M    Intersection/SimplifyRect4x4_Test.cpp
M    Intersection/Simplify.cpp
M    Intersection/SimplifyFindNext_Test.cpp
M    Intersection/SimplifyNew_Test.cpp
M    Intersection/op.htm



git-svn-id: http://skia.googlecode.com/svn/trunk@4543 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
caryclark@google.com 2012-07-11 17:52:32 +00:00
Родитель 91bd45967c
Коммит fa4a6e9646
5 изменённых файлов: 502 добавлений и 147 удалений

Просмотреть файл

@ -41,9 +41,9 @@
#define DEBUG_CROSS 1
#define DEBUG_DUMP 1
#define DEBUG_PATH_CONSTRUCTION 1
#define DEBUG_WINDING 0
#define DEBUG_WINDING 01
#define DEBUG_UNUSED 0 // set to expose unused functions
#define DEBUG_MARK_DONE 0
#define DEBUG_MARK_DONE 01
#endif
@ -645,7 +645,36 @@ public:
fID = ++gSegmentID;
#endif
}
bool activeAngles(int index) const {
double referenceT = fTs[index].fT;
int lesser = index;
while (--lesser >= 0 && referenceT - fTs[lesser].fT < FLT_EPSILON) {
if (activeAnglesInner(lesser)) {
return true;
}
}
do {
if (activeAnglesInner(index)) {
return true;
}
} while (++index < fTs.count() && fTs[index].fT - referenceT < FLT_EPSILON);
return false;
}
bool activeAnglesInner(int index) const {
Span* span = &fTs[index];
Segment* other = span->fOther;
int oIndex = span->fOtherIndex;
int next = other->nextSpan(oIndex, 1);
if (next > 0 && !other->fTs[oIndex].fDone) {
return true;
}
int prev = other->nextSpan(oIndex, -1);
// edge leading into junction
return prev >= 0 && !other->fTs[prev].fDone;
}
SkScalar activeTop() const {
SkASSERT(!done());
int count = fTs.count();
@ -926,7 +955,7 @@ public:
return;
}
if (t - endT > FLT_EPSILON) {
endSpan = addTPair(t, other, otherT);
endSpan = addTDonePair(t, other, otherT);
}
do {
endT = fTs[++endSpan].fT;
@ -935,6 +964,26 @@ public:
addTPair(endT, other, otherEnd);
}
// match the other.fWindValue to its mates
int addTDonePair(double t, Segment& other, double otherT) {
int insertedAt = addTPair(t, other, otherT);
Span& end = fTs[insertedAt];
SkASSERT(end.fWindValue == 1);
end.fWindValue = 0;
end.fDone = true;
++fDoneSpans;
Span& otherEnd = other.fTs[end.fOtherIndex];
Span* match = NULL;
if (end.fOtherIndex > 0) {
match = &other.fTs[end.fOtherIndex - 1];
}
if (!match || match->fT < otherT) {
match = &other.fTs[end.fOtherIndex + 1];
}
otherEnd.fWindValue = match->fWindValue;
return insertedAt;
}
int addTPair(double t, Segment& other, double otherT) {
int insertedAt = addT(t, &other);
int otherInsertedAt = other.addT(otherT, this);
@ -1021,7 +1070,7 @@ public:
// OPTIMIZE: wrap this so that if start==0 end==fTCount-1 we can
// work with the original data directly
(*SegmentSubDivide[fVerb])(fPts, fTs[start].fT, fTs[end].fT, edge);
// start here; intersect ray starting at basePt with edge
// intersect ray starting at basePt with edge
Intersections intersections;
int pts = (*VSegmentIntersect[fVerb])(edge, top, bottom, basePt.fX,
false, intersections);
@ -1076,8 +1125,9 @@ public:
// it is guaranteed to have an end which describes a non-zero length (?)
