git-svn-id: http://skia.googlecode.com/svn/trunk@3159 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
caryclark@google.com 2012-02-09 22:04:27 +00:00
Родитель dfad3832cb
Коммит f8b000d7ae
2 изменённых файлов: 417 добавлений и 187 удалений

Просмотреть файл

@ -104,27 +104,208 @@ void contourBounds(const SkPath& path, SkTDArray<SkRect>& boundsArray) {
}
}
struct OutEdge {
static bool extendLine(const SkPoint line[2], const SkPoint& add) {
// FIXME: allow this to extend lines that have slopes that are nearly equal
SkScalar dx1 = line[1].fX - line[0].fX;
SkScalar dy1 = line[1].fY - line[0].fY;
SkScalar dx2 = add.fX - line[0].fX;
SkScalar dy2 = add.fY - line[0].fY;
return dx1 * dy2 == dx2 * dy1;
}
struct OutEdge {
bool operator<(const OutEdge& rh) const {
const SkPoint& first = fPts.begin()[0];
const SkPoint& rhFirst = rh.fPts.begin()[0];
return first.fY == rhFirst.fY
? first.fX < rhFirst.fX
: first.fY < rhFirst.fY;
}
SkTDArray<SkPoint> fPts;
SkTDArray<uint8_t> fVerbs;
};
// for sorting only
class OutBottomEdge : public OutEdge {
public:
bool operator<(const OutBottomEdge& rh) const {
const SkPoint& last = fPts.end()[-1];
const SkPoint& rhLast = rh.fPts.end()[-1];
return last.fY == rhLast.fY
? last.fX < rhLast.fX
: last.fY < rhLast.fY;
}
};
class OutEdgeBuilder {
public:
void addLine(SkPoint pts[2]) {
;
OutEdge* edge;
edge = fEdges.append();
if (empty) {
*edge->fPts.append() = pts[0];
OutEdgeBuilder(bool fill)
: fFill(fill) {
}
void addLine(const SkPoint line[2]) {
size_t count = fEdges.count();
for (size_t index = 0; index < count; ++index) {
SkTDArray<SkPoint>& pts = fEdges[index].fPts;
SkPoint* last = pts.end() - 1;
if (last[0] == line[0]) {
if (extendLine(&last[-1], line[1])) {
last[0] = line[1];
} else {
*pts.append() = line[1];
}
return;
}
}
OutEdge& edge = fEdges.push_back();
*edge.fPts.append() = line[0];
*edge.fPts.append() = line[1];
}
void assemble(SkPath& simple) {
size_t index = 0;
do {
SkTDArray<SkPoint>& downArray = fEdges[index].fPts;
SkPoint* pts = downArray.begin();
SkPoints* end = downArray.end();
SkPoint firstPt = pts[0];
simple.moveTo(pts[0].fX, pts[0].fY);
while (++pts < end) {
simple.lineTo(pts->fX, pts->fY);
}
index = fBottoms[index];
SkTDArray<SkPoint>& upArray = fEdges[index].fPts;
pts = upArray.end();
SkPoints* begin = upArray.begin();
while (--pts > begin) {
simple.lineTo(pts->fX, pts->fY);
}
if (pts[0] == firstPt) {
simple.close();
closed = true;
} else {
simple.lineTo(pts->fX, pts->fY);
}
index = advance > 0 ? fBottoms[index] : fTops[index];
advance = -advance;
} while (true);
} else {
if (firstAdded.fY == pts[0].fY) {
advance = -1;
pts = ptArray.end();
}
}
size_t count2 = ptArray.count();
for (size_t inner = 1; inner < count2; ++inner) {
pts += advance;
simple.lineTo(pts->fX, pts->fY);
}
if (*pts == *ptArray.begin()) {
// lastAdded = *pts;
simple.close();
newContour = true;
}
}
}
static bool lessThan(const SkTArray<OutEdge>& edges, const int* onePtr,
const int* twoPtr) {
int one = *onePtr;
