribs(kAttribs, attribCount);
this->drawState()->setAttribIndex(GrDrawState::kPosition_AttribIndex, 0);
this->drawState()->setAttribBindings(bindings);
this->drawState()->setVertexLayout(layout);
AutoReleaseGeometry geo(this, 4, 0);
if (!geo.succeeded()) {
GrPrintf("Failed to get space for vertices!\n");
return;
}
size_t vsize = this->drawState()->getVertexSize();
int stageOffsets[GrDrawState::kNumStages];
int vsize = GrDrawState::VertexSizeAndOffsetsByStage(layout, stageOffsets, NULL, NULL, NULL);
geo.positions()->setRectFan(rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, vsize);
if (NULL != srcRect) {
GrAssert(attribCount == 2);
GrPoint* coords = GrTCast<GrPoint*>(GrTCast<intptr_t>(geo.vertices()) +
kAttribs[1].fOffset);
coords->setRectFan(srcRect->fLeft, srcRect->fTop,
srcRect->fRight, srcRect->fBottom,
vsize);
if (NULL != srcMatrix) {
srcMatrix->mapPointsWithStride(coords, vsize, 4);
for (int i = 0; i < GrDrawState::kNumStages; ++i) {
if (explicitCoordMask & (1 << i)) {
GrAssert(0 != stageOffsets[i]);
GrPoint* coords = GrTCast<GrPoint*>(GrTCast<intptr_t>(geo.vertices()) +
stageOffsets[i]);
coords->setRectFan(srcRect->fLeft, srcRect->fTop,
srcRect->fRight, srcRect->fBottom,
vsize);
if (NULL != srcMatrix) {
srcMatrix->mapPointsWithStride(coords, vsize, 4);
}
} else {
GrAssert(0 == stageOffsets[i]);
}
}