// winding -1 means ccw, 1 means cw
// firstFind allows coincident edges to be treated differently
Segment* findNext(int winding, const int startIndex, const int endIndex,
int& nextStart, int& nextEnd, bool firstFind) {
Segment* findNext(SkTDArray<Span*>& chase, int winding, const int startIndex,
const int endIndex,
int& nextStart, int& nextEnd, int& flipped, bool firstFind) {
SkASSERT(startIndex != endIndex);
int count = fTs.count();
SkASSERT(startIndex < endIndex ? startIndex < count - 1
@ -1105,28 +1155,14 @@ public:
buildAngles(end, angles);
SkTDArray<Angle*> sorted;
sortAngles(angles, sorted);
// find the starting edge
int firstIndex = -1;
int angleCount = angles.count();
int angleIndex;
const Angle* angle;
for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
angle = sorted[angleIndex];
if (angle->segment() == this && angle->start() == end &&
angle->end() == startIndex) {
firstIndex = angleIndex;
break;
}
}
// back up if prior edge is coincident with firstIndex
// adjustFirst(sorted, firstIndex, winding, firstFind);
int firstIndex = findStartingEdge(sorted, startIndex, end);
SkASSERT(firstIndex >= 0);
int startWinding = winding;
int nextIndex = firstIndex + 1;
int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
const Angle* foundAngle = NULL;
// bool alreadyMarked = angle->segment()->fTs[SkMin32(angle->start(),
// angle->end())].fDone;
// iterate through the angle, and compute everyone's winding
bool firstEdge = true;
do {
@ -1139,37 +1175,45 @@ public:
int windValue = nextSegment->windValue(nextAngle);
SkASSERT(windValue > 0);
winding -= nextAngle->sign() * windValue;
#if DEBUG_WINDING
SkDebugf("%s maxWinding=%d winding=%d\n", __FUNCTION__, maxWinding,
winding);
#endif
if (maxWinding * winding < 0) {
flipped = -flipped;
SkDebugf("flipped sign %d %d\n", maxWinding, winding);
}
firstEdge = false;
if (!winding) {
if (!foundAngle) {
foundAngle = nextAngle;
}
goto doNext;
continue;
}
if (nextSegment->done()) {
goto doNext;
continue;
}
// if the winding is non-zero, nextAngle does not connect to
// current chain. If we haven't done so already, mark the angle
// as done, record the winding value, and mark connected unambiguous
// segments as well.
if (nextSegment->winding(nextAngle) == SK_MinS32) {
if (nextSegment->windSum(nextAngle) == SK_MinS32) {
if (abs(maxWinding) < abs(winding)) {
maxWinding = winding;
}
Span* last;
if (foundAngle) {
nextSegment->markAndChaseWinding(nextAngle, maxWinding);
last = nextSegment->markAndChaseWinding(nextAngle, maxWinding);
} else {
nextSegment->markAndChaseDone(nextAngle, maxWinding);
last = nextSegment->markAndChaseDone(nextAngle, maxWinding);
}
if (last) {
*chase.append() = last;
}
}
doNext:
angle = nextAngle;
} while (++nextIndex != lastIndex);
// if (!alreadyMarked) {
sorted[firstIndex]->segment()->
markDone(SkMin32(startIndex, endIndex), startWinding);
// }
sorted[firstIndex]->segment()->
markDone(SkMin32(startIndex, endIndex), startWinding);
if (!foundAngle) {
return NULL;
}
@ -1177,7 +1221,21 @@ public:
nextEnd = foundAngle->end();
return foundAngle->segment();
}
int findStartingEdge(SkTDArray<Angle*>& sorted, int start, int end) {
int angleCount = sorted.count();
int firstIndex = -1;
for (int angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
const Angle* angle = sorted[angleIndex];
if (angle->segment() == this && angle->start() == end &&
angle->end() == start) {
firstIndex = angleIndex;
break;
}
}
return firstIndex;
}
// FIXME: this is tricky code; needs its own unit test
void findTooCloseToCall(int /* winding */ ) { // FIXME: winding should be considered
int count = fTs.count();
@ -1374,23 +1432,24 @@ public:
}
// OPTIMIZATION: uses tail recursion. Unwise?
