Add new module for distance field generation.

This improves the speed over the previous method by 10x+, and makes using distance fields practical.

BUG=skia:2173
R=bsalomon@google.com, robertphillips@google.com

Author: jvanverth@google.com

Review URL: https://codereview.chromium.org/178543007

git-svn-id: http://skia.googlecode.com/svn/trunk@13729 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
commit-bot@chromium.org 2014-03-10 19:38:51 +00:00
Родитель bfce48e0bc
Коммит bf99824083
10 изменённых файлов: 471 добавлений и 748 удалений

Просмотреть файл

@ -46,6 +46,7 @@
#ifdef SK_DEBUG #ifdef SK_DEBUG
static const bool kDebugOnly = true; static const bool kDebugOnly = true;
#define GR_DUMP_FONT_CACHE 0
#else #else
static const bool kDebugOnly = false; static const bool kDebugOnly = false;
#endif #endif
@ -2408,6 +2409,18 @@ int tool_main(int argc, char** argv) {
} }
#endif #endif
#if GR_DUMP_FONT_CACHE
for (int i = 0; i < configs.count(); i++) {
ConfigData config = gRec[configs[i]];
if (kGPU_Backend == config.fBackend) {
GrContext* gr = grFactory->get(config.fGLContextType);
gr->dumpFontCache();
}
}
#endif
delete grFactory; delete grFactory;
#endif #endif
SkGraphics::Term(); SkGraphics::Term();

Просмотреть файл

@ -70,6 +70,8 @@
'<(skia_src_path)/core/SkDeviceProfile.cpp', '<(skia_src_path)/core/SkDeviceProfile.cpp',
'<(skia_src_path)/lazy/SkDiscardableMemoryPool.cpp', '<(skia_src_path)/lazy/SkDiscardableMemoryPool.cpp',
'<(skia_src_path)/lazy/SkDiscardablePixelRef.cpp', '<(skia_src_path)/lazy/SkDiscardablePixelRef.cpp',
'<(skia_src_path)/core/SkDistanceFieldGen.cpp',
'<(skia_src_path)/core/SkDistanceFieldGen.h',
'<(skia_src_path)/core/SkDither.cpp', '<(skia_src_path)/core/SkDither.cpp',
'<(skia_src_path)/core/SkDraw.cpp', '<(skia_src_path)/core/SkDraw.cpp',
'<(skia_src_path)/core/SkDrawLooper.cpp', '<(skia_src_path)/core/SkDrawLooper.cpp',

Просмотреть файл

@ -1,31 +0,0 @@
#
# Copyright 2013 Google Inc.
#
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
#
{
'targets': [
{
'target_name': 'edtaa',
'type': 'none',
'conditions': [
[ 'skia_distancefield_fonts', {
'type': 'static_library',
'sources': [
'../third_party/edtaa/edtaa3func.cpp',
],
'include_dirs': [
'../third_party/edtaa/',
],
'all_dependent_settings': {
'include_dirs': [
'../third_party/edtaa/',
],
},
}],
],
},
],
}

Просмотреть файл

@ -83,7 +83,6 @@
'standalone_static_library': 1, 'standalone_static_library': 1,
'dependencies': [ 'dependencies': [
'core.gyp:*', 'core.gyp:*',
'edtaa.gyp:*',
'utils.gyp:*', 'utils.gyp:*',
], ],
'includes': [ 'includes': [

