зеркало из https://github.com/mozilla/moz-skia.git
562 строки
16 KiB
C++
562 строки
16 KiB
C++
|
|
/*
|
|
* Copyright 2011 Google Inc.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
#include "Test.h"
|
|
#include "SkFloatingPoint.h"
|
|
#include "SkMath.h"
|
|
#include "SkPoint.h"
|
|
#include "SkRandom.h"
|
|
#include "SkColorPriv.h"
|
|
|
|
static float float_blend(int src, int dst, float unit) {
|
|
return dst + (src - dst) * unit;
|
|
}
|
|
|
|
static int blend31(int src, int dst, int a31) {
|
|
return dst + ((src - dst) * a31 * 2114 >> 16);
|
|
// return dst + ((src - dst) * a31 * 33 >> 10);
|
|
}
|
|
|
|
static int blend31_slow(int src, int dst, int a31) {
|
|
int prod = src * a31 + (31 - a31) * dst + 16;
|
|
prod = (prod + (prod >> 5)) >> 5;
|
|
return prod;
|
|
}
|
|
|
|
static int blend31_round(int src, int dst, int a31) {
|
|
int prod = (src - dst) * a31 + 16;
|
|
prod = (prod + (prod >> 5)) >> 5;
|
|
return dst + prod;
|
|
}
|
|
|
|
static int blend31_old(int src, int dst, int a31) {
|
|
a31 += a31 >> 4;
|
|
return dst + ((src - dst) * a31 >> 5);
|
|
}
|
|
|
|
static void test_blend31() {
|
|
int failed = 0;
|
|
int death = 0;
|
|
for (int src = 0; src <= 255; src++) {
|
|
for (int dst = 0; dst <= 255; dst++) {
|
|
for (int a = 0; a <= 31; a++) {
|
|
// int r0 = blend31(src, dst, a);
|
|
// int r0 = blend31_round(src, dst, a);
|
|
// int r0 = blend31_old(src, dst, a);
|
|
int r0 = blend31_slow(src, dst, a);
|
|
|
|
float f = float_blend(src, dst, a / 31.f);
|
|
int r1 = (int)f;
|
|
int r2 = SkScalarRoundToInt(SkFloatToScalar(f));
|
|
|
|
if (r0 != r1 && r0 != r2) {
|
|
printf("src:%d dst:%d a:%d result:%d float:%g\n",
|
|
src, dst, a, r0, f);
|
|
failed += 1;
|
|
}
|
|
if (r0 > 255) {
|
|
death += 1;
|
|
printf("death src:%d dst:%d a:%d result:%d float:%g\n",
|
|
src, dst, a, r0, f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
SkDebugf("---- failed %d death %d\n", failed, death);
|
|
}
|
|
|
|
static void test_blend(skiatest::Reporter* reporter) {
|
|
for (int src = 0; src <= 255; src++) {
|
|
for (int dst = 0; dst <= 255; dst++) {
|
|
for (int a = 0; a <= 255; a++) {
|
|
int r0 = SkAlphaBlend255(src, dst, a);
|
|
float f1 = float_blend(src, dst, a / 255.f);
|
|
int r1 = SkScalarRoundToInt(SkFloatToScalar(f1));
|
|
|
|
if (r0 != r1) {
|
|
float diff = sk_float_abs(f1 - r1);
|
|
diff = sk_float_abs(diff - 0.5f);
|
|
if (diff > (1 / 255.f)) {
|
|
#ifdef SK_DEBUG
|
|
SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n",
|
|
src, dst, a, r0, f1);
|
|
#endif
|
|
REPORTER_ASSERT(reporter, false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(SkLONGLONG)
|
|
static int symmetric_fixmul(int a, int b) {
|
|
int sa = SkExtractSign(a);