void innerChaseDone(int index, int step, int winding) {
Span* innerChaseDone(int index, int step, int winding) {
int end = nextSpan(index, step);
if (multipleSpans(end, step)) {
return;
if (multipleSpans(index, end)) {
return index >= 0 ? &fTs[index] : NULL;
}
const Span& endSpan = fTs[end];
Segment* other = endSpan.fOther;
index = endSpan.fOtherIndex;
int otherEnd = other->nextSpan(index, step);
other->innerChaseDone(index, step, winding);
Span* last = other->innerChaseDone(index, step, winding);
other->markDone(SkMin32(index, otherEnd), winding);
return last;
}
void innerChaseWinding(int index, int step, int winding) {
Span* innerChaseWinding(int index, int step, int winding) {
int end = nextSpan(index, step);
if (multipleSpans(end, step)) {
return;
if (multipleSpans(index, end)) {
return index >= 0 ? &fTs[index] : NULL;
}
const Span& endSpan = fTs[end];
Segment* other = endSpan.fOther;
@ -1399,10 +1458,11 @@ public:
int min = SkMin32(index, otherEnd);
if (other->fTs[min].fWindSum != SK_MinS32) {
SkASSERT(other->fTs[index].fWindSum == winding);
return;
return NULL;
}
other->innerChaseWinding(index, step, winding);
Span* last = other->innerChaseWinding(index, step, winding);
other->markWinding(min, winding);
return last;
}
void init(const SkPoint pts[], SkPath::Verb verb) {
@ -1473,21 +1533,23 @@ public:
// this span is excluded by the winding rule -- chase the ends
// as long as they are unambiguous to mark connections as done
// and give them the same winding value
void markAndChaseDone(const Angle* angle, int winding) {
Span* markAndChaseDone(const Angle* angle, int winding) {
int index = angle->start();
int endIndex = angle->end();
int step = SkSign32(endIndex - index);
innerChaseDone(index, step, winding);
Span* last = innerChaseDone(index, step, winding);
markDone(SkMin32(index, endIndex), winding);
return last;
}
void markAndChaseWinding(const Angle* angle, int winding) {
Span* markAndChaseWinding(const Angle* angle, int winding) {
int index = angle->start();
int endIndex = angle->end();
int min = SkMin32(index, endIndex);
int step = SkSign32(endIndex - index);
innerChaseWinding(index, step, winding);
Span* last = innerChaseWinding(index, step, winding);
markWinding(min, winding);
return last;
}
// FIXME: this should also mark spans with equal (x,y)
@ -1567,8 +1629,17 @@ public:
} while (++index < fTs.count() && fTs[index].fT - referenceT < FLT_EPSILON);
}
bool multipleSpans(int end, int step) const {
return step > 0 ? ++end < fTs.count() : end > 0;
bool multipleSpans(int& index, int end) const {
if (end > index ? end + 1 >= fTs.count() : end <= 0) {
return false;
}
// return span if when chasing, two or more radiating spans are not done
int lesser = SkMin32(index, end);
if (!activeAngles(lesser)) {
index = -1;
}
index = lesser;
return true;
}
// This has callers for two different situations: one establishes the end
@ -1625,44 +1696,15 @@ public:
return fVerb;
}
// if the only remaining spans are small, ignore them, and mark done
bool virtuallyDone() {
int count = fTs.count();
double previous = 0;
bool previousDone = fTs[0].fDone;
for (int index = 1; index < count; ++index) {
Span& span = fTs[index];
double t = span.fT;
if (t - previous < FLT_EPSILON) {
if (span.fDone && !previousDone) {
int prior = --index;
int winding = span.fWindSum;
do {
Span& priorSpan = fTs[prior];
priorSpan.fDone = true;
priorSpan.fWindSum = winding;
fDoneSpans++;
} while (--prior >= 0 && t - fTs[prior].fT < FLT_EPSILON);
}
} else if (!previousDone) {
return false;
}
previous = t;
previousDone = span.fDone;
}
SkASSERT(done());
return true;
}
int winding(int tIndex) const {
int windSum(int tIndex) const {
return fTs[tIndex].fWindSum;
}
int winding(const Angle* angle) const {