const OutEdge& oneEdge = edges[(one < 0 ? -one : one) - 1];
const SkPoint* onePt = one < 0 ? oneEdge.fPts.begin()
: oneEdge.fPts.end() - 1;
int two = *twoPtr;
const OutEdge& twoEdge = edges[(two < 0 ? -two : two) - 1];
const SkPoint* twoPt = two < 0 ? twoEdge.fPts.begin()
: twoEdge.fPts.end() - 1;
return onePt.fY == twoPt.fY ? onePt.fX < twoPt.fX : onePt.fY < twoPt.fY;
}
void bridge() {
size_t index;
size_t count = fEdges.count();
if (!count) {
return;
}
SkASSERT(!fFill || (count & 1) == 0);
fTops.setCount(count);
sk_bzero(fTops.begin(), sizeof(fTops[0]) * count);
fBottoms.setCount(count);
sk_bzero(fBottoms.begin(), sizeof(fBottoms[0]) * count);
for (index = 0; index < count; ++index) {
*fList.append() = index + 1;
*fList.append() = -index - 1;
}
Context context;
QSort<SkTArray<OutEdge>&, int>(fEdges, fList.begin(), count, lessThan);
connectTops();
// sort bottoms
SkTDArray<OutBottomEdge*> bottomList;
for (index = 0; index < count; ++index) {
*bottomList.append() = static_cast<OutBottomEdge*>(&fEdges[index]);
fBottoms[index] = -1;
}
QSort<OutBottomEdge>(bottomList.begin(), count);
connectBottoms(bottomList);
}
protected:
void connectTops() {
int* lastPtr = fList.end() - 1;
int* leftPtr = fList.begin();
for (; leftPtr < lastPtr; ++leftPtr) {
OutEdge* left = edges[(*leftPtr < 0 ? -*leftPtr : *leftPtr) - 1];
int* rightPtr = leftPtr + 1;
OutEdge* right = edges[(*rightPtr < 0 ? -*rightPtr : *rightPtr) - 1];
start here;
// i'm a bit confused right now -- but i'm trying to sort indices
// of paired points and then create more indices so assemble() can
// look up the next edge and whether to connect the top or bottom
int leftIndex = leftPtr - bottomList.begin();
int rightIndex = rightPtr - bottomList.begin();
SkASSERT(!fFill || left->fPts[0].fY == right->fPts[0].fY);
if (fFill || left->fPts[0] == right->fPts[0]) {
int leftIndex = leftPtr - topList.begin();
int rightIndex = rightPtr - topList.begin();
fTops[leftIndex] = rightIndex;
fTops[rightIndex] = leftIndex;
++rightPtr;
}
leftPtr = rightPtr;
}
}
void connectBottoms(SkTDArray<OutBottomEdge*>& bottomList) {
OutBottomEdge** lastPtr = bottomList.end() - 1;
OutBottomEdge** leftPtr = bottomList.begin();
size_t leftCount = (*leftPtr)->fPts.count();
for (; leftPtr < lastPtr; ++leftPtr) {
OutBottomEdge** rightPtr = leftPtr + 1;
size_t rightCount = (*rightPtr)->fPts.count();
SkASSERT(!fFill || (*leftPtr)->fPts[leftCount].fY
== (*rightPtr)->fPts[rightCount].fY);
if (fFill || (*leftPtr)->fPts[leftCount]
== (*rightPtr)->fPts[rightCount]) {
int leftIndex = leftPtr - bottomList.begin();
int rightIndex = rightPtr - bottomList.begin();
fBottoms[leftIndex] = rightIndex;
fBottoms[rightIndex] = leftIndex;
if (++rightPtr < lastPtr) {
rightCount = (*rightPtr)->fPts.count();
}
}
leftPtr = rightPtr;
leftCount = rightCount;
}
*edge->fPts.append() = pts[1];
}
SkTArray<OutEdge> fEdges;
SkTDArray<int> fList;
bool fFill;
};
// Bounds, unlike Rect, does not consider a vertical line to be empty.