Просмотреть файл

@ -78,20 +78,9 @@ void GrInOrderDrawBuffer::drawRect(const GrRect& rect,
const SkMatrix* srcMatrix,
int stage) {
GrAttribBindings bindings = GrDrawState::kDefault_AttribBindings;
GrVertexLayout layout = 0;
GrDrawState::AutoColorRestore acr;
GrDrawState* drawState = this->drawState();
GrColor color = drawState->getColor();
GrVertexAttribArray<3> attribs;
size_t currentOffset = 0;
int colorOffset = -1, texOffset = -1;
// set position attrib
drawState->setAttribIndex(GrDrawState::kPosition_AttribIndex, attribs.count());
attribs.push_back(GrVertexAttrib(kVec2f_GrVertexAttribType, currentOffset));
currentOffset += sizeof(GrPoint);
GrColor color = this->drawState()->getColor();
// Using per-vertex colors allows batching across colors. (A lot of rects in a row differing
// only in color is a common occurrence in tables). However, having per-vertex colors disables
@ -100,31 +89,22 @@ void GrInOrderDrawBuffer::drawRect(const GrRect& rect,
// dual-source blending isn't available. This comes into play when there is coverage. If colors
// were a stage it could take a hint that every vertex's color will be opaque.
if (this->getCaps().dualSourceBlendingSupport() ||
drawState->hasSolidCoverage(drawState->getAttribBindings())) {
bindings |= GrDrawState::kColor_AttribBindingsBit;
drawState->setAttribIndex(GrDrawState::kColor_AttribIndex, attribs.count());
attribs.push_back(GrVertexAttrib(kVec4ub_GrVertexAttribType, currentOffset));
colorOffset = currentOffset;
currentOffset += sizeof(GrColor);
this->getDrawState().hasSolidCoverage(this->getDrawState().getVertexLayout())) {
layout |= GrDrawState::kColor_VertexLayoutBit;;
// We set the draw state's color to white here. This is done so that any batching performed
// in our subclass's onDraw() won't get a false from GrDrawState::op== due to a color
// mismatch. TODO: Once vertex layout is owned by GrDrawState it should skip comparing the
// constant color in its op== when the kColor layout bit is set and then we can remove this.
acr.set(drawState, 0xFFFFFFFF);
acr.set(this->drawState(), 0xFFFFFFFF);
}
uint32_t explicitCoordMask = 0;
if (NULL != srcRect) {
bindings |= GrDrawState::ExplicitTexCoordAttribBindingsBit(stage);
drawState->setAttribIndex(GrDrawState::kTexCoord_AttribIndex, attribs.count());
attribs.push_back(GrVertexAttrib(kVec2f_GrVertexAttribType, currentOffset));
texOffset = currentOffset;
currentOffset += sizeof(GrPoint);
layout |= GrDrawState::StageTexCoordVertexLayoutBit(stage);
explicitCoordMask = (1 << stage);
}
drawState->setVertexAttribs(attribs.begin(), attribs.count());
drawState->setAttribBindings(bindings);
this->drawState()->setVertexLayout(layout);
AutoReleaseGeometry geo(this, 4, 0);
if (!geo.succeeded()) {
GrPrintf("Failed to get space for vertices!\n");
@ -138,17 +118,18 @@ void GrInOrderDrawBuffer::drawRect(const GrRect& rect,
} else {
combinedMatrix.reset();
}
combinedMatrix.postConcat(drawState->getViewMatrix());
combinedMatrix.postConcat(this->drawState()->getViewMatrix());
// When the caller has provided an explicit source rect for a stage then we don't want to
// modify that stage's matrix. Otherwise if the effect is generating its source rect from
// the vertex positions then we have to account for the view matrix change.
GrDrawState::AutoDeviceCoordDraw adcd(drawState, explicitCoordMask);
GrDrawState::AutoDeviceCoordDraw adcd(this->drawState(), explicitCoordMask);
if (!adcd.succeeded()) {
return;
}
size_t vsize = drawState->getVertexSize();
GrAssert(vsize == currentOffset);
int stageOffsets[GrDrawState::kNumStages], colorOffset;
int vsize = GrDrawState::VertexSizeAndOffsetsByStage(layout, stageOffsets,
&colorOffset, NULL, NULL);
geo.positions()->setRectFan(rect.fLeft, rect.fTop, rect.fRight, rect.fBottom, vsize);
combinedMatrix.mapPointsWithStride(geo.positions(), vsize, 4);
@ -158,15 +139,19 @@ void GrInOrderDrawBuffer::drawRect(const GrRect& rect,
// unnecessary clipping in our onDraw().
get_vertex_bounds(geo.vertices(), vsize, 4, &devBounds);
if (texOffset >= 0) {
GrAssert(explicitCoordMask != 0);
GrPoint* coords = GrTCast<GrPoint*>(GrTCast<intptr_t>(geo.vertices()) +
texOffset);
coords->setRectFan(srcRect->fLeft, srcRect->fTop,
srcRect->fRight, srcRect->fBottom,
vsize);
if (NULL != srcMatrix) {
srcMatrix->mapPointsWithStride(coords, vsize, 4);
for (int i = 0; i < GrDrawState::kNumStages; ++i) {
if (explicitCoordMask & (1 << i)) {
GrAssert(0 != stageOffsets[i]);
GrPoint* coords = GrTCast<GrPoint*>(GrTCast<intptr_t>(geo.vertices()) +
stageOffsets[i]);
coords->setRectFan(srcRect->fLeft, srcRect->fTop,
srcRect->fRight, srcRect->fBottom,
vsize);
if (NULL != srcMatrix) {
srcMatrix->mapPointsWithStride(coords, vsize, 4);
}
} else {
GrAssert(0 == stageOffsets[i]);
}
}
@ -180,9 +165,6 @@ void GrInOrderDrawBuffer::drawRect(const GrRect& rect,
this->setIndexSourceToBuffer(this->getContext()->getQuadIndexBuffer());
this->drawIndexedInstances(kTriangles_GrPrimitiveType, 1, 4, 6, &devBounds);
// to ensure that stashing the drawState ptr is valid
GrAssert(this->drawState() == drawState);
}
bool GrInOrderDrawBuffer::quickInsideClip(const SkRect& devBounds) {