|
|
int sb = SkExtractSign(b);
|
|
|
|
a = SkApplySign(a, sa);
|
|
b = SkApplySign(b, sb);
|
|
|
|
#if 1
|
|
int c = (int)(((SkLONGLONG)a * b) >> 16);
|
|
|
|
return SkApplySign(c, sa ^ sb);
|
|
#else
|
|
SkLONGLONG ab = (SkLONGLONG)a * b;
|
|
if (sa ^ sb) {
|
|
ab = -ab;
|
|
}
|
|
return ab >> 16;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
static void check_length(skiatest::Reporter* reporter,
|
|
const SkPoint& p, SkScalar targetLen) {
|
|
#ifdef SK_CAN_USE_FLOAT
|
|
float x = SkScalarToFloat(p.fX);
|
|
float y = SkScalarToFloat(p.fY);
|
|
float len = sk_float_sqrt(x*x + y*y);
|
|
|
|
len /= SkScalarToFloat(targetLen);
|
|
|
|
REPORTER_ASSERT(reporter, len > 0.999f && len < 1.001f);
|
|
#endif
|
|
}
|
|
|
|
#if defined(SK_CAN_USE_FLOAT)
|
|
|
|
static float nextFloat(SkRandom& rand) {
|
|
SkFloatIntUnion data;
|
|
data.fSignBitInt = rand.nextU();
|
|
return data.fFloat;
|
|
}
|
|
|
|
/* returns true if a == b as resulting from (int)x. Since it is undefined
|
|
what to do if the float exceeds 2^32-1, we check for that explicitly.
|
|
*/
|
|
static bool equal_float_native_skia(float x, uint32_t ni, uint32_t si) {
|
|
if (!(x == x)) { // NAN
|
|
return si == SK_MaxS32 || si == SK_MinS32;
|
|
}
|
|
// for out of range, C is undefined, but skia always should return NaN32
|
|
if (x > SK_MaxS32) {
|
|
return si == SK_MaxS32;
|
|
}
|
|
if (x < -SK_MaxS32) {
|
|
return si == SK_MinS32;
|
|
}
|
|
return si == ni;
|
|
}
|
|
|
|
static void assert_float_equal(skiatest::Reporter* reporter, const char op[],
|
|
float x, uint32_t ni, uint32_t si) {
|
|
if (!equal_float_native_skia(x, ni, si)) {
|
|
SkString desc;
|
|
desc.printf("%s float %g bits %x native %x skia %x\n", op, x, ni, si);
|
|
reporter->reportFailed(desc);
|
|
}
|
|
}
|
|
|
|
static void test_float_cast(skiatest::Reporter* reporter, float x) {
|
|
int ix = (int)x;
|
|
int iix = SkFloatToIntCast(x);
|
|
assert_float_equal(reporter, "cast", x, ix, iix);
|
|
}
|
|
|
|
static void test_float_floor(skiatest::Reporter* reporter, float x) {
|
|
int ix = (int)floor(x);
|
|
int iix = SkFloatToIntFloor(x);
|
|
assert_float_equal(reporter, "floor", x, ix, iix);
|
|
}
|
|
|
|
static void test_float_round(skiatest::Reporter* reporter, float x) {
|
|
double xx = x + 0.5; // need intermediate double to avoid temp loss
|
|
int ix = (int)floor(xx);
|
|
int iix = SkFloatToIntRound(x);
|
|
assert_float_equal(reporter, "round", x, ix, iix);
|
|
}
|
|
|
|
static void test_float_ceil(skiatest::Reporter* reporter, float x) {
|
|
int ix = (int)ceil(x);
|
|
int iix = SkFloatToIntCeil(x);
|
|
assert_float_equal(reporter, "ceil", x, ix, iix);
|
|
}
|
|
|
|
static void test_float_conversions(skiatest::Reporter* reporter, float x) {