@ -239,6 +420,7 @@ InEdgeBuilder(const SkPath& path, bool ignoreHorizontal, SkTArray<InEdge>& edges
protected:
void addEdge() {
SkASSERT(fCurrentEdge);
fCurrentEdge->fPts.append(fPtCount - fPtOffset, &fPts[fPtOffset]);
fPtOffset = 1;
*fCurrentEdge->fVerbs.append() = fVerb;
@ -291,8 +473,10 @@ void walk() {
winding = direction(4);
break;
case SkPath::kClose_Verb:
SkASSERT(fCurrentEdge);
if (fCurrentEdge->fVerbs.count()) {
fCurrentEdge->complete(fWinding);
fCurrentEdge = NULL;
}
continue;
default:
@ -305,13 +489,16 @@ void walk() {
if (fWinding + winding == 0) {
// FIXME: if prior verb or this verb is a horizontal line, reverse
// it instead of starting a new edge
SkASSERT(fCurrentEdge);
fCurrentEdge->complete(fWinding);
startEdge();
}
fWinding = winding;
addEdge();
}
fCurrentEdge->complete(fWinding);
if (fCurrentEdge) {
fCurrentEdge->complete(fWinding);
}
}
private:
@ -405,7 +592,7 @@ static void addToActive(SkTDArray<ActiveEdge>& activeEdges, const InEdge* edge)
// FIXME: in the pathological case where there is a ton of intercepts, binary search?
size_t count = activeEdges.count();
for (size_t index = 0; index < count; ++index) {
if (edge < activeEdges[index].fWorkEdge.fEdge) {
if (*edge < *activeEdges[index].fWorkEdge.fEdge) {
ActiveEdge* active = activeEdges.insert(index);
active->init(edge);
return;
@ -418,192 +605,233 @@ static void addToActive(SkTDArray<ActiveEdge>& activeEdges, const InEdge* edge)
active->init(edge);
}
// find any intersections in the range of active edges
static void addBottomT(InEdge** currentPtr, InEdge** lastPtr, SkScalar bottom) {
InEdge** testPtr = currentPtr;
InEdge* test = *testPtr;
while (testPtr != lastPtr) {
if (test->fBounds.fBottom > bottom) {
WorkEdge wt;
wt.init(test);
do {
// FIXME: add all curve types
// OPTIMIZATION: if bottom intersection does not change
// the winding on either side of the split, don't intersect
if (wt.verb() == SkPath::kLine_Verb) {
double wtTs[2];
int pts = LineIntersect(wt.fPts, bottom, wtTs);
if (pts) {
test->add(wtTs, pts, wt.verbIndex());
}
}
} while (wt.next());
}
test = *++testPtr;
}
}
static void addIntersectingTs(InEdge** currentPtr, InEdge** lastPtr) {
InEdge** testPtr = currentPtr;
InEdge* test = *testPtr;
while (testPtr != lastPtr - 1) {
InEdge* next = *++testPtr;
if (!test->cached(next)
&& Bounds::Intersects(test->fBounds, next->fBounds)) {
WorkEdge wt, wn;
wt.init(test);
wn.init(next);
do {
// FIXME: add all combinations of curve types
if (wt.verb() == SkPath::kLine_Verb
&& wn.verb() == SkPath::kLine_Verb) {
double wtTs[2], wnTs[2];
int pts = LineIntersect(wt.fPts, wn.fPts, wtTs, wnTs);
if (pts) {
test->add(wtTs, pts, wt.verbIndex());
test->fContainsIntercepts = true;
next->add(wnTs, pts, wn.verbIndex());
next->fContainsIntercepts = true;
}
}
} while (wt.bottom() <= wn.bottom() ? wt.next() : wn.next());
}
test = next;
}
}
// compute bottom taking into account any intersected edges
static void computeInterceptBottom(SkTDArray<ActiveEdge>& activeEdges,
SkScalar& bottom) {
ActiveEdge* activePtr = activeEdges.begin() - 1;
ActiveEdge* lastActive = activeEdges.end();
while (++activePtr != lastActive) {
const InEdge* test = activePtr->fWorkEdge.fEdge;
if (!test->fContainsIntercepts) {
continue;
}
WorkEdge wt;
wt.init(test);
do {
// FIXME: add all curve types
const Intercepts& intercepts = test->fIntercepts[wt.verbIndex()];
const SkTDArray<double>& fTs = intercepts.fTs;
size_t count = fTs.count();
for (size_t index = 0; index < count; ++index) {
if (wt.verb() == SkPath::kLine_Verb) {
SkScalar yIntercept = LineYAtT(wt.fPts, fTs[index]);
if (bottom > yIntercept) {
bottom = yIntercept;
}
}
}
} while (wt.next());
}
}
static SkScalar findBottom(InEdge** currentPtr,
InEdge** edgeListEnd, SkTDArray<ActiveEdge>& activeEdges, SkScalar y,
bool asFill, InEdge**& lastPtr) {
InEdge* current = *currentPtr;
SkScalar bottom = current->fBounds.fBottom;
// find the list of edges that cross y
InEdge* last = *lastPtr;
while (lastPtr != edgeListEnd) {
if (bottom <= last->fBounds.fTop) {
break;
}
SkScalar lastTop = last->fBounds.fTop;
// OPTIMIZATION: Shortening the bottom is only interesting when filling
// and when the edge is to the left of a longer edge. If it's a framing
// edge, or part of the right, it won't effect the longer edges.