int windSum(const Angle* angle) const {
int start = angle->start();
int end = angle->end();
int index = SkMin32(start, end);
return winding(index);
return windSum(index);
}
int windValue(int tIndex) const {
@ -1951,15 +1993,9 @@ public:
Segment* bestSegment = NULL;
while (++best < segmentCount) {
Segment* testSegment = &fSegments[best];
#if 0 // FIXME: remove if not needed
if (testSegment->virtuallyDone()) {
continue;
}
#else
if (testSegment->done()) {
continue;
}
#endif
bestSegment = testSegment;
break;
}
@ -1991,7 +2027,7 @@ public:
return segment.verb() + 1;
}
int winding() {
int windSum() {
if (fWindingSum >= 0) {
return fWindingSum;
}
@ -2578,11 +2614,11 @@ static void coincidenceCheck(SkTDArray<Contour*>& contourList, int winding) {
int contourCount = contourList.count();
for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
Contour* contour = contourList[cIndex];
contour->resolveCoincidence(winding);
contour->findTooCloseToCall(winding);
}
for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
Contour* contour = contourList[cIndex];
contour->findTooCloseToCall(winding);
contour->resolveCoincidence(winding);
}
}
@ -2636,12 +2672,12 @@ static int innerContourCheck(SkTDArray<Contour*>& contourList,
SkASSERT((*SegmentDXAtT[test->verb()])(test->pts(), tHit) != 0);
}
tIndex = angle->start(); // lesser Y
winding = test->winding(SkMin32(tIndex, angle->end()));
winding = test->windSum(SkMin32(tIndex, angle->end()));
#if DEBUG_WINDING
SkDebugf("%s 1 winding=%d\n", __FUNCTION__, winding);
#endif
} else {
winding = test->winding(tIndex);
winding = test->windSum(tIndex);
#if DEBUG_WINDING
SkDebugf("%s 2 winding=%d\n", __FUNCTION__, winding);
#endif
@ -2701,6 +2737,76 @@ static Segment* findTopContour(SkTDArray<Contour*>& contourList,
return topStart;
}
static Segment* findChase(SkTDArray<Span*>& chase, int& tIndex, int& endIndex) {
while (chase.count()) {
Span* span;
chase.pop(&span);
const Span& backPtr = span->fOther->span(span->fOtherIndex);
Segment* segment = backPtr.fOther;
tIndex = backPtr.fOtherIndex;
if (segment->activeAngles(tIndex)) {
endIndex = segment->nextSpan(tIndex, 1);
if (span->fDone) {
SkTDArray<Angle> angles;
segment->addTwoAngles(endIndex, tIndex, angles);
segment->buildAngles(tIndex, angles);
SkTDArray<Angle*> sorted;
sortAngles(angles, sorted);
// find first angle, initialize winding to computed fWindSum
int winding = span->fWindSum;
int firstIndex = segment->findStartingEdge(sorted, endIndex, tIndex);
int firstSign = sorted[firstIndex]->sign();
if (firstSign * winding > 0) {
winding -= firstSign;
}
SkDebugf("%s firstSign=%d\n", __FUNCTION__, firstSign);
// we care about first sign and whether wind sum indicates this
// edge is inside or outside. Maybe need to pass span winding
// or first winding or something into this function?
SkASSERT(firstIndex >= 0);
// advance to first undone angle, then return it and winding
// (to set whether edges are active or not)
int nextIndex = firstIndex + 1;
int angleCount = sorted.count();
int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
do {
SkASSERT(nextIndex != firstIndex);
if (nextIndex == angleCount) {
nextIndex = 0;
}
const Angle* angle = sorted[nextIndex];
segment = angle->segment();
int windValue = segment->windValue(angle);
SkASSERT(windValue > 0);
int maxWinding = winding;
winding -= angle->sign() * windValue;
if (maxWinding * winding < 0) {
SkDebugf("%s flipped sign %d %d\n", __FUNCTION__, maxWinding, winding);
}
tIndex = angle->start();
endIndex = angle->end();
int lesser = SkMin32(tIndex, endIndex);
const Span& nextSpan = segment->span(lesser);
if (!nextSpan.fDone) {
// FIXME: this be wrong. assign startWinding if edge is in
// same direction. If the direction is opposite, winding to
// assign is flipped sign or +/- 1?