401
src/core/SkDistanceFieldGen.cpp Executable file
Просмотреть файл

@ -0,0 +1,401 @@
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkDistanceFieldGen.h"
#include "SkPoint.h"
struct DFData {
float fAlpha; // alpha value of source texel
float fDistSq; // distance squared to nearest (so far) edge texel
SkPoint fDistVector; // distance vector to nearest (so far) edge texel
};
// We treat an "edge" as a place where we cross from a texel >= 128 to a texel < 128,
// or vice versa. This means we just need to check if the MSBs are different.
static bool found_edge(const unsigned char* imagePtr, int width) {
const int offsets[8] = {-1, 1, -width-1, -width, -width+1, width-1, width, width+1 };
// search for an edge
int checkVal = *imagePtr >> 7;
for (int i = 0; i < 8; ++i) {
const unsigned char* checkPtr = imagePtr + offsets[i];
if (checkVal ^ (*checkPtr >> 7)) {
return true;
}
}
return false;
}
static void init_glyph_data(DFData* data, char* edges, const unsigned char* image,
int dataWidth, int dataHeight,
int imageWidth, int imageHeight,
int pad) {
data += pad*dataWidth;
data += pad;
edges += (pad*dataWidth + pad);
for (int j = 0; j < imageHeight; ++j) {
for (int i = 0; i < imageWidth; ++i) {
if (255 == *image) {
data->fAlpha = 1.0f;
} else {
data->fAlpha = (*image)*0.00392156862f; // 1/255
}
if (i > 0 && i < imageWidth-1 && j > 0 && j < imageHeight-1 &&
found_edge(image, imageWidth)) {
*edges = 255; // using 255 makes for convenient debug rendering
}
++data;
++image;
++edges;
}
data += 2*pad;
edges += 2*pad;
}
}
// from Gustavson (2011)
// computes the distance to an edge given an edge normal vector and a pixel's alpha value
// assumes that direction has been pre-normalized
static float edge_distance(const SkPoint& direction, float alpha) {
float dx = direction.fX;
float dy = direction.fY;
float distance;
if (SkScalarNearlyZero(dx) || SkScalarNearlyZero(dy)) {
distance = 0.5f - alpha;
} else {
// this is easier if we treat the direction as being in the first octant
// (other octants are symmetrical)
dx = SkScalarAbs(dx);
dy = SkScalarAbs(dy);
if (dx < dy) {
SkTSwap(dx, dy);
}
// a1 = 0.5*dy/dx is the smaller fractional area chopped off by the edge
// to avoid the divide, we just consider the numerator
float a1num = 0.5f*dy;
// we now compute the approximate distance, depending where the alpha falls
// relative to the edge fractional area
// if 0 <= alpha < a1
if (alpha*dx < a1num) {
// TODO: find a way to do this without square roots?
distance = 0.5f*(dx + dy) - SkScalarSqrt(2.0f*dx*dy*alpha);
// if a1 <= alpha <= 1 - a1
} else if (alpha*dx < (dx - a1num)) {
distance = (0.5f - alpha)*dx;
// if 1 - a1 < alpha <= 1
} else {
// TODO: find a way to do this without square roots?
distance = -0.5f*(dx + dy) + SkScalarSqrt(2.0f*dx*dy*(1.0f - alpha));
}
}
return distance;
}
static void init_distances(DFData* data, char* edges, int width, int height) {
// skip one pixel border
DFData* currData = data;
DFData* prevData = data - width;
DFData* nextData = data + width;
for (int j = 0; j < height; ++j) {
for (int i = 0; i < width; ++i) {
if (*edges) {
// we should not be in the one-pixel outside band
SkASSERT(i > 0 && i < width-1 && j > 0 && j < height-1);
// gradient will point from low to high
// +y is down in this case
// i.e., if you're outside, gradient points towards edge
// if you're inside, gradient points away from edge
SkPoint currGrad;