if (lastTop > y) {
if (bottom > lastTop) {
bottom = lastTop;
break;
}
} else if (bottom > last->fBounds.fBottom) {
bottom = last->fBounds.fBottom;
}
addToActive(activeEdges, last);
last = *++lastPtr;
}
if (asFill && lastPtr - currentPtr <= 1) {
SkDebugf("expect 2 or more edges\n");
SkASSERT(0);
}
return bottom;
}
static void makeEdgeList(SkTArray<InEdge>& edges, InEdge& edgeSentinel,
SkTDArray<InEdge*>& edgeList) {
size_t edgeCount = edges.count();
if (edgeCount == 0) {
return;
}
for (size_t index = 0; index < edgeCount; ++index) {
*edgeList.append() = &edges[index];
}
edgeSentinel.fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
*edgeList.append() = &edgeSentinel;
++edgeCount;
QSort<InEdge>(edgeList.begin(), edgeCount);
}
static void removeEdge(SkTDArray<ActiveEdge>& activeEdges, InEdge** currentPtr) {
InEdge* current = *currentPtr;
ActiveEdge* activePtr = activeEdges.begin() - 1;
ActiveEdge* lastActive = activeEdges.end();
while (++activePtr != lastActive) {
if (activePtr->fWorkEdge.fEdge == current) {
activeEdges.remove(activePtr - activeEdges.begin());
return;
}
}
}
// stitch edge and t range that satisfies operation
static void stitchEdge(SkTDArray<ActiveEdge>& activeEdges, SkScalar y,
SkScalar bottom, int windingMask, OutEdgeBuilder& outBuilder) {
int winding = 0;
ActiveEdge* activePtr = activeEdges.begin() - 1;
ActiveEdge* lastActive = activeEdges.end();
SkDebugf("%s y=%g bottom=%g\n", __FUNCTION__, y, bottom);
while (++activePtr != lastActive) {
const WorkEdge& wt = activePtr->fWorkEdge;
int lastWinding = winding;
winding += wt.winding();
if (!(lastWinding & windingMask) && !(winding & windingMask)) {
continue;
}
do {
double currentT = activePtr->t();
const SkPoint* points = wt.fPts;
bool last;
do {
last = activePtr->nextT();
double nextT = activePtr->t();
// FIXME: add all combinations of curve types
if (wt.verb() == SkPath::kLine_Verb) {
SkPoint clippedPts[2];
const SkPoint* clipped;
if (currentT * nextT != 0 || currentT + nextT != 1) {
LineSubDivide(points, currentT, nextT, clippedPts);
clipped = clippedPts;
} else {
clipped = points;
}
SkDebugf("%s line %g,%g %g,%g\n", __FUNCTION__,
clipped[0].fX, clipped[0].fY,
clipped[1].fX, clipped[1].fY);
outBuilder.addLine(clipped);
if (clipped[1].fY >= bottom) {
goto nextEdge;
}
}
currentT = nextT;
} while (!last);
} while (activePtr->next());
nextEdge:
;
}
}
void simplify(const SkPath& path, bool asFill, SkPath& simple) {
// returns 1 for evenodd, -1 for winding, regardless of inverse-ness
int windingMask = (path.getFillType() & 1) ? 1 : -1;
simple.reset();
simple.setFillType(SkPath::kEvenOdd_FillType);
// turn path into list of edges increasing in y
// if an edge is a quad or a cubic with a y extrema, note it, but leave it unbroken
// once we have a list, sort it, then walk the list (walk edges twice that have y extrema's on top)
// and detect crossings -- look for raw bounds that cross over, then tight bounds that cross
SkTArray<InEdge> edges;
InEdgeBuilder builder(path, asFill, edges);
size_t edgeCount = edges.count();
simple.reset();
if (edgeCount == 0) {
return;
}
// returns 1 for evenodd, -1 for winding, regardless of inverse-ness
int windingMask = (path.getFillType() & 1) ? 1 : -1;
SkTDArray<InEdge*> edgeList;
for (size_t index = 0; index < edgeCount; ++index) {