Просмотреть файл

@ -92,6 +92,8 @@ GrTextContext::GrTextContext(GrContext* context, const GrPaint& paint) : fPaint(
fVertices = NULL;
fMaxVertices = 0;
fVertexLayout = GrDrawState::StageTexCoordVertexLayoutBit(kGlyphMaskStage);
}
GrTextContext::~GrTextContext() {
@ -187,20 +189,13 @@ HAS_ATLAS:
}
if (NULL == fVertices) {
// position + texture coord
static const GrVertexAttrib kVertexAttribs[] = {
GrVertexAttrib(kVec2f_GrVertexAttribType, 0),
GrVertexAttrib(kVec2f_GrVertexAttribType, sizeof(GrPoint))
};
static const GrAttribBindings kAttribBindings = GrDrawState::ExplicitTexCoordAttribBindingsBit(kGlyphMaskStage);
// If we need to reserve vertices allow the draw target to suggest
// If we need to reserve vertices allow the draw target to suggest
// a number of verts to reserve and whether to perform a flush.
fMaxVertices = kMinRequestedVerts;
bool flush = false;
fDrawTarget = fContext->getTextTarget(fPaint);
if (NULL != fDrawTarget) {
fDrawTarget->drawState()->setVertexAttribs(kVertexAttribs, SK_ARRAY_COUNT(kVertexAttribs));
fDrawTarget->drawState()->setVertexLayout(fVertexLayout);
flush = fDrawTarget->geometryHints(&fMaxVertices, NULL);
}
if (flush) {
@ -208,11 +203,8 @@ HAS_ATLAS:
fContext->flush();
// flushGlyphs() will reset fDrawTarget to NULL.
fDrawTarget = fContext->getTextTarget(fPaint);
fDrawTarget->drawState()->setVertexAttribs(kVertexAttribs, SK_ARRAY_COUNT(kVertexAttribs));
fDrawTarget->drawState()->setVertexLayout(fVertexLayout);
}
fDrawTarget->drawState()->setAttribIndex(GrDrawState::kPosition_AttribIndex, 0);
fDrawTarget->drawState()->setAttribIndex(GrDrawState::kTexCoord_AttribIndex, 1);
fDrawTarget->drawState()->setAttribBindings(kAttribBindings);
fMaxVertices = kDefaultRequestedVerts;
// ignore return, no point in flushing again.
fDrawTarget->geometryHints(&fMaxVertices, NULL);
@ -230,7 +222,6 @@ HAS_ATLAS:
GrTCast<void**>(&fVertices),
NULL);
GrAlwaysAssert(success);
GrAssert(2*sizeof(GrPoint) == fDrawTarget->getDrawState().getVertexSize());
}
GrFixed tx = SkIntToFixed(glyph->fAtlasLocation.fX);

