зеркало из https://github.com/mozilla/moz-skia.git
836 строки
31 KiB
C++
836 строки
31 KiB
C++
/*
|
|
* Copyright 2011 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
#include "SkMath.h"
|
|
#include "SkMatrix.h"
|
|
#include "SkMatrixUtils.h"
|
|
#include "SkRandom.h"
|
|
#include "Test.h"
|
|
|
|
static bool nearly_equal_scalar(SkScalar a, SkScalar b) {
|
|
const SkScalar tolerance = SK_Scalar1 / 200000;
|
|
return SkScalarAbs(a - b) <= tolerance;
|
|
}
|
|
|
|
static bool nearly_equal(const SkMatrix& a, const SkMatrix& b) {
|
|
for (int i = 0; i < 9; i++) {
|
|
if (!nearly_equal_scalar(a[i], b[i])) {
|
|
SkDebugf("not equal %g %g\n", (float)a[i], (float)b[i]);
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool are_equal(skiatest::Reporter* reporter,
|
|
const SkMatrix& a,
|
|
const SkMatrix& b) {
|
|
bool equal = a == b;
|
|
bool cheapEqual = a.cheapEqualTo(b);
|
|
if (equal != cheapEqual) {
|
|
if (equal) {
|
|
bool foundZeroSignDiff = false;
|
|
for (int i = 0; i < 9; ++i) {
|
|
float aVal = a.get(i);
|
|
float bVal = b.get(i);
|
|
int aValI = *SkTCast<int*>(&aVal);
|
|
int bValI = *SkTCast<int*>(&bVal);
|
|
if (0 == aVal && 0 == bVal && aValI != bValI) {
|
|
foundZeroSignDiff = true;
|
|
} else {
|
|
REPORTER_ASSERT(reporter, aVal == bVal && aValI == aValI);
|
|
}
|
|
}
|
|
REPORTER_ASSERT(reporter, foundZeroSignDiff);
|
|
} else {
|
|
bool foundNaN = false;
|
|
for (int i = 0; i < 9; ++i) {
|
|
float aVal = a.get(i);
|
|
float bVal = b.get(i);
|
|
int aValI = *SkTCast<int*>(&aVal);
|
|
int bValI = *SkTCast<int*>(&bVal);
|
|
if (sk_float_isnan(aVal) && aValI == bValI) {
|
|
foundNaN = true;
|
|
} else {
|
|
REPORTER_ASSERT(reporter, aVal == bVal && aValI == bValI);
|
|
}
|
|
}
|
|
REPORTER_ASSERT(reporter, foundNaN);
|
|
}
|
|
}
|
|
return equal;
|
|
}
|
|
|
|
static bool is_identity(const SkMatrix& m) {
|
|
SkMatrix identity;
|
|
identity.reset();
|
|
return nearly_equal(m, identity);
|
|
}
|
|
|
|
static void test_matrix_recttorect(skiatest::Reporter* reporter) {
|
|
SkRect src, dst;
|
|
SkMatrix matrix;
|
|
|
|
src.set(0, 0, SK_Scalar1*10, SK_Scalar1*10);
|
|
dst = src;
|
|
matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit);
|
|
REPORTER_ASSERT(reporter, SkMatrix::kIdentity_Mask == matrix.getType());
|
|
REPORTER_ASSERT(reporter, matrix.rectStaysRect());
|
|
|
|
dst.offset(SK_Scalar1, SK_Scalar1);
|
|
matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit);
|
|
REPORTER_ASSERT(reporter, SkMatrix::kTranslate_Mask == matrix.getType());
|
|
REPORTER_ASSERT(reporter, matrix.rectStaysRect());
|
|
|
|
dst.fRight += SK_Scalar1;
|
|
matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit);
|
|
REPORTER_ASSERT(reporter,
|
|
(SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask) == matrix.getType());
|
|
REPORTER_ASSERT(reporter, matrix.rectStaysRect());
|
|
|
|
dst = src;
|
|
dst.fRight = src.fRight * 2;
|
|
matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit);
|
|
REPORTER_ASSERT(reporter, SkMatrix::kScale_Mask == matrix.getType());
|
|
REPORTER_ASSERT(reporter, matrix.rectStaysRect());
|
|
}
|
|
|
|
static void test_flatten(skiatest::Reporter* reporter, const SkMatrix& m) {
|
|