*edgeList.append() = &edges[index];
}
InEdge edgeSentinel;
edgeSentinel.fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
*edgeList.append() = &edgeSentinel;
++edgeCount;
QSort<InEdge>(edgeList.begin(), edgeCount);
makeEdgeList(edges, edgeSentinel, edgeList);
InEdge** currentPtr = edgeList.begin();
InEdge* current = *currentPtr;
SkScalar y = current->fBounds.fTop;
SkScalar bottom = current->fBounds.fBottom;
// walk the sorted edges from top to bottom, computing accumulated winding
SkTDArray<ActiveEdge> activeEdges;
OutEdgeBuilder outBuilder;
OutEdgeBuilder outBuilder(asFill);
SkScalar y = (*currentPtr)->fBounds.fTop;
do {
// find the list of edges that cross y
InEdge** lastPtr = currentPtr; // find the edge below the bottom of the first set
InEdge* last = *lastPtr;
while (lastPtr != edgeList.end()) {
if (bottom <= last->fBounds.fTop) {
break;
}
SkScalar lastTop = last->fBounds.fTop;
// OPTIMIZATION: Shortening the bottom is only interesting when filling
// and when the edge is to the left of a longer edge. If it's a framing
// edge, or part of the right, it won't effect the longer edges.
if (lastTop > y) {
if (bottom > lastTop) {
bottom = lastTop;
break;
}
} else if (bottom > last->fBounds.fBottom) {
bottom = last->fBounds.fBottom;
}
addToActive(activeEdges, last);
last = *++lastPtr;
}
if (asFill && lastPtr - currentPtr <= 1) {
SkDebugf("expect 2 or more edges\n");
SkASSERT(0);
return;
}
// find any intersections in the range of active edges
InEdge** testPtr = currentPtr;
InEdge* test = *testPtr;
while (testPtr != lastPtr) {
if (test->fBounds.fBottom > bottom) {
WorkEdge wt;
wt.init(test);
do {
// FIXME: add all curve types
// OPTIMIZATION: if bottom intersection does not change
// the winding on either side of the split, don't intersect
if (wt.verb() == SkPath::kLine_Verb) {
double wtTs[2];
int pts = LineIntersect(wt.fPts, bottom, wtTs);
if (pts) {
test->add(wtTs, pts, wt.verbIndex());
}
}
} while (wt.next());
}
test = *++testPtr;
}
testPtr = currentPtr;
test = *testPtr;
while (testPtr != lastPtr - 1) {
InEdge* next = *++testPtr;
if (!test->cached(next)
&& Bounds::Intersects(test->fBounds, next->fBounds)) {
WorkEdge wt, wn;
wt.init(test);
wn.init(next);
do {
// FIXME: add all combinations of curve types
if (wt.verb() == SkPath::kLine_Verb
&& wn.verb() == SkPath::kLine_Verb) {
double wtTs[2], wnTs[2];
int pts = LineIntersect(wt.fPts, wn.fPts, wtTs, wnTs);
if (pts) {
test->add(wtTs, pts, wt.verbIndex());
test->fContainsIntercepts = true;
next->add(wnTs, pts, wn.verbIndex());
next->fContainsIntercepts = true;
}
}
} while (wt.bottom() <= wn.bottom() ? wt.next() : wn.next());
}
test = next;
}
// compute bottom taking into account any intersected edges
ActiveEdge* activePtr = activeEdges.begin() - 1;
ActiveEdge* lastActive = activeEdges.end();
while (++activePtr != lastActive) {
const InEdge* test = activePtr->fWorkEdge.fEdge;
if (!test->fContainsIntercepts) {
continue;
}
WorkEdge wt;
wt.init(test);
do {
// FIXME: add all curve types
const Intercepts& intercepts = test->fIntercepts[wt.verbIndex()];
const SkTDArray<double>& fTs = intercepts.fTs;
size_t count = fTs.count();
for (size_t index = 0; index < count; ++index) {
if (wt.verb() == SkPath::kLine_Verb) {
SkScalar yIntercept = LineYAtT(wt.fPts, fTs[index]);