currGrad.fX = (prevData+1)->fAlpha - (prevData-1)->fAlpha
+ SK_ScalarSqrt2*(currData+1)->fAlpha
- SK_ScalarSqrt2*(currData-1)->fAlpha
+ (nextData+1)->fAlpha - (nextData-1)->fAlpha;
currGrad.fY = (nextData-1)->fAlpha - (prevData-1)->fAlpha
+ SK_ScalarSqrt2*nextData->fAlpha
- SK_ScalarSqrt2*prevData->fAlpha
+ (nextData+1)->fAlpha - (prevData+1)->fAlpha;
currGrad.setLengthFast(1.0f);
// init squared distance to edge and distance vector
float dist = edge_distance(currGrad, currData->fAlpha);
currGrad.scale(dist, &currData->fDistVector);
currData->fDistSq = dist*dist;
} else {
// init distance to "far away"
currData->fDistSq = 2000000.f;
currData->fDistVector.fX = 1000.f;
currData->fDistVector.fY = 1000.f;
}
++currData;
++prevData;
++nextData;
++edges;
}
}
}
// Danielsson's 8SSEDT
// first stage forward pass
// (forward in Y, forward in X)
static void F1(DFData* curr, int width) {
// upper left
DFData* check = curr - width-1;
SkPoint distVec = check->fDistVector;
float distSq = check->fDistSq - 2.0f*(distVec.fX + distVec.fY - 1.0f);
if (distSq < curr->fDistSq) {
distVec.fX -= 1.0f;
distVec.fY -= 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
// up
check = curr - width;
distVec = check->fDistVector;
distSq = check->fDistSq - 2.0f*distVec.fY + 1.0f;
if (distSq < curr->fDistSq) {
distVec.fY -= 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
// upper right
check = curr - width+1;
distVec = check->fDistVector;
distSq = check->fDistSq + 2.0f*(distVec.fX - distVec.fY + 1.0f);
if (distSq < curr->fDistSq) {
distVec.fX += 1.0f;
distVec.fY -= 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
// left
check = curr - 1;
distVec = check->fDistVector;
distSq = check->fDistSq - 2.0f*distVec.fX + 1.0f;
if (distSq < curr->fDistSq) {
distVec.fX -= 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
}
// second stage forward pass
// (forward in Y, backward in X)
static void F2(DFData* curr, int width) {
// right
DFData* check = curr + 1;
float distSq = check->fDistSq;
SkPoint distVec = check->fDistVector;
distSq = check->fDistSq + 2.0f*distVec.fX + 1.0f;
if (distSq < curr->fDistSq) {
distVec.fX += 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
}
// first stage backward pass
// (backward in Y, forward in X)
static void B1(DFData* curr, int width) {
// left
DFData* check = curr - 1;
SkPoint distVec = check->fDistVector;
float distSq = check->fDistSq - 2.0f*distVec.fX + 1.0f;
if (distSq < curr->fDistSq) {
distVec.fX -= 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
}
// second stage backward pass
// (backward in Y, backwards in X)
static void B2(DFData* curr, int width) {
// right
DFData* check = curr + 1;
SkPoint distVec = check->fDistVector;
float distSq = check->fDistSq + 2.0f*distVec.fX + 1.0f;
if (distSq < curr->fDistSq) {
distVec.fX += 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
// bottom left
check = curr + width-1;
distVec = check->fDistVector;
distSq = check->fDistSq - 2.0f*(distVec.fX - distVec.fY - 1.0f);
if (distSq < curr->fDistSq) {
distVec.fX -= 1.0f;
distVec.fY += 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
// bottom
check = curr + width;
distVec = check->fDistVector;
distSq = check->fDistSq + 2.0f*distVec.fY + 1.0f;
if (distSq < curr->fDistSq) {
distVec.fY += 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
// bottom right
check = curr + width+1;
distVec = check->fDistVector;
distSq = check->fDistSq + 2.0f*(distVec.fX + distVec.fY + 1.0f);