// add 100 in case we have a bug, I don't want to kill my stack in the test
|
|
static const size_t kBufferSize = SkMatrix::kMaxFlattenSize + 100;
|
|
char buffer[kBufferSize];
|
|
size_t size1 = m.writeToMemory(NULL);
|
|
size_t size2 = m.writeToMemory(buffer);
|
|
REPORTER_ASSERT(reporter, size1 == size2);
|
|
REPORTER_ASSERT(reporter, size1 <= SkMatrix::kMaxFlattenSize);
|
|
|
|
SkMatrix m2;
|
|
size_t size3 = m2.readFromMemory(buffer, kBufferSize);
|
|
REPORTER_ASSERT(reporter, size1 == size3);
|
|
REPORTER_ASSERT(reporter, are_equal(reporter, m, m2));
|
|
|
|
char buffer2[kBufferSize];
|
|
size3 = m2.writeToMemory(buffer2);
|
|
REPORTER_ASSERT(reporter, size1 == size3);
|
|
REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0);
|
|
}
|
|
|
|
static void test_matrix_min_max_scale(skiatest::Reporter* reporter) {
|
|
SkScalar scales[2];
|
|
bool success;
|
|
|
|
SkMatrix identity;
|
|
identity.reset();
|
|
REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMinScale());
|
|
REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMaxScale());
|
|
success = identity.getMinMaxScales(scales);
|
|
REPORTER_ASSERT(reporter, success && SK_Scalar1 == scales[0] && SK_Scalar1 == scales[1]);
|
|
|
|
SkMatrix scale;
|
|
scale.setScale(SK_Scalar1 * 2, SK_Scalar1 * 4);
|
|
REPORTER_ASSERT(reporter, SK_Scalar1 * 2 == scale.getMinScale());
|
|
REPORTER_ASSERT(reporter, SK_Scalar1 * 4 == scale.getMaxScale());
|
|
success = scale.getMinMaxScales(scales);
|
|
REPORTER_ASSERT(reporter, success && SK_Scalar1 * 2 == scales[0] && SK_Scalar1 * 4 == scales[1]);
|
|
|
|
SkMatrix rot90Scale;
|
|
rot90Scale.setRotate(90 * SK_Scalar1);
|
|
rot90Scale.postScale(SK_Scalar1 / 4, SK_Scalar1 / 2);
|
|
REPORTER_ASSERT(reporter, SK_Scalar1 / 4 == rot90Scale.getMinScale());
|
|
REPORTER_ASSERT(reporter, SK_Scalar1 / 2 == rot90Scale.getMaxScale());
|
|
success = rot90Scale.getMinMaxScales(scales);
|
|
REPORTER_ASSERT(reporter, success && SK_Scalar1 / 4 == scales[0] && SK_Scalar1 / 2 == scales[1]);
|
|
|
|
SkMatrix rotate;
|
|
rotate.setRotate(128 * SK_Scalar1);
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, rotate.getMinScale(), SK_ScalarNearlyZero));
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, rotate.getMaxScale(), SK_ScalarNearlyZero));
|
|
success = rotate.getMinMaxScales(scales);
|
|
REPORTER_ASSERT(reporter, success);
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, scales[0], SK_ScalarNearlyZero));
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, scales[1], SK_ScalarNearlyZero));
|
|
|
|
SkMatrix translate;
|
|
translate.setTranslate(10 * SK_Scalar1, -5 * SK_Scalar1);
|
|
REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMinScale());
|
|
REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMaxScale());
|
|
success = translate.getMinMaxScales(scales);
|
|
REPORTER_ASSERT(reporter, success && SK_Scalar1 == scales[0] && SK_Scalar1 == scales[1]);
|
|
|
|
SkMatrix perspX;
|
|
perspX.reset();
|
|
perspX.setPerspX(SkScalarToPersp(SK_Scalar1 / 1000));
|
|
REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMinScale());
|
|
REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMaxScale());
|
|
// Verify that getMinMaxScales() doesn't update the scales array on failure.
