Reason for revert:
breaks angle bot

Original issue's description:
> gl programs rewrite
>
> BUG=skia:
>
> Committed: https://skia.googlesource.com/skia/+/07a255310aca9f3e83bf741dc663a58818ad681c

TBR=bsalomon@google.com,egdaniel@google.com
NOTREECHECKS=true
NOTRY=true
BUG=skia:

Review URL: https://codereview.chromium.org/631183003
This commit is contained in:
joshualitt 2014-10-07 08:37:36 -07:00 коммит произвёл Commit bot
Родитель 07a255310a
Коммит d909759832
8 изменённых файлов: 281 добавлений и 368 удалений

Просмотреть файл

@ -42,8 +42,6 @@ public:
uint32_t fValidFlags;
bool fIsSingleComponent;
InvariantOutput() : fColor(0), fValidFlags(0), fIsSingleComponent(false) {}
bool isOpaque() const {
return ((fValidFlags & kA_GrColorComponentFlag) && 0xFF == GrColorUnpackA(fColor));
}

Просмотреть файл

@ -222,10 +222,8 @@ enum GrBlendCoeff {
kConstA_GrBlendCoeff, //<! constant color alpha
kIConstA_GrBlendCoeff, //<! one minus constant color alpha
kFirstPublicGrBlendCoeff = kZero_GrBlendCoeff,
kLastPublicGrBlendCoeff = kIConstA_GrBlendCoeff,
kPublicGrBlendCoeffCount
};
static const int kPublicGrBlendCoeffCount = kLastPublicGrBlendCoeff + 1;
/**
* Formats for masks, used by the font cache.

Просмотреть файл

@ -406,13 +406,7 @@ GrFragmentProcessor* ModeColorFilterEffect::TestCreate(SkRandom* rand,
while (SkXfermode::kDst_Mode == mode) {
mode = static_cast<SkXfermode::Mode>(rand->nextRangeU(0, SkXfermode::kLastCoeffMode));
}
// pick a random premul color
uint8_t alpha = rand->nextULessThan(256);
GrColor color = GrColorPackRGBA(rand->nextRangeU(0, alpha),
rand->nextRangeU(0, alpha),
rand->nextRangeU(0, alpha),
alpha);
GrColor color = rand->nextU();
return ModeColorFilterEffect::Create(color, mode);
}

Просмотреть файл

@ -404,7 +404,7 @@ bool GrDrawState::hasSolidCoverage() const {
if (this->hasCoverageVertexAttribute()) {
inout.fValidFlags = 0;
} else {
inout.fColor = this->getCoverageColor();
inout.fColor = fCoverage;
inout.fValidFlags = kRGBA_GrColorComponentFlags;
}
@ -413,7 +413,6 @@ bool GrDrawState::hasSolidCoverage() const {
const GrGeometryProcessor* gp = fGeometryProcessor->getGeometryProcessor();
gp->computeInvariantOutput(&inout);
}
for (int s = 0; s < this->numCoverageStages(); ++s) {
const GrProcessor* processor = this->getCoverageStage(s).getProcessor();
processor->computeInvariantOutput(&inout);
@ -641,8 +640,8 @@ GrDrawState::~GrDrawState() {
////////////////////////////////////////////////////////////////////////////////
GrDrawState::BlendOptFlags GrDrawState::getBlendOpts(bool forceCoverage,
GrBlendCoeff* srcCoeff,
GrBlendCoeff* dstCoeff) const {
GrBlendCoeff* srcCoeff,
GrBlendCoeff* dstCoeff) const {
GrBlendCoeff bogusSrcCoeff, bogusDstCoeff;
if (NULL == srcCoeff) {
srcCoeff = &bogusSrcCoeff;

Просмотреть файл

@ -684,10 +684,7 @@ public:
/// Hints that when provided can enable optimizations.
////
enum Hints {
kVertexColorsAreOpaque_Hint = 0x1,
kLast_Hint = kVertexColorsAreOpaque_Hint
};
enum Hints { kVertexColorsAreOpaque_Hint = 0x1, };
void setHint(Hints hint, bool value) { fHints = value ? (fHints | hint) : (fHints & ~hint); }

