moz-skia/tests/PathTest.cpp

3261 строка
123 KiB
C++

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Test.h"
#include "SkCanvas.h"
#include "SkPaint.h"
#include "SkPath.h"
#include "SkParse.h"
#include "SkParsePath.h"
#include "SkPathEffect.h"
#include "SkRandom.h"
#include "SkReader32.h"
#include "SkRRect.h"
#include "SkSize.h"
#include "SkSurface.h"
#include "SkTypes.h"
#include "SkWriter32.h"
static void make_path0(SkPath* path) {
// from * https://code.google.com/p/skia/issues/detail?id=1706
path->moveTo(146.939f, 1012.84f);
path->lineTo(181.747f, 1009.18f);
path->lineTo(182.165f, 1013.16f);
path->lineTo(147.357f, 1016.82f);
path->lineTo(146.939f, 1012.84f);
path->close();
}
static void make_path1(SkPath* path) {
path->addRect(SkRect::MakeXYWH(10, 10, 10, 1));
}
typedef void (*PathProc)(SkPath*);
/*
* Regression test: we used to crash (overwrite internal storage) during
* construction of the region when the path was INVERSE. That is now fixed,
* so test these regions (which used to assert/crash).
*
* https://code.google.com/p/skia/issues/detail?id=1706
*/
static void test_path_to_region(skiatest::Reporter* reporter) {
PathProc procs[] = {
make_path0,
make_path1,
};
SkRegion clip;
clip.setRect(0, 0, 1255, 1925);
for (size_t i = 0; i < SK_ARRAY_COUNT(procs); ++i) {
SkPath path;
procs[i](&path);
SkRegion rgn;
rgn.setPath(path, clip);
path.toggleInverseFillType();
rgn.setPath(path, clip);
}
}
#if defined(WIN32)
#define SUPPRESS_VISIBILITY_WARNING
#else
#define SUPPRESS_VISIBILITY_WARNING __attribute__((visibility("hidden")))
#endif
static void test_path_close_issue1474(skiatest::Reporter* reporter) {
// This test checks that r{Line,Quad,Conic,Cubic}To following a close()
// are relative to the point we close to, not relative to the point we close from.
SkPath path;
SkPoint last;
// Test rLineTo().
path.rLineTo(0, 100);
path.rLineTo(100, 0);
path.close(); // Returns us back to 0,0.
path.rLineTo(50, 50); // This should go to 50,50.
path.getLastPt(&last);
REPORTER_ASSERT(reporter, 50 == last.fX);
REPORTER_ASSERT(reporter, 50 == last.fY);
// Test rQuadTo().
path.rewind();
path.rLineTo(0, 100);
path.rLineTo(100, 0);
path.close();
path.rQuadTo(50, 50, 75, 75);
path.getLastPt(&last);
REPORTER_ASSERT(reporter, 75 == last.fX);
REPORTER_ASSERT(reporter, 75 == last.fY);
// Test rConicTo().
path.rewind();
path.rLineTo(0, 100);
path.rLineTo(100, 0);
path.close();
path.rConicTo(50, 50, 85, 85, 2);
path.getLastPt(&last);
REPORTER_ASSERT(reporter, 85 == last.fX);
REPORTER_ASSERT(reporter, 85 == last.fY);
// Test rCubicTo().
path.rewind();
path.rLineTo(0, 100);
path.rLineTo(100, 0);
path.close();
path.rCubicTo(50, 50, 85, 85, 95, 95);
path.getLastPt(&last);
REPORTER_ASSERT(reporter, 95 == last.fX);
REPORTER_ASSERT(reporter, 95 == last.fY);
}
static void test_android_specific_behavior(skiatest::Reporter* reporter) {
#ifdef SK_BUILD_FOR_ANDROID
// Make sure we treat fGenerationID and fSourcePath correctly for each of
// copy, assign, rewind, reset, and swap.
SkPath original, source, anotherSource;
original.setSourcePath(&source);
original.moveTo(0, 0);
original.lineTo(1, 1);
REPORTER_ASSERT(reporter, original.getSourcePath() == &source);
uint32_t copyID, assignID;
// Test copy constructor. Copy generation ID, copy source path.
SkPath copy(original);
REPORTER_ASSERT(reporter, copy.getGenerationID() == original.getGenerationID());
REPORTER_ASSERT(reporter, copy.getSourcePath() == original.getSourcePath());
// Test assigment operator. Change generation ID, copy source path.
SkPath assign;
assignID = assign.getGenerationID();
assign = original;
REPORTER_ASSERT(reporter, assign.getGenerationID() != assignID);
REPORTER_ASSERT(reporter, assign.getSourcePath() == original.getSourcePath());
// Test rewind. Change generation ID, don't touch source path.
copyID = copy.getGenerationID();
copy.rewind();
REPORTER_ASSERT(reporter, copy.getGenerationID() != copyID);
REPORTER_ASSERT(reporter, copy.getSourcePath() == original.getSourcePath());
// Test reset. Change generation ID, don't touch source path.
assignID = assign.getGenerationID();
assign.reset();
REPORTER_ASSERT(reporter, assign.getGenerationID() != assignID);
REPORTER_ASSERT(reporter, assign.getSourcePath() == original.getSourcePath());
// Test swap. Swap the generation IDs, swap source paths.
copy.reset();
copy.moveTo(2, 2);
copy.setSourcePath(&anotherSource);
copyID = copy.getGenerationID();
assign.moveTo(3, 3);
assignID = assign.getGenerationID();
copy.swap(assign);
REPORTER_ASSERT(reporter, copy.getGenerationID() != copyID);
REPORTER_ASSERT(reporter, assign.getGenerationID() != assignID);
REPORTER_ASSERT(reporter, copy.getSourcePath() == original.getSourcePath());
REPORTER_ASSERT(reporter, assign.getSourcePath() == &anotherSource);
#endif
}
static void test_gen_id(skiatest::Reporter* reporter) {
SkPath a, b;
REPORTER_ASSERT(reporter, a.getGenerationID() == b.getGenerationID());
a.moveTo(0, 0);
const uint32_t z = a.getGenerationID();
REPORTER_ASSERT(reporter, z != b.getGenerationID());
a.reset();
REPORTER_ASSERT(reporter, a.getGenerationID() == b.getGenerationID());
a.moveTo(1, 1);
const uint32_t y = a.getGenerationID();
REPORTER_ASSERT(reporter, z != y);
b.moveTo(2, 2);
const uint32_t x = b.getGenerationID();
REPORTER_ASSERT(reporter, x != y && x != z);
a.swap(b);
REPORTER_ASSERT(reporter, b.getGenerationID() == y && a.getGenerationID() == x);
b = a;
REPORTER_ASSERT(reporter, b.getGenerationID() == x);
SkPath c(a);
REPORTER_ASSERT(reporter, c.getGenerationID() == x);
c.lineTo(3, 3);
const uint32_t w = c.getGenerationID();
REPORTER_ASSERT(reporter, b.getGenerationID() == x);
REPORTER_ASSERT(reporter, a.getGenerationID() == x);
REPORTER_ASSERT(reporter, w != x);
#ifdef SK_BUILD_FOR_ANDROID
static bool kExpectGenIDToIgnoreFill = false;
#else
static bool kExpectGenIDToIgnoreFill = true;
#endif
c.toggleInverseFillType();
const uint32_t v = c.getGenerationID();
REPORTER_ASSERT(reporter, (v == w) == kExpectGenIDToIgnoreFill);
c.rewind();
REPORTER_ASSERT(reporter, v != c.getGenerationID());
}
// This used to assert in the debug build, as the edges did not all line-up.
static void test_bad_cubic_crbug234190() {
SkPath path;
path.moveTo(13.8509f, 3.16858f);
path.cubicTo(-2.35893e+08f, -4.21044e+08f,
-2.38991e+08f, -4.26573e+08f,
-2.41016e+08f, -4.30188e+08f);
SkPaint paint;
paint.setAntiAlias(true);
SkAutoTUnref<SkSurface> surface(SkSurface::NewRasterPMColor(84, 88));
surface->getCanvas()->drawPath(path, paint);
}
static void test_bad_cubic_crbug229478() {
const SkPoint pts[] = {
{ 4595.91064f, -11596.9873f },
{ 4597.2168f, -11595.9414f },
{ 4598.52344f, -11594.8955f },
{ 4599.83008f, -11593.8496f },
};
SkPath path;
path.moveTo(pts[0]);
path.cubicTo(pts[1], pts[2], pts[3]);
SkPaint paint;
paint.setStyle(SkPaint::kStroke_Style);
paint.setStrokeWidth(20);
SkPath dst;
// Before the fix, this would infinite-recurse, and run out of stack
// because we would keep trying to subdivide a degenerate cubic segment.
paint.getFillPath(path, &dst, NULL);
}
static void build_path_170666(SkPath& path) {
path.moveTo(17.9459f, 21.6344f);
path.lineTo(139.545f, -47.8105f);
path.lineTo(139.545f, -47.8105f);
path.lineTo(131.07f, -47.3888f);
path.lineTo(131.07f, -47.3888f);
path.lineTo(122.586f, -46.9532f);
path.lineTo(122.586f, -46.9532f);
path.lineTo(18076.6f, 31390.9f);
path.lineTo(18076.6f, 31390.9f);
path.lineTo(18085.1f, 31390.5f);
path.lineTo(18085.1f, 31390.5f);
path.lineTo(18076.6f, 31390.9f);
path.lineTo(18076.6f, 31390.9f);
path.lineTo(17955, 31460.3f);
path.lineTo(17955, 31460.3f);
path.lineTo(17963.5f, 31459.9f);
path.lineTo(17963.5f, 31459.9f);
path.lineTo(17971.9f, 31459.5f);
path.lineTo(17971.9f, 31459.5f);
path.lineTo(17.9551f, 21.6205f);
path.lineTo(17.9551f, 21.6205f);
path.lineTo(9.47091f, 22.0561f);
path.lineTo(9.47091f, 22.0561f);
path.lineTo(17.9459f, 21.6344f);
path.lineTo(17.9459f, 21.6344f);
path.close();path.moveTo(0.995934f, 22.4779f);
path.lineTo(0.986725f, 22.4918f);
path.lineTo(0.986725f, 22.4918f);
path.lineTo(17955, 31460.4f);
path.lineTo(17955, 31460.4f);
path.lineTo(17971.9f, 31459.5f);
path.lineTo(17971.9f, 31459.5f);
path.lineTo(18093.6f, 31390.1f);
path.lineTo(18093.6f, 31390.1f);
path.lineTo(18093.6f, 31390);
path.lineTo(18093.6f, 31390);
path.lineTo(139.555f, -47.8244f);
path.lineTo(139.555f, -47.8244f);
path.lineTo(122.595f, -46.9671f);
path.lineTo(122.595f, -46.9671f);
path.lineTo(0.995934f, 22.4779f);
path.lineTo(0.995934f, 22.4779f);
path.close();
path.moveTo(5.43941f, 25.5223f);
path.lineTo(798267, -28871.1f);
path.lineTo(798267, -28871.1f);
path.lineTo(3.12512e+06f, -113102);
path.lineTo(3.12512e+06f, -113102);
path.cubicTo(5.16324e+06f, -186882, 8.15247e+06f, -295092, 1.1957e+07f, -432813);
path.cubicTo(1.95659e+07f, -708257, 3.04359e+07f, -1.10175e+06f, 4.34798e+07f, -1.57394e+06f);
path.cubicTo(6.95677e+07f, -2.51831e+06f, 1.04352e+08f, -3.77748e+06f, 1.39135e+08f, -5.03666e+06f);
path.cubicTo(1.73919e+08f, -6.29583e+06f, 2.08703e+08f, -7.555e+06f, 2.34791e+08f, -8.49938e+06f);
path.cubicTo(2.47835e+08f, -8.97157e+06f, 2.58705e+08f, -9.36506e+06f, 2.66314e+08f, -9.6405e+06f);
path.cubicTo(2.70118e+08f, -9.77823e+06f, 2.73108e+08f, -9.88644e+06f, 2.75146e+08f, -9.96022e+06f);
path.cubicTo(2.76165e+08f, -9.99711e+06f, 2.76946e+08f, -1.00254e+07f, 2.77473e+08f, -1.00444e+07f);
path.lineTo(2.78271e+08f, -1.00733e+07f);
path.lineTo(2.78271e+08f, -1.00733e+07f);
path.cubicTo(2.78271e+08f, -1.00733e+07f, 2.08703e+08f, -7.555e+06f, 135.238f, 23.3517f);
path.cubicTo(131.191f, 23.4981f, 125.995f, 23.7976f, 123.631f, 24.0206f);
path.cubicTo(121.267f, 24.2436f, 122.631f, 24.3056f, 126.677f, 24.1591f);
path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f);
path.lineTo(2.77473e+08f, -1.00444e+07f);
path.lineTo(2.77473e+08f, -1.00444e+07f);
path.cubicTo(2.76946e+08f, -1.00254e+07f, 2.76165e+08f, -9.99711e+06f, 2.75146e+08f, -9.96022e+06f);
path.cubicTo(2.73108e+08f, -9.88644e+06f, 2.70118e+08f, -9.77823e+06f, 2.66314e+08f, -9.6405e+06f);
path.cubicTo(2.58705e+08f, -9.36506e+06f, 2.47835e+08f, -8.97157e+06f, 2.34791e+08f, -8.49938e+06f);
path.cubicTo(2.08703e+08f, -7.555e+06f, 1.73919e+08f, -6.29583e+06f, 1.39135e+08f, -5.03666e+06f);
path.cubicTo(1.04352e+08f, -3.77749e+06f, 6.95677e+07f, -2.51831e+06f, 4.34798e+07f, -1.57394e+06f);
path.cubicTo(3.04359e+07f, -1.10175e+06f, 1.95659e+07f, -708258, 1.1957e+07f, -432814);
path.cubicTo(8.15248e+06f, -295092, 5.16324e+06f, -186883, 3.12513e+06f, -113103);
path.lineTo(798284, -28872);
path.lineTo(798284, -28872);
path.lineTo(22.4044f, 24.6677f);
path.lineTo(22.4044f, 24.6677f);
path.cubicTo(22.5186f, 24.5432f, 18.8134f, 24.6337f, 14.1287f, 24.8697f);
path.cubicTo(9.4439f, 25.1057f, 5.55359f, 25.3978f, 5.43941f, 25.5223f);
path.close();
}
static void build_path_simple_170666(SkPath& path) {
path.moveTo(126.677f, 24.1591f);
path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f);
}
// This used to assert in the SK_DEBUG build, as the clip step would fail with
// too-few interations in our cubic-line intersection code. That code now runs
// 24 interations (instead of 16).