|
|
scales[0] = -5;
|
|
scales[1] = -5;
|
|
success = perspX.getMinMaxScales(scales);
|
|
REPORTER_ASSERT(reporter, !success && -5 * SK_Scalar1 == scales[0] && -5 * SK_Scalar1 == scales[1]);
|
|
|
|
SkMatrix perspY;
|
|
perspY.reset();
|
|
perspY.setPerspY(SkScalarToPersp(-SK_Scalar1 / 500));
|
|
REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMinScale());
|
|
REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMaxScale());
|
|
scales[0] = -5;
|
|
scales[1] = -5;
|
|
success = perspY.getMinMaxScales(scales);
|
|
REPORTER_ASSERT(reporter, !success && -5 * SK_Scalar1 == scales[0] && -5 * SK_Scalar1 == scales[1]);
|
|
|
|
SkMatrix baseMats[] = {scale, rot90Scale, rotate,
|
|
translate, perspX, perspY};
|
|
SkMatrix mats[2*SK_ARRAY_COUNT(baseMats)];
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(baseMats); ++i) {
|
|
mats[i] = baseMats[i];
|
|
bool invertable = mats[i].invert(&mats[i + SK_ARRAY_COUNT(baseMats)]);
|
|
REPORTER_ASSERT(reporter, invertable);
|
|
}
|
|
SkRandom rand;
|
|
for (int m = 0; m < 1000; ++m) {
|
|
SkMatrix mat;
|
|
mat.reset();
|
|
for (int i = 0; i < 4; ++i) {
|
|
int x = rand.nextU() % SK_ARRAY_COUNT(mats);
|
|
mat.postConcat(mats[x]);
|
|
}
|
|
|
|
SkScalar minScale = mat.getMinScale();
|
|
SkScalar maxScale = mat.getMaxScale();
|
|
REPORTER_ASSERT(reporter, (minScale < 0) == (maxScale < 0));
|
|
REPORTER_ASSERT(reporter, (maxScale < 0) == mat.hasPerspective());
|
|
|
|
SkScalar scales[2];
|
|
bool success = mat.getMinMaxScales(scales);
|
|
REPORTER_ASSERT(reporter, success == !mat.hasPerspective());
|
|
REPORTER_ASSERT(reporter, !success || (scales[0] == minScale && scales[1] == maxScale));
|
|
|
|
if (mat.hasPerspective()) {
|
|
m -= 1; // try another non-persp matrix
|
|
continue;
|
|
}
|
|
|
|
// test a bunch of vectors. All should be scaled by between minScale and maxScale
|
|
// (modulo some error) and we should find a vector that is scaled by almost each.
|
|
static const SkScalar gVectorScaleTol = (105 * SK_Scalar1) / 100;
|
|
static const SkScalar gCloseScaleTol = (97 * SK_Scalar1) / 100;
|
|
SkScalar max = 0, min = SK_ScalarMax;
|
|
SkVector vectors[1000];
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) {
|
|
vectors[i].fX = rand.nextSScalar1();
|
|
vectors[i].fY = rand.nextSScalar1();
|
|
if (!vectors[i].normalize()) {
|
|
i -= 1;
|
|
continue;
|
|
}
|
|
}
|
|
mat.mapVectors(vectors, SK_ARRAY_COUNT(vectors));
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) {
|
|
SkScalar d = vectors[i].length();
|
|
REPORTER_ASSERT(reporter, SkScalarDiv(d, maxScale) < gVectorScaleTol);
|
|
REPORTER_ASSERT(reporter, SkScalarDiv(minScale, d) < gVectorScaleTol);
|
|
if (max < d) {
|
|
max = d;
|
|
}
|
|
if (min > d) {
|
|
min = d;
|
|
}
|
|
}
|
|
REPORTER_ASSERT(reporter, SkScalarDiv(max, maxScale) >= gCloseScaleTol);
|
|
REPORTER_ASSERT(reporter, SkScalarDiv(minScale, min) >= gCloseScaleTol);
|
|
}
|
|
}
|
|
|
|
static void test_matrix_is_similarity(skiatest::Reporter* reporter) {
|
|
SkMatrix mat;
|
|
|
|
// identity
|
|
mat.setIdentity();
|
|
REPORTER_ASSERT(reporter, mat.isSimilarity());
|
|
|
|
// translation only
|
|
mat.reset();
|
|
mat.setTranslate(SkIntToScalar(100), SkIntToScalar(100));
|
|
REPORTER_ASSERT(reporter, mat.isSimilarity());
|
|
|
|
// scale with same size
|
|
mat.reset();
|
|
mat.setScale(SkIntToScalar(15), SkIntToScalar(15));
|
|
REPORTER_ASSERT(reporter, mat.isSimilarity());
|
|
|
|
// scale with one negative
|
|
mat.reset();
|
|