Просмотреть файл

@ -855,14 +855,6 @@ protected:
GrDeviceCoordTexture fDstCopy;
};
// Makes a copy of the dst if it is necessary for the draw. Returns false if a copy is required
// but couldn't be made. Otherwise, returns true. This method needs to be protected because it
// needs to be accessed by GLPrograms to setup a correct drawstate
bool setupDstReadIfNecessary(DrawInfo* info) {
return this->setupDstReadIfNecessary(&info->fDstCopy, info->getDevBounds());
}
bool setupDstReadIfNecessary(GrDeviceCoordTexture* dstCopy, const SkRect* drawBounds);
private:
// A subclass can optionally overload this function to be notified before
// vertex and index space is reserved.
@ -921,6 +913,13 @@ private:
void releasePreviousVertexSource();
void releasePreviousIndexSource();
// Makes a copy of the dst if it is necessary for the draw. Returns false if a copy is required
// but couldn't be made. Otherwise, returns true.
bool setupDstReadIfNecessary(DrawInfo* info) {
return this->setupDstReadIfNecessary(&info->fDstCopy, info->getDevBounds());
}
bool setupDstReadIfNecessary(GrDeviceCoordTexture* dstCopy, const SkRect* drawBounds);
// Check to see if this set of draw commands has been sent out
virtual bool isIssued(uint32_t drawID) { return true; }

Просмотреть файл

@ -239,15 +239,15 @@ bool GrGpuGL::flushGraphicsState(DrawType type, const GrDeviceCoordTexture* dstC
SkSTArray<8, const GrFragmentStage*, true> coverageStages;
GrGLProgramDesc desc;
if (!GrGLProgramDesc::Build(*optState.get(),
type,
srcCoeff,
dstCoeff,
this,
dstCopy,
&geometryProcessor,
&colorStages,
&coverageStages,
&desc)) {
type,
srcCoeff,
dstCoeff,
this,
dstCopy,
&geometryProcessor,
&colorStages,
&coverageStages,
&desc)) {
SkDEBUGFAIL("Failed to generate GL program descriptor");
return false;
}