if (abs(maxWinding) < abs(winding)) {
maxWinding = winding;
}
segment->markWinding(lesser, maxWinding);
break;
}
} while (++nextIndex != lastIndex);
} else {
SkASSERT(endIndex > tIndex);
}
return segment;
}
}
return NULL;
}
// Each segment may have an inside or an outside. Segments contained within
// winding may have insides on either side, and form a contour that should be
// ignored. Segments that are coincident with opposing direction segments may
@ -2711,70 +2817,100 @@ static Segment* findTopContour(SkTDArray<Contour*>& contourList,
// since we start with leftmost top edge, we'll traverse through a
// smaller angle counterclockwise to get to the next edge.
static void bridge(SkTDArray<Contour*>& contourList, SkPath& simple) {
// after findTopContour has already been called once, check if
// result of subsequent findTopContour has no winding set
bool firstContour = true;
do {
Contour* topContour;
Segment* topStart = findTopContour(contourList, topContour);
if (!topStart) {
break;
}
}
// Start at the top. Above the top is outside, below is inside.
// follow edges to intersection by changing the index by direction.
int index, endIndex;
Segment* current = topStart->findTop(index, endIndex);
int winding = 0;
if (!firstContour) {
int contourWinding = topContour->winding();
#if DEBUG_WINDING
SkDebugf("%s 1 winding=%d\n", __FUNCTION__, winding);
#endif
if (contourWinding == SK_MinS32) {
const SkPoint& topPoint = current->xyAtT(endIndex);
winding = innerContourCheck(contourList, topContour, topPoint);
#if DEBUG_WINDING
SkDebugf("%s 2 winding=%d\n", __FUNCTION__, winding);
#endif
}
int contourWinding;
if (firstContour) {
contourWinding = 0;
firstContour = false;
} else {
const SkPoint& topPoint = current->xyAtT(endIndex);
contourWinding = innerContourCheck(contourList, topContour, topPoint);
#if DEBUG_WINDING
SkDebugf("%s contourWinding=%d\n", __FUNCTION__, contourWinding);
#endif
}
const SkPoint* firstPt = NULL;
SkPoint lastPt;
bool firstTime = true;
int winding = contourWinding;
int spanWinding = current->spanSign(index, endIndex);
if (firstContour) {
topContour->setWinding(spanWinding);
firstContour = false;
}
bool active = winding * spanWinding <= 0;
// int firstWinding = contourWinding + spanWinding;
// FIXME: needs work. While it works in limited situations, it does
// not always compute winding correctly. Active should be removed and instead
// the initial winding should be correctly passed in so that if the
// inner contour is wound the same way, it never finds an accumulated
// winding of zero. Inside 'find next', we need to look for transitions
// other than zero when resolving sorted angles.