mat.setScale(SkIntToScalar(-15), SkIntToScalar(15));
|
|
REPORTER_ASSERT(reporter, mat.isSimilarity());
|
|
|
|
// scale with different size
|
|
mat.reset();
|
|
mat.setScale(SkIntToScalar(15), SkIntToScalar(20));
|
|
REPORTER_ASSERT(reporter, !mat.isSimilarity());
|
|
|
|
// scale with same size at a pivot point
|
|
mat.reset();
|
|
mat.setScale(SkIntToScalar(15), SkIntToScalar(15),
|
|
SkIntToScalar(2), SkIntToScalar(2));
|
|
REPORTER_ASSERT(reporter, mat.isSimilarity());
|
|
|
|
// scale with different size at a pivot point
|
|
mat.reset();
|
|
mat.setScale(SkIntToScalar(15), SkIntToScalar(20),
|
|
SkIntToScalar(2), SkIntToScalar(2));
|
|
REPORTER_ASSERT(reporter, !mat.isSimilarity());
|
|
|
|
// skew with same size
|
|
mat.reset();
|
|
mat.setSkew(SkIntToScalar(15), SkIntToScalar(15));
|
|
REPORTER_ASSERT(reporter, !mat.isSimilarity());
|
|
|
|
// skew with different size
|
|
mat.reset();
|
|
mat.setSkew(SkIntToScalar(15), SkIntToScalar(20));
|
|
REPORTER_ASSERT(reporter, !mat.isSimilarity());
|
|
|
|
// skew with same size at a pivot point
|
|
mat.reset();
|
|
mat.setSkew(SkIntToScalar(15), SkIntToScalar(15),
|
|
SkIntToScalar(2), SkIntToScalar(2));
|
|
REPORTER_ASSERT(reporter, !mat.isSimilarity());
|
|
|
|
// skew with different size at a pivot point
|
|
mat.reset();
|
|
mat.setSkew(SkIntToScalar(15), SkIntToScalar(20),
|
|
SkIntToScalar(2), SkIntToScalar(2));
|
|
REPORTER_ASSERT(reporter, !mat.isSimilarity());
|
|
|
|
// perspective x
|
|
mat.reset();
|
|
mat.setPerspX(SkScalarToPersp(SK_Scalar1 / 2));
|
|
REPORTER_ASSERT(reporter, !mat.isSimilarity());
|
|
|
|
// perspective y
|
|
mat.reset();
|
|
mat.setPerspY(SkScalarToPersp(SK_Scalar1 / 2));
|
|
REPORTER_ASSERT(reporter, !mat.isSimilarity());
|
|
|
|
// rotate
|
|
for (int angle = 0; angle < 360; ++angle) {
|
|
mat.reset();
|
|
mat.setRotate(SkIntToScalar(angle));
|
|
#ifndef SK_CPU_ARM64
|
|
REPORTER_ASSERT(reporter, mat.isSimilarity());
|
|
#else
|
|
// 64-bit ARM devices built with -O2 and -ffp-contract=fast have a loss
|
|
// of precision and require that we have a higher tolerance
|
|
REPORTER_ASSERT(reporter, mat.isSimilarity(SK_ScalarNearlyZero + 0.00010113f));
|
|
#endif
|
|
}
|
|
|
|
// see if there are any accumulated precision issues
|
|
mat.reset();
|
|
for (int i = 1; i < 360; i++) {
|
|
mat.postRotate(SkIntToScalar(1));
|
|
}
|
|
REPORTER_ASSERT(reporter, mat.isSimilarity());
|
|
|
|
// rotate + translate
|
|
mat.reset();
|
|
mat.setRotate(SkIntToScalar(30));
|
|
mat.postTranslate(SkIntToScalar(10), SkIntToScalar(20));
|
|
REPORTER_ASSERT(reporter, mat.isSimilarity());
|
|
|
|
// rotate + uniform scale
|
|
mat.reset();
|
|
mat.setRotate(SkIntToScalar(30));
|
|
mat.postScale(SkIntToScalar(2), SkIntToScalar(2));
|
|
REPORTER_ASSERT(reporter, mat.isSimilarity());
|
|
|
|
// rotate + non-uniform scale
|
|
mat.reset();
|
|
mat.setRotate(SkIntToScalar(30));
|
|
mat.postScale(SkIntToScalar(3), SkIntToScalar(2));
|
|
REPORTER_ASSERT(reporter, !mat.isSimilarity());
|
|
|
|
// all zero
|
|
mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 0);
|
|
REPORTER_ASSERT(reporter, !mat.isSimilarity());
|
|
|
|
// all zero except perspective
|
|
mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, SK_Scalar1);
|
|
REPORTER_ASSERT(reporter, !mat.isSimilarity());
|
|
|
|
// scales zero, only skews
|
|
mat.setAll(0, SK_Scalar1, 0,
|
|
SK_Scalar1, 0, 0,
|
|
0, 0, SkMatrix::I()[8]);
|
|
REPORTER_ASSERT(reporter, mat.isSimilarity());
|
|
}
|
|
|
|
// For test_matrix_decomposition, below.