static void test_crbug_170666() {
SkPath path;
SkPaint paint;
paint.setAntiAlias(true);
SkAutoTUnref<SkSurface> surface(SkSurface::NewRasterPMColor(1000, 1000));
build_path_simple_170666(path);
surface->getCanvas()->drawPath(path, paint);
build_path_170666(path);
surface->getCanvas()->drawPath(path, paint);
}
static void test_addrect(skiatest::Reporter* reporter) {
SkPath path;
path.lineTo(0, 0);
path.addRect(SkRect::MakeWH(50, 100));
REPORTER_ASSERT(reporter, path.isRect(NULL));
path.reset();
path.lineTo(FLT_EPSILON, FLT_EPSILON);
path.addRect(SkRect::MakeWH(50, 100));
REPORTER_ASSERT(reporter, !path.isRect(NULL));
path.reset();
path.quadTo(0, 0, 0, 0);
path.addRect(SkRect::MakeWH(50, 100));
REPORTER_ASSERT(reporter, !path.isRect(NULL));
path.reset();
path.conicTo(0, 0, 0, 0, 0.5f);
path.addRect(SkRect::MakeWH(50, 100));
REPORTER_ASSERT(reporter, !path.isRect(NULL));
path.reset();
path.cubicTo(0, 0, 0, 0, 0, 0);
path.addRect(SkRect::MakeWH(50, 100));
REPORTER_ASSERT(reporter, !path.isRect(NULL));
}
// Make sure we stay non-finite once we get there (unless we reset or rewind).
static void test_addrect_isfinite(skiatest::Reporter* reporter) {
SkPath path;
path.addRect(SkRect::MakeWH(50, 100));
REPORTER_ASSERT(reporter, path.isFinite());
path.moveTo(0, 0);
path.lineTo(SK_ScalarInfinity, 42);
REPORTER_ASSERT(reporter, !path.isFinite());
path.addRect(SkRect::MakeWH(50, 100));
REPORTER_ASSERT(reporter, !path.isFinite());
path.reset();
REPORTER_ASSERT(reporter, path.isFinite());
path.addRect(SkRect::MakeWH(50, 100));
REPORTER_ASSERT(reporter, path.isFinite());
}
static void build_big_path(SkPath* path, bool reducedCase) {
if (reducedCase) {
path->moveTo(577330, 1971.72f);
path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f);
} else {
path->moveTo(60.1631f, 7.70567f);
path->quadTo(60.1631f, 7.70567f, 0.99474f, 0.901199f);
path->lineTo(577379, 1977.77f);
path->quadTo(577364, 1979.57f, 577325, 1980.26f);
path->quadTo(577286, 1980.95f, 577245, 1980.13f);
path->quadTo(577205, 1979.3f, 577187, 1977.45f);
path->quadTo(577168, 1975.6f, 577183, 1973.8f);
path->quadTo(577198, 1972, 577238, 1971.31f);
path->quadTo(577277, 1970.62f, 577317, 1971.45f);
path->quadTo(577330, 1971.72f, 577341, 1972.11f);
path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f);
path->moveTo(306.718f, -32.912f);
path->cubicTo(30.531f, 10.0005f, 1502.47f, 13.2804f, 84.3088f, 9.99601f);
}
}
static void test_clipped_cubic() {
SkAutoTUnref<SkSurface> surface(SkSurface::NewRasterPMColor(640, 480));
// This path used to assert, because our cubic-chopping code incorrectly
// moved control points after the chop. This test should be run in SK_DEBUG
// mode to ensure that we no long assert.
SkPath path;
for (int doReducedCase = 0; doReducedCase <= 1; ++doReducedCase) {
build_big_path(&path, SkToBool(doReducedCase));
SkPaint paint;
for (int doAA = 0; doAA <= 1; ++doAA) {
paint.setAntiAlias(SkToBool(doAA));
surface->getCanvas()->drawPath(path, paint);
}
}
}
// Inspired by http://ie.microsoft.com/testdrive/Performance/Chalkboard/
// which triggered an assert, from a tricky cubic. This test replicates that
// example, so we can ensure that we handle it (in SkEdge.cpp), and don't
// assert in the SK_DEBUG build.
static void test_tricky_cubic() {
const SkPoint pts[] = {
{ SkDoubleToScalar(18.8943768), SkDoubleToScalar(129.121277) },
{ SkDoubleToScalar(18.8937435), SkDoubleToScalar(129.121689) },
{ SkDoubleToScalar(18.8950119), SkDoubleToScalar(129.120422) },
{ SkDoubleToScalar(18.5030727), SkDoubleToScalar(129.13121) },
};
SkPath path;
path.moveTo(pts[0]);
path.cubicTo(pts[1], pts[2], pts[3]);
SkPaint paint;
paint.setAntiAlias(true);
SkSurface* surface = SkSurface::NewRasterPMColor(19, 130);
surface->getCanvas()->drawPath(path, paint);
surface->unref();
}
// Inspired by http://code.google.com/p/chromium/issues/detail?id=141651
//
static void test_isfinite_after_transform(skiatest::Reporter* reporter) {
SkPath path;
path.quadTo(157, 366, 286, 208);
path.arcTo(37, 442, 315, 163, 957494590897113.0f);
SkMatrix matrix;
matrix.setScale(1000*1000, 1000*1000);
// Be sure that path::transform correctly updates isFinite and the bounds
// if the transformation overflows. The previous bug was that isFinite was
// set to true in this case, but the bounds were not set to empty (which
// they should be).
while (path.isFinite()) {
REPORTER_ASSERT(reporter, path.getBounds().isFinite());
REPORTER_ASSERT(reporter, !path.getBounds().isEmpty());
path.transform(matrix);
}
REPORTER_ASSERT(reporter, path.getBounds().isEmpty());
matrix.setTranslate(SK_Scalar1, SK_Scalar1);
path.transform(matrix);
// we need to still be non-finite
REPORTER_ASSERT(reporter, !path.isFinite());
REPORTER_ASSERT(reporter, path.getBounds().isEmpty());
}
static void add_corner_arc(SkPath* path, const SkRect& rect,
SkScalar xIn, SkScalar yIn,
int startAngle)
{
SkScalar rx = SkMinScalar(rect.width(), xIn);
SkScalar ry = SkMinScalar(rect.height(), yIn);
SkRect arcRect;
arcRect.set(-rx, -ry, rx, ry);
switch (startAngle) {
case 0:
arcRect.offset(rect.fRight - arcRect.fRight, rect.fBottom - arcRect.fBottom);
break;
case 90:
arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fBottom - arcRect.fBottom);
break;
case 180:
arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fTop - arcRect.fTop);
break;
case 270:
arcRect.offset(rect.fRight - arcRect.fRight, rect.fTop - arcRect.fTop);
break;
default:
break;
}
path->arcTo(arcRect, SkIntToScalar(startAngle), SkIntToScalar(90), false);
}
static void make_arb_round_rect(SkPath* path, const SkRect& r,
SkScalar xCorner, SkScalar yCorner) {
// we are lazy here and use the same x & y for each corner
add_corner_arc(path, r, xCorner, yCorner, 270);
add_corner_arc(path, r, xCorner, yCorner, 0);
add_corner_arc(path, r, xCorner, yCorner, 90);
add_corner_arc(path, r, xCorner, yCorner, 180);
path->close();
}
// Chrome creates its own round rects with each corner possibly being different.
// Performance will suffer if they are not convex.
// Note: PathBench::ArbRoundRectBench performs almost exactly
// the same test (but with drawing)
static void test_arb_round_rect_is_convex(skiatest::Reporter* reporter) {
SkRandom rand;
SkRect r;
for (int i = 0; i < 5000; ++i) {
SkScalar size = rand.nextUScalar1() * 30;
if (size < SK_Scalar1) {
continue;
}
r.fLeft = rand.nextUScalar1() * 300;
r.fTop = rand.nextUScalar1() * 300;
r.fRight = r.fLeft + 2 * size;
r.fBottom = r.fTop + 2 * size;
SkPath temp;
make_arb_round_rect(&temp, r, r.width() / 10, r.height() / 15);
REPORTER_ASSERT(reporter, temp.isConvex());
}
}
// Chrome will sometimes create a 0 radius round rect. The degenerate
// quads prevent the path from being converted to a rect
// Note: PathBench::ArbRoundRectBench performs almost exactly
// the same test (but with drawing)
static void test_arb_zero_rad_round_rect_is_rect(skiatest::Reporter* reporter) {
SkRandom rand;
SkRect r;
for (int i = 0; i < 5000; ++i) {
SkScalar size = rand.nextUScalar1() * 30;
if (size < SK_Scalar1) {
continue;
}
r.fLeft = rand.nextUScalar1() * 300;
r.fTop = rand.nextUScalar1() * 300;
r.fRight = r.fLeft + 2 * size;
r.fBottom = r.fTop + 2 * size;
SkPath temp;
make_arb_round_rect(&temp, r, 0, 0);
SkRect result;
REPORTER_ASSERT(reporter, temp.isRect(&result));
REPORTER_ASSERT(reporter, r == result);
}
}
static void test_rect_isfinite(skiatest::Reporter* reporter) {
const SkScalar inf = SK_ScalarInfinity;
const SkScalar negInf = SK_ScalarNegativeInfinity;
const SkScalar nan = SK_ScalarNaN;
SkRect r;
r.setEmpty();
REPORTER_ASSERT(reporter, r.isFinite());
r.set(0, 0, inf, negInf);
REPORTER_ASSERT(reporter, !r.isFinite());
r.set(0, 0, nan, 0);
REPORTER_ASSERT(reporter, !r.isFinite());
SkPoint pts[] = {
{ 0, 0 },
{ SK_Scalar1, 0 },
{ 0, SK_Scalar1 },
};
bool isFine = r.setBoundsCheck(pts, 3);
REPORTER_ASSERT(reporter, isFine);
REPORTER_ASSERT(reporter, !r.isEmpty());
pts[1].set(inf, 0);
isFine = r.setBoundsCheck(pts, 3);
REPORTER_ASSERT(reporter, !isFine);
REPORTER_ASSERT(reporter, r.isEmpty());
pts[1].set(nan, 0);
isFine = r.setBoundsCheck(pts, 3);
REPORTER_ASSERT(reporter, !isFine);
REPORTER_ASSERT(reporter, r.isEmpty());
}
static void test_path_isfinite(skiatest::Reporter* reporter) {
const SkScalar inf = SK_ScalarInfinity;
const SkScalar negInf = SK_ScalarNegativeInfinity;
const SkScalar nan = SK_ScalarNaN;
SkPath path;
REPORTER_ASSERT(reporter, path.isFinite());
path.reset();
REPORTER_ASSERT(reporter, path.isFinite());
path.reset();
path.moveTo(SK_Scalar1, 0);
REPORTER_ASSERT(reporter, path.isFinite());
path.reset();
path.moveTo(inf, negInf);
REPORTER_ASSERT(reporter, !path.isFinite());
path.reset();
path.moveTo(nan, 0);
REPORTER_ASSERT(reporter, !path.isFinite());
}
static void test_isfinite(skiatest::Reporter* reporter) {
test_rect_isfinite(reporter);
test_path_isfinite(reporter);
}
// assert that we always
// start with a moveTo
// only have 1 moveTo
// only have Lines after that
// end with a single close
// only have (at most) 1 close
//
static void test_poly(skiatest::Reporter* reporter, const SkPath& path,
const SkPoint srcPts[], bool expectClose) {
SkPath::RawIter iter(path);
SkPoint pts[4];
bool firstTime = true;
bool foundClose = false;
for (;;) {
switch (iter.next(pts)) {
case SkPath::kMove_Verb:
REPORTER_ASSERT(reporter, firstTime);
REPORTER_ASSERT(reporter, pts[0] == srcPts[0]);
srcPts++;
firstTime = false;
break;
case SkPath::kLine_Verb:
REPORTER_ASSERT(reporter, !firstTime);
REPORTER_ASSERT(reporter, pts[1] == srcPts[0]);
srcPts++;
break;
case SkPath::kQuad_Verb:
REPORTER_ASSERT_MESSAGE(reporter, false, "unexpected quad verb");
break;
case SkPath::kConic_Verb:
REPORTER_ASSERT_MESSAGE(reporter, false, "unexpected conic verb");
break;
case SkPath::kCubic_Verb:
REPORTER_ASSERT_MESSAGE(reporter, false, "unexpected cubic verb");
break;
case SkPath::kClose_Verb:
REPORTER_ASSERT(reporter, !firstTime);
REPORTER_ASSERT(reporter, !foundClose);
REPORTER_ASSERT(reporter, expectClose);
foundClose = true;
break;
case SkPath::kDone_Verb:
goto DONE;
}
}
DONE:
REPORTER_ASSERT(reporter, foundClose == expectClose);
}
static void test_addPoly(skiatest::Reporter* reporter) {
SkPoint pts[32];
SkRandom rand;
for (size_t i = 0; i < SK_ARRAY_COUNT(pts); ++i) {
pts[i].fX = rand.nextSScalar1();
pts[i].fY = rand.nextSScalar1();
}
for (int doClose = 0; doClose <= 1; ++doClose) {
for (size_t count = 1; count <= SK_ARRAY_COUNT(pts); ++count) {
SkPath path;
path.addPoly(pts, count, SkToBool(doClose));
test_poly(reporter, path, pts, SkToBool(doClose));
}
}
}
static void test_strokerec(skiatest::Reporter* reporter) {
SkStrokeRec rec(SkStrokeRec::kFill_InitStyle);
REPORTER_ASSERT(reporter, rec.isFillStyle());
rec.setHairlineStyle();
REPORTER_ASSERT(reporter, rec.isHairlineStyle());
rec.setStrokeStyle(SK_Scalar1, false);
REPORTER_ASSERT(reporter, SkStrokeRec::kStroke_Style == rec.getStyle());
rec.setStrokeStyle(SK_Scalar1, true);
REPORTER_ASSERT(reporter, SkStrokeRec::kStrokeAndFill_Style == rec.getStyle());
rec.setStrokeStyle(0, false);
REPORTER_ASSERT(reporter, SkStrokeRec::kHairline_Style == rec.getStyle());
rec.setStrokeStyle(0, true);
REPORTER_ASSERT(reporter, SkStrokeRec::kFill_Style == rec.getStyle());
}
// Set this for paths that don't have a consistent direction such as a bowtie.
// (cheapComputeDirection is not expected to catch these.)
static const SkPath::Direction kDontCheckDir = static_cast<SkPath::Direction>(-1);
static void check_direction(skiatest::Reporter* reporter, const SkPath& path,
SkPath::Direction expected) {
if (expected == kDontCheckDir) {
return;
}
SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path.
