moz-skia/tests/PathOpsCubicQuadIntersectio...

306 строки
12 KiB
C++

/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "PathOpsTestCommon.h"
#include "SkIntersections.h"
#include "SkPathOpsCubic.h"
#include "SkPathOpsQuad.h"
#include "SkRandom.h"
#include "SkReduceOrder.h"
#include "Test.h"
static struct quadCubic {
SkDCubic cubic;
SkDQuad quad;
int answerCount;
SkDPoint answers[2];
} quadCubicTests[] = {
#if 0 // FIXME : this should not fail (root problem behind skpcarrot_is24 )
{{{{1020.08099,672.161987}, {1020.08002,630.73999}, {986.502014,597.161987}, {945.080994,597.161987}}},
{{{1020,672}, {1020,640.93396}, {998.03302,618.96698}}}, 1,
{{1019.421, 662.449}}},
#endif
{{{{778, 14089}, {778, 14091.208984375}, {776.20916748046875, 14093}, {774, 14093}}},
{{{778, 14089}, {777.99957275390625, 14090.65625}, {776.82843017578125, 14091.828125}}}, 2,
{{778, 14089}, {776.82855609581270,14091.828250841330}}},
{{{{1110, 817}, {1110.55225f, 817}, {1111, 817.447693f}, {1111, 818}}},
{{{1110.70715f, 817.292908f}, {1110.41406f, 817.000122f}, {1110, 817}}}, 2,
{{1110, 817}, {1110.70715f, 817.292908f}}},
{{{{1110, 817}, {1110.55225f, 817}, {1111, 817.447693f}, {1111, 818}}},
{{{1111, 818}, {1110.99988f, 817.585876f}, {1110.70715f, 817.292908f}}}, 2,
{{1110.70715f, 817.292908f}, {1111, 818}}},
{{{{55, 207}, {52.238574981689453, 207}, {50, 204.76142883300781}, {50, 202}}},
{{{55, 207}, {52.929431915283203, 206.99949645996094},
{51.464466094970703, 205.53553771972656}}}, 2,
{{55, 207}, {51.464466094970703, 205.53553771972656}}},
{{{{49, 47}, {49, 74.614250183105469}, {26.614250183105469, 97}, {-1, 97}}},
{{{-8.659739592076221e-015, 96.991401672363281}, {20.065492630004883, 96.645187377929688},
{34.355339050292969, 82.355339050292969}}}, 2,
{{34.355339050292969,82.355339050292969}, {34.28654835573549, 82.424006509351585}}},
{{{{10,234}, {10,229.58172607421875}, {13.581720352172852,226}, {18,226}}},
{{{18,226}, {14.686291694641113,226}, {12.342399597167969,228.3424072265625}}}, 1,
{{18,226}, {0,0}}},
{{{{10,234}, {10,229.58172607421875}, {13.581720352172852,226}, {18,226}}},
{{{12.342399597167969,228.3424072265625}, {10,230.68629455566406}, {10,234}}}, 1,
{{10,234}, {0,0}}},
};
static const int quadCubicTests_count = (int) SK_ARRAY_COUNT(quadCubicTests);
static void cubicQuadIntersection(skiatest::Reporter* reporter, int index) {
int iIndex = static_cast<int>(index);
const SkDCubic& cubic = quadCubicTests[index].cubic;
SkASSERT(ValidCubic(cubic));
const SkDQuad& quad = quadCubicTests[index].quad;
SkASSERT(ValidQuad(quad));
SkReduceOrder reduce1;
SkReduceOrder reduce2;
int order1 = reduce1.reduce(cubic, SkReduceOrder::kNo_Quadratics);
int order2 = reduce2.reduce(quad);
if (order1 != 4) {
SkDebugf("[%d] cubic order=%d\n", iIndex, order1);
REPORTER_ASSERT(reporter, 0);
}
if (order2 != 3) {
SkDebugf("[%d] quad order=%d\n", iIndex, order2);
REPORTER_ASSERT(reporter, 0);
}
SkIntersections i;
int roots = i.intersect(cubic, quad);
SkASSERT(roots == quadCubicTests[index].answerCount);