|
|
static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b,
|
|
SkScalar tolerance = SK_ScalarNearlyZero) {
|
|
// from Bruce Dawson
|
|
// absolute check
|
|
SkScalar diff = SkScalarAbs(a - b);
|
|
if (diff < tolerance) {
|
|
return true;
|
|
}
|
|
|
|
// relative check
|
|
a = SkScalarAbs(a);
|
|
b = SkScalarAbs(b);
|
|
SkScalar largest = (b > a) ? b : a;
|
|
|
|
if (diff <= largest*tolerance) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool check_matrix_recomposition(const SkMatrix& mat,
|
|
const SkPoint& rotation1,
|
|
const SkPoint& scale,
|
|
const SkPoint& rotation2) {
|
|
SkScalar c1 = rotation1.fX;
|
|
SkScalar s1 = rotation1.fY;
|
|
SkScalar scaleX = scale.fX;
|
|
SkScalar scaleY = scale.fY;
|
|
SkScalar c2 = rotation2.fX;
|
|
SkScalar s2 = rotation2.fY;
|
|
|
|
// We do a relative check here because large scale factors cause problems with an absolute check
|
|
bool result = scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
|
scaleX*c1*c2 - scaleY*s1*s2) &&
|
|
scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
|
-scaleX*s1*c2 - scaleY*c1*s2) &&
|
|
scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
|
scaleX*c1*s2 + scaleY*s1*c2) &&
|
|
scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
|
-scaleX*s1*s2 + scaleY*c1*c2);
|
|
return result;
|
|
}
|
|
|
|
static void test_matrix_decomposition(skiatest::Reporter* reporter) {
|
|
SkMatrix mat;
|
|
SkPoint rotation1, scale, rotation2;
|
|
|
|
const float kRotation0 = 15.5f;
|
|
const float kRotation1 = -50.f;
|
|
const float kScale0 = 5000.f;
|
|
const float kScale1 = 0.001f;
|
|
|
|
// identity
|
|
mat.reset();
|
|
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
// make sure it doesn't crash if we pass in NULLs
|
|
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL));
|
|
|
|
// rotation only
|
|
mat.setRotate(kRotation0);
|
|
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
|
// uniform scale only
|
|
mat.setScale(kScale0, kScale0);
|
|
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
|
// anisotropic scale only
|
|
mat.setScale(kScale1, kScale0);
|
|
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
|
// rotation then uniform scale
|
|
mat.setRotate(kRotation1);
|
|
mat.postScale(kScale0, kScale0);
|
|
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
|
// uniform scale then rotation
|
|
mat.setScale(kScale0, kScale0);
|
|
mat.postRotate(kRotation1);
|
|
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
|
// rotation then uniform scale+reflection
|
|
mat.setRotate(kRotation0);
|
|
mat.postScale(kScale1, -kScale1);
|
|
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
|
// uniform scale+reflection, then rotate
|
|
mat.setScale(kScale0, -kScale0);
|
|
mat.postRotate(kRotation1);
|
|
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
|
// rotation then anisotropic scale
|
|
mat.setRotate(kRotation1);
|
|
mat.postScale(kScale1, kScale0);
|
|
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
|
// rotation then anisotropic scale
|
|
mat.setRotate(90);
|
|
mat.postScale(kScale1, kScale0);
|
|
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
|
// anisotropic scale then rotation
|
|
mat.setScale(kScale1, kScale0);
|
|
mat.postRotate(kRotation0);
|
|
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
|
// anisotropic scale then rotation
|
|
mat.setScale(kScale1, kScale0);
|
|
mat.postRotate(90);
|
|
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
|
// rotation, uniform scale, then different rotation
|
|
mat.setRotate(kRotation1);
|
|
mat.postScale(kScale0, kScale0);
|
|
mat.postRotate(kRotation0);
|
|
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
|
// rotation, anisotropic scale, then different rotation
|
|
mat.setRotate(kRotation0);
|
|
mat.postScale(kScale1, kScale0);
|
|
mat.postRotate(kRotation1);
|
|
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
|
// rotation, anisotropic scale + reflection, then different rotation
|
|
mat.setRotate(kRotation0);
|
|
mat.postScale(-kScale1, kScale0);
|
|
mat.postRotate(kRotation1);
|
|
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
|
// try some random matrices
|
|
SkRandom rand;
|
|
for (int m = 0; m < 1000; ++m) {
|
|
SkScalar rot0 = rand.nextRangeF(-180, 180);
|
|
SkScalar sx = rand.nextRangeF(-3000.f, 3000.f);
|
|
SkScalar sy = rand.nextRangeF(-3000.f, 3000.f);
|
|
SkScalar rot1 = rand.nextRangeF(-180, 180);
|
|
mat.setRotate(rot0);
|
|
mat.postScale(sx, sy);
|
|
mat.postRotate(rot1);
|
|
|
|
if (SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)) {
|
|
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
} else {
|
|
// if the matrix is degenerate, the basis vectors should be near-parallel or near-zero
|
|
SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] -
|
|
mat[SkMatrix::kMSkewX]*mat[SkMatrix::kMSkewY];
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyZero(perpdot));
|
|
}
|
|
}
|
|
|
|
// translation shouldn't affect this
|
|
mat.postTranslate(-1000.f, 1000.f);
|
|
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
|
// perspective shouldn't affect this
|
|
mat[SkMatrix::kMPersp0] = 12.f;
|
|
mat[SkMatrix::kMPersp1] = 4.f;
|
|
mat[SkMatrix::kMPersp2] = 1872.f;
|
|
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
|
|
|
|
// degenerate matrices
|
|
// mostly zero entries
|
|
mat.reset();
|
|
mat[SkMatrix::kMScaleX] = 0.f;
|
|
REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
mat.reset();
|
|
mat[SkMatrix::kMScaleY] = 0.f;
|
|
REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
mat.reset();
|
|
// linearly dependent entries
|
|
mat[SkMatrix::kMScaleX] = 1.f;
|
|
mat[SkMatrix::kMSkewX] = 2.f;
|
|
mat[SkMatrix::kMSkewY] = 4.f;
|
|
mat[SkMatrix::kMScaleY] = 8.f;
|
|
REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
|
|
}
|
|
|
|
// For test_matrix_homogeneous, below.