SkPath::Direction dir;
if (copy.cheapComputeDirection(&dir)) {
REPORTER_ASSERT(reporter, dir == expected);
} else {
REPORTER_ASSERT(reporter, SkPath::kUnknown_Direction == expected);
}
}
static void test_direction(skiatest::Reporter* reporter) {
size_t i;
SkPath path;
REPORTER_ASSERT(reporter, !path.cheapComputeDirection(NULL));
REPORTER_ASSERT(reporter, !path.cheapIsDirection(SkPath::kCW_Direction));
REPORTER_ASSERT(reporter, !path.cheapIsDirection(SkPath::kCCW_Direction));
REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kUnknown_Direction));
static const char* gDegen[] = {
"M 10 10",
"M 10 10 M 20 20",
"M 10 10 L 20 20",
"M 10 10 L 10 10 L 10 10",
"M 10 10 Q 10 10 10 10",
"M 10 10 C 10 10 10 10 10 10",
};
for (i = 0; i < SK_ARRAY_COUNT(gDegen); ++i) {
path.reset();
bool valid = SkParsePath::FromSVGString(gDegen[i], &path);
REPORTER_ASSERT(reporter, valid);
REPORTER_ASSERT(reporter, !path.cheapComputeDirection(NULL));
}
static const char* gCW[] = {
"M 10 10 L 10 10 Q 20 10 20 20",
"M 10 10 C 20 10 20 20 20 20",
"M 20 10 Q 20 20 30 20 L 10 20", // test double-back at y-max
// rect with top two corners replaced by cubics with identical middle
// control points
"M 10 10 C 10 0 10 0 20 0 L 40 0 C 50 0 50 0 50 10",
"M 20 10 L 0 10 Q 10 10 20 0", // left, degenerate serif
};
for (i = 0; i < SK_ARRAY_COUNT(gCW); ++i) {
path.reset();
bool valid = SkParsePath::FromSVGString(gCW[i], &path);
REPORTER_ASSERT(reporter, valid);
check_direction(reporter, path, SkPath::kCW_Direction);
}
static const char* gCCW[] = {
"M 10 10 L 10 10 Q 20 10 20 -20",
"M 10 10 C 20 10 20 -20 20 -20",
"M 20 10 Q 20 20 10 20 L 30 20", // test double-back at y-max
// rect with top two corners replaced by cubics with identical middle
// control points
"M 50 10 C 50 0 50 0 40 0 L 20 0 C 10 0 10 0 10 10",
"M 10 10 L 30 10 Q 20 10 10 0", // right, degenerate serif
};
for (i = 0; i < SK_ARRAY_COUNT(gCCW); ++i) {
path.reset();
bool valid = SkParsePath::FromSVGString(gCCW[i], &path);
REPORTER_ASSERT(reporter, valid);
check_direction(reporter, path, SkPath::kCCW_Direction);
}
// Test two donuts, each wound a different direction. Only the outer contour
// determines the cheap direction
path.reset();
path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCW_Direction);
path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCCW_Direction);
check_direction(reporter, path, SkPath::kCW_Direction);
path.reset();
path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCW_Direction);
path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCCW_Direction);
check_direction(reporter, path, SkPath::kCCW_Direction);
#ifdef SK_SCALAR_IS_FLOAT
// triangle with one point really far from the origin.
path.reset();
// the first point is roughly 1.05e10, 1.05e10
path.moveTo(SkFloatToScalar(SkBits2Float(0x501c7652)), SkFloatToScalar(SkBits2Float(0x501c7652)));
path.lineTo(110 * SK_Scalar1, -10 * SK_Scalar1);
path.lineTo(-10 * SK_Scalar1, 60 * SK_Scalar1);
check_direction(reporter, path, SkPath::kCCW_Direction);
#endif
path.reset();
path.conicTo(20, 0, 20, 20, 0.5f);
path.close();
check_direction(reporter, path, SkPath::kCW_Direction);
path.reset();
path.lineTo(1, 1e7f);
path.lineTo(1e7f, 2e7f);
path.close();
REPORTER_ASSERT(reporter, SkPath::kConvex_Convexity == path.getConvexity());
check_direction(reporter, path, SkPath::kCCW_Direction);
}
static void add_rect(SkPath* path, const SkRect& r) {
path->moveTo(r.fLeft, r.fTop);
path->lineTo(r.fRight, r.fTop);
path->lineTo(r.fRight, r.fBottom);
path->lineTo(r.fLeft, r.fBottom);
path->close();
}
static void test_bounds(skiatest::Reporter* reporter) {
static const SkRect rects[] = {
{ SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(160) },
{ SkIntToScalar(610), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(199) },
{ SkIntToScalar(10), SkIntToScalar(198), SkIntToScalar(610), SkIntToScalar(199) },
{ SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(10), SkIntToScalar(199) },
};
SkPath path0, path1;
for (size_t i = 0; i < SK_ARRAY_COUNT(rects); ++i) {
path0.addRect(rects[i]);
add_rect(&path1, rects[i]);
}
REPORTER_ASSERT(reporter, path0.getBounds() == path1.getBounds());
}
static void stroke_cubic(const SkPoint pts[4]) {
SkPath path;
path.moveTo(pts[0]);
path.cubicTo(pts[1], pts[2], pts[3]);
SkPaint paint;
paint.setStyle(SkPaint::kStroke_Style);
paint.setStrokeWidth(SK_Scalar1 * 2);
SkPath fill;
paint.getFillPath(path, &fill);
}
// just ensure this can run w/o any SkASSERTS firing in the debug build
// we used to assert due to differences in how we determine a degenerate vector
// but that was fixed with the introduction of SkPoint::CanNormalize
static void stroke_tiny_cubic() {
SkPoint p0[] = {
{ 372.0f, 92.0f },
{ 372.0f, 92.0f },
{ 372.0f, 92.0f },
{ 372.0f, 92.0f },
};
stroke_cubic(p0);
SkPoint p1[] = {
{ 372.0f, 92.0f },
{ 372.0007f, 92.000755f },
{ 371.99927f, 92.003922f },
{ 371.99826f, 92.003899f },
};
stroke_cubic(p1);
}
static void check_close(skiatest::Reporter* reporter, const SkPath& path) {
for (int i = 0; i < 2; ++i) {
SkPath::Iter iter(path, SkToBool(i));
SkPoint mv;
SkPoint pts[4];
SkPath::Verb v;
int nMT = 0;
int nCL = 0;
mv.set(0, 0);
while (SkPath::kDone_Verb != (v = iter.next(pts))) {
switch (v) {
case SkPath::kMove_Verb:
mv = pts[0];
++nMT;
break;
case SkPath::kClose_Verb:
REPORTER_ASSERT(reporter, mv == pts[0]);
++nCL;
break;
default:
break;
}
}
// if we force a close on the interator we should have a close
// for every moveTo
REPORTER_ASSERT(reporter, !i || nMT == nCL);
}
}
static void test_close(skiatest::Reporter* reporter) {
SkPath closePt;
closePt.moveTo(0, 0);
closePt.close();
check_close(reporter, closePt);
SkPath openPt;
openPt.moveTo(0, 0);
check_close(reporter, openPt);
SkPath empty;
check_close(reporter, empty);
empty.close();
check_close(reporter, empty);
SkPath rect;
rect.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
check_close(reporter, rect);
rect.close();
check_close(reporter, rect);
SkPath quad;
quad.quadTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
check_close(reporter, quad);
quad.close();
check_close(reporter, quad);
SkPath cubic;
quad.cubicTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1,
10*SK_Scalar1, 20 * SK_Scalar1, 20*SK_Scalar1);
check_close(reporter, cubic);
cubic.close();
check_close(reporter, cubic);
SkPath line;
line.moveTo(SK_Scalar1, SK_Scalar1);
line.lineTo(10 * SK_Scalar1, 10*SK_Scalar1);
check_close(reporter, line);
line.close();
check_close(reporter, line);
SkPath rect2;
rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
rect2.close();
rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
check_close(reporter, rect2);
rect2.close();
check_close(reporter, rect2);
SkPath oval3;
oval3.addOval(SkRect::MakeWH(SK_Scalar1*100,SK_Scalar1*100));
oval3.close();
oval3.addOval(SkRect::MakeWH(SK_Scalar1*200,SK_Scalar1*200));
check_close(reporter, oval3);
oval3.close();
check_close(reporter, oval3);
SkPath moves;
moves.moveTo(SK_Scalar1, SK_Scalar1);
moves.moveTo(5 * SK_Scalar1, SK_Scalar1);
moves.moveTo(SK_Scalar1, 10 * SK_Scalar1);
moves.moveTo(10 *SK_Scalar1, SK_Scalar1);
check_close(reporter, moves);
stroke_tiny_cubic();
}
static void check_convexity(skiatest::Reporter* reporter, const SkPath& path,
SkPath::Convexity expected) {
SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path.
SkPath::Convexity c = copy.getConvexity();
REPORTER_ASSERT(reporter, c == expected);
}
static void test_convexity2(skiatest::Reporter* reporter) {
SkPath pt;
pt.moveTo(0, 0);
pt.close();
check_convexity(reporter, pt, SkPath::kConvex_Convexity);
check_direction(reporter, pt, SkPath::kUnknown_Direction);
SkPath line;
line.moveTo(12*SK_Scalar1, 20*SK_Scalar1);
line.lineTo(-12*SK_Scalar1, -20*SK_Scalar1);
line.close();
check_convexity(reporter, line, SkPath::kConvex_Convexity);
check_direction(reporter, line, SkPath::kUnknown_Direction);
SkPath triLeft;
triLeft.moveTo(0, 0);
triLeft.lineTo(SK_Scalar1, 0);
triLeft.lineTo(SK_Scalar1, SK_Scalar1);
triLeft.close();
check_convexity(reporter, triLeft, SkPath::kConvex_Convexity);
check_direction(reporter, triLeft, SkPath::kCW_Direction);
SkPath triRight;
triRight.moveTo(0, 0);
triRight.lineTo(-SK_Scalar1, 0);
triRight.lineTo(SK_Scalar1, SK_Scalar1);
triRight.close();
check_convexity(reporter, triRight, SkPath::kConvex_Convexity);
check_direction(reporter, triRight, SkPath::kCCW_Direction);
SkPath square;
square.moveTo(0, 0);
square.lineTo(SK_Scalar1, 0);
square.lineTo(SK_Scalar1, SK_Scalar1);
square.lineTo(0, SK_Scalar1);
square.close();
check_convexity(reporter, square, SkPath::kConvex_Convexity);
check_direction(reporter, square, SkPath::kCW_Direction);
SkPath redundantSquare;
redundantSquare.moveTo(0, 0);
redundantSquare.lineTo(0, 0);
redundantSquare.lineTo(0, 0);
redundantSquare.lineTo(SK_Scalar1, 0);
redundantSquare.lineTo(SK_Scalar1, 0);
redundantSquare.lineTo(SK_Scalar1, 0);
redundantSquare.lineTo(SK_Scalar1, SK_Scalar1);
redundantSquare.lineTo(SK_Scalar1, SK_Scalar1);
redundantSquare.lineTo(SK_Scalar1, SK_Scalar1);
redundantSquare.lineTo(0, SK_Scalar1);
redundantSquare.lineTo(0, SK_Scalar1);
redundantSquare.lineTo(0, SK_Scalar1);
redundantSquare.close();
check_convexity(reporter, redundantSquare, SkPath::kConvex_Convexity);
check_direction(reporter, redundantSquare, SkPath::kCW_Direction);
SkPath bowTie;
bowTie.moveTo(0, 0);
bowTie.lineTo(0, 0);
bowTie.lineTo(0, 0);
bowTie.lineTo(SK_Scalar1, SK_Scalar1);
bowTie.lineTo(SK_Scalar1, SK_Scalar1);
bowTie.lineTo(SK_Scalar1, SK_Scalar1);
bowTie.lineTo(SK_Scalar1, 0);
bowTie.lineTo(SK_Scalar1, 0);
bowTie.lineTo(SK_Scalar1, 0);
bowTie.lineTo(0, SK_Scalar1);
bowTie.lineTo(0, SK_Scalar1);
bowTie.lineTo(0, SK_Scalar1);
bowTie.close();
check_convexity(reporter, bowTie, SkPath::kConcave_Convexity);
check_direction(reporter, bowTie, kDontCheckDir);
SkPath spiral;
spiral.moveTo(0, 0);
spiral.lineTo(100*SK_Scalar1, 0);
spiral.lineTo(100*SK_Scalar1, 100*SK_Scalar1);
spiral.lineTo(0, 100*SK_Scalar1);
spiral.lineTo(0, 50*SK_Scalar1);
spiral.lineTo(50*SK_Scalar1, 50*SK_Scalar1);
spiral.lineTo(50*SK_Scalar1, 75*SK_Scalar1);
spiral.close();
check_convexity(reporter, spiral, SkPath::kConcave_Convexity);
check_direction(reporter, spiral, kDontCheckDir);
SkPath dent;
dent.moveTo(0, 0);
dent.lineTo(100*SK_Scalar1, 100*SK_Scalar1);
dent.lineTo(0, 100*SK_Scalar1);
dent.lineTo(-50*SK_Scalar1, 200*SK_Scalar1);
dent.lineTo(-200*SK_Scalar1, 100*SK_Scalar1);
dent.close();
check_convexity(reporter, dent, SkPath::kConcave_Convexity);
check_direction(reporter, dent, SkPath::kCW_Direction);
}
static void check_convex_bounds(skiatest::Reporter* reporter, const SkPath& p,
const SkRect& bounds) {
REPORTER_ASSERT(reporter, p.isConvex());
REPORTER_ASSERT(reporter, p.getBounds() == bounds);
SkPath p2(p);
REPORTER_ASSERT(reporter, p2.isConvex());
REPORTER_ASSERT(reporter, p2.getBounds() == bounds);
SkPath other;
other.swap(p2);
REPORTER_ASSERT(reporter, other.isConvex());
REPORTER_ASSERT(reporter, other.getBounds() == bounds);
}
static void setFromString(SkPath* path, const char str[]) {
bool first = true;
while (str) {
SkScalar x, y;
str = SkParse::FindScalar(str, &x);
if (NULL == str) {
break;
}
str = SkParse::FindScalar(str, &y);
SkASSERT(str);
if (first) {
path->moveTo(x, y);
first = false;
} else {
path->lineTo(x, y);
}
}
}
static void test_convexity(skiatest::Reporter* reporter) {
SkPath path;
check_convexity(reporter, path, SkPath::kConvex_Convexity);
path.addCircle(0, 0, SkIntToScalar(10));
check_convexity(reporter, path, SkPath::kConvex_Convexity);
path.addCircle(0, 0, SkIntToScalar(10)); // 2nd circle
check_convexity(reporter, path, SkPath::kConcave_Convexity);
path.reset();
path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCCW_Direction);
check_convexity(reporter, path, SkPath::kConvex_Convexity);
REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kCCW_Direction));
path.reset();
path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCW_Direction);
check_convexity(reporter, path, SkPath::kConvex_Convexity);
REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kCW_Direction));
static const struct {
const char* fPathStr;
SkPath::Convexity fExpectedConvexity;
SkPath::Direction fExpectedDirection;
} gRec[] = {
{ "", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction },
{ "0 0", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction },
{ "0 0 10 10", SkPath::kConvex_Convexity, SkPath::kUnknown_Direction },
{ "0 0 10 10 20 20 0 0 10 10", SkPath::kConcave_Convexity, SkPath::kUnknown_Direction },
{ "0 0 10 10 10 20", SkPath::kConvex_Convexity, SkPath::kCW_Direction },
{ "0 0 10 10 10 0", SkPath::kConvex_Convexity, SkPath::kCCW_Direction },
{ "0 0 10 10 10 0 0 10", SkPath::kConcave_Convexity, kDontCheckDir },
{ "0 0 10 0 0 10 -10 -10", SkPath::kConcave_Convexity, SkPath::kCW_Direction },
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) {
SkPath path;
setFromString(&path, gRec[i].fPathStr);
check_convexity(reporter, path, gRec[i].fExpectedConvexity);
check_direction(reporter, path, gRec[i].fExpectedDirection);
// check after setting the initial convex and direction
if (kDontCheckDir != gRec[i].fExpectedDirection) {
SkPath copy(path);
SkPath::Direction dir;
bool foundDir = copy.cheapComputeDirection(&dir);
REPORTER_ASSERT(reporter, (gRec[i].fExpectedDirection == SkPath::kUnknown_Direction)
^ foundDir);
REPORTER_ASSERT(reporter, !foundDir || gRec[i].fExpectedDirection == dir);
check_convexity(reporter, copy, gRec[i].fExpectedConvexity);
}
REPORTER_ASSERT(reporter, gRec[i].fExpectedConvexity == path.getConvexity());
check_direction(reporter, path, gRec[i].fExpectedDirection);
}
}
static void test_isLine(skiatest::Reporter* reporter) {
SkPath path;
SkPoint pts[2];
const SkScalar value = SkIntToScalar(5);
REPORTER_ASSERT(reporter, !path.isLine(NULL));
// set some non-zero values
pts[0].set(value, value);
pts[1].set(value, value);
REPORTER_ASSERT(reporter, !path.isLine(pts));
// check that pts was untouched
REPORTER_ASSERT(reporter, pts[0].equals(value, value));
REPORTER_ASSERT(reporter, pts[1].equals(value, value));
const SkScalar moveX = SkIntToScalar(1);
const SkScalar moveY = SkIntToScalar(2);
REPORTER_ASSERT(reporter, value != moveX && value != moveY);
path.moveTo(moveX, moveY);
REPORTER_ASSERT(reporter, !path.isLine(NULL));
REPORTER_ASSERT(reporter, !path.isLine(pts));
// check that pts was untouched
REPORTER_ASSERT(reporter, pts[0].equals(value, value));
REPORTER_ASSERT(reporter, pts[1].equals(value, value));
const SkScalar lineX = SkIntToScalar(2);
const SkScalar lineY = SkIntToScalar(2);
REPORTER_ASSERT(reporter, value != lineX && value != lineY);
path.lineTo(lineX, lineY);
REPORTER_ASSERT(reporter, path.isLine(NULL));
REPORTER_ASSERT(reporter, !pts[0].equals(moveX, moveY));
REPORTER_ASSERT(reporter, !pts[1].equals(lineX, lineY));
REPORTER_ASSERT(reporter, path.isLine(pts));
REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY));
REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY));
path.lineTo(0, 0); // too many points/verbs
REPORTER_ASSERT(reporter, !path.isLine(NULL));
REPORTER_ASSERT(reporter, !path.isLine(pts));
REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY));
REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY));
path.reset();
path.quadTo(1, 1, 2, 2);
REPORTER_ASSERT(reporter, !path.isLine(NULL));
}
static void test_conservativelyContains(skiatest::Reporter* reporter) {
SkPath path;
// kBaseRect is used to construct most our test paths: a rect, a circle, and a round-rect.