Просмотреть файл

@ -22,50 +22,180 @@
#include "SkRandom.h"
#include "Test.h"
static const int kRenderTargetHeight = 1;
static const int kRenderTargetWidth = 1;
static GrRenderTarget* random_render_target(GrGpuGL* gpu,
const GrCacheID& cacheId,
SkRandom* random) {
// setup render target
GrTextureParams params;
GrTextureDesc texDesc;
texDesc.fWidth = kRenderTargetWidth;
texDesc.fHeight = kRenderTargetHeight;
texDesc.fFlags = kRenderTarget_GrTextureFlagBit;
texDesc.fConfig = kRGBA_8888_GrPixelConfig;
texDesc.fOrigin = random->nextBool() == true ? kTopLeft_GrSurfaceOrigin :
kBottomLeft_GrSurfaceOrigin;
GrTexture* texture = gpu->getContext()->findAndRefTexture(texDesc, cacheId, &params);
if (NULL == texture) {
texture = gpu->getContext()->createTexture(&params, texDesc, cacheId, 0, 0);
if (NULL == texture) {
return NULL;
}
static void get_stage_stats(const GrFragmentStage stage, bool* readsDst,
bool* readsFragPosition, bool* requiresVertexShader) {
if (stage.getFragmentProcessor()->willReadDstColor()) {
*readsDst = true;
}
return texture->asRenderTarget();
if (stage.getProcessor()->willReadFragmentPosition()) {
*readsFragPosition = true;
}
}
bool GrGLProgramDesc::setRandom(SkRandom* random,
GrGpuGL* gpu,
const GrRenderTarget* dstRenderTarget,
const GrTexture* dstCopyTexture,
const GrGeometryStage* geometryProcessor,
const GrFragmentStage* stages[],
int numColorStages,
int numCoverageStages,
int currAttribIndex,
GrGpu::DrawType drawType) {
bool isPathRendering = GrGpu::IsPathRenderingDrawType(drawType);
bool useLocalCoords = !isPathRendering &&
random->nextBool() &&
currAttribIndex < GrDrawState::kMaxVertexAttribCnt;
int numStages = numColorStages + numCoverageStages;
fKey.reset();
GR_STATIC_ASSERT(0 == kEffectKeyOffsetsAndLengthOffset % sizeof(uint32_t));
// Make room for everything up to and including the array of offsets to effect keys.
fKey.push_back_n(kEffectKeyOffsetsAndLengthOffset + 2 * sizeof(uint16_t) * (numStages +
(geometryProcessor ? 1 : 0)));
bool dstRead = false;
bool fragPos = false;
bool vertexShader = SkToBool(geometryProcessor);
int offset = 0;
if (geometryProcessor) {
const GrGeometryStage* stage = geometryProcessor;
uint16_t* offsetAndSize = reinterpret_cast<uint16_t*>(fKey.begin() +
kEffectKeyOffsetsAndLengthOffset +
offset * 2 * sizeof(uint16_t));
uint32_t effectKeyOffset = fKey.count();
if (effectKeyOffset > SK_MaxU16) {
fKey.reset();
return false;
}
GrProcessorKeyBuilder b(&fKey);
uint16_t effectKeySize;
if (!GetProcessorKey(*stage, gpu->glCaps(), useLocalCoords, &b, &effectKeySize)) {
fKey.reset();
return false;
}
vertexShader = true;
fragPos = stage->getProcessor()->willReadFragmentPosition();
offsetAndSize[0] = effectKeyOffset;
offsetAndSize[1] = effectKeySize;
offset++;
}
for (int s = 0; s < numStages; ++s, ++offset) {
const GrFragmentStage* stage = stages[s];
uint16_t* offsetAndSize = reinterpret_cast<uint16_t*>(fKey.begin() +
kEffectKeyOffsetsAndLengthOffset +
offset * 2 * sizeof(uint16_t));
uint32_t effectKeyOffset = fKey.count();
if (effectKeyOffset > SK_MaxU16) {
fKey.reset();
return false;
}
GrProcessorKeyBuilder b(&fKey);
uint16_t effectKeySize;
if (!GetProcessorKey(*stages[s], gpu->glCaps(), useLocalCoords, &b, &effectKeySize)) {
fKey.reset();
return false;
}
get_stage_stats(*stage, &dstRead, &fragPos, &vertexShader);
offsetAndSize[0] = effectKeyOffset;
offsetAndSize[1] = effectKeySize;
}
KeyHeader* header = this->header();
memset(header, 0, kHeaderSize);