if (bottom > yIntercept) {
bottom = yIntercept;
}
}
}
} while (wt.next());
}
// stitch edge and t range that satisfies operation
int winding = 0;
activePtr = activeEdges.begin() - 1;
lastActive = activeEdges.end();
SkDebugf("%s y=%g bottom=%g\n", __FUNCTION__, y, bottom);
while (++activePtr != lastActive) {
const WorkEdge& wt = activePtr->fWorkEdge;
int lastWinding = winding;
winding += wt.winding();
if (!(lastWinding & windingMask) && !(winding & windingMask)) {
continue;
}
do {
double currentT = activePtr->t();
const SkPoint* points = wt.fPts;
bool last;
do {
last = activePtr->nextT();
double nextT = activePtr->t();
// FIXME: add all combinations of curve types
if (wt.verb() == SkPath::kLine_Verb) {
SkPoint clippedPts[2];
const SkPoint* clipped;
if (currentT * nextT != 0 || currentT + nextT != 1) {
LineSubDivide(points, currentT, nextT, clippedPts);
clipped = clippedPts;
} else {
clipped = points;
}
SkDebugf("%s line %g,%g %g,%g\n", __FUNCTION__,
clipped[0].fX, clipped[0].fY,
clipped[1].fX, clipped[1].fY);
outBuilder->addLine(clipped);
if (clipped[1].fY >= bottom) {
goto nextEdge;
}
}
currentT = nextT;
} while (!last);
} while (activePtr->next());
nextEdge:
;
}
SkScalar bottom = findBottom(currentPtr, edgeList.end(),
activeEdges, y, asFill, lastPtr);
addBottomT(currentPtr, lastPtr, bottom);
addIntersectingTs(currentPtr, lastPtr);
computeInterceptBottom(activeEdges, bottom);
stitchEdge(activeEdges, y, bottom, windingMask, outBuilder);
y = bottom;
while ((*currentPtr)->fBounds.fBottom <= y) {
removeEdge(activeEdges, currentPtr);
++currentPtr;
}
} while (*currentPtr != &edgeSentinel);
// assemble output path from string of pts, verbs
;
outBuilder.bridge();
outBuilder.assemble(simple);
}
void testSimplify();

Просмотреть файл

@ -39,17 +39,18 @@ void QSort(T** base, size_t count)
QSort_Partition(base, base + (count - 1));
}
template <typename T>
static void QSort_Partition(T* first, T* last, bool (*lessThan)(const T*, const T*))
template <typename S, typename T>
static void QSort_Partition(const S& context, T* first, T* last,
bool (*lessThan)(const S&, const T*, const T*))
{
T* left = first;
T* rite = last;
T* pivot = left;
while (left <= rite) {
while (left < last && lessThan(left, pivot) < 0)
while (left < last && lessThan(context, left, pivot) < 0)
left += 1;
while (first < rite && lessThan(rite, pivot) > 0)
while (first < rite && lessThan(context, rite, pivot) > 0)
rite -= 1;
if (left <= rite) {
if (left < rite) {
@ -60,13 +61,14 @@ static void QSort_Partition(T* first, T* last, bool (*lessThan)(const T*, const
}
}
if (first < rite)
QSort_Partition(first, rite, lessThan);
QSort_Partition(context, first, rite, lessThan);
if (left < last)
QSort_Partition(left, last, lessThan);
QSort_Partition(context, left, last, lessThan);
}
template <typename T>
void QSort(T* base, size_t count, bool (*lessThan)(const T*, const T*))
template <typename S, typename T>
void QSort(const S& context, T* base, size_t count,
bool (*lessThan)(const S& , const T*, const T*))
{
SkASSERT(base);
SkASSERT(lessThan);
@ -74,5 +76,5 @@ void QSort(T* base, size_t count, bool (*lessThan)(const T*, const T*))
if (count <= 1) {
return;
}
QSort_Partition(base, base + (count - 1), lessThan);
QSort_Partition(context, base, base + (count - 1), lessThan);
}