static const SkRect kBaseRect = SkRect::MakeWH(SkIntToScalar(100), SkIntToScalar(100));
// A circle that bounds kBaseRect (with a significant amount of slop)
SkScalar circleR = SkMaxScalar(kBaseRect.width(), kBaseRect.height());
circleR = SkScalarMul(circleR, 1.75f) / 2;
static const SkPoint kCircleC = {kBaseRect.centerX(), kBaseRect.centerY()};
// round-rect radii
static const SkScalar kRRRadii[] = {SkIntToScalar(5), SkIntToScalar(3)};
static const struct SUPPRESS_VISIBILITY_WARNING {
SkRect fQueryRect;
bool fInRect;
bool fInCircle;
bool fInRR;
bool fInCubicRR;
} kQueries[] = {
{kBaseRect, true, true, false, false},
// rect well inside of kBaseRect
{SkRect::MakeLTRB(kBaseRect.fLeft + SkFloatToScalar(0.25f)*kBaseRect.width(),
kBaseRect.fTop + SkFloatToScalar(0.25f)*kBaseRect.height(),
kBaseRect.fRight - SkFloatToScalar(0.25f)*kBaseRect.width(),
kBaseRect.fBottom - SkFloatToScalar(0.25f)*kBaseRect.height()),
true, true, true, true},
// rects with edges off by one from kBaseRect's edges
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop,
kBaseRect.width(), kBaseRect.height() + 1),
false, true, false, false},
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop,
kBaseRect.width() + 1, kBaseRect.height()),
false, true, false, false},
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop,
kBaseRect.width() + 1, kBaseRect.height() + 1),
false, true, false, false},
{SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop,
kBaseRect.width(), kBaseRect.height()),
false, true, false, false},
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1,
kBaseRect.width(), kBaseRect.height()),
false, true, false, false},
{SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop,
kBaseRect.width() + 2, kBaseRect.height()),
false, true, false, false},
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1,
kBaseRect.width() + 2, kBaseRect.height()),
false, true, false, false},
// zero-w/h rects at each corner of kBaseRect
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, 0, 0), true, true, false, false},
{SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fTop, 0, 0), true, true, false, true},
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fBottom, 0, 0), true, true, false, true},
{SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fBottom, 0, 0), true, true, false, true},
// far away rect
{SkRect::MakeXYWH(10 * kBaseRect.fRight, 10 * kBaseRect.fBottom,
SkIntToScalar(10), SkIntToScalar(10)),
false, false, false, false},
// very large rect containing kBaseRect
{SkRect::MakeXYWH(kBaseRect.fLeft - 5 * kBaseRect.width(),
kBaseRect.fTop - 5 * kBaseRect.height(),
11 * kBaseRect.width(), 11 * kBaseRect.height()),
false, false, false, false},
// skinny rect that spans same y-range as kBaseRect
{SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop,
SkIntToScalar(1), kBaseRect.height()),
true, true, true, true},
// short rect that spans same x-range as kBaseRect
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(), kBaseRect.width(), SkScalar(1)),
true, true, true, true},
// skinny rect that spans slightly larger y-range than kBaseRect
{SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop,
SkIntToScalar(1), kBaseRect.height() + 1),
false, true, false, false},
// short rect that spans slightly larger x-range than kBaseRect
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(),
kBaseRect.width() + 1, SkScalar(1)),
false, true, false, false},
};
for (int inv = 0; inv < 4; ++inv) {
for (size_t q = 0; q < SK_ARRAY_COUNT(kQueries); ++q) {
SkRect qRect = kQueries[q].fQueryRect;
if (inv & 0x1) {
SkTSwap(qRect.fLeft, qRect.fRight);
}
if (inv & 0x2) {
SkTSwap(qRect.fTop, qRect.fBottom);
}
for (int d = 0; d < 2; ++d) {
SkPath::Direction dir = d ? SkPath::kCCW_Direction : SkPath::kCW_Direction;
path.reset();
path.addRect(kBaseRect, dir);
REPORTER_ASSERT(reporter, kQueries[q].fInRect ==
path.conservativelyContainsRect(qRect));
path.reset();
path.addCircle(kCircleC.fX, kCircleC.fY, circleR, dir);
REPORTER_ASSERT(reporter, kQueries[q].fInCircle ==
path.conservativelyContainsRect(qRect));
path.reset();
path.addRoundRect(kBaseRect, kRRRadii[0], kRRRadii[1], dir);
REPORTER_ASSERT(reporter, kQueries[q].fInRR ==
path.conservativelyContainsRect(qRect));
path.reset();
path.moveTo(kBaseRect.fLeft + kRRRadii[0], kBaseRect.fTop);
path.cubicTo(kBaseRect.fLeft + kRRRadii[0] / 2, kBaseRect.fTop,
kBaseRect.fLeft, kBaseRect.fTop + kRRRadii[1] / 2,
kBaseRect.fLeft, kBaseRect.fTop + kRRRadii[1]);
path.lineTo(kBaseRect.fLeft, kBaseRect.fBottom);
path.lineTo(kBaseRect.fRight, kBaseRect.fBottom);
path.lineTo(kBaseRect.fRight, kBaseRect.fTop);
path.close();
REPORTER_ASSERT(reporter, kQueries[q].fInCubicRR ==
path.conservativelyContainsRect(qRect));
}
// Slightly non-convex shape, shouldn't contain any rects.
path.reset();
path.moveTo(0, 0);
path.lineTo(SkIntToScalar(50), SkFloatToScalar(0.05f));
path.lineTo(SkIntToScalar(100), 0);
path.lineTo(SkIntToScalar(100), SkIntToScalar(100));
path.lineTo(0, SkIntToScalar(100));
path.close();
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(qRect));
}
}
// make sure a minimal convex shape works, a right tri with edges along pos x and y axes.
path.reset();
path.moveTo(0, 0);
path.lineTo(SkIntToScalar(100), 0);
path.lineTo(0, SkIntToScalar(100));
// inside, on along top edge
REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0,
SkIntToScalar(10),
SkIntToScalar(10))));
// above
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(
SkRect::MakeXYWH(SkIntToScalar(50),
SkIntToScalar(-10),
SkIntToScalar(10),
SkIntToScalar(10))));
// to the left
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(-10),
SkIntToScalar(5),
SkIntToScalar(5),
SkIntToScalar(5))));
// outside the diagonal edge
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(10),
SkIntToScalar(200),
SkIntToScalar(20),
SkIntToScalar(5))));
// same as above path and first test but with an extra moveTo.
path.reset();
path.moveTo(100, 100);
path.moveTo(0, 0);
path.lineTo(SkIntToScalar(100), 0);
path.lineTo(0, SkIntToScalar(100));
REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0,
SkIntToScalar(10),
SkIntToScalar(10))));
path.reset();
path.lineTo(100, 100);
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(0, 0, 1, 1)));
}
static void test_isRect_open_close(skiatest::Reporter* reporter) {
SkPath path;
bool isClosed;
path.moveTo(0, 0); path.lineTo(1, 0); path.lineTo(1, 1); path.lineTo(0, 1);
if (false) {
// I think these should pass, but isRect() doesn't behave
// this way... yet
REPORTER_ASSERT(reporter, path.isRect(NULL, NULL));
REPORTER_ASSERT(reporter, path.isRect(&isClosed, NULL));
REPORTER_ASSERT(reporter, !isClosed);
}
path.close();
REPORTER_ASSERT(reporter, path.isRect(NULL, NULL));
REPORTER_ASSERT(reporter, path.isRect(&isClosed, NULL));
REPORTER_ASSERT(reporter, isClosed);
}
// Simple isRect test is inline TestPath, below.
// test_isRect provides more extensive testing.
static void test_isRect(skiatest::Reporter* reporter) {
test_isRect_open_close(reporter);
// passing tests (all moveTo / lineTo...
SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}};
SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}};
SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}};
SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}};
SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}};
SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}};
SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}};
SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}};
SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}};
SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}};
SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}};
SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}};
SkPoint rf[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}};
// failing tests
SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points
SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal
SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps
SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up
SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots
SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots
SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots
SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L'
SkPoint f9[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}, {2, 0}}; // overlaps
SkPoint fa[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, -1}, {1, -1}}; // non colinear gap
SkPoint fb[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 1}}; // falls short
// failing, no close
SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match
SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto
struct IsRectTest {
SkPoint *fPoints;
size_t fPointCount;
bool fClose;
bool fIsRect;
} tests[] = {
{ r1, SK_ARRAY_COUNT(r1), true, true },
{ r2, SK_ARRAY_COUNT(r2), true, true },
{ r3, SK_ARRAY_COUNT(r3), true, true },
{ r4, SK_ARRAY_COUNT(r4), true, true },
{ r5, SK_ARRAY_COUNT(r5), true, true },
{ r6, SK_ARRAY_COUNT(r6), true, true },
{ r7, SK_ARRAY_COUNT(r7), true, true },
{ r8, SK_ARRAY_COUNT(r8), true, true },
{ r9, SK_ARRAY_COUNT(r9), true, true },
{ ra, SK_ARRAY_COUNT(ra), true, true },
{ rb, SK_ARRAY_COUNT(rb), true, true },
{ rc, SK_ARRAY_COUNT(rc), true, true },
{ rd, SK_ARRAY_COUNT(rd), true, true },
{ re, SK_ARRAY_COUNT(re), true, true },
{ rf, SK_ARRAY_COUNT(rf), true, true },
{ f1, SK_ARRAY_COUNT(f1), true, false },
{ f2, SK_ARRAY_COUNT(f2), true, false },
{ f3, SK_ARRAY_COUNT(f3), true, false },
{ f4, SK_ARRAY_COUNT(f4), true, false },
{ f5, SK_ARRAY_COUNT(f5), true, false },
{ f6, SK_ARRAY_COUNT(f6), true, false },
{ f7, SK_ARRAY_COUNT(f7), true, false },
{ f8, SK_ARRAY_COUNT(f8), true, false },
{ f9, SK_ARRAY_COUNT(f9), true, false },
{ fa, SK_ARRAY_COUNT(fa), true, false },
{ fb, SK_ARRAY_COUNT(fb), true, false },
{ c1, SK_ARRAY_COUNT(c1), false, false },
{ c2, SK_ARRAY_COUNT(c2), false, false },
};
const size_t testCount = SK_ARRAY_COUNT(tests);
size_t index;
for (size_t testIndex = 0; testIndex < testCount; ++testIndex) {
SkPath path;
path.moveTo(tests[testIndex].fPoints[0].fX, tests[testIndex].fPoints[0].fY);
for (index = 1; index < tests[testIndex].fPointCount; ++index) {
path.lineTo(tests[testIndex].fPoints[index].fX, tests[testIndex].fPoints[index].fY);
}
if (tests[testIndex].fClose) {
path.close();
}
REPORTER_ASSERT(reporter, tests[testIndex].fIsRect == path.isRect(NULL));
REPORTER_ASSERT(reporter, tests[testIndex].fIsRect == path.isRect(NULL, NULL));
if (tests[testIndex].fIsRect) {
SkRect computed, expected;
expected.set(tests[testIndex].fPoints, tests[testIndex].fPointCount);
REPORTER_ASSERT(reporter, path.isRect(&computed));
REPORTER_ASSERT(reporter, expected == computed);
bool isClosed;
SkPath::Direction direction, cheapDirection;
REPORTER_ASSERT(reporter, path.cheapComputeDirection(&cheapDirection));
REPORTER_ASSERT(reporter, path.isRect(&isClosed, &direction));
REPORTER_ASSERT(reporter, isClosed == tests[testIndex].fClose);
REPORTER_ASSERT(reporter, direction == cheapDirection);
} else {
SkRect computed;
computed.set(123, 456, 789, 1011);
REPORTER_ASSERT(reporter, !path.isRect(&computed));
REPORTER_ASSERT(reporter, computed.fLeft == 123 && computed.fTop == 456);
REPORTER_ASSERT(reporter, computed.fRight == 789 && computed.fBottom == 1011);
bool isClosed = (bool) -1;
SkPath::Direction direction = (SkPath::Direction) -1;
REPORTER_ASSERT(reporter, !path.isRect(&isClosed, &direction));
REPORTER_ASSERT(reporter, isClosed == (bool) -1);
REPORTER_ASSERT(reporter, direction == (SkPath::Direction) -1);
}
}
// fail, close then line
SkPath path1;
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) {
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
path1.lineTo(1, 0);
REPORTER_ASSERT(reporter, !path1.isRect(NULL));
// fail, move in the middle
path1.reset();
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) {
if (index == 2) {
path1.moveTo(1, .5f);
}
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
REPORTER_ASSERT(reporter, !path1.isRect(NULL));
// fail, move on the edge
path1.reset();
for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) {
path1.moveTo(r1[index - 1].fX, r1[index - 1].fY);
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
REPORTER_ASSERT(reporter, !path1.isRect(NULL));
// fail, quad
path1.reset();
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) {
if (index == 2) {
path1.quadTo(1, .5f, 1, .5f);
}
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
REPORTER_ASSERT(reporter, !path1.isRect(NULL));
// fail, cubic
path1.reset();
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) {
if (index == 2) {
path1.cubicTo(1, .5f, 1, .5f, 1, .5f);
}
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
REPORTER_ASSERT(reporter, !path1.isRect(NULL));
}
static void test_isNestedRects(skiatest::Reporter* reporter) {
// passing tests (all moveTo / lineTo...
SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW
SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}};
SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}};
SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}};
SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; // CCW
SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}};
SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}};
SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}}; // CCW
SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}}; // CW
SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}; // CW
SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}; // CCW
SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW
// failing tests
SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points
SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal
SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps
SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up
SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots
SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots
SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots
SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L'
// failing, no close
SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match
SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto
struct IsNestedRectTest {
SkPoint *fPoints;
size_t fPointCount;
SkPath::Direction fDirection;
bool fClose;
bool fIsNestedRect; // nests with path.addRect(-1, -1, 2, 2);
} tests[] = {
{ r1, SK_ARRAY_COUNT(r1), SkPath::kCW_Direction , true, true },
{ r2, SK_ARRAY_COUNT(r2), SkPath::kCW_Direction , true, true },
{ r3, SK_ARRAY_COUNT(r3), SkPath::kCW_Direction , true, true },
{ r4, SK_ARRAY_COUNT(r4), SkPath::kCW_Direction , true, true },
{ r5, SK_ARRAY_COUNT(r5), SkPath::kCCW_Direction, true, true },
{ r6, SK_ARRAY_COUNT(r6), SkPath::kCCW_Direction, true, true },
{ r7, SK_ARRAY_COUNT(r7), SkPath::kCCW_Direction, true, true },
{ r8, SK_ARRAY_COUNT(r8), SkPath::kCCW_Direction, true, true },
{ r9, SK_ARRAY_COUNT(r9), SkPath::kCCW_Direction, true, true },
{ ra, SK_ARRAY_COUNT(ra), SkPath::kCCW_Direction, true, true },
{ rb, SK_ARRAY_COUNT(rb), SkPath::kCW_Direction, true, true },
{ rc, SK_ARRAY_COUNT(rc), SkPath::kCW_Direction, true, true },
{ rd, SK_ARRAY_COUNT(rd), SkPath::kCCW_Direction, true, true },
{ re, SK_ARRAY_COUNT(re), SkPath::kCW_Direction, true, true },
{ f1, SK_ARRAY_COUNT(f1), SkPath::kUnknown_Direction, true, false },
{ f2, SK_ARRAY_COUNT(f2), SkPath::kUnknown_Direction, true, false },
{ f3, SK_ARRAY_COUNT(f3), SkPath::kUnknown_Direction, true, false },
{ f4, SK_ARRAY_COUNT(f4), SkPath::kUnknown_Direction, true, false },
{ f5, SK_ARRAY_COUNT(f5), SkPath::kUnknown_Direction, true, false },
{ f6, SK_ARRAY_COUNT(f6), SkPath::kUnknown_Direction, true, false },
{ f7, SK_ARRAY_COUNT(f7), SkPath::kUnknown_Direction, true, false },
{ f8, SK_ARRAY_COUNT(f8), SkPath::kUnknown_Direction, true, false },
{ c1, SK_ARRAY_COUNT(c1), SkPath::kUnknown_Direction, false, false },
{ c2, SK_ARRAY_COUNT(c2), SkPath::kUnknown_Direction, false, false },
};
const size_t testCount = SK_ARRAY_COUNT(tests);
size_t index;
for (int rectFirst = 0; rectFirst <= 1; ++rectFirst) {
for (size_t testIndex = 0; testIndex < testCount; ++testIndex) {
SkPath path;
if (rectFirst) {
path.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
}
path.moveTo(tests[testIndex].fPoints[0].fX, tests[testIndex].fPoints[0].fY);
for (index = 1; index < tests[testIndex].fPointCount; ++index) {
path.lineTo(tests[testIndex].fPoints[index].fX, tests[testIndex].fPoints[index].fY);
}
if (tests[testIndex].fClose) {
path.close();
}
if (!rectFirst) {
path.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
}
REPORTER_ASSERT(reporter, tests[testIndex].fIsNestedRect == path.isNestedRects(NULL));
if (tests[testIndex].fIsNestedRect) {
SkRect expected[2], computed[2];
SkPath::Direction expectedDirs[2], computedDirs[2];
SkRect testBounds;
testBounds.set(tests[testIndex].fPoints, tests[testIndex].fPointCount);
expected[0] = SkRect::MakeLTRB(-1, -1, 2, 2);
expected[1] = testBounds;
if (rectFirst) {
expectedDirs[0] = SkPath::kCW_Direction;
} else {
expectedDirs[0] = SkPath::kCCW_Direction;
}
expectedDirs[1] = tests[testIndex].fDirection;
REPORTER_ASSERT(reporter, path.isNestedRects(computed, computedDirs));
REPORTER_ASSERT(reporter, expected[0] == computed[0]);
REPORTER_ASSERT(reporter, expected[1] == computed[1]);
REPORTER_ASSERT(reporter, expectedDirs[0] == computedDirs[0]);
REPORTER_ASSERT(reporter, expectedDirs[1] == computedDirs[1]);
}
}
// fail, close then line
SkPath path1;
if (rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
}
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) {
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
path1.lineTo(1, 0);
if (!rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
}
REPORTER_ASSERT(reporter, !path1.isNestedRects(NULL));
// fail, move in the middle
path1.reset();
if (rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
}
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) {
if (index == 2) {
path1.moveTo(1, .5f);
}
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
if (!rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
}
REPORTER_ASSERT(reporter, !path1.isNestedRects(NULL));
// fail, move on the edge
path1.reset();
if (rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
}
for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) {
path1.moveTo(r1[index - 1].fX, r1[index - 1].fY);
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
if (!rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
}
REPORTER_ASSERT(reporter, !path1.isNestedRects(NULL));
// fail, quad
path1.reset();
if (rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
}
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) {
if (index == 2) {
path1.quadTo(1, .5f, 1, .5f);
}
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
if (!rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
}
REPORTER_ASSERT(reporter, !path1.isNestedRects(NULL));
// fail, cubic
path1.reset();
if (rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCW_Direction);
}
path1.moveTo(r1[0].fX, r1[0].fY);
for (index = 1; index < SK_ARRAY_COUNT(r1); ++index) {
if (index == 2) {
path1.cubicTo(1, .5f, 1, .5f, 1, .5f);
}
path1.lineTo(r1[index].fX, r1[index].fY);
}
path1.close();
if (!rectFirst) {
path1.addRect(-1, -1, 2, 2, SkPath::kCCW_Direction);
}
REPORTER_ASSERT(reporter, !path1.isNestedRects(NULL));
// fail, not nested
path1.reset();
path1.addRect(1, 1, 3, 3, SkPath::kCW_Direction);
path1.addRect(2, 2, 4, 4, SkPath::kCW_Direction);
REPORTER_ASSERT(reporter, !path1.isNestedRects(NULL));
}
// pass, stroke rect
SkPath src, dst;
src.addRect(1, 1, 7, 7, SkPath::kCW_Direction);
SkPaint strokePaint;
strokePaint.setStyle(SkPaint::kStroke_Style);
strokePaint.setStrokeWidth(2);
strokePaint.getFillPath(src, &dst);
REPORTER_ASSERT(reporter, dst.isNestedRects(NULL));
}
static void write_and_read_back(skiatest::Reporter* reporter,
const SkPath& p) {
SkWriter32 writer(100);
writer.writePath(p);
size_t size = writer.bytesWritten();
SkAutoMalloc storage(size);
writer.flatten(storage.get());
SkReader32 reader(storage.get(), size);
SkPath readBack;
REPORTER_ASSERT(reporter, readBack != p);
reader.readPath(&readBack);
REPORTER_ASSERT(reporter, readBack == p);
REPORTER_ASSERT(reporter, readBack.getConvexityOrUnknown() ==
p.getConvexityOrUnknown());
REPORTER_ASSERT(reporter, readBack.isOval(NULL) == p.isOval(NULL));
const SkRect& origBounds = p.getBounds();
const SkRect& readBackBounds = readBack.getBounds();
REPORTER_ASSERT(reporter, origBounds == readBackBounds);
}
static void test_flattening(skiatest::Reporter* reporter) {
SkPath p;
static const SkPoint pts[] = {
{ 0, 0 },
{ SkIntToScalar(10), SkIntToScalar(10) },
{ SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 },
{ 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) }
};
p.moveTo(pts[0]);
p.lineTo(pts[1]);
p.quadTo(pts[2], pts[3]);
p.cubicTo(pts[4], pts[5], pts[6]);
write_and_read_back(reporter, p);
// create a buffer that should be much larger than the path so we don't
// kill our stack if writer goes too far.
char buffer[1024];
size_t size1 = p.writeToMemory(NULL);
size_t size2 = p.writeToMemory(buffer);
REPORTER_ASSERT(reporter, size1 == size2);
SkPath p2;
size_t size3 = p2.readFromMemory(buffer, 1024);
REPORTER_ASSERT(reporter, size1 == size3);
REPORTER_ASSERT(reporter, p == p2);
size3 = p2.readFromMemory(buffer, 0);
REPORTER_ASSERT(reporter, !size3);
SkPath tooShort;
size3 = tooShort.readFromMemory(buffer, size1 - 1);
REPORTER_ASSERT(reporter, tooShort.isEmpty());
char buffer2[1024];
size3 = p2.writeToMemory(buffer2);
REPORTER_ASSERT(reporter, size1 == size3);
REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0);
// test persistence of the oval flag & convexity
{
SkPath oval;
SkRect rect = SkRect::MakeWH(10, 10);
oval.addOval(rect);
write_and_read_back(reporter, oval);
}
}
static void test_transform(skiatest::Reporter* reporter) {
SkPath p, p1;
#define CONIC_PERSPECTIVE_BUG_FIXED 0
static const SkPoint pts[] = {
{ 0, 0 }, // move
{ SkIntToScalar(10), SkIntToScalar(10) }, // line
{ SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 }, // quad
{ 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) }, // cubic
#if CONIC_PERSPECTIVE_BUG_FIXED
{ 0, 0 }, { SkIntToScalar(20), SkIntToScalar(10) }, // conic
#endif
};
const int kPtCount = SK_ARRAY_COUNT(pts);
p.moveTo(pts[0]);
p.lineTo(pts[1]);
p.quadTo(pts[2], pts[3]);
p.cubicTo(pts[4], pts[5], pts[6]);
#if CONIC_PERSPECTIVE_BUG_FIXED
p.conicTo(pts[4], pts[5], 0.5f);
#endif
p.close();
SkMatrix matrix;
matrix.reset();
p.transform(matrix, &p1);
REPORTER_ASSERT(reporter, p == p1);
matrix.setScale(SK_Scalar1 * 2, SK_Scalar1 * 3);
p.transform(matrix, &p1);
SkPoint pts1[kPtCount];
int count = p1.getPoints(pts1, kPtCount);
REPORTER_ASSERT(reporter, kPtCount == count);
for (int i = 0; i < count; ++i) {
SkPoint newPt = SkPoint::Make(pts[i].fX * 2, pts[i].fY * 3);
REPORTER_ASSERT(reporter, newPt == pts1[i]);
}
matrix.reset();
matrix.setPerspX(SkScalarToPersp(4));
p.transform(matrix, &p1);
REPORTER_ASSERT(reporter, matrix.invert(&matrix));
p1.transform(matrix, NULL);
SkRect pBounds = p.getBounds();
SkRect p1Bounds = p1.getBounds();
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fLeft, p1Bounds.fLeft));
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fTop, p1Bounds.fTop));
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fRight, p1Bounds.fRight));
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fBottom, p1Bounds.fBottom));
matrix.reset();
p.reset();
p.addCircle(0, 0, 1, SkPath::kCW_Direction);
p.transform(matrix, &p1);
REPORTER_ASSERT(reporter, p1.cheapIsDirection(SkPath::kCW_Direction));
matrix.setScaleX(-1);
p.transform(matrix, &p1);
REPORTER_ASSERT(reporter, p1.cheapIsDirection(SkPath::kCCW_Direction));
matrix.setAll(1, 1, 0, 1, 1, 0, 0, 0, 1);
p.transform(matrix, &p1);
REPORTER_ASSERT(reporter, p1.cheapIsDirection(SkPath::kUnknown_Direction));
}
static void test_zero_length_paths(skiatest::Reporter* reporter) {
SkPath p;
uint8_t verbs[32];
struct SUPPRESS_VISIBILITY_WARNING zeroPathTestData {
const char* testPath;
const size_t numResultPts;
const SkRect resultBound;
const SkPath::Verb* resultVerbs;
const size_t numResultVerbs;
};
static const SkPath::Verb resultVerbs1[] = { SkPath::kMove_Verb };
static const SkPath::Verb resultVerbs2[] = { SkPath::kMove_Verb, SkPath::kMove_Verb };
static const SkPath::Verb resultVerbs3[] = { SkPath::kMove_Verb, SkPath::kClose_Verb };
static const SkPath::Verb resultVerbs4[] = { SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb };
static const SkPath::Verb resultVerbs5[] = { SkPath::kMove_Verb, SkPath::kLine_Verb };
static const SkPath::Verb resultVerbs6[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb };
static const SkPath::Verb resultVerbs7[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb };
static const SkPath::Verb resultVerbs8[] = {
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb
};
static const SkPath::Verb resultVerbs9[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb };
static const SkPath::Verb resultVerbs10[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb };
static const SkPath::Verb resultVerbs11[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb };
static const SkPath::Verb resultVerbs12[] = {
SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb
};
static const SkPath::Verb resultVerbs13[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb };
static const SkPath::Verb resultVerbs14[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb };
static const SkPath::Verb resultVerbs15[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb };
static const SkPath::Verb resultVerbs16[] = {
SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb
};
static const struct zeroPathTestData gZeroLengthTests[] = {
{ "M 1 1", 1, {0, 0, 0, 0}, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "M 1 1 M 2 1", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) },
{ "M 1 1 z", 1, {0, 0, 0, 0}, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) },
{ "M 1 1 z M 2 1 z", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) },
{ "M 1 1 L 1 1", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) },
{ "M 1 1 L 1 1 M 2 1 L 2 1", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs6, SK_ARRAY_COUNT(resultVerbs6) },
{ "M 1 1 L 1 1 z", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs7, SK_ARRAY_COUNT(resultVerbs7) },
{ "M 1 1 L 1 1 z M 2 1 L 2 1 z", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs8, SK_ARRAY_COUNT(resultVerbs8) },
{ "M 1 1 Q 1 1 1 1", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs9, SK_ARRAY_COUNT(resultVerbs9) },
{ "M 1 1 Q 1 1 1 1 M 2 1 Q 2 1 2 1", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs10, SK_ARRAY_COUNT(resultVerbs10) },
{ "M 1 1 Q 1 1 1 1 z", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs11, SK_ARRAY_COUNT(resultVerbs11) },
{ "M 1 1 Q 1 1 1 1 z M 2 1 Q 2 1 2 1 z", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs12, SK_ARRAY_COUNT(resultVerbs12) },
{ "M 1 1 C 1 1 1 1 1 1", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs13, SK_ARRAY_COUNT(resultVerbs13) },
{ "M 1 1 C 1 1 1 1 1 1 M 2 1 C 2 1 2 1 2 1", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs14,
SK_ARRAY_COUNT(resultVerbs14)
},
{ "M 1 1 C 1 1 1 1 1 1 z", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs15, SK_ARRAY_COUNT(resultVerbs15) },
{ "M 1 1 C 1 1 1 1 1 1 z M 2 1 C 2 1 2 1 2 1 z", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs16,
SK_ARRAY_COUNT(resultVerbs16)
}
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gZeroLengthTests); ++i) {