Просмотреть файл

@ -35,14 +35,6 @@ inline const char* declared_color_output_name() { return "fsColorOut"; }
inline const char* dual_source_output_name() { return "dualSourceOut"; }
}
const GrGLProgram::AttribLayout GrGLProgram::kAttribLayouts[kGrVertexAttribTypeCount] = {
{1, GR_GL_FLOAT, false}, // kFloat_GrVertexAttribType
{2, GR_GL_FLOAT, false}, // kVec2f_GrVertexAttribType
{3, GR_GL_FLOAT, false}, // kVec3f_GrVertexAttribType
{4, GR_GL_FLOAT, false}, // kVec4f_GrVertexAttribType
{4, GR_GL_UNSIGNED_BYTE, true}, // kVec4ub_GrVertexAttribType
};
void GrGLProgram::BuildDesc(const GrDrawState& drawState,
bool isPoints,
GrDrawState::BlendOptFlags blendOpts,
@ -60,24 +52,24 @@ void GrGLProgram::BuildDesc(const GrDrawState& drawState,
GrDrawState::kEmitCoverage_BlendOptFlag));
// The descriptor is used as a cache key. Thus when a field of the
// descriptor will not affect program generation (because of the attribute
// bindings in use or other descriptor field settings) it should be set
// descriptor will not affect program generation (because of the vertex
// layout in use or other descriptor field settings) it should be set
// to a canonical value to avoid duplicate programs with different keys.
// Must initialize all fields or cache will have false negatives!
desc->fAttribBindings = drawState.getAttribBindings();
desc->fVertexLayout = drawState.getVertexLayout();
desc->fEmitsPointSize = isPoints;
bool requiresAttributeColors = !skipColor &&
SkToBool(desc->fAttribBindings & GrDrawState::kColor_AttribBindingsBit);
SkToBool(desc->fVertexLayout & GrDrawState::kColor_VertexLayoutBit);
bool requiresAttributeCoverage = !skipCoverage &&
SkToBool(desc->fAttribBindings & GrDrawState::kCoverage_AttribBindingsBit);
SkToBool(desc->fVertexLayout & GrDrawState::kCoverage_VertexLayoutBit);
// fColorInput/fCoverageInput records how colors are specified for the program So we strip the
// bits from the bindings to avoid false negatives when searching for an existing program in the
// bits from the layout to avoid false negatives when searching for an existing program in the
// cache.
desc->fAttribBindings &= ~(GrDrawState::kColor_AttribBindingsBit | GrDrawState::kCoverage_AttribBindingsBit);
desc->fVertexLayout &= ~(GrDrawState::kColor_VertexLayoutBit | GrDrawState::kCoverage_VertexLayoutBit);
desc->fColorFilterXfermode = skipColor ?
SkXfermode::kDst_Mode :
@ -85,8 +77,8 @@ void GrGLProgram::BuildDesc(const GrDrawState& drawState,
// no reason to do edge aa or look at per-vertex coverage if coverage is ignored
if (skipCoverage) {
desc->fAttribBindings &= ~(GrDrawState::kEdge_AttribBindingsBit |
GrDrawState::kCoverage_AttribBindingsBit);
desc->fVertexLayout &= ~(GrDrawState::kEdge_VertexLayoutBit |
GrDrawState::kCoverage_VertexLayoutBit);
}
bool colorIsTransBlack = SkToBool(blendOpts & GrDrawState::kEmitTransBlack_BlendOptFlag);
@ -116,7 +108,7 @@ void GrGLProgram::BuildDesc(const GrDrawState& drawState,
int lastEnabledStage = -1;
if (!skipCoverage && (desc->fAttribBindings & GrDrawState::kEdge_AttribBindingsBit)) {
if (!skipCoverage && (desc->fVertexLayout & GrDrawState::kEdge_VertexLayoutBit)) {
desc->fVertexEdgeType = drawState.getVertexEdgeType();
desc->fDiscardIfOutsideEdge = drawState.getStencil().doesWrite();
} else {
@ -163,7 +155,7 @@ void GrGLProgram::BuildDesc(const GrDrawState& drawState,
// other coverage inputs
if (!hasCoverage) {
hasCoverage = requiresAttributeCoverage ||
(desc->fAttribBindings & GrDrawState::kEdge_AttribBindingsBit);
(desc->fVertexLayout & GrDrawState::kEdge_VertexLayoutBit);
}
if (hasCoverage) {
@ -190,43 +182,6 @@ void GrGLProgram::BuildDesc(const GrDrawState& drawState,
}
}
}
desc->fPositionAttributeIndex = drawState.getAttribIndex(GrDrawState::kPosition_AttribIndex);
if (requiresAttributeColors) {
desc->fColorAttributeIndex = drawState.getAttribIndex(GrDrawState::kColor_AttribIndex);
} else {
desc->fColorAttributeIndex = GrDrawState::kColorOverrideAttribIndexValue;
}
if (requiresAttributeCoverage) {
desc->fCoverageAttributeIndex = drawState.getAttribIndex(GrDrawState::kCoverage_AttribIndex);
} else {
desc->fCoverageAttributeIndex = GrDrawState::kCoverageOverrideAttribIndexValue;
}
desc->fEdgeAttributeIndex = drawState.getAttribIndex(GrDrawState::kEdge_AttribIndex);
desc->fTexCoordAttributeIndex = drawState.getAttribIndex(GrDrawState::kTexCoord_AttribIndex);
#if GR_DEBUG
// verify valid vertex attribute state
const GrVertexAttrib* vertexAttribs = drawState.getVertexAttribs();
GrAssert(desc->fPositionAttributeIndex < GrDrawState::kVertexAttribCnt);
GrAssert(kAttribLayouts[vertexAttribs[desc->fPositionAttributeIndex].fType].fCount == 2);
if (requiresAttributeColors) {
GrAssert(desc->fColorAttributeIndex < GrDrawState::kVertexAttribCnt);
GrAssert(kAttribLayouts[vertexAttribs[desc->fColorAttributeIndex].fType].fCount == 4);
}
if (requiresAttributeCoverage) {
GrAssert(desc->fCoverageAttributeIndex < GrDrawState::kVertexAttribCnt);
GrAssert(kAttribLayouts[vertexAttribs[desc->fCoverageAttributeIndex].fType].fCount == 4);
}