for (int pt = 0; pt < roots; ++pt) {
double tt1 = i[0][pt];
SkDPoint xy1 = cubic.ptAtT(tt1);
double tt2 = i[1][pt];
SkDPoint xy2 = quad.ptAtT(tt2);
if (!xy1.approximatelyEqual(xy2)) {
SkDebugf("%s [%d,%d] x!= t1=%g (%g,%g) t2=%g (%g,%g)\n",
__FUNCTION__, iIndex, pt, tt1, xy1.fX, xy1.fY, tt2, xy2.fX, xy2.fY);
}
REPORTER_ASSERT(reporter, xy1.approximatelyEqual(xy2));
bool found = false;
for (int idx2 = 0; idx2 < quadCubicTests[index].answerCount; ++idx2) {
found |= quadCubicTests[index].answers[idx2].approximatelyEqual(xy1);
}
if (!found) {
SkDebugf("%s [%d,%d] xy1=(%g,%g) != \n",
__FUNCTION__, iIndex, pt, xy1.fX, xy1.fY);
}
REPORTER_ASSERT(reporter, found);
}
reporter->bumpTestCount();
}
DEF_TEST(PathOpsCubicQuadIntersection, reporter) {
for (int index = 0; index < quadCubicTests_count; ++index) {
cubicQuadIntersection(reporter, index);
reporter->bumpTestCount();
}
}
DEF_TEST(PathOpsCubicQuadIntersectionOneOff, reporter) {
cubicQuadIntersection(reporter, 0);
}
static bool gPathOpCubicQuadSlopVerbose = false;
static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic to quads subdivision
// determine that slop required after quad/quad finds a candidate intersection
// use the cross of the tangents plus the distance from 1 or 0 as knobs
DEF_TEST(PathOpsCubicQuadSlop, reporter) {
// create a random non-selfintersecting cubic
// break it into quadratics
// offset the quadratic, measuring the slop required to find the intersection
if (!gPathOpCubicQuadSlopVerbose) { // takes a while to run -- so exclude it by default
return;
}
int results[101];
sk_bzero(results, sizeof(results));
double minCross[101];
sk_bzero(minCross, sizeof(minCross));
double maxCross[101];
sk_bzero(maxCross, sizeof(maxCross));
double sumCross[101];
sk_bzero(sumCross, sizeof(sumCross));
int foundOne = 0;
int slopCount = 1;
SkRandom ran;
for (int index = 0; index < 10000000; ++index) {
if (index % 1000 == 999) SkDebugf(".");
SkDCubic cubic = {{
{ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
{ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
{ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
{ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}
}};
SkIntersections i;
if (i.intersect(cubic)) {
continue;
}
SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts;
cubic.toQuadraticTs(cubic.calcPrecision(), &ts);
double tStart = 0;
int tsCount = ts.count();
for (int i1 = 0; i1 <= tsCount; ++i1) {
const double tEnd = i1 < tsCount ? ts[i1] : 1;
SkDCubic part = cubic.subDivide(tStart, tEnd);
SkDQuad quad = part.toQuad();
SkReduceOrder reducer;
int order = reducer.reduce(quad);
if (order != 3) {
continue;
}
for (int i2 = 0; i2 < 100; ++i2) {
SkDPoint endDisplacement = {ran.nextRangeF(-100, 100), ran.nextRangeF(-100, 100)};
SkDQuad nearby = {{
{quad[0].fX + endDisplacement.fX, quad[0].fY + endDisplacement.fY},
{quad[1].fX + ran.nextRangeF(-100, 100), quad[1].fY + ran.nextRangeF(-100, 100)},
{quad[2].fX - endDisplacement.fX, quad[2].fY - endDisplacement.fY}