SkTDArray<Span*> chaseArray;
do {
SkASSERT(!current->done());
int nextStart, nextEnd;
Segment* next = current->findNext(winding + spanWinding, index,
endIndex, nextStart, nextEnd, firstTime);
if (!next) {
bool active = winding * spanWinding <= 0;
const SkPoint* firstPt = NULL;
do {
SkASSERT(!current->done());
int nextStart, nextEnd, flipped = 1;
Segment* next = current->findNext(chaseArray,
winding + spanWinding, index,
endIndex, nextStart, nextEnd, flipped, firstTime);
if (!next) {
break;
}
if (!firstPt) {
firstPt = &current->addMoveTo(index, simple, active);
}
lastPt = current->addCurveTo(index, endIndex, simple, active);
current = next;
index = nextStart;
endIndex = nextEnd;
spanWinding = SkSign32(spanWinding) * flipped * next->windValue(
SkMin32(nextStart, nextEnd));
#if DEBUG_WINDING
SkDebugf("%s spanWinding=%d\n", __FUNCTION__, spanWinding);
#endif
firstTime = false;
} while (*firstPt != lastPt && (active || !current->done()));
if (firstPt && active) {
#if DEBUG_PATH_CONSTRUCTION
SkDebugf("%s close\n", __FUNCTION__);
#endif
simple.close();
}
current = findChase(chaseArray, index, endIndex);
if (!current) {
break;
}
if (!firstPt) {
firstPt = &current->addMoveTo(index, simple, active);
int lesser = SkMin32(index, endIndex);
spanWinding = current->windSum(lesser);
int spanValue = current->windValue(lesser);
SkASSERT(spanWinding != SK_MinS32);
int spanSign = current->spanSign(index, endIndex);
#if DEBUG_WINDING
SkDebugf("%s spanWinding=%d spanSign=%d winding=%d spanValue=%d\n",
__FUNCTION__, spanWinding, spanSign, winding, spanValue);
#endif
if (spanWinding * spanSign < 0) {
#if DEBUG_WINDING
SkDebugf("%s spanWinding * spanSign < 0\n", __FUNCTION__);
#endif
SkTSwap<int>(index, endIndex);
}
lastPt = current->addCurveTo(index, endIndex, simple, active);
current = next;
index = nextStart;
endIndex = nextEnd;
spanWinding = SkSign32(spanWinding) * next->windValue(
SkMin32(nextStart, nextEnd));
#if DEBUG_WINDING
SkDebugf("%s spanWinding=%d\n", __FUNCTION__, spanWinding);
#endif
firstTime = false;
} while (*firstPt != lastPt);
if (firstPt) {
#if DEBUG_PATH_CONSTRUCTION
SkDebugf("%s close\n", __FUNCTION__);
#endif
simple.close();
}
if (abs(spanWinding) > spanValue) {
#if DEBUG_WINDING
SkDebugf("%s abs(spanWinding) > spanValue\n", __FUNCTION__);
#endif
winding = spanWinding;
spanWinding = spanValue * SkSign32(spanWinding);
winding -= spanWinding;
}
} while (true);
} while (true);
}

Просмотреть файл

@ -32,9 +32,10 @@ static const SimplifyFindNextTest::Segment* testCommon(
SimplifyFindNextTest::Segment& segment = contours[0].debugSegments()[0];
SkPoint pts[2];
pts[0] = segment.xyAtT(&segment.span(endIndex));
int nextStart, nextEnd;
SimplifyFindNextTest::Segment* next = segment.findNext(winding,
startIndex, endIndex, nextStart, nextEnd, true);
int nextStart, nextEnd, flipped = 1;
SkTDArray<SimplifyFindNextTest::Span*> chaseArray;
SimplifyFindNextTest::Segment* next = segment.findNext(chaseArray, winding,
startIndex, endIndex, nextStart, nextEnd, flipped, true);
pts[1] = next->xyAtT(&next->span(nextStart));
SkASSERT(pts[0] == pts[1]);
return next;

Просмотреть файл

@ -100,6 +100,27 @@ static void testLine7() {
testSimplifyx(path);
}
static void testLine7a() {
SkPath path, simple;
path.moveTo(0,0);
path.lineTo(4,0);
path.lineTo(2,2);
path.close();
testSimplifyx(path);
}
static void testLine7b() {
SkPath path, simple;
path.moveTo(0,0);
path.lineTo(4,0);
path.close();
path.moveTo(6,0);