|
|
test_float_cast(reporter, x);
|
|
test_float_floor(reporter, x);
|
|
test_float_round(reporter, x);
|
|
test_float_ceil(reporter, x);
|
|
}
|
|
|
|
static void test_int2float(skiatest::Reporter* reporter, int ival) {
|
|
float x0 = (float)ival;
|
|
float x1 = SkIntToFloatCast(ival);
|
|
float x2 = SkIntToFloatCast_NoOverflowCheck(ival);
|
|
REPORTER_ASSERT(reporter, x0 == x1);
|
|
REPORTER_ASSERT(reporter, x0 == x2);
|
|
}
|
|
|
|
static void unittest_fastfloat(skiatest::Reporter* reporter) {
|
|
SkRandom rand;
|
|
size_t i;
|
|
|
|
static const float gFloats[] = {
|
|
0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3,
|
|
0.000000001f, 1000000000.f, // doesn't overflow
|
|
0.0000000001f, 10000000000.f // does overflow
|
|
};
|
|
for (i = 0; i < SK_ARRAY_COUNT(gFloats); i++) {
|
|
test_float_conversions(reporter, gFloats[i]);
|
|
test_float_conversions(reporter, -gFloats[i]);
|
|
}
|
|
|
|
for (int outer = 0; outer < 100; outer++) {
|
|
rand.setSeed(outer);
|
|
for (i = 0; i < 100000; i++) {
|
|
float x = nextFloat(rand);
|
|
test_float_conversions(reporter, x);
|
|
}
|
|
|
|
test_int2float(reporter, 0);
|
|
test_int2float(reporter, 1);
|
|
test_int2float(reporter, -1);
|
|
for (i = 0; i < 100000; i++) {
|
|
// for now only test ints that are 24bits or less, since we don't
|
|
// round (down) large ints the same as IEEE...
|
|
int ival = rand.nextU() & 0xFFFFFF;
|
|
test_int2float(reporter, ival);
|
|
test_int2float(reporter, -ival);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef SK_SCALAR_IS_FLOAT
|
|
static float make_zero() {
|
|
return sk_float_sin(0);
|
|
}
|
|
#endif
|
|
|
|
static void unittest_isfinite(skiatest::Reporter* reporter) {
|
|
#ifdef SK_SCALAR_IS_FLOAT
|
|
float nan = sk_float_asin(2);
|
|
float inf = 1.0 / make_zero();
|
|
float big = 3.40282e+038;
|
|
|
|
REPORTER_ASSERT(reporter, !SkScalarIsNaN(inf));
|
|
REPORTER_ASSERT(reporter, !SkScalarIsNaN(-inf));
|
|
REPORTER_ASSERT(reporter, !SkScalarIsFinite(inf));
|
|
REPORTER_ASSERT(reporter, !SkScalarIsFinite(-inf));
|
|
#else
|
|
SkFixed nan = SK_FixedNaN;
|
|
SkFixed big = SK_FixedMax;
|
|
#endif
|
|
|
|
REPORTER_ASSERT(reporter, SkScalarIsNaN(nan));
|
|
REPORTER_ASSERT(reporter, !SkScalarIsNaN(big));
|
|
REPORTER_ASSERT(reporter, !SkScalarIsNaN(-big));
|
|
REPORTER_ASSERT(reporter, !SkScalarIsNaN(0));
|
|
|
|
REPORTER_ASSERT(reporter, !SkScalarIsFinite(nan));
|
|
REPORTER_ASSERT(reporter, SkScalarIsFinite(big));
|
|
REPORTER_ASSERT(reporter, SkScalarIsFinite(-big));
|
|
REPORTER_ASSERT(reporter, SkScalarIsFinite(0));
|
|
}
|
|
|
|
#endif
|
|
|
|
static void test_muldiv255(skiatest::Reporter* reporter) {
|
|
#ifdef SK_CAN_USE_FLOAT
|
|
for (int a = 0; a <= 255; a++) {