|
|
static bool scalar_array_nearly_equal_relative(const SkScalar a[], const SkScalar b[], int count) {
|
|
for (int i = 0; i < count; ++i) {
|
|
if (!scalar_nearly_equal_relative(a[i], b[i])) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// For test_matrix_homogeneous, below.
|
|
// Maps a single triple in src using m and compares results to those in dst
|
|
static bool naive_homogeneous_mapping(const SkMatrix& m, const SkScalar src[3],
|
|
const SkScalar dst[3]) {
|
|
SkScalar res[3];
|
|
SkScalar ms[9] = {m[0], m[1], m[2],
|
|
m[3], m[4], m[5],
|
|
m[6], m[7], m[8]};
|
|
res[0] = src[0] * ms[0] + src[1] * ms[1] + src[2] * ms[2];
|
|
res[1] = src[0] * ms[3] + src[1] * ms[4] + src[2] * ms[5];
|
|
res[2] = src[0] * ms[6] + src[1] * ms[7] + src[2] * ms[8];
|
|
return scalar_array_nearly_equal_relative(res, dst, 3);
|
|
}
|
|
|
|
static void test_matrix_homogeneous(skiatest::Reporter* reporter) {
|
|
SkMatrix mat;
|
|
|
|
const float kRotation0 = 15.5f;
|
|
const float kRotation1 = -50.f;
|
|
const float kScale0 = 5000.f;
|
|
|
|
const int kTripleCount = 1000;
|
|
const int kMatrixCount = 1000;
|
|
SkRandom rand;
|
|
|
|
SkScalar randTriples[3*kTripleCount];
|
|
for (int i = 0; i < 3*kTripleCount; ++i) {
|
|
randTriples[i] = rand.nextRangeF(-3000.f, 3000.f);
|
|
}
|
|
|
|
SkMatrix mats[kMatrixCount];
|
|
for (int i = 0; i < kMatrixCount; ++i) {
|
|
for (int j = 0; j < 9; ++j) {
|
|
mats[i].set(j, rand.nextRangeF(-3000.f, 3000.f));
|
|
}
|
|
}
|
|
|
|
// identity
|
|
{
|
|
mat.reset();
|
|
SkScalar dst[3*kTripleCount];
|
|
mat.mapHomogeneousPoints(dst, randTriples, kTripleCount);
|
|
REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(randTriples, dst, kTripleCount*3));
|
|
}
|
|
|
|
// zero matrix
|
|
{
|
|
mat.setAll(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f);
|
|
SkScalar dst[3*kTripleCount];
|
|
mat.mapHomogeneousPoints(dst, randTriples, kTripleCount);
|
|
SkScalar zeros[3] = {0.f, 0.f, 0.f};
|
|
for (int i = 0; i < kTripleCount; ++i) {
|
|
REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(&dst[i*3], zeros, 3));
|
|
}
|
|
}
|
|
|
|
// zero point
|
|
{
|
|
SkScalar zeros[3] = {0.f, 0.f, 0.f};
|
|
for (int i = 0; i < kMatrixCount; ++i) {
|
|
SkScalar dst[3];
|
|
mats[i].mapHomogeneousPoints(dst, zeros, 1);
|
|
REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(dst, zeros, 3));
|
|
}
|
|
}
|
|
|
|
// doesn't crash with null dst, src, count == 0
|
|
{
|
|
mats[0].mapHomogeneousPoints(NULL, NULL, 0);
|
|
}
|
|
|
|
// uniform scale of point
|
|
{
|
|
mat.setScale(kScale0, kScale0);
|
|
SkScalar dst[3];
|
|
SkScalar src[3] = {randTriples[0], randTriples[1], 1.f};
|
|
SkPoint pnt;
|
|
pnt.set(src[0], src[1]);
|
|
mat.mapHomogeneousPoints(dst, src, 1);
|
|
mat.mapPoints(&pnt, &pnt, 1);
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX));
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY));
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1));
|
|
}
|
|
|
|
// rotation of point