header->fEmitsPointSize = random->nextBool();
header->fPositionAttributeIndex = 0;
// if the effects have used up all off the available attributes,
// don't try to use color or coverage attributes as input
do {
header->fColorInput = static_cast<GrGLProgramDesc::ColorInput>(
random->nextULessThan(kColorInputCnt));
} while ((GrDrawState::kMaxVertexAttribCnt <= currAttribIndex || isPathRendering) &&
kAttribute_ColorInput == header->fColorInput);
header->fColorAttributeIndex = (header->fColorInput == kAttribute_ColorInput) ?
currAttribIndex++ :
-1;
do {
header->fCoverageInput = static_cast<GrGLProgramDesc::ColorInput>(
random->nextULessThan(kColorInputCnt));
} while ((GrDrawState::kMaxVertexAttribCnt <= currAttribIndex || isPathRendering) &&
kAttribute_ColorInput == header->fCoverageInput);
header->fCoverageAttributeIndex = (header->fCoverageInput == kAttribute_ColorInput) ?
currAttribIndex++ :
-1;
bool useGS = random->nextBool();
#if GR_GL_EXPERIMENTAL_GS
header->fExperimentalGS = gpu->caps()->geometryShaderSupport() && useGS;
#else
(void) useGS;
#endif
header->fLocalCoordAttributeIndex = useLocalCoords ? currAttribIndex++ : -1;
header->fColorEffectCnt = numColorStages;
header->fCoverageEffectCnt = numCoverageStages;
if (dstRead) {
header->fDstReadKey = SkToU8(GrGLFragmentShaderBuilder::KeyForDstRead(dstCopyTexture,
gpu->glCaps()));
} else {
header->fDstReadKey = 0;
}
if (fragPos) {
header->fFragPosKey = SkToU8(GrGLFragmentShaderBuilder::KeyForFragmentPosition(dstRenderTarget,
gpu->glCaps()));
} else {
header->fFragPosKey = 0;
}
header->fUseFragShaderOnly = isPathRendering && gpu->glPathRendering()->texturingMode() ==
GrGLPathRendering::FixedFunction_TexturingMode;
header->fHasGeometryProcessor = vertexShader;
GrOptDrawState::PrimaryOutputType primaryOutput;
GrOptDrawState::SecondaryOutputType secondaryOutput;
if (!dstRead) {
primaryOutput = GrOptDrawState::kModulate_PrimaryOutputType;
} else {
primaryOutput = static_cast<GrOptDrawState::PrimaryOutputType>(
random->nextULessThan(GrOptDrawState::kPrimaryOutputTypeCnt));
}
if (GrOptDrawState::kCombineWithDst_PrimaryOutputType == primaryOutput ||
!gpu->caps()->dualSourceBlendingSupport()) {
secondaryOutput = GrOptDrawState::kNone_SecondaryOutputType;
} else {
secondaryOutput = static_cast<GrOptDrawState::SecondaryOutputType>(
random->nextULessThan(GrOptDrawState::kSecondaryOutputTypeCnt));
}
header->fPrimaryOutputType = primaryOutput;
header->fSecondaryOutputType = secondaryOutput;
this->finalize();
return true;
}
// TODO clean this up, we have to do this to test geometry processors but there has got to be
// a better way. In the mean time, we actually fill out these generic vertex attribs below with
// the correct vertex attribs from the GP. We have to ensure, however, we don't try to add more
// than two attributes. In addition, we 'pad' the below array with GPs up to 6 entries, 4 fixed
// function vertex attributes and 2 GP custom attributes.
GrVertexAttrib kGenericVertexAttribs[] = {
// than two attributes.
GrVertexAttrib genericVertexAttribs[] = {
{ kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding },
{ kVec2f_GrVertexAttribType, 0, kGeometryProcessor_GrVertexAttribBinding },
{ kVec2f_GrVertexAttribType, 0, kGeometryProcessor_GrVertexAttribBinding },
{ kVec2f_GrVertexAttribType, 0, kGeometryProcessor_GrVertexAttribBinding },
{ kVec2f_GrVertexAttribType, 0, kGeometryProcessor_GrVertexAttribBinding },
{ kVec2f_GrVertexAttribType, 0, kGeometryProcessor_GrVertexAttribBinding }