if (distSq < curr->fDistSq) {
distVec.fX += 1.0f;
distVec.fY += 1.0f;
curr->fDistSq = distSq;
curr->fDistVector = distVec;
}
}
static unsigned char pack_distance_field_val(float dist, float distanceMagnitude) {
if (dist <= -distanceMagnitude) {
return 255;
} else if (dist > distanceMagnitude) {
return 0;
} else {
return (unsigned char)((distanceMagnitude-dist)*128.0f/distanceMagnitude);
}
}
// assumes an 8-bit image and distance field
bool SkGenerateDistanceFieldFromImage(unsigned char* distanceField,
const unsigned char* image,
int width, int height,
int distanceMagnitude) {
SkASSERT(NULL != distanceField);
SkASSERT(NULL != image);
// the final distance field will have additional texels on each side to handle
// the maximum distance
// we expand our temp data by one more on each side to simplify
// the scanning code -- will always be treated as infinitely far away
int pad = distanceMagnitude+1;
// set params for distance field data
int dataWidth = width + 2*pad;
int dataHeight = height + 2*pad;
// create temp data
size_t dataSize = dataWidth*dataHeight*sizeof(DFData);
SkAutoSMalloc<1024> dfStorage(dataSize);
DFData* dataPtr = (DFData*) dfStorage.get();
sk_bzero(dataPtr, dataSize);
SkAutoSMalloc<1024> edgeStorage(dataWidth*dataHeight*sizeof(char));
char* edgePtr = (char*) edgeStorage.get();
sk_bzero(edgePtr, dataWidth*dataHeight*sizeof(char));
// copy glyph into distance field storage
init_glyph_data(dataPtr, edgePtr, image,
dataWidth, dataHeight,
width, height, pad);
// create initial distance data, particularly at edges
init_distances(dataPtr, edgePtr, dataWidth, dataHeight);
// now perform Euclidean distance transform to propagate distances
// forwards in y
DFData* currData = dataPtr+dataWidth+1; // skip outer buffer
char* currEdge = edgePtr+dataWidth+1;
for (int j = 1; j < dataHeight-1; ++j) {
// forwards in x
for (int i = 1; i < dataWidth-1; ++i) {
// don't need to calculate distance for edge pixels
if (!*currEdge) {
F1(currData, dataWidth);
}
++currData;
++currEdge;
}
// backwards in x
--currData; // reset to end
--currEdge;
for (int i = 1; i < dataWidth-1; ++i) {
// don't need to calculate distance for edge pixels
if (!*currEdge) {
F2(currData, dataWidth);
}
--currData;
--currEdge;
}
currData += dataWidth+1;
currEdge += dataWidth+1;
}
// backwards in y
currData = dataPtr+dataWidth*(dataHeight-2) - 1; // skip outer buffer
currEdge = edgePtr+dataWidth*(dataHeight-2) - 1;
for (int j = 1; j < dataHeight-1; ++j) {
// forwards in x
for (int i = 1; i < dataWidth-1; ++i) {
// don't need to calculate distance for edge pixels
if (!*currEdge) {
B1(currData, dataWidth);
}
++currData;
++currEdge;
}
// backwards in x
--currData; // reset to end
--currEdge;
for (int i = 1; i < dataWidth-1; ++i) {
// don't need to calculate distance for edge pixels
if (!*currEdge) {
B2(currData, dataWidth);
}
--currData;
--currEdge;
}
currData -= dataWidth-1;
currEdge -= dataWidth-1;
}
// copy results to final distance field data
currData = dataPtr + dataWidth+1;
currEdge = edgePtr + dataWidth+1;
unsigned char *dfPtr = distanceField;
for (int j = 1; j < dataHeight-1; ++j) {
for (int i = 1; i < dataWidth-1; ++i) {
float dist;
if (currData->fAlpha > 0.5f) {
dist = -SkScalarSqrt(currData->fDistSq);
} else {
dist = SkScalarSqrt(currData->fDistSq);
}
*dfPtr++ = pack_distance_field_val(dist, (float)distanceMagnitude);
++currData;
++currEdge;
}
currData += 2;
currEdge += 2;
}
return true;
}