if (desc->fAttribBindings & GrDrawState::kEdge_AttribBindingsBit) {
GrAssert(desc->fEdgeAttributeIndex < GrDrawState::kVertexAttribCnt);
GrAssert(kAttribLayouts[vertexAttribs[desc->fEdgeAttributeIndex].fType].fCount == 4);
}
if (GrDrawState::AttributesBindExplicitTexCoords(desc->fAttribBindings)) {
GrAssert(desc->fTexCoordAttributeIndex < GrDrawState::kVertexAttribCnt);
GrAssert(kAttribLayouts[vertexAttribs[desc->fTexCoordAttributeIndex].fType].fCount == 2);
}
#endif
}
GrGLProgram* GrGLProgram::Create(const GrGLContext& gl,
@ -411,7 +366,7 @@ void add_color_filter(SkString* fsCode, const char * outputVar,
bool GrGLProgram::genEdgeCoverage(SkString* coverageVar,
GrGLShaderBuilder* builder) const {
if (fDesc.fAttribBindings & GrDrawState::kEdge_AttribBindingsBit) {
if (fDesc.fVertexLayout & GrDrawState::kEdge_VertexLayoutBit) {
const char *vsName, *fsName;
builder->addVarying(kVec4f_GrSLType, "Edge", &vsName, &fsName);
builder->fVSAttrs.push_back().set(kVec4f_GrSLType,
@ -690,7 +645,7 @@ bool GrGLProgram::genProgram(const GrEffectStage* stages[]) {
GrAssert(0 == fProgramID);
GrGLShaderBuilder builder(fContext.info(), fUniformManager);
const GrAttribBindings& attribBindings = fDesc.fAttribBindings;
const uint32_t& layout = fDesc.fVertexLayout;
#if GR_GL_EXPERIMENTAL_GS
builder.fUsesGS = fDesc.fExperimentalGS;
@ -771,7 +726,7 @@ bool GrGLProgram::genProgram(const GrEffectStage* stages[]) {
}
// add texture coordinates that are used to the list of vertex attr decls
if (GrDrawState::AttributesBindExplicitTexCoords(attribBindings)) {
if (GrDrawState::VertexUsesTexCoords(layout)) {
builder.fVSAttrs.push_back().set(kVec2f_GrSLType,
GrGLShaderVar::kAttribute_TypeModifier,
TEX_ATTR_NAME);
@ -793,7 +748,7 @@ bool GrGLProgram::genProgram(const GrEffectStage* stages[]) {
const char* inCoords;
// figure out what our input coords are
if (!GrDrawState::StageBindsExplicitTexCoords(attribBindings, s)) {
if (!GrDrawState::StageUsesTexCoords(layout, s)) {
inCoords = builder.positionAttribute().c_str();
} else {
// must have input tex coordinates if stage is enabled.
@ -887,7 +842,7 @@ bool GrGLProgram::genProgram(const GrEffectStage* stages[]) {
const char* inCoords;
// figure out what our input coords are
if (!GrDrawState::StageBindsExplicitTexCoords(attribBindings, s)) {
if (!GrDrawState::StageUsesTexCoords(layout, s)) {
inCoords = builder.positionAttribute().c_str();
} else {
// must have input tex coordinates if stage is
@ -1011,18 +966,13 @@ bool GrGLProgram::bindOutputsAttribsAndLinkProgram(const GrGLShaderBuilder& buil
// Bind the attrib locations to same values for all shaders
GL_CALL(BindAttribLocation(fProgramID,
fDesc.fPositionAttributeIndex,
kPositionAttributeIndex,
builder.positionAttribute().c_str()));
GL_CALL(BindAttribLocation(fProgramID, fDesc.fColorAttributeIndex, COL_ATTR_NAME));
GL_CALL(BindAttribLocation(fProgramID, fDesc.fCoverageAttributeIndex, COV_ATTR_NAME));
if (fDesc.fAttribBindings & GrDrawState::kEdge_AttribBindingsBit) {
GL_CALL(BindAttribLocation(fProgramID, fDesc.fEdgeAttributeIndex, EDGE_ATTR_NAME));
}
if (GrDrawState::AttributesBindExplicitTexCoords(fDesc.fAttribBindings)) {
GL_CALL(BindAttribLocation(fProgramID, fDesc.fTexCoordAttributeIndex, TEX_ATTR_NAME));
}
GL_CALL(BindAttribLocation(fProgramID, kTexCoordAttributeIndex, TEX_ATTR_NAME));
GL_CALL(BindAttribLocation(fProgramID, kColorAttributeIndex, COL_ATTR_NAME));
GL_CALL(BindAttribLocation(fProgramID, kCoverageAttributeIndex, COV_ATTR_NAME));
GL_CALL(BindAttribLocation(fProgramID, kEdgeAttributeIndex, EDGE_ATTR_NAME));
GL_CALL(LinkProgram(fProgramID));
GrGLint linked = GR_GL_INIT_ZERO;
@ -1110,14 +1060,14 @@ void GrGLProgram::setData(GrGpuGL* gpu,
void GrGLProgram::setColor(const GrDrawState& drawState,
GrColor color,
SharedGLState* sharedState) {
if (!(drawState.getAttribBindings() & GrDrawState::kColor_AttribBindingsBit)) {
if (!(drawState.getVertexLayout() & GrDrawState::kColor_VertexLayoutBit)) {
switch (fDesc.fColorInput) {
case GrGLProgram::Desc::kAttribute_ColorInput:
if (sharedState->fConstAttribColor != color) {
// OpenGL ES only supports the float varieties of glVertexAttrib
GrGLfloat c[4];
GrColorToRGBAFloat(color, c);
GL_CALL(VertexAttrib4fv(fDesc.fColorAttributeIndex, c));
GL_CALL(VertexAttrib4fv(kColorAttributeIndex, c));
sharedState->fConstAttribColor = color;
}
break;
@ -1144,14 +1094,14 @@ void GrGLProgram::setColor(const GrDrawState& drawState,
void GrGLProgram::setCoverage(const GrDrawState& drawState,
GrColor coverage,
SharedGLState* sharedState) {
if (!(drawState.getAttribBindings() & GrDrawState::kCoverage_AttribBindingsBit)) {
if (!(drawState.getVertexLayout() & GrDrawState::kCoverage_VertexLayoutBit)) {
switch (fDesc.fCoverageInput) {
case Desc::kAttribute_ColorInput:
if (sharedState->fConstAttribCoverage != coverage) {
// OpenGL ES only supports the float varieties of glVertexAttrib
GrGLfloat c[4];
GrColorToRGBAFloat(coverage, c);
GL_CALL(VertexAttrib4fv(fDesc.fCoverageAttributeIndex, c));
GL_CALL(VertexAttrib4fv(kCoverageAttributeIndex, c));
sharedState->fConstAttribCoverage = coverage;
}
break;