};
/*
* convert sl type to vertexattrib type, not a complete implementation, only use for debugging
*/
static GrVertexAttribType convert_sltype_to_attribtype(GrSLType type) {
GrVertexAttribType convert_sltype_to_attribtype(GrSLType type) {
switch (type) {
case kFloat_GrSLType:
return kFloat_GrVertexAttribType;
@ -80,227 +210,11 @@ static GrVertexAttribType convert_sltype_to_attribtype(GrSLType type) {
return kFloat_GrVertexAttribType;
}
}
// end test hack
// TODO end test hack
static void setup_random_ff_attribute(GrVertexAttribBinding binding, GrVertexAttribType type,
SkRandom* random, int* attribIndex, int* runningStride) {
if (random->nextBool()) {
kGenericVertexAttribs[*attribIndex].fType = type;
kGenericVertexAttribs[*attribIndex].fOffset = *runningStride;
kGenericVertexAttribs[*attribIndex].fBinding = binding;
*runningStride += GrVertexAttribTypeSize(kGenericVertexAttribs[(*attribIndex)++].fType);
}
}
static void set_random_gp(GrGpuGL* gpu, SkRandom* random, GrTexture* dummyTextures[]) {
GrProgramElementRef<const GrGeometryProcessor> gp(
GrProcessorTestFactory<GrGeometryProcessor>::CreateStage(random,
gpu->getContext(),
*gpu->caps(),
dummyTextures));
SkASSERT(gp);
// we have to set dummy vertex attributes, first we setup the fixed function attributes
// always leave the position attribute untouched in the array
int attribIndex = 1;
int runningStride = GrVertexAttribTypeSize(kGenericVertexAttribs[0].fType);
// local coords
setup_random_ff_attribute(kLocalCoord_GrVertexAttribBinding, kVec2f_GrVertexAttribType,
random, &attribIndex, &runningStride);
// color
setup_random_ff_attribute(kColor_GrVertexAttribBinding, kVec4f_GrVertexAttribType,
random, &attribIndex, &runningStride);
// coverage
setup_random_ff_attribute(kCoverage_GrVertexAttribBinding, kVec4f_GrVertexAttribType,
random, &attribIndex, &runningStride);
// Update the geometry processor attributes
const GrGeometryProcessor::VertexAttribArray& v = gp->getVertexAttribs();
int numGPAttribs = v.count();
SkASSERT(numGPAttribs <= GrGeometryProcessor::kMaxVertexAttribs &&
GrGeometryProcessor::kMaxVertexAttribs == 2);
// we actually can't overflow if kMaxVertexAttribs == 2, but GCC 4.8 wants more proof
int maxIndex = SK_ARRAY_COUNT(kGenericVertexAttribs);
for (int i = 0; i < numGPAttribs && i + attribIndex < maxIndex; i++) {
kGenericVertexAttribs[i + attribIndex].fType =
convert_sltype_to_attribtype(v[i].getType());
kGenericVertexAttribs[i + attribIndex].fOffset = runningStride;
kGenericVertexAttribs[i + attribIndex].fBinding = kGeometryProcessor_GrVertexAttribBinding;
runningStride += GrVertexAttribTypeSize(kGenericVertexAttribs[i + attribIndex].fType);
}
// update the vertex attributes with the ds
GrDrawState* ds = gpu->drawState();
ds->setVertexAttribs<kGenericVertexAttribs>(attribIndex + numGPAttribs, runningStride);
ds->setGeometryProcessor(gp);
}
static void set_random_color_coverage_stages(GrGpuGL* gpu,
int maxStages,
bool usePathRendering,
SkRandom* random,
GrTexture* dummyTextures[]) {
int numProcs = random->nextULessThan(maxStages + 1);
int numColorProcs = random->nextULessThan(numProcs + 1);
int currTextureCoordSet = 0;
for (int s = 0; s < numProcs;) {
GrProgramElementRef<GrFragmentProcessor> fp(
GrProcessorTestFactory<GrFragmentProcessor>::CreateStage(random,
gpu->getContext(),
*gpu->caps(),
dummyTextures));
SkASSERT(fp);
// don't add dst color reads to coverage stage
if (s >= numColorProcs && fp->willReadDstColor()) {