25
src/core/SkDistanceFieldGen.h Executable file
Просмотреть файл

@ -0,0 +1,25 @@
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkDistanceFieldGen_DEFINED
#define SkDistanceFieldGen_DEFINED
/** Given 8-bit mask data, generate the associated distance field
* @param distanceField The distance field to be generated. Should already be allocated
* by the client with the padding below.
* @param image 8-bit mask we're using to generate the distance field.
* @param w Width of the image.
* @param h Height of the image.
* @param distanceMagnitude Largest possible absolute value for the distance. The distance field
* will be padded to w + 2*distanceMagnitude, h + 2*distanceMagnitude.
*/
bool SkGenerateDistanceFieldFromImage(unsigned char* distanceField,
const unsigned char* image,
int w, int h,
int distanceMagnitude);
#endif

Просмотреть файл

@ -13,7 +13,7 @@
#include "SkString.h" #include "SkString.h"
#if SK_DISTANCEFIELD_FONTS #if SK_DISTANCEFIELD_FONTS
#include "edtaa3.h" #include "SkDistanceFieldGen.h"
#endif #endif
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
@ -199,8 +199,9 @@ void GrFontCache::dump() const {
#endif #endif
#if SK_DISTANCEFIELD_FONTS #if SK_DISTANCEFIELD_FONTS
#define DISTANCE_FIELD_PAD 4 // this acts as the max magnitude for the distance field,
#define DISTANCE_FIELD_RANGE (4.0) // as well as the pad we need around the glyph
#define DISTANCE_FIELD_RANGE 4
#endif #endif
/* /*
@ -253,10 +254,10 @@ GrGlyph* GrTextStrike::generateGlyph(GrGlyph::PackedID packed,
#if SK_DISTANCEFIELD_FONTS #if SK_DISTANCEFIELD_FONTS
// expand bounds to hold full distance field data // expand bounds to hold full distance field data
if (fUseDistanceField) { if (fUseDistanceField) {
bounds.fLeft -= DISTANCE_FIELD_PAD; bounds.fLeft -= DISTANCE_FIELD_RANGE;
bounds.fRight += DISTANCE_FIELD_PAD; bounds.fRight += DISTANCE_FIELD_RANGE;
bounds.fTop -= DISTANCE_FIELD_PAD; bounds.fTop -= DISTANCE_FIELD_RANGE;
bounds.fBottom += DISTANCE_FIELD_PAD; bounds.fBottom += DISTANCE_FIELD_RANGE;
} }
#endif #endif
glyph->init(packed, bounds); glyph->init(packed, bounds);
@ -294,15 +295,13 @@ bool GrTextStrike::addGlyphToAtlas(GrGlyph* glyph, GrFontScaler* scaler) {
GrPlot* plot; GrPlot* plot;
#if SK_DISTANCEFIELD_FONTS #if SK_DISTANCEFIELD_FONTS
if (fUseDistanceField) { if (fUseDistanceField) {
SkASSERT(1 == bytesPerPixel);
// we've already expanded the glyph dimensions to match the final size // we've already expanded the glyph dimensions to match the final size
// but must shrink back down to get the packed glyph data // but must shrink back down to get the packed glyph data
int dfWidth = glyph->width(); int dfWidth = glyph->width();
int dfHeight = glyph->height(); int dfHeight = glyph->height();
int width = dfWidth - 2*DISTANCE_FIELD_PAD; int width = dfWidth - 2*DISTANCE_FIELD_RANGE;
int height = dfHeight - 2*DISTANCE_FIELD_PAD; int height = dfHeight - 2*DISTANCE_FIELD_RANGE;
size_t stride = width*bytesPerPixel; int stride = width*bytesPerPixel;
size_t size = width * height * bytesPerPixel; size_t size = width * height * bytesPerPixel;
SkAutoSMalloc<1024> storage(size); SkAutoSMalloc<1024> storage(size);