p.reset();
bool valid = SkParsePath::FromSVGString(gZeroLengthTests[i].testPath, &p);
REPORTER_ASSERT(reporter, valid);
REPORTER_ASSERT(reporter, !p.isEmpty());
REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultPts == (size_t)p.countPoints());
REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultBound == p.getBounds());
REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultVerbs == (size_t)p.getVerbs(verbs, SK_ARRAY_COUNT(verbs)));
for (size_t j = 0; j < gZeroLengthTests[i].numResultVerbs; ++j) {
REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultVerbs[j] == verbs[j]);
}
}
}
struct SegmentInfo {
SkPath fPath;
int fPointCount;
};
#define kCurveSegmentMask (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask)
static void test_segment_masks(skiatest::Reporter* reporter) {
SkPath p, p2;
p.moveTo(0, 0);
p.quadTo(100, 100, 200, 200);
REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == p.getSegmentMasks());
REPORTER_ASSERT(reporter, !p.isEmpty());
p2 = p;
REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks());
p.cubicTo(100, 100, 200, 200, 300, 300);
REPORTER_ASSERT(reporter, kCurveSegmentMask == p.getSegmentMasks());
REPORTER_ASSERT(reporter, !p.isEmpty());
p2 = p;
REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks());
p.reset();
p.moveTo(0, 0);
p.cubicTo(100, 100, 200, 200, 300, 300);
REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == p.getSegmentMasks());
p2 = p;
REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks());
REPORTER_ASSERT(reporter, !p.isEmpty());
}
static void test_iter(skiatest::Reporter* reporter) {
SkPath p;
SkPoint pts[4];
// Test an iterator with no path
SkPath::Iter noPathIter;
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
// Test that setting an empty path works
noPathIter.setPath(p, false);
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
// Test that close path makes no difference for an empty path
noPathIter.setPath(p, true);
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
// Test an iterator with an initial empty path
SkPath::Iter iter(p, false);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
// Test that close path makes no difference
iter.setPath(p, true);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
struct iterTestData {
const char* testPath;
const bool forceClose;
const bool consumeDegenerates;
const size_t* numResultPtsPerVerb;
const SkPoint* resultPts;
const SkPath::Verb* resultVerbs;
const size_t numResultVerbs;
};
static const SkPath::Verb resultVerbs1[] = { SkPath::kDone_Verb };
static const SkPath::Verb resultVerbs2[] = {
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kDone_Verb
};
static const SkPath::Verb resultVerbs3[] = {
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb
};
static const SkPath::Verb resultVerbs4[] = {
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb
};
static const SkPath::Verb resultVerbs5[] = {
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb
};
static const size_t resultPtsSizes1[] = { 0 };
static const size_t resultPtsSizes2[] = { 1, 2, 2, 0 };
static const size_t resultPtsSizes3[] = { 1, 2, 2, 2, 1, 0 };
static const size_t resultPtsSizes4[] = { 1, 2, 1, 1, 0 };
static const size_t resultPtsSizes5[] = { 1, 2, 1, 1, 1, 0 };
static const SkPoint* resultPts1 = 0;
static const SkPoint resultPts2[] = {
{ SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, SK_Scalar1 }, { SK_Scalar1, SK_Scalar1 }, { 0, SK_Scalar1 }
};
static const SkPoint resultPts3[] = {
{ SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, SK_Scalar1 }, { SK_Scalar1, SK_Scalar1 }, { 0, SK_Scalar1 },
{ 0, SK_Scalar1 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }
};
static const SkPoint resultPts4[] = {
{ SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 }
};
static const SkPoint resultPts5[] = {
{ SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 }
};
static const struct iterTestData gIterTests[] = {
{ "M 1 0", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "M 1 0 M 2 0 M 3 0 M 4 0 M 5 0", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "M 1 0 M 1 0 M 3 0 M 4 0 M 5 0", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "z M 1 0 z z M 2 0 z M 3 0 M 4 0 z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "z M 1 0 z z M 2 0 z M 3 0 M 4 0 z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "M 1 0 L 1 1 L 0 1 M 0 0 z", false, true, resultPtsSizes2, resultPts2, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) },
{ "M 1 0 L 1 1 L 0 1 M 0 0 z", true, true, resultPtsSizes3, resultPts3, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) },
{ "M 1 0 L 1 0 M 0 0 z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "M 1 0 L 1 0 M 0 0 z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
{ "M 1 0 L 1 0 M 0 0 z", false, false, resultPtsSizes4, resultPts4, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) },
{ "M 1 0 L 1 0 M 0 0 z", true, false, resultPtsSizes5, resultPts5, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) }
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gIterTests); ++i) {
p.reset();
bool valid = SkParsePath::FromSVGString(gIterTests[i].testPath, &p);
REPORTER_ASSERT(reporter, valid);
iter.setPath(p, gIterTests[i].forceClose);
int j = 0, l = 0;
do {
REPORTER_ASSERT(reporter, iter.next(pts, gIterTests[i].consumeDegenerates) == gIterTests[i].resultVerbs[j]);
for (int k = 0; k < (int)gIterTests[i].numResultPtsPerVerb[j]; ++k) {
REPORTER_ASSERT(reporter, pts[k] == gIterTests[i].resultPts[l++]);
}
} while (gIterTests[i].resultVerbs[j++] != SkPath::kDone_Verb);
REPORTER_ASSERT(reporter, j == (int)gIterTests[i].numResultVerbs);
}
p.reset();
iter.setPath(p, false);
REPORTER_ASSERT(reporter, !iter.isClosedContour());
p.lineTo(1, 1);
p.close();
iter.setPath(p, false);
REPORTER_ASSERT(reporter, iter.isClosedContour());
p.reset();
iter.setPath(p, true);
REPORTER_ASSERT(reporter, !iter.isClosedContour());
p.lineTo(1, 1);
iter.setPath(p, true);
REPORTER_ASSERT(reporter, iter.isClosedContour());
p.moveTo(0, 0);
p.lineTo(2, 2);
iter.setPath(p, false);
REPORTER_ASSERT(reporter, !iter.isClosedContour());
// this checks to see if the NaN logic is executed in SkPath::autoClose(), but does not
// check to see if the result is correct.
for (int setNaN = 0; setNaN < 4; ++setNaN) {
p.reset();
p.moveTo(setNaN == 0 ? SK_ScalarNaN : 0, setNaN == 1 ? SK_ScalarNaN : 0);
p.lineTo(setNaN == 2 ? SK_ScalarNaN : 1, setNaN == 3 ? SK_ScalarNaN : 1);
iter.setPath(p, true);
iter.next(pts, false);
iter.next(pts, false);
REPORTER_ASSERT(reporter, SkPath::kClose_Verb == iter.next(pts, false));
}
p.reset();
p.quadTo(0, 0, 0, 0);
iter.setPath(p, false);
iter.next(pts, false);
REPORTER_ASSERT(reporter, SkPath::kQuad_Verb == iter.next(pts, false));
iter.setPath(p, false);
iter.next(pts, false);
REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true));
p.reset();
p.conicTo(0, 0, 0, 0, 0.5f);
iter.setPath(p, false);
iter.next(pts, false);
REPORTER_ASSERT(reporter, SkPath::kConic_Verb == iter.next(pts, false));
iter.setPath(p, false);
iter.next(pts, false);
REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true));
p.reset();
p.cubicTo(0, 0, 0, 0, 0, 0);
iter.setPath(p, false);
iter.next(pts, false);
REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == iter.next(pts, false));
iter.setPath(p, false);
iter.next(pts, false);
REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true));
p.moveTo(1, 1); // add a trailing moveto
iter.setPath(p, false);
iter.next(pts, false);
REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == iter.next(pts, false));
iter.setPath(p, false);
iter.next(pts, false);
REPORTER_ASSERT(reporter, SkPath::kDone_Verb == iter.next(pts, true));
// The GM degeneratesegments.cpp test is more extensive
}
static void test_raw_iter(skiatest::Reporter* reporter) {
SkPath p;
SkPoint pts[4];
// Test an iterator with no path
SkPath::RawIter noPathIter;
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
// Test that setting an empty path works
noPathIter.setPath(p);
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
// Test an iterator with an initial empty path
SkPath::RawIter iter(p);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
// Test that a move-only path returns the move.
p.moveTo(SK_Scalar1, 0);
iter.setPath(p);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
REPORTER_ASSERT(reporter, pts[0].fY == 0);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
// No matter how many moves we add, we should get them all back
p.moveTo(SK_Scalar1*2, SK_Scalar1);
p.moveTo(SK_Scalar1*3, SK_Scalar1*2);
iter.setPath(p);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
REPORTER_ASSERT(reporter, pts[0].fY == 0);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2);
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3);
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
// Initial close is never ever stored
p.reset();
p.close();
iter.setPath(p);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
// Move/close sequences
p.reset();
p.close(); // Not stored, no purpose
p.moveTo(SK_Scalar1, 0);
p.close();
p.close(); // Not stored, no purpose
p.moveTo(SK_Scalar1*2, SK_Scalar1);
p.close();
p.moveTo(SK_Scalar1*3, SK_Scalar1*2);
p.moveTo(SK_Scalar1*4, SK_Scalar1*3);
p.close();
iter.setPath(p);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
REPORTER_ASSERT(reporter, pts[0].fY == 0);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
REPORTER_ASSERT(reporter, pts[0].fY == 0);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2);
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2);
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3);
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4);
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4);
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3);
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
// Generate random paths and verify
SkPoint randomPts[25];
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 5; ++j) {
randomPts[i*5+j].set(SK_Scalar1*i, SK_Scalar1*j);
}
}
// Max of 10 segments, max 3 points per segment
SkRandom rand(9876543);
SkPoint expectedPts[31]; // May have leading moveTo
SkPath::Verb expectedVerbs[22]; // May have leading moveTo
SkPath::Verb nextVerb;
for (int i = 0; i < 500; ++i) {
p.reset();
bool lastWasClose = true;
bool haveMoveTo = false;
SkPoint lastMoveToPt = { 0, 0 };
int numPoints = 0;
int numVerbs = (rand.nextU() >> 16) % 10;
int numIterVerbs = 0;
for (int j = 0; j < numVerbs; ++j) {
do {
nextVerb = static_cast<SkPath::Verb>((rand.nextU() >> 16) % SkPath::kDone_Verb);
} while (lastWasClose && nextVerb == SkPath::kClose_Verb);
switch (nextVerb) {
case SkPath::kMove_Verb:
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
p.moveTo(expectedPts[numPoints]);
lastMoveToPt = expectedPts[numPoints];
numPoints += 1;
lastWasClose = false;
haveMoveTo = true;
break;
case SkPath::kLine_Verb:
if (!haveMoveTo) {
expectedPts[numPoints++] = lastMoveToPt;
expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb;
haveMoveTo = true;
}
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
p.lineTo(expectedPts[numPoints]);
numPoints += 1;
lastWasClose = false;
break;
case SkPath::kQuad_Verb:
if (!haveMoveTo) {
expectedPts[numPoints++] = lastMoveToPt;
expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb;
haveMoveTo = true;
}
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25];
p.quadTo(expectedPts[numPoints], expectedPts[numPoints + 1]);
numPoints += 2;
lastWasClose = false;
break;
case SkPath::kConic_Verb:
if (!haveMoveTo) {
expectedPts[numPoints++] = lastMoveToPt;
expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb;
haveMoveTo = true;
}
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25];
p.conicTo(expectedPts[numPoints], expectedPts[numPoints + 1],
rand.nextUScalar1() * 4);
numPoints += 2;
lastWasClose = false;
break;
case SkPath::kCubic_Verb:
if (!haveMoveTo) {
expectedPts[numPoints++] = lastMoveToPt;
expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb;
haveMoveTo = true;
}
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25];
expectedPts[numPoints + 2] = randomPts[(rand.nextU() >> 16) % 25];
p.cubicTo(expectedPts[numPoints], expectedPts[numPoints + 1],
expectedPts[numPoints + 2]);
numPoints += 3;
lastWasClose = false;
break;
case SkPath::kClose_Verb:
p.close();
haveMoveTo = false;
lastWasClose = true;
break;
default:
SkDEBUGFAIL("unexpected verb");
}
expectedVerbs[numIterVerbs++] = nextVerb;
}
iter.setPath(p);
numVerbs = numIterVerbs;
numIterVerbs = 0;
int numIterPts = 0;
SkPoint lastMoveTo;
SkPoint lastPt;
lastMoveTo.set(0, 0);
lastPt.set(0, 0);
while ((nextVerb = iter.next(pts)) != SkPath::kDone_Verb) {
REPORTER_ASSERT(reporter, nextVerb == expectedVerbs[numIterVerbs]);
numIterVerbs++;
switch (nextVerb) {
case SkPath::kMove_Verb:
REPORTER_ASSERT(reporter, numIterPts < numPoints);
REPORTER_ASSERT(reporter, pts[0] == expectedPts[numIterPts]);
lastPt = lastMoveTo = pts[0];
numIterPts += 1;
break;
case SkPath::kLine_Verb:
REPORTER_ASSERT(reporter, numIterPts < numPoints + 1);
REPORTER_ASSERT(reporter, pts[0] == lastPt);
REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]);
lastPt = pts[1];
numIterPts += 1;
break;
case SkPath::kQuad_Verb:
case SkPath::kConic_Verb:
REPORTER_ASSERT(reporter, numIterPts < numPoints + 2);
REPORTER_ASSERT(reporter, pts[0] == lastPt);
REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]);
REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]);
lastPt = pts[2];
numIterPts += 2;
break;
case SkPath::kCubic_Verb:
REPORTER_ASSERT(reporter, numIterPts < numPoints + 3);
REPORTER_ASSERT(reporter, pts[0] == lastPt);
REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]);
REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]);
REPORTER_ASSERT(reporter, pts[3] == expectedPts[numIterPts + 2]);
lastPt = pts[3];
numIterPts += 3;
break;
case SkPath::kClose_Verb:
REPORTER_ASSERT(reporter, pts[0] == lastMoveTo);
lastPt = lastMoveTo;
break;
default:
SkDEBUGFAIL("unexpected verb");
}
}
REPORTER_ASSERT(reporter, numIterPts == numPoints);
REPORTER_ASSERT(reporter, numIterVerbs == numVerbs);
}
}
static void check_for_circle(skiatest::Reporter* reporter,
const SkPath& path,
bool expectedCircle,
SkPath::Direction expectedDir) {
SkRect rect;
REPORTER_ASSERT(reporter, path.isOval(&rect) == expectedCircle);
REPORTER_ASSERT(reporter, path.cheapIsDirection(expectedDir));
if (expectedCircle) {
REPORTER_ASSERT(reporter, rect.height() == rect.width());
}
}
static void test_circle_skew(skiatest::Reporter* reporter,
const SkPath& path,
SkPath::Direction dir) {
SkPath tmp;
SkMatrix m;
m.setSkew(SkIntToScalar(3), SkIntToScalar(5));
path.transform(m, &tmp);
// this matrix reverses the direction.