continue;
}
// If adding this effect would exceed the max texture coord set count then generate a
// new random effect.
if (usePathRendering && gpu->glPathRendering()->texturingMode() ==
GrGLPathRendering::FixedFunction_TexturingMode) {;
int numTransforms = fp->numTransforms();
if (currTextureCoordSet + numTransforms >
gpu->glCaps().maxFixedFunctionTextureCoords()) {
continue;
}
currTextureCoordSet += numTransforms;
}
// finally add the stage to the correct pipeline in the drawstate
GrDrawState* ds = gpu->drawState();
if (s < numColorProcs) {
ds->addColorProcessor(fp);
} else {
ds->addCoverageProcessor(fp);
}
++s;
}
}
// There are only a few cases of random colors which interest us
enum ColorMode {
kAllOnes_ColorMode,
kAllZeros_ColorMode,
kAlphaOne_ColorMode,
kRandom_ColorMode,
kLast_ColorMode = kRandom_ColorMode
};
static void set_random_color(GrGpuGL* gpu, SkRandom* random) {
ColorMode colorMode = ColorMode(random->nextULessThan(kLast_ColorMode + 1));
GrColor color;
switch (colorMode) {
case kAllOnes_ColorMode:
color = GrColorPackRGBA(0xFF, 0xFF, 0xFF, 0xFF);
break;
case kAllZeros_ColorMode:
color = GrColorPackRGBA(0, 0, 0, 0);
break;
case kAlphaOne_ColorMode:
color = GrColorPackRGBA(random->nextULessThan(256),
random->nextULessThan(256),
random->nextULessThan(256),
0xFF);
break;
case kRandom_ColorMode:
uint8_t alpha = random->nextULessThan(256);
color = GrColorPackRGBA(random->nextRangeU(0, alpha),
random->nextRangeU(0, alpha),
random->nextRangeU(0, alpha),
alpha);
break;
}
GrColorIsPMAssert(color);
gpu->drawState()->setColor(color);
}
// There are only a few cases of random coverages which interest us
enum CoverageMode {
kZero_CoverageMode,
kFF_CoverageMode,
kRandom_CoverageMode,
kLast_CoverageMode = kRandom_CoverageMode
};
static void set_random_coverage(GrGpuGL* gpu, SkRandom* random) {
CoverageMode coverageMode = CoverageMode(random->nextULessThan(kLast_CoverageMode + 1));
uint8_t coverage;
switch (coverageMode) {
case kZero_CoverageMode:
coverage = 0;
break;
case kFF_CoverageMode:
coverage = 0xFF;
break;
case kRandom_CoverageMode:
coverage = uint8_t(random->nextU());
break;
}
gpu->drawState()->setCoverage(coverage);
}
static void set_random_hints(GrGpuGL* gpu, SkRandom* random) {
for (int i = 1; i <= GrDrawState::kLast_Hint; i <<= 1) {
gpu->drawState()->setHint(GrDrawState::Hints(i), random->nextBool());
}
}
static void set_random_state(GrGpuGL* gpu, SkRandom* random) {
int state = 0;
for (int i = 1; i <= GrDrawState::kLastPublicStateBit; i <<= 1) {
state |= random->nextBool() * i;
}
gpu->drawState()->enableState(state);
}
// this function will randomly pick non-self referencing blend modes
static void set_random_blend_func(GrGpuGL* gpu, SkRandom* random) {
GrBlendCoeff src;
do {
src = GrBlendCoeff(random->nextRangeU(kFirstPublicGrBlendCoeff, kLastPublicGrBlendCoeff));
} while (GrBlendCoeffRefsSrc(src));
GrBlendCoeff dst;
do {
dst = GrBlendCoeff(random->nextRangeU(kFirstPublicGrBlendCoeff, kLastPublicGrBlendCoeff));
} while (GrBlendCoeffRefsDst(dst));
gpu->drawState()->setBlendFunc(src, dst);
}
// right now, the only thing we seem to care about in drawState's stencil is 'doesWrite()'
static void set_random_stencil(GrGpuGL* gpu, SkRandom* random) {
GR_STATIC_CONST_SAME_STENCIL(kDoesWriteStencil,
kReplace_StencilOp,
kReplace_StencilOp,
kAlways_StencilFunc,
0xffff,
0xffff,
0xffff);
GR_STATIC_CONST_SAME_STENCIL(kDoesNotWriteStencil,
kKeep_StencilOp,
kKeep_StencilOp,
kNever_StencilFunc,