Просмотреть файл

@ -78,6 +78,17 @@ public:
*/
GrGLuint programID() const { return fProgramID; }
/**
* Attribute indices. These should not overlap.
*/
enum {
kPositionAttributeIndex = 0,
kColorAttributeIndex = 1,
kCoverageAttributeIndex = 2,
kEdgeAttributeIndex = 3,
kTexCoordAttributeIndex = 4,
};
/**
* Some GL state that is relevant to programs is not stored per-program. In particular vertex
* attributes are global state. This struct is read and updated by GrGLProgram::setData to
@ -171,7 +182,7 @@ public:
bool fDiscardIfOutsideEdge;
// stripped of bits that don't affect program generation
GrAttribBindings fAttribBindings;
GrVertexLayout fVertexLayout;
/** Non-zero if this stage has an effect */
GrGLEffect::EffectKey fEffectKeys[GrDrawState::kNumStages];
@ -188,23 +199,9 @@ public:
SkBool8 fEmitsPointSize;
uint8_t fColorFilterXfermode; // casts to enum SkXfermode::Mode
int8_t fPositionAttributeIndex;
int8_t fColorAttributeIndex;
int8_t fCoverageAttributeIndex;
int8_t fEdgeAttributeIndex;
int8_t fTexCoordAttributeIndex;
friend class GrGLProgram;
};
// Layout information for OpenGL vertex attributes
struct AttribLayout {
GrGLint fCount;
GrGLenum fType;
GrGLboolean fNormalized;
};
static const AttribLayout kAttribLayouts[kGrVertexAttribTypeCount];
private:
GrGLProgram(const GrGLContext& gl,
const Desc& desc,