|
|
{
|
|
mat.setRotate(kRotation0);
|
|
SkScalar dst[3];
|
|
SkScalar src[3] = {randTriples[0], randTriples[1], 1.f};
|
|
SkPoint pnt;
|
|
pnt.set(src[0], src[1]);
|
|
mat.mapHomogeneousPoints(dst, src, 1);
|
|
mat.mapPoints(&pnt, &pnt, 1);
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX));
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY));
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1));
|
|
}
|
|
|
|
// rotation, scale, rotation of point
|
|
{
|
|
mat.setRotate(kRotation1);
|
|
mat.postScale(kScale0, kScale0);
|
|
mat.postRotate(kRotation0);
|
|
SkScalar dst[3];
|
|
SkScalar src[3] = {randTriples[0], randTriples[1], 1.f};
|
|
SkPoint pnt;
|
|
pnt.set(src[0], src[1]);
|
|
mat.mapHomogeneousPoints(dst, src, 1);
|
|
mat.mapPoints(&pnt, &pnt, 1);
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX));
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY));
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1));
|
|
}
|
|
|
|
// compare with naive approach
|
|
{
|
|
for (int i = 0; i < kMatrixCount; ++i) {
|
|
for (int j = 0; j < kTripleCount; ++j) {
|
|
SkScalar dst[3];
|
|
mats[i].mapHomogeneousPoints(dst, &randTriples[j*3], 1);
|
|
REPORTER_ASSERT(reporter, naive_homogeneous_mapping(mats[i], &randTriples[j*3], dst));
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
DEF_TEST(Matrix, reporter) {
|
|
SkMatrix mat, inverse, iden1, iden2;
|
|
|
|
mat.reset();
|
|
mat.setTranslate(SK_Scalar1, SK_Scalar1);
|
|
REPORTER_ASSERT(reporter, mat.invert(&inverse));
|
|
iden1.setConcat(mat, inverse);
|
|
REPORTER_ASSERT(reporter, is_identity(iden1));
|
|
|
|
mat.setScale(SkIntToScalar(2), SkIntToScalar(4));
|
|
REPORTER_ASSERT(reporter, mat.invert(&inverse));
|
|
iden1.setConcat(mat, inverse);
|
|
REPORTER_ASSERT(reporter, is_identity(iden1));
|
|
test_flatten(reporter, mat);
|
|
|
|
mat.setScale(SK_Scalar1/2, SkIntToScalar(2));
|
|
REPORTER_ASSERT(reporter, mat.invert(&inverse));
|
|
iden1.setConcat(mat, inverse);
|
|
REPORTER_ASSERT(reporter, is_identity(iden1));
|
|
test_flatten(reporter, mat);
|
|
|
|
mat.setScale(SkIntToScalar(3), SkIntToScalar(5), SkIntToScalar(20), 0);
|
|
mat.postRotate(SkIntToScalar(25));
|
|
REPORTER_ASSERT(reporter, mat.invert(NULL));
|
|
REPORTER_ASSERT(reporter, mat.invert(&inverse));
|
|
iden1.setConcat(mat, inverse);
|
|
REPORTER_ASSERT(reporter, is_identity(iden1));
|
|
iden2.setConcat(inverse, mat);
|
|
REPORTER_ASSERT(reporter, is_identity(iden2));
|
|
test_flatten(reporter, mat);
|
|
test_flatten(reporter, iden2);
|
|
|
|
mat.setScale(0, SK_Scalar1);
|
|
REPORTER_ASSERT(reporter, !mat.invert(NULL));
|
|
REPORTER_ASSERT(reporter, !mat.invert(&inverse));
|
|
mat.setScale(SK_Scalar1, 0);
|
|
REPORTER_ASSERT(reporter, !mat.invert(NULL));
|
|
REPORTER_ASSERT(reporter, !mat.invert(&inverse));
|
|
|
|
// rectStaysRect test
|
|
{
|
|
static const struct {
|
|
SkScalar m00, m01, m10, m11;
|
|
bool mStaysRect;
|
|
}
|
|
gRectStaysRectSamples[] = {
|
|
{ 0, 0, 0, 0, false },