if (SkPath::kCCW_Direction == dir) {
dir = SkPath::kCW_Direction;
} else {
REPORTER_ASSERT(reporter, SkPath::kCW_Direction == dir);
dir = SkPath::kCCW_Direction;
}
check_for_circle(reporter, tmp, false, dir);
}
static void test_circle_translate(skiatest::Reporter* reporter,
const SkPath& path,
SkPath::Direction dir) {
SkPath tmp;
// translate at small offset
SkMatrix m;
m.setTranslate(SkIntToScalar(15), SkIntToScalar(15));
path.transform(m, &tmp);
check_for_circle(reporter, tmp, true, dir);
tmp.reset();
m.reset();
// translate at a relatively big offset
m.setTranslate(SkIntToScalar(1000), SkIntToScalar(1000));
path.transform(m, &tmp);
check_for_circle(reporter, tmp, true, dir);
}
static void test_circle_rotate(skiatest::Reporter* reporter,
const SkPath& path,
SkPath::Direction dir) {
for (int angle = 0; angle < 360; ++angle) {
SkPath tmp;
SkMatrix m;
m.setRotate(SkIntToScalar(angle));
path.transform(m, &tmp);
// TODO: a rotated circle whose rotated angle is not a multiple of 90
// degrees is not an oval anymore, this can be improved. we made this
// for the simplicity of our implementation.
if (angle % 90 == 0) {
check_for_circle(reporter, tmp, true, dir);
} else {
check_for_circle(reporter, tmp, false, dir);
}
}
}
static void test_circle_mirror_x(skiatest::Reporter* reporter,
const SkPath& path,
SkPath::Direction dir) {
SkPath tmp;
SkMatrix m;
m.reset();
m.setScaleX(-SK_Scalar1);
path.transform(m, &tmp);
if (SkPath::kCW_Direction == dir) {
dir = SkPath::kCCW_Direction;
} else {
REPORTER_ASSERT(reporter, SkPath::kCCW_Direction == dir);
dir = SkPath::kCW_Direction;
}
check_for_circle(reporter, tmp, true, dir);
}
static void test_circle_mirror_y(skiatest::Reporter* reporter,
const SkPath& path,
SkPath::Direction dir) {
SkPath tmp;
SkMatrix m;
m.reset();
m.setScaleY(-SK_Scalar1);
path.transform(m, &tmp);
if (SkPath::kCW_Direction == dir) {
dir = SkPath::kCCW_Direction;
} else {
REPORTER_ASSERT(reporter, SkPath::kCCW_Direction == dir);
dir = SkPath::kCW_Direction;
}
check_for_circle(reporter, tmp, true, dir);
}
static void test_circle_mirror_xy(skiatest::Reporter* reporter,
const SkPath& path,
SkPath::Direction dir) {
SkPath tmp;
SkMatrix m;
m.reset();
m.setScaleX(-SK_Scalar1);
m.setScaleY(-SK_Scalar1);
path.transform(m, &tmp);
check_for_circle(reporter, tmp, true, dir);
}
static void test_circle_with_direction(skiatest::Reporter* reporter,
SkPath::Direction dir) {
SkPath path;
// circle at origin
path.addCircle(0, 0, SkIntToScalar(20), dir);
check_for_circle(reporter, path, true, dir);
test_circle_rotate(reporter, path, dir);
test_circle_translate(reporter, path, dir);
test_circle_skew(reporter, path, dir);
// circle at an offset at (10, 10)
path.reset();
path.addCircle(SkIntToScalar(10), SkIntToScalar(10),
SkIntToScalar(20), dir);
check_for_circle(reporter, path, true, dir);
test_circle_rotate(reporter, path, dir);
test_circle_translate(reporter, path, dir);
test_circle_skew(reporter, path, dir);
test_circle_mirror_x(reporter, path, dir);
test_circle_mirror_y(reporter, path, dir);
test_circle_mirror_xy(reporter, path, dir);
}
static void test_circle_with_add_paths(skiatest::Reporter* reporter) {
SkPath path;
SkPath circle;
SkPath rect;
SkPath empty;
static const SkPath::Direction kCircleDir = SkPath::kCW_Direction;
static const SkPath::Direction kCircleDirOpposite = SkPath::kCCW_Direction;
circle.addCircle(0, 0, SkIntToScalar(10), kCircleDir);
rect.addRect(SkIntToScalar(5), SkIntToScalar(5),
SkIntToScalar(20), SkIntToScalar(20), SkPath::kCW_Direction);
SkMatrix translate;
translate.setTranslate(SkIntToScalar(12), SkIntToScalar(12));
// For simplicity, all the path concatenation related operations
// would mark it non-circle, though in theory it's still a circle.
// empty + circle (translate)
path = empty;
path.addPath(circle, translate);
check_for_circle(reporter, path, false, kCircleDir);
// circle + empty (translate)
path = circle;
path.addPath(empty, translate);
check_for_circle(reporter, path, false, kCircleDir);
// test reverseAddPath
path = circle;
path.reverseAddPath(rect);
check_for_circle(reporter, path, false, kCircleDirOpposite);
}
static void test_circle(skiatest::Reporter* reporter) {
test_circle_with_direction(reporter, SkPath::kCW_Direction);
test_circle_with_direction(reporter, SkPath::kCCW_Direction);
// multiple addCircle()
SkPath path;
path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction);
path.addCircle(0, 0, SkIntToScalar(20), SkPath::kCW_Direction);
check_for_circle(reporter, path, false, SkPath::kCW_Direction);
// some extra lineTo() would make isOval() fail
path.reset();
path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction);
path.lineTo(0, 0);
check_for_circle(reporter, path, false, SkPath::kCW_Direction);
// not back to the original point
path.reset();
path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction);
path.setLastPt(SkIntToScalar(5), SkIntToScalar(5));
check_for_circle(reporter, path, false, SkPath::kCW_Direction);
test_circle_with_add_paths(reporter);
// test negative radius
path.reset();
path.addCircle(0, 0, -1, SkPath::kCW_Direction);
REPORTER_ASSERT(reporter, path.isEmpty());
}
static void test_oval(skiatest::Reporter* reporter) {
SkRect rect;
SkMatrix m;
SkPath path;
rect = SkRect::MakeWH(SkIntToScalar(30), SkIntToScalar(50));
path.addOval(rect);
REPORTER_ASSERT(reporter, path.isOval(NULL));
m.setRotate(SkIntToScalar(90));
SkPath tmp;
path.transform(m, &tmp);
// an oval rotated 90 degrees is still an oval.
REPORTER_ASSERT(reporter, tmp.isOval(NULL));
m.reset();
m.setRotate(SkIntToScalar(30));
tmp.reset();
path.transform(m, &tmp);
// an oval rotated 30 degrees is not an oval anymore.
REPORTER_ASSERT(reporter, !tmp.isOval(NULL));
// since empty path being transformed.
path.reset();
tmp.reset();
m.reset();
path.transform(m, &tmp);
REPORTER_ASSERT(reporter, !tmp.isOval(NULL));
// empty path is not an oval
tmp.reset();
REPORTER_ASSERT(reporter, !tmp.isOval(NULL));
// only has moveTo()s
tmp.reset();
tmp.moveTo(0, 0);
tmp.moveTo(SkIntToScalar(10), SkIntToScalar(10));
REPORTER_ASSERT(reporter, !tmp.isOval(NULL));
// mimic WebKit's calling convention,
// call moveTo() first and then call addOval()
path.reset();
path.moveTo(0, 0);
path.addOval(rect);
REPORTER_ASSERT(reporter, path.isOval(NULL));
// copy path
path.reset();
tmp.reset();
tmp.addOval(rect);
path = tmp;
REPORTER_ASSERT(reporter, path.isOval(NULL));
}
static void test_empty(skiatest::Reporter* reporter, const SkPath& p) {
SkPath empty;
REPORTER_ASSERT(reporter, p.isEmpty());
REPORTER_ASSERT(reporter, 0 == p.countPoints());
REPORTER_ASSERT(reporter, 0 == p.countVerbs());
REPORTER_ASSERT(reporter, 0 == p.getSegmentMasks());
REPORTER_ASSERT(reporter, p.isConvex());
REPORTER_ASSERT(reporter, p.getFillType() == SkPath::kWinding_FillType);
REPORTER_ASSERT(reporter, !p.isInverseFillType());
REPORTER_ASSERT(reporter, p == empty);
REPORTER_ASSERT(reporter, !(p != empty));
}
static void test_rrect_is_convex(skiatest::Reporter* reporter, SkPath* path,
SkPath::Direction dir) {
REPORTER_ASSERT(reporter, path->isConvex());
REPORTER_ASSERT(reporter, path->cheapIsDirection(dir));
path->setConvexity(SkPath::kUnknown_Convexity);
REPORTER_ASSERT(reporter, path->isConvex());
path->reset();
}
static void test_rrect(skiatest::Reporter* reporter) {
SkPath p;
SkRRect rr;
SkVector radii[] = {{1, 2}, {3, 4}, {5, 6}, {7, 8}};
SkRect r = {10, 20, 30, 40};
rr.setRectRadii(r, radii);
p.addRRect(rr);
test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction);
p.addRRect(rr, SkPath::kCCW_Direction);
test_rrect_is_convex(reporter, &p, SkPath::kCCW_Direction);
p.addRoundRect(r, &radii[0].fX);
test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction);
p.addRoundRect(r, &radii[0].fX, SkPath::kCCW_Direction);
test_rrect_is_convex(reporter, &p, SkPath::kCCW_Direction);
p.addRoundRect(r, radii[1].fX, radii[1].fY);
test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction);
p.addRoundRect(r, radii[1].fX, radii[1].fY, SkPath::kCCW_Direction);
test_rrect_is_convex(reporter, &p, SkPath::kCCW_Direction);
for (size_t i = 0; i < SK_ARRAY_COUNT(radii); ++i) {
SkVector save = radii[i];
radii[i].set(0, 0);
rr.setRectRadii(r, radii);
p.addRRect(rr);
test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction);
radii[i] = save;
}
p.addRoundRect(r, 0, 0);
SkRect returnedRect;
REPORTER_ASSERT(reporter, p.isRect(&returnedRect));
REPORTER_ASSERT(reporter, returnedRect == r);
test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction);
SkVector zeroRadii[] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}};
rr.setRectRadii(r, zeroRadii);
p.addRRect(rr);
bool closed;
SkPath::Direction dir;
REPORTER_ASSERT(reporter, p.isRect(&closed, &dir));
REPORTER_ASSERT(reporter, closed);
REPORTER_ASSERT(reporter, SkPath::kCW_Direction == dir);
test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction);
p.addRRect(rr, SkPath::kCW_Direction);
p.addRRect(rr, SkPath::kCW_Direction);
REPORTER_ASSERT(reporter, !p.isConvex());
p.reset();
p.addRRect(rr, SkPath::kCCW_Direction);
p.addRRect(rr, SkPath::kCCW_Direction);
REPORTER_ASSERT(reporter, !p.isConvex());
p.reset();
SkRect emptyR = {10, 20, 10, 30};
rr.setRectRadii(emptyR, radii);
p.addRRect(rr);
REPORTER_ASSERT(reporter, p.isEmpty());
SkRect largeR = {0, 0, SK_ScalarMax, SK_ScalarMax};
rr.setRectRadii(largeR, radii);
p.addRRect(rr);
test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction);
SkRect infR = {0, 0, SK_ScalarMax, SK_ScalarInfinity};
rr.setRectRadii(infR, radii);
p.addRRect(rr);
test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction);
SkRect tinyR = {0, 0, 1e-9f, 1e-9f};
p.addRoundRect(tinyR, 5e-11f, 5e-11f);
test_rrect_is_convex(reporter, &p, SkPath::kCW_Direction);
}
static void test_arc(skiatest::Reporter* reporter) {
SkPath p;
SkRect emptyOval = {10, 20, 30, 20};
REPORTER_ASSERT(reporter, emptyOval.isEmpty());
p.addArc(emptyOval, 1, 2);
REPORTER_ASSERT(reporter, p.isEmpty());
p.reset();
SkRect oval = {10, 20, 30, 40};
p.addArc(oval, 1, 0);
REPORTER_ASSERT(reporter, p.isEmpty());
p.reset();
SkPath cwOval;
cwOval.addOval(oval);
p.addArc(oval, 1, 360);
REPORTER_ASSERT(reporter, p == cwOval);
p.reset();
SkPath ccwOval;
ccwOval.addOval(oval, SkPath::kCCW_Direction);
p.addArc(oval, 1, -360);
REPORTER_ASSERT(reporter, p == ccwOval);
p.reset();
p.addArc(oval, 1, 180);
REPORTER_ASSERT(reporter, p.isConvex());
REPORTER_ASSERT(reporter, p.cheapIsDirection(SkPath::kCW_Direction));
p.setConvexity(SkPath::kUnknown_Convexity);
REPORTER_ASSERT(reporter, p.isConvex());
}
static void check_move(skiatest::Reporter* reporter, SkPath::RawIter* iter,
SkScalar x0, SkScalar y0) {
SkPoint pts[4];
SkPath::Verb v = iter->next(pts);
REPORTER_ASSERT(reporter, v == SkPath::kMove_Verb);
REPORTER_ASSERT(reporter, pts[0].fX == x0);
REPORTER_ASSERT(reporter, pts[0].fY == y0);
}
static void check_line(skiatest::Reporter* reporter, SkPath::RawIter* iter,
SkScalar x1, SkScalar y1) {
SkPoint pts[4];
SkPath::Verb v = iter->next(pts);
REPORTER_ASSERT(reporter, v == SkPath::kLine_Verb);
REPORTER_ASSERT(reporter, pts[1].fX == x1);
REPORTER_ASSERT(reporter, pts[1].fY == y1);
}
static void check_quad(skiatest::Reporter* reporter, SkPath::RawIter* iter,
SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) {
SkPoint pts[4];
SkPath::Verb v = iter->next(pts);
REPORTER_ASSERT(reporter, v == SkPath::kQuad_Verb);
REPORTER_ASSERT(reporter, pts[1].fX == x1);