path.lineTo(2,0);
path.lineTo(4,2);
path.close();
testSimplifyx(path);
}
static void testLine8() {
SkPath path, simple;
path.moveTo(0,4);
@ -313,6 +334,44 @@ static void testLine27() {
testSimplifyx(path);
}
static void testLine28() {
SkPath path, simple;
path.addRect(0, 6, 12, 12, (SkPath::Direction) 0);
path.addRect(0, 0, 9, 9, (SkPath::Direction) 0);
testSimplifyx(path);
}
static void testLine29() {
SkPath path, simple;
path.addRect(0, 18, 12, 12, (SkPath::Direction) 0);
path.addRect(12, 12, 21, 21, (SkPath::Direction) 0);
testSimplifyx(path);
}
static void testLine30() {
SkPath path, simple;
path.addRect(0, 0, 20, 20, (SkPath::Direction) 0);
path.addRect(0, 0, 12, 12, (SkPath::Direction) 0);
path.addRect(4, 4, 13, 13, (SkPath::Direction) 0);
testSimplifyx(path);
}
static void testLine31() {
SkPath path, simple;
path.addRect(0, 0, 20, 20, (SkPath::Direction) 0);
path.addRect(0, 0, 12, 12, (SkPath::Direction) 0);
path.addRect(0, 4, 9, 9, (SkPath::Direction) 0);
testSimplifyx(path);
}
static void testLine32() {
SkPath path, simple;
path.addRect(0, 0, 20, 20, (SkPath::Direction) 0);
path.addRect(0, 0, 12, 12, (SkPath::Direction) 0);
path.addRect(4, 12, 13, 13, (SkPath::Direction) 0);
testSimplifyx(path);
}
#define TEST(name) { name, #name }
static struct {
@ -325,6 +384,8 @@ static struct {
TEST(testLine4),
TEST(testLine5),
TEST(testLine6),
TEST(testLine7a),
TEST(testLine7b),
TEST(testLine7),
TEST(testLine8),
TEST(testLine9),
@ -348,11 +409,16 @@ static struct {
TEST(testLine25),
TEST(testLine26),
TEST(testLine27),
TEST(testLine28),
TEST(testLine29),
TEST(testLine30),
TEST(testLine31),
TEST(testLine32),
};
static const size_t testCount = sizeof(tests) / sizeof(tests[0]);
static void (*firstTest)() = 0;
static void (*firstTest)() = testLine32;
static bool skipAll = false;
void SimplifyNew_Test() {

Просмотреть файл

@ -9,6 +9,7 @@
#include "ShapeOps.h"
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkStream.h"
#include <assert.h>
#include <pthread.h>
@ -165,6 +166,46 @@ static void* testSimplify4x4RectsMain(void* data)
__FUNCTION__, state.a, state.b, state.c, state.d,
aXAlign, aYAlign, bXAlign, bYAlign,
cXAlign, cYAlign, dXAlign, dYAlign);
SkFILEStream inFile("../../experimental/Intersection/op.htm");
if (!inFile.isValid()) {
continue;
}
SkTDArray<char> inData;
inData.setCount(inFile.getLength());
size_t inLen = inData.count();
inFile.read(inData.begin(), inLen);
inFile.setPath(NULL);
SkFILEWStream outFile("../../experimental/Intersection/xop.htm");
if (!outFile.isValid()) {
continue;
}
const char marker[] =
"</div>\n"
"\n"
"<script type=\"text/javascript\">\n"
"\n"
"var testDivs = [\n";
const char testLineStr[] = " testLine";
char* insert = strstr(inData.begin(), marker);
if (!insert) {
continue;
}
size_t startLen = insert - inData.begin();
insert += sizeof(marker);
const char* numLoc = insert + sizeof(testLineStr);
int testNumber = atoi(numLoc) + 1;
outFile.write(inData.begin(), startLen);
outFile.writeText("<div id=\"testLine");
outFile.writeDecAsText(testNumber);
outFile.writeText("\">\n");
outFile.writeText(pathStr);
outFile.writeText("</div>\n\n");
outFile.writeText(marker);
outFile.writeText(testLineStr);
outFile.writeDecAsText(testNumber);
outFile.writeText(",\n");
outFile.write(insert, inLen - startLen - sizeof(marker));
outFile.flush();
}
}
}

Просмотреть файл

@ -312,7 +312,32 @@ path.close();
testSimplifyx(path);
</div>
<!-- don't support addRect yet -->
<div id="testLine7">