|
|
for (int b = 0; b <= 255; b++) {
|
|
int ab = a * b;
|
|
float s = ab / 255.0f;
|
|
int round = (int)floorf(s + 0.5f);
|
|
int trunc = (int)floorf(s);
|
|
|
|
int iround = SkMulDiv255Round(a, b);
|
|
int itrunc = SkMulDiv255Trunc(a, b);
|
|
|
|
REPORTER_ASSERT(reporter, iround == round);
|
|
REPORTER_ASSERT(reporter, itrunc == trunc);
|
|
|
|
REPORTER_ASSERT(reporter, itrunc <= iround);
|
|
REPORTER_ASSERT(reporter, iround <= a);
|
|
REPORTER_ASSERT(reporter, iround <= b);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void test_muldiv255ceiling(skiatest::Reporter* reporter) {
|
|
for (int c = 0; c <= 255; c++) {
|
|
for (int a = 0; a <= 255; a++) {
|
|
int product = (c * a + 255);
|
|
int expected_ceiling = (product + (product >> 8)) >> 8;
|
|
int webkit_ceiling = (c * a + 254) / 255;
|
|
REPORTER_ASSERT(reporter, expected_ceiling == webkit_ceiling);
|
|
int skia_ceiling = SkMulDiv255Ceiling(c, a);
|
|
REPORTER_ASSERT(reporter, skia_ceiling == webkit_ceiling);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void test_copysign(skiatest::Reporter* reporter) {
|
|
static const int32_t gTriples[] = {
|
|
// x, y, expected result
|
|
0, 0, 0,
|
|
0, 1, 0,
|
|
0, -1, 0,
|
|
1, 0, 1,
|
|
1, 1, 1,
|
|
1, -1, -1,
|
|
-1, 0, 1,
|
|
-1, 1, 1,
|
|
-1, -1, -1,
|
|
};
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(gTriples); i += 3) {
|
|
REPORTER_ASSERT(reporter,
|
|
SkCopySign32(gTriples[i], gTriples[i+1]) == gTriples[i+2]);
|
|
#ifdef SK_CAN_USE_FLOAT
|
|
float x = (float)gTriples[i];
|
|
float y = (float)gTriples[i+1];
|
|
float expected = (float)gTriples[i+2];
|
|
REPORTER_ASSERT(reporter, sk_float_copysign(x, y) == expected);
|
|
#endif
|
|
}
|
|
|
|
SkRandom rand;
|
|
for (int j = 0; j < 1000; j++) {
|
|
int ix = rand.nextS();
|
|
REPORTER_ASSERT(reporter, SkCopySign32(ix, ix) == ix);
|
|
REPORTER_ASSERT(reporter, SkCopySign32(ix, -ix) == -ix);
|
|
REPORTER_ASSERT(reporter, SkCopySign32(-ix, ix) == ix);
|
|
REPORTER_ASSERT(reporter, SkCopySign32(-ix, -ix) == -ix);
|
|
|
|
SkScalar sx = rand.nextSScalar1();
|
|
REPORTER_ASSERT(reporter, SkScalarCopySign(sx, sx) == sx);
|
|
REPORTER_ASSERT(reporter, SkScalarCopySign(sx, -sx) == -sx);
|
|
REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, sx) == sx);
|
|
REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, -sx) == -sx);
|
|
}
|
|
}
|
|
|
|
static void TestMath(skiatest::Reporter* reporter) {
|
|
int i;
|
|
int32_t x;
|
|
SkRandom rand;
|
|
|
|
// these should assert
|
|
#if 0
|
|
SkToS8(128);
|
|
SkToS8(-129);
|
|
SkToU8(256);
|
|
SkToU8(-5);
|
|
|
|
SkToS16(32768);
|
|
SkToS16(-32769);
|
|
SkToU16(65536);
|
|
SkToU16(-5);
|
|
|
|
if (sizeof(size_t) > 4) {
|
|
SkToS32(4*1024*1024);