REPORTER_ASSERT(reporter, pts[1].fY == y1);
REPORTER_ASSERT(reporter, pts[2].fX == x2);
REPORTER_ASSERT(reporter, pts[2].fY == y2);
}
static void check_done(skiatest::Reporter* reporter, SkPath* p, SkPath::RawIter* iter) {
SkPoint pts[4];
SkPath::Verb v = iter->next(pts);
REPORTER_ASSERT(reporter, v == SkPath::kDone_Verb);
}
static void check_done_and_reset(skiatest::Reporter* reporter, SkPath* p, SkPath::RawIter* iter) {
check_done(reporter, p, iter);
p->reset();
}
static void check_path_is_move_and_reset(skiatest::Reporter* reporter, SkPath* p,
SkScalar x0, SkScalar y0) {
SkPath::RawIter iter(*p);
check_move(reporter, &iter, x0, y0);
check_done_and_reset(reporter, p, &iter);
}
static void check_path_is_line_and_reset(skiatest::Reporter* reporter, SkPath* p,
SkScalar x1, SkScalar y1) {
SkPath::RawIter iter(*p);
check_move(reporter, &iter, 0, 0);
check_line(reporter, &iter, x1, y1);
check_done_and_reset(reporter, p, &iter);
}
static void check_path_is_line(skiatest::Reporter* reporter, SkPath* p,
SkScalar x1, SkScalar y1) {
SkPath::RawIter iter(*p);
check_move(reporter, &iter, 0, 0);
check_line(reporter, &iter, x1, y1);
check_done(reporter, p, &iter);
}
static void check_path_is_line_pair_and_reset(skiatest::Reporter* reporter, SkPath* p,
SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) {
SkPath::RawIter iter(*p);
check_move(reporter, &iter, 0, 0);
check_line(reporter, &iter, x1, y1);
check_line(reporter, &iter, x2, y2);
check_done_and_reset(reporter, p, &iter);
}
static void check_path_is_quad_and_reset(skiatest::Reporter* reporter, SkPath* p,
SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) {
SkPath::RawIter iter(*p);
check_move(reporter, &iter, 0, 0);
check_quad(reporter, &iter, x1, y1, x2, y2);
check_done_and_reset(reporter, p, &iter);
}
static void test_arcTo(skiatest::Reporter* reporter) {
SkPath p;
p.arcTo(0, 0, 1, 2, 1);
check_path_is_line_and_reset(reporter, &p, 0, 0);
p.arcTo(1, 2, 1, 2, 1);
check_path_is_line_and_reset(reporter, &p, 1, 2);
p.arcTo(1, 2, 3, 4, 0);
check_path_is_line_and_reset(reporter, &p, 1, 2);
p.arcTo(1, 2, 0, 0, 1);
check_path_is_line_and_reset(reporter, &p, 1, 2);
p.arcTo(1, 0, 1, 1, 1);
SkPoint pt;
REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt.fX == 1 && pt.fY == 1);
p.reset();
p.arcTo(1, 0, 1, -1, 1);
REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt.fX == 1 && pt.fY == -1);
p.reset();
SkRect oval = {1, 2, 3, 4};
p.arcTo(oval, 0, 0, true);
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());
p.arcTo(oval, 0, 0, false);
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());
p.arcTo(oval, 360, 0, true);
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());
p.arcTo(oval, 360, 0, false);
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());
for (float sweep = 359, delta = 0.5f; sweep != (float) (sweep + delta); ) {
p.arcTo(oval, 0, SkFloatToScalar(sweep), false);
REPORTER_ASSERT(reporter, p.getBounds() == oval);
sweep += delta;
delta /= 2;
}
for (float sweep = 361, delta = 0.5f; sweep != (float) (sweep - delta);) {
p.arcTo(oval, 0, SkFloatToScalar(sweep), false);
REPORTER_ASSERT(reporter, p.getBounds() == oval);
sweep -= delta;
delta /= 2;
}
SkRect noOvalWidth = {1, 2, 0, 3};
p.reset();
p.arcTo(noOvalWidth, 0, 360, false);
REPORTER_ASSERT(reporter, p.isEmpty());
SkRect noOvalHeight = {1, 2, 3, 1};
p.reset();
p.arcTo(noOvalHeight, 0, 360, false);
REPORTER_ASSERT(reporter, p.isEmpty());
}
static void test_addPath(skiatest::Reporter* reporter) {
SkPath p, q;
p.lineTo(1, 2);
q.moveTo(4, 4);
q.lineTo(7, 8);
q.conicTo(8, 7, 6, 5, 0.5f);
q.quadTo(6, 7, 8, 6);
q.cubicTo(5, 6, 7, 8, 7, 5);
q.close();
p.addPath(q, -4, -4);
SkRect expected = {0, 0, 4, 4};
REPORTER_ASSERT(reporter, p.getBounds() == expected);
p.reset();
p.reverseAddPath(q);
SkRect reverseExpected = {4, 4, 8, 8};
REPORTER_ASSERT(reporter, p.getBounds() == reverseExpected);
}
static void test_conicTo_special_case(skiatest::Reporter* reporter) {
SkPath p;
p.conicTo(1, 2, 3, 4, -1);
check_path_is_line_and_reset(reporter, &p, 3, 4);
p.conicTo(1, 2, 3, 4, SK_ScalarInfinity);
check_path_is_line_pair_and_reset(reporter, &p, 1, 2, 3, 4);
p.conicTo(1, 2, 3, 4, 1);
check_path_is_quad_and_reset(reporter, &p, 1, 2, 3, 4);
}
static void test_get_point(skiatest::Reporter* reporter) {
SkPath p;
SkPoint pt = p.getPoint(0);
REPORTER_ASSERT(reporter, pt == SkPoint::Make(0, 0));
REPORTER_ASSERT(reporter, !p.getLastPt(NULL));
REPORTER_ASSERT(reporter, !p.getLastPt(&pt) && pt == SkPoint::Make(0, 0));
p.setLastPt(10, 10);
pt = p.getPoint(0);
REPORTER_ASSERT(reporter, pt == SkPoint::Make(10, 10));
REPORTER_ASSERT(reporter, p.getLastPt(NULL));
p.rMoveTo(10, 10);
REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt == SkPoint::Make(20, 20));
}
static void test_contains(skiatest::Reporter* reporter) {
SkPath p;
p.setFillType(SkPath::kInverseWinding_FillType);
REPORTER_ASSERT(reporter, p.contains(0, 0));
p.setFillType(SkPath::kWinding_FillType);
REPORTER_ASSERT(reporter, !p.contains(0, 0));
p.moveTo(4, 4);
p.lineTo(6, 8);
p.lineTo(8, 4);
// test quick reject
REPORTER_ASSERT(reporter, !p.contains(4, 0));
REPORTER_ASSERT(reporter, !p.contains(0, 4));
REPORTER_ASSERT(reporter, !p.contains(4, 10));
REPORTER_ASSERT(reporter, !p.contains(10, 4));
// test various crossings in x
REPORTER_ASSERT(reporter, !p.contains(5, 7));
REPORTER_ASSERT(reporter, p.contains(6, 7));
REPORTER_ASSERT(reporter, !p.contains(7, 7));
p.reset();
p.moveTo(4, 4);
p.lineTo(8, 6);
p.lineTo(4, 8);
// test various crossings in y
REPORTER_ASSERT(reporter, !p.contains(7, 5));
REPORTER_ASSERT(reporter, p.contains(7, 6));
REPORTER_ASSERT(reporter, !p.contains(7, 7));
// test quads
p.reset();
p.moveTo(4, 4);
p.quadTo(6, 6, 8, 8);
p.quadTo(6, 8, 4, 8);
p.quadTo(4, 6, 4, 4);
REPORTER_ASSERT(reporter, p.contains(5, 6));
REPORTER_ASSERT(reporter, !p.contains(6, 5));
p.reset();
p.moveTo(6, 6);
p.quadTo(8, 8, 6, 8);
p.quadTo(4, 8, 4, 6);
p.quadTo(4, 4, 6, 6);
REPORTER_ASSERT(reporter, p.contains(5, 6));
REPORTER_ASSERT(reporter, !p.contains(6, 5));
#define CONIC_CONTAINS_BUG_FIXED 0
#if CONIC_CONTAINS_BUG_FIXED
p.reset();
p.moveTo(4, 4);
p.conicTo(6, 6, 8, 8, 0.5f);
p.conicTo(6, 8, 4, 8, 0.5f);
p.conicTo(4, 6, 4, 4, 0.5f);
REPORTER_ASSERT(reporter, p.contains(5, 6));
REPORTER_ASSERT(reporter, !p.contains(6, 5));
#endif
// test cubics
SkPoint pts[] = {{5, 4}, {6, 5}, {7, 6}, {6, 6}, {4, 6}, {5, 7}, {5, 5}, {5, 4}, {6, 5}, {7, 6}};
for (int i = 0; i < 3; ++i) {
p.reset();
p.setFillType(SkPath::kEvenOdd_FillType);
p.moveTo(pts[i].fX, pts[i].fY);
p.cubicTo(pts[i + 1].fX, pts[i + 1].fY, pts[i + 2].fX, pts[i + 2].fY, pts[i + 3].fX, pts[i + 3].fY);
p.cubicTo(pts[i + 4].fX, pts[i + 4].fY, pts[i + 5].fX, pts[i + 5].fY, pts[i + 6].fX, pts[i + 6].fY);
p.close();
REPORTER_ASSERT(reporter, p.contains(5.5f, 5.5f));
REPORTER_ASSERT(reporter, !p.contains(4.5f, 5.5f));
}
}
static void test_operatorEqual(skiatest::Reporter* reporter) {
SkPath a;
SkPath b;
REPORTER_ASSERT(reporter, a == a);
REPORTER_ASSERT(reporter, a == b);
a.setFillType(SkPath::kInverseWinding_FillType);
REPORTER_ASSERT(reporter, a != b);
a.reset();
REPORTER_ASSERT(reporter, a == b);
a.lineTo(1, 1);
REPORTER_ASSERT(reporter, a != b);
a.reset();
REPORTER_ASSERT(reporter, a == b);
a.lineTo(1, 1);
b.lineTo(1, 2);
REPORTER_ASSERT(reporter, a != b);
a.reset();
a.lineTo(1, 2);
REPORTER_ASSERT(reporter, a == b);
}
class PathTest_Private {
public:
static void TestPathTo(skiatest::Reporter* reporter) {
SkPath p, q;
p.lineTo(4, 4);
p.reversePathTo(q);
check_path_is_line(reporter, &p, 4, 4);
q.moveTo(-4, -4);
p.reversePathTo(q);
check_path_is_line(reporter, &p, 4, 4);
q.lineTo(7, 8);
q.conicTo(8, 7, 6, 5, 0.5f);
q.quadTo(6, 7, 8, 6);
q.cubicTo(5, 6, 7, 8, 7, 5);
q.close();
p.reversePathTo(q);
SkRect reverseExpected = {-4, -4, 8, 8};
REPORTER_ASSERT(reporter, p.getBounds() == reverseExpected);
}
};
static void TestPath(skiatest::Reporter* reporter) {
SkTSize<SkScalar>::Make(3,4);
SkPath p, empty;
SkRect bounds, bounds2;
test_empty(reporter, p);
REPORTER_ASSERT(reporter, p.getBounds().isEmpty());
// this triggers a code path in SkPath::operator= which is otherwise unexercised
SkPath& self = p;
p = self;
// this triggers a code path in SkPath::swap which is otherwise unexercised
p.swap(self);
bounds.set(0, 0, SK_Scalar1, SK_Scalar1);
p.addRoundRect(bounds, SK_Scalar1, SK_Scalar1);
check_convex_bounds(reporter, p, bounds);
// we have quads or cubics
REPORTER_ASSERT(reporter, p.getSegmentMasks() & kCurveSegmentMask);
REPORTER_ASSERT(reporter, !p.isEmpty());
p.reset();
test_empty(reporter, p);
p.addOval(bounds);
check_convex_bounds(reporter, p, bounds);
REPORTER_ASSERT(reporter, !p.isEmpty());
p.rewind();
test_empty(reporter, p);
p.addRect(bounds);
check_convex_bounds(reporter, p, bounds);
// we have only lines
REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == p.getSegmentMasks());
REPORTER_ASSERT(reporter, !p.isEmpty());
REPORTER_ASSERT(reporter, p != empty);
REPORTER_ASSERT(reporter, !(p == empty));
// do getPoints and getVerbs return the right result
REPORTER_ASSERT(reporter, p.getPoints(NULL, 0) == 4);
REPORTER_ASSERT(reporter, p.getVerbs(NULL, 0) == 5);
SkPoint pts[4];
int count = p.getPoints(pts, 4);
REPORTER_ASSERT(reporter, count == 4);
uint8_t verbs[6];
verbs[5] = 0xff;
p.getVerbs(verbs, 5);
REPORTER_ASSERT(reporter, SkPath::kMove_Verb == verbs[0]);
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[1]);
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[2]);
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[3]);
REPORTER_ASSERT(reporter, SkPath::kClose_Verb == verbs[4]);
REPORTER_ASSERT(reporter, 0xff == verbs[5]);
bounds2.set(pts, 4);
REPORTER_ASSERT(reporter, bounds == bounds2);
bounds.offset(SK_Scalar1*3, SK_Scalar1*4);
p.offset(SK_Scalar1*3, SK_Scalar1*4);
REPORTER_ASSERT(reporter, bounds == p.getBounds());
REPORTER_ASSERT(reporter, p.isRect(NULL));
bounds2.setEmpty();
REPORTER_ASSERT(reporter, p.isRect(&bounds2));
REPORTER_ASSERT(reporter, bounds == bounds2);
// now force p to not be a rect
bounds.set(0, 0, SK_Scalar1/2, SK_Scalar1/2);
p.addRect(bounds);
REPORTER_ASSERT(reporter, !p.isRect(NULL));
test_operatorEqual(reporter);
test_isLine(reporter);
test_isRect(reporter);
test_isNestedRects(reporter);
test_zero_length_paths(reporter);
test_direction(reporter);
test_convexity(reporter);
test_convexity2(reporter);
test_conservativelyContains(reporter);
test_close(reporter);
test_segment_masks(reporter);
test_flattening(reporter);
test_transform(reporter);
test_bounds(reporter);
test_iter(reporter);
test_raw_iter(reporter);
test_circle(reporter);
test_oval(reporter);
test_strokerec(reporter);
test_addPoly(reporter);
test_isfinite(reporter);
test_isfinite_after_transform(reporter);
test_arb_round_rect_is_convex(reporter);
test_arb_zero_rad_round_rect_is_rect(reporter);
test_addrect(reporter);
test_addrect_isfinite(reporter);
test_tricky_cubic();
test_clipped_cubic();
test_crbug_170666();
test_bad_cubic_crbug229478();
test_bad_cubic_crbug234190();
test_android_specific_behavior(reporter);
test_gen_id(reporter);
test_path_close_issue1474(reporter);
test_path_to_region(reporter);
test_rrect(reporter);
test_arc(reporter);
test_arcTo(reporter);
test_addPath(reporter);
test_conicTo_special_case(reporter);
test_get_point(reporter);
test_contains(reporter);
PathTest_Private::TestPathTo(reporter);
}
#include "TestClassDef.h"
DEFINE_TESTCLASS("Path", PathTestClass, TestPath)