@ -313,71 +312,28 @@ bool GrTextStrike::addGlyphToAtlas(GrGlyph* glyph, GrFontScaler* scaler) {
// alloc storage for distance field glyph // alloc storage for distance field glyph
size_t dfSize = dfWidth * dfHeight * bytesPerPixel; size_t dfSize = dfWidth * dfHeight * bytesPerPixel;
SkAutoSMalloc<1024> dfStorage(dfSize); SkAutoSMalloc<1024> dfStorage(dfSize);
if (1 == bytesPerPixel) {
(void) SkGenerateDistanceFieldFromImage((unsigned char*)dfStorage.get(),
(unsigned char*)storage.get(),
width, height, DISTANCE_FIELD_RANGE);
} else {
// TODO: Fix color emoji
// for now, copy glyph into distance field storage
// this is not correct, but it won't crash
sk_bzero(dfStorage.get(), dfSize);
unsigned char* ptr = (unsigned char*) storage.get();
unsigned char* dfPtr = (unsigned char*) dfStorage.get();
size_t dfStride = dfWidth*bytesPerPixel;
dfPtr += DISTANCE_FIELD_RANGE*dfStride;
dfPtr += DISTANCE_FIELD_RANGE*bytesPerPixel;
// copy glyph into distance field storage for (int i = 0; i < height; ++i) {
sk_bzero(dfStorage.get(), dfSize); memcpy(dfPtr, ptr, stride);
unsigned char* ptr = (unsigned char*) storage.get(); dfPtr += dfStride;
unsigned char* dfPtr = (unsigned char*) dfStorage.get(); ptr += stride;
size_t dfStride = dfWidth*bytesPerPixel;
dfPtr += DISTANCE_FIELD_PAD*dfStride;
dfPtr += DISTANCE_FIELD_PAD*bytesPerPixel;
for (int i = 0; i < height; ++i) {
memcpy(dfPtr, ptr, stride);
dfPtr += dfStride;
ptr += stride;
}
// generate distance field data
SkAutoSMalloc<1024> distXStorage(dfWidth*dfHeight*sizeof(short));
SkAutoSMalloc<1024> distYStorage(dfWidth*dfHeight*sizeof(short));
SkAutoSMalloc<1024> outerDistStorage(dfWidth*dfHeight*sizeof(double));
SkAutoSMalloc<1024> innerDistStorage(dfWidth*dfHeight*sizeof(double));
SkAutoSMalloc<1024> gxStorage(dfWidth*dfHeight*sizeof(double));
SkAutoSMalloc<1024> gyStorage(dfWidth*dfHeight*sizeof(double));
short* distX = (short*) distXStorage.get();
short* distY = (short*) distYStorage.get();
double* outerDist = (double*) outerDistStorage.get();
double* innerDist = (double*) innerDistStorage.get();
double* gx = (double*) gxStorage.get();
double* gy = (double*) gyStorage.get();
dfPtr = (unsigned char*) dfStorage.get();
EDTAA::computegradient(dfPtr, dfWidth, dfHeight, gx, gy);
EDTAA::edtaa3(dfPtr, gx, gy, dfWidth, dfHeight, distX, distY, outerDist);
for (int i = 0; i < dfWidth*dfHeight; ++i) {
*dfPtr = 255 - *dfPtr;
dfPtr++;
}
dfPtr = (unsigned char*) dfStorage.get();
sk_bzero(gx, sizeof(double)*dfWidth*dfHeight);
sk_bzero(gy, sizeof(double)*dfWidth*dfHeight);
EDTAA::computegradient(dfPtr, dfWidth, dfHeight, gx, gy);
EDTAA::edtaa3(dfPtr, gx, gy, dfWidth, dfHeight, distX, distY, innerDist);
for (int i = 0; i < dfWidth*dfHeight; ++i) {
unsigned char val;
double outerval = outerDist[i];
if (outerval < 0.0) {
outerval = 0.0;
} }
double innerval = innerDist[i];
if (innerval < 0.0) {
innerval = 0.0;
}
double dist = outerval - innerval;
if (dist <= -DISTANCE_FIELD_RANGE) {
val = 255;
} else if (dist > DISTANCE_FIELD_RANGE) {
val = 0;
} else {
val = (unsigned char)((DISTANCE_FIELD_RANGE-dist)*128.0/DISTANCE_FIELD_RANGE);
}
*dfPtr++ = val;
} }
// copy to atlas // copy to atlas