|
|
SkToS32(-4*1024*1024);
|
|
SkToU32(5*1024*1024);
|
|
SkToU32(-5);
|
|
}
|
|
#endif
|
|
|
|
test_muldiv255(reporter);
|
|
test_muldiv255ceiling(reporter);
|
|
test_copysign(reporter);
|
|
|
|
{
|
|
SkScalar x = SK_ScalarNaN;
|
|
REPORTER_ASSERT(reporter, SkScalarIsNaN(x));
|
|
}
|
|
|
|
for (i = 1; i <= 10; i++) {
|
|
x = SkCubeRootBits(i*i*i, 11);
|
|
REPORTER_ASSERT(reporter, x == i);
|
|
}
|
|
|
|
x = SkFixedSqrt(SK_Fixed1);
|
|
REPORTER_ASSERT(reporter, x == SK_Fixed1);
|
|
x = SkFixedSqrt(SK_Fixed1/4);
|
|
REPORTER_ASSERT(reporter, x == SK_Fixed1/2);
|
|
x = SkFixedSqrt(SK_Fixed1*4);
|
|
REPORTER_ASSERT(reporter, x == SK_Fixed1*2);
|
|
|
|
x = SkFractSqrt(SK_Fract1);
|
|
REPORTER_ASSERT(reporter, x == SK_Fract1);
|
|
x = SkFractSqrt(SK_Fract1/4);
|
|
REPORTER_ASSERT(reporter, x == SK_Fract1/2);
|
|
x = SkFractSqrt(SK_Fract1/16);
|
|
REPORTER_ASSERT(reporter, x == SK_Fract1/4);
|
|
|
|
for (i = 1; i < 100; i++) {
|
|
x = SkFixedSqrt(SK_Fixed1 * i * i);
|
|
REPORTER_ASSERT(reporter, x == SK_Fixed1 * i);
|
|
}
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
int value = rand.nextS16();
|
|
int max = rand.nextU16();
|
|
|
|
int clamp = SkClampMax(value, max);
|
|
int clamp2 = value < 0 ? 0 : (value > max ? max : value);
|
|
REPORTER_ASSERT(reporter, clamp == clamp2);
|
|
}
|
|
|
|
for (i = 0; i < 10000; i++) {
|
|
SkPoint p;
|
|
|
|
p.setLength(rand.nextS(), rand.nextS(), SK_Scalar1);
|
|
check_length(reporter, p, SK_Scalar1);
|
|
p.setLength(rand.nextS() >> 13, rand.nextS() >> 13, SK_Scalar1);
|
|
check_length(reporter, p, SK_Scalar1);
|
|
}
|
|
|
|
{
|
|
SkFixed result = SkFixedDiv(100, 100);
|
|
REPORTER_ASSERT(reporter, result == SK_Fixed1);
|
|
result = SkFixedDiv(1, SK_Fixed1);
|
|
REPORTER_ASSERT(reporter, result == 1);
|
|
}
|
|
|
|
#ifdef SK_CAN_USE_FLOAT
|
|
unittest_fastfloat(reporter);
|
|
unittest_isfinite(reporter);
|
|
#endif
|
|
|
|
#ifdef SkLONGLONG
|
|
for (i = 0; i < 10000; i++) {
|
|
SkFixed numer = rand.nextS();
|
|
SkFixed denom = rand.nextS();
|
|
SkFixed result = SkFixedDiv(numer, denom);
|
|
SkLONGLONG check = ((SkLONGLONG)numer << 16) / denom;
|
|
|
|
(void)SkCLZ(numer);
|
|
(void)SkCLZ(denom);
|
|
|
|
REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32);
|
|
if (check > SK_MaxS32) {
|
|
check = SK_MaxS32;
|
|
} else if (check < -SK_MaxS32) {
|
|
check = SK_MinS32;
|
|
}
|
|
REPORTER_ASSERT(reporter, result == (int32_t)check);
|
|
|
|
result = SkFractDiv(numer, denom);
|
|
check = ((SkLONGLONG)numer << 30) / denom;
|
|
|
|
REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32);
|
|
if (check > SK_MaxS32) {
|
|
check = SK_MaxS32;
|
|
} else if (check < -SK_MaxS32) {
|
|
check = SK_MinS32;
|
|
}
|
|