0xffff,
0xffff,
0xffff);
if (random->nextBool()) {
gpu->drawState()->setStencil(kDoesWriteStencil);
} else {
gpu->drawState()->setStencil(kDoesNotWriteStencil);
}
}
bool GrGpuGL::programUnitTest(int maxStages) {
// setup dummy textures
GrTextureDesc dummyDesc;
dummyDesc.fFlags = kRenderTarget_GrTextureFlagBit;
dummyDesc.fConfig = kSkia8888_GrPixelConfig;
@ -314,114 +228,128 @@ bool GrGpuGL::programUnitTest(int maxStages) {
SkAutoTUnref<GrTexture> dummyTexture2(this->createTexture(dummyDesc, NULL, 0));
if (!dummyTexture1 || ! dummyTexture2) {
SkDebugf("Could not allocate dummy textures");
return false;
}
GrTexture* dummyTextures[] = {dummyTexture1.get(), dummyTexture2.get()};
// Setup texture cache id key
const GrCacheID::Domain glProgramsDomain = GrCacheID::GenerateDomain();
GrCacheID::Key key;
memset(&key, 0, sizeof(key));
key.fData32[0] = kRenderTargetWidth;
key.fData32[1] = kRenderTargetHeight;
GrCacheID glProgramsCacheID(glProgramsDomain, key);
// setup clip
SkRect screen =
SkRect::MakeWH(SkIntToScalar(kRenderTargetWidth), SkIntToScalar(kRenderTargetHeight));
SkClipStack stack;
stack.clipDevRect(screen, SkRegion::kReplace_Op, false);
// wrap the SkClipStack in a GrClipData
GrClipData clipData;
clipData.fClipStack = &stack;
this->setClip(&clipData);
static const int NUM_TESTS = 512;
SkRandom random;
static const int NUM_TESTS = 512;
for (int t = 0; t < NUM_TESTS;) {
// setup random render target(can fail)
GrRenderTarget* rtPtr = random_render_target(this, glProgramsCacheID, &random);
if (!rtPtr) {
SkDebugf("Could not allocate render target");
return false;
for (int t = 0; t < NUM_TESTS; ++t) {
#if 0
GrPrintf("\nTest Program %d\n-------------\n", t);
static const int stop = -1;
if (t == stop) {
int breakpointhere = 9;
}
GrTGpuResourceRef<GrRenderTarget> rt(SkRef(rtPtr), GrIORef::kWrite_IOType);
#endif
GrDrawState* ds = this->drawState();
ds->setRenderTarget(rt.get());
GrGLProgramDesc pdesc;
int currAttribIndex = 1; // we need to always leave room for position
int currTextureCoordSet = 0;
GrTexture* dummyTextures[] = {dummyTexture1.get(), dummyTexture2.get()};
int numStages = random.nextULessThan(maxStages + 1);
int numColorStages = random.nextULessThan(numStages + 1);
int numCoverageStages = numStages - numColorStages;
SkAutoSTMalloc<8, const GrFragmentStage*> stages(numStages);
// if path rendering we have to setup a couple of things like the draw type
bool usePathRendering = this->glCaps().pathRenderingSupport() && random.nextBool();
GrGpu::DrawType drawType = usePathRendering ? GrGpu::kDrawPath_DrawType :
GrGpu::kDrawPoints_DrawType;
// twiddle drawstate knobs randomly
SkAutoTDelete<GrGeometryStage> geometryProcessor;
bool hasGeometryProcessor = usePathRendering ? false : random.nextBool();
if (hasGeometryProcessor) {
set_random_gp(this, &random, dummyTextures);
}
set_random_color_coverage_stages(this, maxStages, usePathRendering, &random, dummyTextures);
set_random_color(this, &random);
set_random_coverage(this, &random);
set_random_hints(this, &random);
set_random_state(this, &random);
set_random_blend_func(this, &random);
set_random_stencil(this, &random);
while (true) {
SkAutoTUnref<const GrGeometryProcessor> effect(
GrProcessorTestFactory<GrGeometryProcessor>::CreateStage(&random, this->getContext(), *this->caps(),
dummyTextures));
SkASSERT(effect);
// Only geometryProcessor can use vertex shader
GrGeometryStage* stage = SkNEW_ARGS(GrGeometryStage, (effect.get()));
geometryProcessor.reset(stage);