21
third_party/edtaa/LICENSE поставляемый
Просмотреть файл

@ -1,21 +0,0 @@
The MIT License (MIT)
Copyright (c) 2009-2012 Stefan Gustavson (stefan.gustavson@gmail.com)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

35
third_party/edtaa/edtaa3.h поставляемый
Просмотреть файл

@ -1,35 +0,0 @@
/*
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#define EDTAA_UNSIGNED_CHAR_INPUT 1
namespace EDTAA {
#if EDTAA_UNSIGNED_CHAR_INPUT
typedef unsigned char EdtaaImageType;
#else
typedef double EdtaaImageType;
#endif
void computegradient(EdtaaImageType *img, int w, int h, double *gx, double *gy);
void edtaa3(EdtaaImageType *img, double *gx, double *gy, int w, int h,
short *distx, short *disty, double *dist);
}

586
third_party/edtaa/edtaa3func.cpp поставляемый
Просмотреть файл

@ -1,586 +0,0 @@
/*
* edtaa3()
*
* Sweep-and-update Euclidean distance transform of an
* image. Positive pixels are treated as object pixels,
* zero or negative pixels are treated as background.
* An attempt is made to treat antialiased edges correctly.
* The input image must have pixels in the range [0,1],
* and the antialiased image should be a box-filter
* sampling of the ideal, crisp edge.
* If the antialias region is more than 1 pixel wide,
* the result from this transform will be inaccurate.
*
* By Stefan Gustavson (stefan.gustavson@gmail.com).
*
* Originally written in 1994, based on a verbal
* description of the SSED8 algorithm published in the
* PhD dissertation of Ingemar Ragnemalm. This is his
* algorithm, I only implemented it in C.
*
* Updated in 2004 to treat border pixels correctly,
* and cleaned up the code to improve readability.
*
* Updated in 2009 to handle anti-aliased edges.
*
* Updated in 2011 to avoid a corner case infinite loop.
*
* Updated 2012 to change license from LGPL to MIT.
*/
/*
Copyright (C) 2009-2012 Stefan Gustavson (stefan.gustavson@gmail.com)
The code in this file is distributed under the MIT license:
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include "edtaa3.h"
#include <math.h>
#if EDTAA_UNSIGNED_CHAR_INPUT
#define IMG(i) ((double)(img[i] & 0xff)/256.0)
#else
#define IMG(i) (img[i])
#endif
namespace EDTAA {
/*
* Compute the local gradient at edge pixels using convolution filters.
* The gradient is computed only at edge pixels. At other places in the
* image, it is never used, and it's mostly zero anyway.
*/
void computegradient(EdtaaImageType *img, int w, int h, double *gx, double *gy)
{
int i,j,k;
double glength;
#define SQRT2 1.4142136
for(i = 1; i < h-1; i++) { // Avoid edges where the kernels would spill over
for(j = 1; j < w-1; j++) {
k = i*w + j;
if((IMG(k)>0.0) && (IMG(k)<1.0)) { // Compute gradient for edge pixels only
gx[k] = -IMG(k-w-1) - SQRT2*IMG(k-1) - IMG(k+w-1) + IMG(k-w+1) + SQRT2*IMG(k+1) + IMG(k+w+1);
gy[k] = -IMG(k-w-1) - SQRT2*IMG(k-w) - IMG(k+w-1) + IMG(k-w+1) + SQRT2*IMG(k+w) + IMG(k+w+1);
glength = gx[k]*gx[k] + gy[k]*gy[k];
if(glength > 0.0) { // Avoid division by zero
glength = sqrt(glength);
gx[k]=gx[k]/glength;
gy[k]=gy[k]/glength;
}
}
}
}
// TODO: Compute reasonable values for gx, gy also around the image edges.
// (These are zero now, which reduces the accuracy for a 1-pixel wide region
// around the image edge.) 2x2 kernels would be suitable for this.
}
/*
* A somewhat tricky function to approximate the distance to an edge in a
* certain pixel, with consideration to either the local gradient (gx,gy)
* or the direction to the pixel (dx,dy) and the pixel greyscale value a.
* The latter alternative, using (dx,dy), is the metric used by edtaa2().
* Using a local estimate of the edge gradient (gx,gy) yields much better
* accuracy at and near edges, and reduces the error even at distant pixels
* provided that the gradient direction is accurately estimated.
*/
static double edgedf(double gx, double gy, double a)
{
double df, glength, temp, a1;
if ((gx == 0) || (gy == 0)) { // Either A) gu or gv are zero, or B) both
df = 0.5-a; // Linear approximation is A) correct or B) a fair guess
} else {
glength = sqrt(gx*gx + gy*gy);
if(glength>0) {
gx = gx/glength;
gy = gy/glength;
}
/* Everything is symmetric wrt sign and transposition,
* so move to first octant (gx>=0, gy>=0, gx>=gy) to
* avoid handling all possible edge directions.
*/
gx = fabs(gx);
gy = fabs(gy);
if(gx<gy) {
temp = gx;
gx = gy;
gy = temp;
}
a1 = 0.5*gy/gx;
if (a < a1) { // 0 <= a < a1
df = 0.5*(gx + gy) - sqrt(2.0*gx*gy*a);
} else if (a < (1.0-a1)) { // a1 <= a <= 1-a1
df = (0.5-a)*gx;
} else { // 1-a1 < a <= 1
df = -0.5*(gx + gy) + sqrt(2.0*gx*gy*(1.0-a));
}
}
return df;
}
static double distaa3(EdtaaImageType *img, double *gximg, double *gyimg, int w, int c, int xc, int yc, int xi, int yi)
{
double di, df, dx, dy, gx, gy, a;
int closest;
closest = c-xc-yc*w; // Index to the edge pixel pointed to from c
a = IMG(closest); // Grayscale value at the edge pixel
gx = gximg[closest]; // X gradient component at the edge pixel
gy = gyimg[closest]; // Y gradient component at the edge pixel
if(a > 1.0) a = 1.0;
if(a < 0.0) a = 0.0; // Clip grayscale values outside the range [0,1]
if(a == 0.0) return 1000000.0; // Not an object pixel, return "very far" ("don't know yet")
dx = (double)xi;
dy = (double)yi;
di = sqrt(dx*dx + dy*dy); // Length of integer vector, like a traditional EDT
if(di==0) { // Use local gradient only at edges
// Estimate based on local gradient only
df = edgedf(gx, gy, a);
} else {
// Estimate gradient based on direction to edge (accurate for large di)
df = edgedf(dx, dy, a);
}
return di + df; // Same metric as edtaa2, except at edges (where di=0)
}
// Shorthand macro: add ubiquitous parameters dist, gx, gy, img and w and call distaa3()
#define DISTAA(c,xc,yc,xi,yi) (distaa3(img, gx, gy, w, c, xc, yc, xi, yi))
void edtaa3(EdtaaImageType *img, double *gx, double *gy, int w, int h, short *distx, short *disty, double *dist)