|
|
{ 0, 0, 0, SK_Scalar1, false },
|
|
{ 0, 0, SK_Scalar1, 0, false },
|
|
{ 0, 0, SK_Scalar1, SK_Scalar1, false },
|
|
{ 0, SK_Scalar1, 0, 0, false },
|
|
{ 0, SK_Scalar1, 0, SK_Scalar1, false },
|
|
{ 0, SK_Scalar1, SK_Scalar1, 0, true },
|
|
{ 0, SK_Scalar1, SK_Scalar1, SK_Scalar1, false },
|
|
{ SK_Scalar1, 0, 0, 0, false },
|
|
{ SK_Scalar1, 0, 0, SK_Scalar1, true },
|
|
{ SK_Scalar1, 0, SK_Scalar1, 0, false },
|
|
{ SK_Scalar1, 0, SK_Scalar1, SK_Scalar1, false },
|
|
{ SK_Scalar1, SK_Scalar1, 0, 0, false },
|
|
{ SK_Scalar1, SK_Scalar1, 0, SK_Scalar1, false },
|
|
{ SK_Scalar1, SK_Scalar1, SK_Scalar1, 0, false },
|
|
{ SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1, false }
|
|
};
|
|
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(gRectStaysRectSamples); i++) {
|
|
SkMatrix m;
|
|
|
|
m.reset();
|
|
m.set(SkMatrix::kMScaleX, gRectStaysRectSamples[i].m00);
|
|
m.set(SkMatrix::kMSkewX, gRectStaysRectSamples[i].m01);
|
|
m.set(SkMatrix::kMSkewY, gRectStaysRectSamples[i].m10);
|
|
m.set(SkMatrix::kMScaleY, gRectStaysRectSamples[i].m11);
|
|
REPORTER_ASSERT(reporter,
|
|
m.rectStaysRect() == gRectStaysRectSamples[i].mStaysRect);
|
|
}
|
|
}
|
|
|
|
mat.reset();
|
|
mat.set(SkMatrix::kMScaleX, SkIntToScalar(1));
|
|
mat.set(SkMatrix::kMSkewX, SkIntToScalar(2));
|
|
mat.set(SkMatrix::kMTransX, SkIntToScalar(3));
|
|
mat.set(SkMatrix::kMSkewY, SkIntToScalar(4));
|
|
mat.set(SkMatrix::kMScaleY, SkIntToScalar(5));
|
|
mat.set(SkMatrix::kMTransY, SkIntToScalar(6));
|
|
SkScalar affine[6];
|
|
REPORTER_ASSERT(reporter, mat.asAffine(affine));
|
|
|
|
#define affineEqual(e) affine[SkMatrix::kA##e] == mat.get(SkMatrix::kM##e)
|
|
REPORTER_ASSERT(reporter, affineEqual(ScaleX));
|
|
REPORTER_ASSERT(reporter, affineEqual(SkewY));
|
|
REPORTER_ASSERT(reporter, affineEqual(SkewX));
|
|
REPORTER_ASSERT(reporter, affineEqual(ScaleY));
|
|
REPORTER_ASSERT(reporter, affineEqual(TransX));
|
|
REPORTER_ASSERT(reporter, affineEqual(TransY));
|
|
#undef affineEqual
|
|
|
|
mat.set(SkMatrix::kMPersp1, SkScalarToPersp(SK_Scalar1 / 2));
|
|
REPORTER_ASSERT(reporter, !mat.asAffine(affine));
|
|
|
|
SkMatrix mat2;
|
|
mat2.reset();
|
|
mat.reset();
|
|
SkScalar zero = 0;
|
|
mat.set(SkMatrix::kMSkewX, -zero);
|
|
REPORTER_ASSERT(reporter, are_equal(reporter, mat, mat2));
|
|
|
|
mat2.reset();
|
|
mat.reset();
|
|
mat.set(SkMatrix::kMSkewX, SK_ScalarNaN);
|
|
mat2.set(SkMatrix::kMSkewX, SK_ScalarNaN);
|
|
REPORTER_ASSERT(reporter, !are_equal(reporter, mat, mat2));
|
|
|
|
test_matrix_min_max_scale(reporter);
|
|
test_matrix_is_similarity(reporter);
|
|
test_matrix_recttorect(reporter);
|
|
test_matrix_decomposition(reporter);
|
|
test_matrix_homogeneous(reporter);
|
|
}
|
|
|
|
DEF_TEST(Matrix_Concat, r) {
|
|
SkMatrix a;
|
|
a.setTranslate(10, 20);
|
|
|
|
SkMatrix b;
|
|
b.setScale(3, 5);
|
|
|
|
SkMatrix expected;
|
|
expected.setConcat(a,b);
|
|
|
|
REPORTER_ASSERT(r, expected == SkMatrix::Concat(a, b));
|
|
}
|