// create optimized draw state, setup readDst texture if required, and build a descriptor
// and program. ODS creation can fail, so we have to check
SkAutoTUnref<GrOptDrawState> ods(GrOptDrawState::Create(this->getDrawState(),
*this->caps(),
drawType));
if (!ods.get()) {
ds->reset();
continue;
}
const GrGeometryStage* geometryProcessor = NULL;
SkSTArray<8, const GrFragmentStage*, true> colorStages;
SkSTArray<8, const GrFragmentStage*, true> coverageStages;
GrGLProgramDesc desc;
GrDeviceCoordTexture dstCopy;
// we have to set dummy vertex attribs
const GrGeometryProcessor::VertexAttribArray& v = effect->getVertexAttribs();
int numVertexAttribs = v.count();
if (!this->setupDstReadIfNecessary(&dstCopy, NULL)) {
SkDebugf("Couldn't setup dst read texture");
return false;
}
if (!GrGLProgramDesc::Build(*ods,
drawType,
ods->getSrcBlendCoeff(),
ods->getDstBlendCoeff(),
this,
dstCopy.texture() ? &dstCopy : NULL,
&geometryProcessor,
&colorStages,
&coverageStages,
&desc)) {
SkDebugf("Failed to generate GL program descriptor");
SkASSERT(GrGeometryProcessor::kMaxVertexAttribs == 2 &&
GrGeometryProcessor::kMaxVertexAttribs >= numVertexAttribs);
size_t runningStride = GrVertexAttribTypeSize(genericVertexAttribs[0].fType);
for (int i = 0; i < numVertexAttribs; i++) {
genericVertexAttribs[i + 1].fOffset = runningStride;
genericVertexAttribs[i + 1].fType =
convert_sltype_to_attribtype(v[i].getType());
runningStride += GrVertexAttribTypeSize(genericVertexAttribs[i + 1].fType);
}
// update the vertex attributes with the ds
GrDrawState* ds = this->drawState();
ds->setVertexAttribs<genericVertexAttribs>(numVertexAttribs + 1, runningStride);
currAttribIndex = numVertexAttribs + 1;
break;
}
}
for (int s = 0; s < numStages;) {
SkAutoTUnref<const GrFragmentProcessor> effect(
GrProcessorTestFactory<GrFragmentProcessor>::CreateStage(
&random,
this->getContext(),
*this->caps(),
dummyTextures));
SkASSERT(effect);
// If adding this effect would exceed the max texture coord set count then generate a
// new random effect.
if (usePathRendering && this->glPathRendering()->texturingMode() ==
GrGLPathRendering::FixedFunction_TexturingMode) {;
int numTransforms = effect->numTransforms();
if (currTextureCoordSet + numTransforms > this->glCaps().maxFixedFunctionTextureCoords()) {
continue;
}
currTextureCoordSet += numTransforms;
}
GrFragmentStage* stage = SkNEW_ARGS(GrFragmentStage, (effect.get()));
stages[s] = stage;
++s;
}
const GrTexture* dstTexture = random.nextBool() ? dummyTextures[0] : dummyTextures[1];
if (!pdesc.setRandom(&random,
this,
dummyTextures[0]->asRenderTarget(),
dstTexture,
geometryProcessor.get(),
stages.get(),
numColorStages,
numCoverageStages,
currAttribIndex,
drawType)) {
return false;
}
SkAutoTUnref<GrOptDrawState> optState(GrOptDrawState::Create(this->getDrawState(),
*this->caps(),
drawType));
SkAutoTUnref<GrGLProgram> program(GrGLProgram::Create(this,
*ods,
desc,
geometryProcessor,
colorStages.begin(),
coverageStages.begin()));
*optState.get(),
pdesc,
geometryProcessor.get(),
stages,
stages + numColorStages));
for (int s = 0; s < numStages; ++s) {
SkDELETE(stages[s]);
}
if (NULL == program.get()) {
SkDebugf("Failed to create program!");
return false;
}
// We have to reset the drawstate because we might have added a gp
ds->reset();
// because occasionally optimized drawstate creation will fail for valid reasons, we only
// want to increment on success
++t;
this->drawState()->reset();
}
return true;
}