Просмотреть файл

@ -182,10 +182,6 @@ GrGpuGL::GrGpuGL(const GrGLContext& ctx, GrContext* context)
fHWGeometryState.setMaxAttribArrays(this->glCaps().maxVertexAttributes());
GrAssert(this->glCaps().maxVertexAttributes() >= GrDrawState::kVertexAttribCnt);
GrAssert(this->glCaps().maxVertexAttributes() > GrDrawState::kColorOverrideAttribIndexValue);
GrAssert(this->glCaps().maxVertexAttributes() > GrDrawState::kCoverageOverrideAttribIndexValue);
fLastSuccessfulStencilFmtIdx = 0;
if (false) { // avoid bit rot, suppress warning
fbo_test(this->glInterface(), 0, 0);

Просмотреть файл

@ -215,30 +215,83 @@ bool GrGpuGL::flushGraphicsState(DrawType type) {
void GrGpuGL::setupGeometry(const DrawInfo& info, size_t* indexOffsetInBytes) {
GrGLsizei stride = this->getDrawState().getVertexSize();
int colorOffset;
int coverageOffset;
int texCoordOffset;
int edgeOffset;
GrVertexLayout currLayout = this->getDrawState().getVertexLayout();
GrGLsizei stride = GrDrawState::VertexSizeAndOffsets(currLayout,
&texCoordOffset,
&colorOffset,
&coverageOffset,
&edgeOffset);
size_t vertexOffset;
GrGLVertexBuffer* vb= this->setBuffers(info.isIndexed(), &vertexOffset, indexOffsetInBytes);
vertexOffset += stride * info.startVertex();
uint32_t usedAttribArraysMask = 0;
const GrVertexAttrib* vertexAttrib = this->getDrawState().getVertexAttribs();
int vertexAttribCount = this->getDrawState().getVertexAttribCount();
for (int vertexAttribIndex = 0; vertexAttribIndex < vertexAttribCount;
++vertexAttribIndex, ++vertexAttrib) {
usedAttribArraysMask |= (1 << vertexAttribIndex);
GrVertexAttribType attribType = vertexAttrib->fType;
uint32_t usedAttribArraysMask = (1 << GrGLProgram::kPositionAttributeIndex);
fHWGeometryState.setAttribArray(this,
GrGLProgram::kPositionAttributeIndex,
vb,
2,
GR_GL_FLOAT,
false,
stride,
reinterpret_cast<GrGLvoid*>(vertexOffset));
if (texCoordOffset > 0) {
usedAttribArraysMask |= (1 << GrGLProgram::kTexCoordAttributeIndex);
GrGLvoid* texCoordPtr = reinterpret_cast<GrGLvoid*>(vertexOffset + texCoordOffset);
fHWGeometryState.setAttribArray(this,
vertexAttribIndex,
GrGLProgram::kTexCoordAttributeIndex,
vb,
GrGLProgram::kAttribLayouts[attribType].fCount,
GrGLProgram::kAttribLayouts[attribType].fType,
GrGLProgram::kAttribLayouts[attribType].fNormalized,
2,
GR_GL_FLOAT,
false,
stride,
reinterpret_cast<GrGLvoid*>(
vertexOffset + vertexAttrib->fOffset));
}
texCoordPtr);
}
if (colorOffset > 0) {
usedAttribArraysMask |= (1 << GrGLProgram::kColorAttributeIndex);
GrGLvoid* colorPtr = reinterpret_cast<GrGLvoid*>(vertexOffset + colorOffset);
fHWGeometryState.setAttribArray(this,
GrGLProgram::kColorAttributeIndex,
vb,
4,
GR_GL_UNSIGNED_BYTE,
true,
stride,
colorPtr);
}
if (coverageOffset > 0) {
usedAttribArraysMask |= (1 << GrGLProgram::kCoverageAttributeIndex);
GrGLvoid* coveragePtr = reinterpret_cast<GrGLvoid*>(vertexOffset + coverageOffset);
fHWGeometryState.setAttribArray(this,
GrGLProgram::kCoverageAttributeIndex,
vb,
4,
GR_GL_UNSIGNED_BYTE,
true,
stride,
coveragePtr);
}
if (edgeOffset > 0) {
usedAttribArraysMask |= (1 << GrGLProgram::kEdgeAttributeIndex);
GrGLvoid* edgePtr = reinterpret_cast<GrGLvoid*>(vertexOffset + edgeOffset);
fHWGeometryState.setAttribArray(this,
GrGLProgram::kEdgeAttributeIndex,
vb,
4,
GR_GL_FLOAT,
false,
stride,
edgePtr);
}
fHWGeometryState.disableUnusedAttribArrays(this, usedAttribArraysMask);
}