REPORTER_ASSERT(reporter, result == (int32_t)check);
|
|
|
|
// make them <= 2^24, so we don't overflow in fixmul
|
|
numer = numer << 8 >> 8;
|
|
denom = denom << 8 >> 8;
|
|
|
|
result = SkFixedMul(numer, denom);
|
|
SkFixed r2 = symmetric_fixmul(numer, denom);
|
|
// SkASSERT(result == r2);
|
|
|
|
result = SkFixedMul(numer, numer);
|
|
r2 = SkFixedSquare(numer);
|
|
REPORTER_ASSERT(reporter, result == r2);
|
|
|
|
#ifdef SK_CAN_USE_FLOAT
|
|
if (numer >= 0 && denom >= 0) {
|
|
SkFixed mean = SkFixedMean(numer, denom);
|
|
float prod = SkFixedToFloat(numer) * SkFixedToFloat(denom);
|
|
float fm = sk_float_sqrt(sk_float_abs(prod));
|
|
SkFixed mean2 = SkFloatToFixed(fm);
|
|
int diff = SkAbs32(mean - mean2);
|
|
REPORTER_ASSERT(reporter, diff <= 1);
|
|
}
|
|
|
|
{
|
|
SkFixed mod = SkFixedMod(numer, denom);
|
|
float n = SkFixedToFloat(numer);
|
|
float d = SkFixedToFloat(denom);
|
|
float m = sk_float_mod(n, d);
|
|
// ensure the same sign
|
|
REPORTER_ASSERT(reporter, mod == 0 || (mod < 0) == (m < 0));
|
|
int diff = SkAbs32(mod - SkFloatToFixed(m));
|
|
REPORTER_ASSERT(reporter, (diff >> 7) == 0);
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef SK_CAN_USE_FLOAT
|
|
for (i = 0; i < 10000; i++) {
|
|
SkFract x = rand.nextU() >> 1;
|
|
double xx = (double)x / SK_Fract1;
|
|
SkFract xr = SkFractSqrt(x);
|
|
SkFract check = SkFloatToFract(sqrt(xx));
|
|
REPORTER_ASSERT(reporter, xr == check ||
|
|
xr == check-1 ||
|
|
xr == check+1);
|
|
|
|
xr = SkFixedSqrt(x);
|
|
xx = (double)x / SK_Fixed1;
|
|
check = SkFloatToFixed(sqrt(xx));
|
|
REPORTER_ASSERT(reporter, xr == check || xr == check-1);
|
|
|
|
xr = SkSqrt32(x);
|
|
xx = (double)x;
|
|
check = (int32_t)sqrt(xx);
|
|
REPORTER_ASSERT(reporter, xr == check || xr == check-1);
|
|
}
|
|
#endif
|
|
|
|
#if !defined(SK_SCALAR_IS_FLOAT) && defined(SK_CAN_USE_FLOAT)
|
|
{
|
|
SkFixed s, c;
|
|
s = SkFixedSinCos(0, &c);
|
|
REPORTER_ASSERT(reporter, s == 0);
|
|
REPORTER_ASSERT(reporter, c == SK_Fixed1);
|
|
}
|
|
|
|
int maxDiff = 0;
|
|
for (i = 0; i < 1000; i++) {
|
|
SkFixed rads = rand.nextS() >> 10;
|
|
double frads = SkFixedToFloat(rads);
|
|
|
|
SkFixed s, c;
|
|
s = SkScalarSinCos(rads, &c);
|
|
|
|
double fs = sin(frads);
|
|
double fc = cos(frads);
|
|
|
|
SkFixed is = SkFloatToFixed(fs);
|
|
SkFixed ic = SkFloatToFixed(fc);
|
|
|
|
maxDiff = SkMax32(maxDiff, SkAbs32(is - s));
|
|
maxDiff = SkMax32(maxDiff, SkAbs32(ic - c));
|
|
}
|
|
SkDebugf("SinCos: maximum error = %d\n", maxDiff);
|
|
#endif
|
|
|
|
#ifdef SK_SCALAR_IS_FLOAT
|
|
test_blend(reporter);
|
|
#endif
|
|
|
|
// disable for now
|
|
// test_blend31();
|
|
}
|
|
|
|
#include "TestClassDef.h"
|
|
DEFINE_TESTCLASS("Math", MathTestClass, TestMath)
|