{
int x, y, i, c;
int offset_u, offset_ur, offset_r, offset_rd,
offset_d, offset_dl, offset_l, offset_lu;
double olddist, newdist;
int cdistx, cdisty, newdistx, newdisty;
int changed;
double epsilon = 1e-3;
double a;
/* Initialize index offsets for the current image width */
offset_u = -w;
offset_ur = -w+1;
offset_r = 1;
offset_rd = w+1;
offset_d = w;
offset_dl = w-1;
offset_l = -1;
offset_lu = -w-1;
/* Initialize the distance images */
for(i=0; i<w*h; i++) {
distx[i] = 0; // At first, all pixels point to
disty[i] = 0; // themselves as the closest known.
a = IMG(i);
if(a <= 0.0)
{
dist[i]= 1000000.0; // Big value, means "not set yet"
}
else if (a<1.0) {
dist[i] = edgedf(gx[i], gy[i], a); // Gradient-assisted estimate
}
else {
dist[i]= 0.0; // Inside the object
}
}
/* Perform the transformation */
do
{
changed = 0;
/* Scan rows, except first row */
for(y=1; y<h; y++)
{
/* move index to leftmost pixel of current row */
i = y*w;
/* scan right, propagate distances from above & left */
/* Leftmost pixel is special, has no left neighbors */
olddist = dist[i];
if(olddist > 0) // If non-zero distance or not set yet
{
c = i + offset_u; // Index of candidate for testing
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx;
newdisty = cdisty+1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_ur;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx-1;
newdisty = cdisty+1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
changed = 1;
}
}
i++;
/* Middle pixels have all neighbors */
for(x=1; x<w-1; x++, i++)
{
olddist = dist[i];
if(olddist <= 0) continue; // No need to update further
c = i+offset_l;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx+1;
newdisty = cdisty;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_lu;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx+1;
newdisty = cdisty+1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_u;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx;
newdisty = cdisty+1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_ur;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx-1;
newdisty = cdisty+1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
changed = 1;
}
}
/* Rightmost pixel of row is special, has no right neighbors */
olddist = dist[i];
if(olddist > 0) // If not already zero distance
{
c = i+offset_l;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx+1;
newdisty = cdisty;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_lu;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx+1;
newdisty = cdisty+1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_u;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx;
newdisty = cdisty+1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
changed = 1;
}
}
/* Move index to second rightmost pixel of current row. */
/* Rightmost pixel is skipped, it has no right neighbor. */
i = y*w + w-2;
/* scan left, propagate distance from right */
for(x=w-2; x>=0; x--, i--)
{
olddist = dist[i];
if(olddist <= 0) continue; // Already zero distance
c = i+offset_r;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx-1;
newdisty = cdisty;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
changed = 1;
}
}
}
/* Scan rows in reverse order, except last row */
for(y=h-2; y>=0; y--)
{
/* move index to rightmost pixel of current row */
i = y*w + w-1;
/* Scan left, propagate distances from below & right */
/* Rightmost pixel is special, has no right neighbors */
olddist = dist[i];
if(olddist > 0) // If not already zero distance
{
c = i+offset_d;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx;
newdisty = cdisty-1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_dl;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx+1;
newdisty = cdisty-1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
changed = 1;
}
}
i--;
/* Middle pixels have all neighbors */
for(x=w-2; x>0; x--, i--)
{
olddist = dist[i];
if(olddist <= 0) continue; // Already zero distance
c = i+offset_r;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx-1;
newdisty = cdisty;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_rd;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx-1;
newdisty = cdisty-1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_d;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx;
newdisty = cdisty-1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_dl;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx+1;
newdisty = cdisty-1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
changed = 1;
}
}
/* Leftmost pixel is special, has no left neighbors */
olddist = dist[i];
if(olddist > 0) // If not already zero distance
{
c = i+offset_r;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx-1;
newdisty = cdisty;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_rd;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx-1;
newdisty = cdisty-1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
olddist=newdist;
changed = 1;
}
c = i+offset_d;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx;
newdisty = cdisty-1;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
changed = 1;
}
}
/* Move index to second leftmost pixel of current row. */
/* Leftmost pixel is skipped, it has no left neighbor. */
i = y*w + 1;
for(x=1; x<w; x++, i++)
{
/* scan right, propagate distance from left */
olddist = dist[i];
if(olddist <= 0) continue; // Already zero distance
c = i+offset_l;
cdistx = distx[c];
cdisty = disty[c];
newdistx = cdistx+1;
newdisty = cdisty;
newdist = DISTAA(c, cdistx, cdisty, newdistx, newdisty);
if(newdist < olddist-epsilon)
{
distx[i]=newdistx;
disty[i]=newdisty;
dist[i]=newdist;
changed = 1;
}
}
}
}
while(changed); // Sweep until no more updates are made
/* The transformation is completed. */
}
} // namespace EDTAA