Просмотреть файл

@ -75,5 +75,5 @@ void gr_run_unittests() {
test_bsearch();
test_binHashKey();
GrRedBlackTree<int>::UnitTest();
GrDrawState::VertexAttributesUnitTest();
GrDrawState::VertexLayoutUnitTest();
}

Просмотреть файл

@ -23,7 +23,7 @@
void GrGLProgram::Desc::setRandom(SkMWCRandom* random,
const GrGpuGL* gpu,
const GrEffectStage stages[GrDrawState::kNumStages]) {
fAttribBindings = 0;
fVertexLayout = 0;
fEmitsPointSize = random->nextBool();
fColorInput = random->nextULessThan(kColorInputCnt);
fCoverageInput = random->nextULessThan(kColorInputCnt);
@ -32,7 +32,7 @@ void GrGLProgram::Desc::setRandom(SkMWCRandom* random,
fFirstCoverageStage = random->nextULessThan(GrDrawState::kNumStages);
fAttribBindings |= random->nextBool() ? GrDrawState::kCoverage_AttribBindingsBit : 0;
fVertexLayout |= random->nextBool() ? GrDrawState::kCoverage_VertexLayoutBit : 0;
#if GR_GL_EXPERIMENTAL_GS
fExperimentalGS = gpu->getCaps().geometryShaderSupport() && random->nextBool();
@ -40,7 +40,7 @@ void GrGLProgram::Desc::setRandom(SkMWCRandom* random,
bool edgeAA = random->nextBool();
if (edgeAA) {
fAttribBindings |= GrDrawState::kEdge_AttribBindingsBit;
fVertexLayout |= GrDrawState::kEdge_VertexLayoutBit;
if (gpu->getCaps().shaderDerivativeSupport()) {
fVertexEdgeType = (GrDrawState::VertexEdgeType)
random->nextULessThan(GrDrawState::kVertexEdgeTypeCnt);
@ -64,31 +64,11 @@ void GrGLProgram::Desc::setRandom(SkMWCRandom* random,
fEffectKeys[s] = factory.glEffectKey(stages[s], gpu->glCaps());
// use separate tex coords?
if (!useOnce && random->nextBool()) {
fAttribBindings |= GrDrawState::ExplicitTexCoordAttribBindingsBit(s);
fVertexLayout |= GrDrawState::StageTexCoordVertexLayoutBit(s);
useOnce = true;
}
}
}
int attributeIndex = 0;
fPositionAttributeIndex = attributeIndex;
++attributeIndex;
if (fColorInput || (fAttribBindings & GrDrawState::kColor_AttribBindingsBit)) {
fColorAttributeIndex = attributeIndex;
++attributeIndex;
}
if (fCoverageInput || (fAttribBindings & GrDrawState::kCoverage_AttribBindingsBit)) {
fCoverageAttributeIndex = attributeIndex;
++attributeIndex;
}
if (fAttribBindings & GrDrawState::kEdge_AttribBindingsBit) {
fEdgeAttributeIndex = attributeIndex;
++attributeIndex;
}
if (GrDrawState::AttributesBindExplicitTexCoords(fAttribBindings)) {
fTexCoordAttributeIndex = attributeIndex;
++attributeIndex;
}
}
bool GrGpuGL::programUnitTest(int maxStages) {