SkPath path, simple;
path.moveTo(0,0);
path.lineTo(4,0);
path.lineTo(2,2);
path.close();
path.moveTo(6,0);
path.lineTo(2,0);
path.lineTo(4,2);
path.close();
testSimplifyx(path);
</div>
<div id="testLine9">
SkPath path, simple;
path.moveTo(0,4);
path.lineTo(4,4);
path.lineTo(2,2);
path.close();
path.moveTo(6,4);
path.lineTo(2,4);
path.lineTo(4,2);
path.close();
testSimplifyx(path);
</div>
<div id="testLine17">
SkPath path, simple;
path.addRect(0, 0, 12, 12, (SkPath::Direction) 0);
@ -320,12 +345,51 @@ path.close();
testSimplifyx(path);
</div>
<div id="testLine28">
SkPath path, simple;
path.addRect(0, 6, 12, 12, (SkPath::Direction) 0);
path.addRect(0, 0, 9, 9, (SkPath::Direction) 0);
testSimplifyx(path);
</div>
<div id="testLine29">
SkPath path, simple;
path.addRect(0, 18, 12, 12, (SkPath::Direction) 0);
path.addRect(12, 12, 21, 21, (SkPath::Direction) 0);
testSimplifyx(path);
</div>
<div id="testLine30">
path.addRect(0, 0, 20, 20, (SkPath::Direction) 0);
path.addRect(0, 0, 12, 12, (SkPath::Direction) 0);
path.addRect(4, 4, 13, 13, (SkPath::Direction) 0);
</div>
<div id="testLine31">
path.addRect(0, 0, 20, 20, (SkPath::Direction) 0);
path.addRect(0, 0, 12, 12, (SkPath::Direction) 0);
path.addRect(0, 4, 9, 9, (SkPath::Direction) 0);
</div>
<div id="testLine32">
path.addRect(0, 0, 20, 20, (SkPath::Direction) 0);
path.addRect(0, 0, 12, 12, (SkPath::Direction) 0);
path.addRect(4, 12, 13, 13, (SkPath::Direction) 0);
</div>
</div>
<script type="text/javascript">
var testDivs = [
testLine6,
testLine9,
testLine7,
testLine30,
testLine32,
testLine31,
testLine29,
testLine28,
testLine17,
testSimplifyQuadratic21,
testSimplifyQuadratic20,
testSimplifyQuadratic19,
@ -397,9 +461,52 @@ function parse(test) {
tests.push(contours);
}
function parseRect(test) {
var contours = [];
var rectStrs = test.split("path.addRect");
var pattern = /-?\d+\.*\d*/g;
for (var r in rectStrs) {
var rect = rectStrs[r];
var sideStrs = rect.match(pattern);
var sides = [];
for (var wd in sideStrs) {
var num = parseFloat(sideStrs[wd]);
if (isNaN(num)) continue;
sides.push(num);
}
if (sides.length == 0)
continue;
var verbs = [];
var topLeft = [];
topLeft.push(sides[0]); topLeft.push(sides[1]);
var topRight = [];
topRight.push(sides[2]); topRight.push(sides[1]);
var botLeft = [];
botLeft.push(sides[0]); botLeft.push(sides[3]);
var botRight = [];
botRight.push(sides[2]); botRight.push(sides[3]);
verbs.push(topLeft);
if (sides[4] == 0) {
verbs.push(topRight);
verbs.push(botRight);
verbs.push(botLeft);
} else {
verbs.push(botLeft);
verbs.push(botRight);
verbs.push(topRight);
}
verbs.push(topLeft);
contours.push(verbs);
}
if (contours.length > 0)
tests.push(contours);
}
function init(test) {
var canvas = document.getElementById('canvas');
if (!canvas.getContext) return;
canvas.width = document.width;
canvas.height = document.height;
ctx = canvas.getContext('2d');
var xmin = Infinity;
var xmax = -Infinity;
@ -599,7 +706,11 @@ function doKeyPress(evt) {
function start() {
for (i = 0; i < testDivs.length; ++i) {
var str = testDivs[i].firstChild.data;
parse(str);
if (str.split("addRect").length > 1) {
parseRect(str);
} else {
parse(str);
}
}
drawTop();
window.addEventListener('keypress', doKeyPress, true);
@ -609,7 +720,7 @@ function start() {
</head>
<body onLoad="start();">
<canvas id="canvas" width="1500" height="1000"
<canvas id="canvas" width="750" height="500"
onmousemove="handleMouseOver()"
onclick="handleMouseClick()"
></canvas >