}};
order = reducer.reduce(nearby);
if (order != 3) {
continue;
}
SkIntersections locals;
locals.allowNear(false);
locals.intersect(quad, nearby);
if (locals.used() != 1) {
continue;
}
// brute force find actual intersection
SkDLine cubicLine = {{ {0, 0}, {cubic[0].fX, cubic[0].fY } }};
SkIntersections liner;
int i3;
int found = -1;
int foundErr = true;
for (i3 = 1; i3 <= 1000; ++i3) {
cubicLine[0] = cubicLine[1];
cubicLine[1] = cubic.ptAtT(i3 / 1000.);
liner.reset();
liner.allowNear(false);
liner.intersect(nearby, cubicLine);
if (liner.used() == 0) {
continue;
}
if (liner.used() > 1) {
foundErr = true;
break;
}
if (found > 0) {
foundErr = true;
break;
}
foundErr = false;
found = i3;
}
if (foundErr) {
continue;
}
SkDVector dist = liner.pt(0) - locals.pt(0);
SkDVector qV = nearby.dxdyAtT(locals[0][0]);
double cubicT = (found - 1 + liner[1][0]) / 1000.;
SkDVector cV = cubic.dxdyAtT(cubicT);
double qxc = qV.crossCheck(cV);
double qvLen = qV.length();
double cvLen = cV.length();
double maxLen = SkTMax(qvLen, cvLen);
qxc /= maxLen;
double quadT = tStart + (tEnd - tStart) * locals[0][0];
double diffT = fabs(cubicT - quadT);
int diffIdx = (int) (diffT * 100);
results[diffIdx]++;
double absQxc = fabs(qxc);
if (sumCross[diffIdx] == 0) {
minCross[diffIdx] = maxCross[diffIdx] = sumCross[diffIdx] = absQxc;
} else {
minCross[diffIdx] = SkTMin(minCross[diffIdx], absQxc);
maxCross[diffIdx] = SkTMax(maxCross[diffIdx], absQxc);
sumCross[diffIdx] += absQxc;
}
if (diffIdx >= 20) {
#if 01
SkDebugf("cubic={{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}"
" quad={{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}"
" {{{%1.9g,%1.9g}, {%1.9g,%1.9g}}}"
" qT=%1.9g cT=%1.9g dist=%1.9g cross=%1.9g\n",
cubic[0].fX, cubic[0].fY, cubic[1].fX, cubic[1].fY,
cubic[2].fX, cubic[2].fY, cubic[3].fX, cubic[3].fY,
nearby[0].fX, nearby[0].fY, nearby[1].fX, nearby[1].fY,
nearby[2].fX, nearby[2].fY,
liner.pt(0).fX, liner.pt(0).fY,
locals.pt(0).fX, locals.pt(0).fY, quadT, cubicT, dist.length(), qxc);
#else
SkDebugf("qT=%1.9g cT=%1.9g dist=%1.9g cross=%1.9g\n",
quadT, cubicT, dist.length(), qxc);
SkDebugf("<div id=\"slop%d\">\n", ++slopCount);
SkDebugf("{{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}\n"
"{{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}\n"
"{{{%1.9g,%1.9g}, {%1.9g,%1.9g}}}\n",
cubic[0].fX, cubic[0].fY, cubic[1].fX, cubic[1].fY,
cubic[2].fX, cubic[2].fY, cubic[3].fX, cubic[3].fY,
nearby[0].fX, nearby[0].fY, nearby[1].fX, nearby[1].fY,
nearby[2].fX, nearby[2].fY,
liner.pt(0).fX, liner.pt(0).fY,
locals.pt(0).fX, locals.pt(0).fY);
SkDebugf("</div>\n\n");
#endif
}
++foundOne;
}
tStart = tEnd;
}
if (++foundOne >= 100000) {
break;
}
}
#if 01
SkDebugf("slopCount=%d\n", slopCount);
int max = 100;
while (results[max] == 0) {
--max;
}
for (int i = 0; i <= max; ++i) {
if (i > 0 && i % 10 == 0) {
SkDebugf("\n");
}
SkDebugf("%d ", results[i]);
}
SkDebugf("min\n");
for (int i = 0; i <= max; ++i) {
if (i > 0 && i % 10 == 0) {
SkDebugf("\n");
}
SkDebugf("%1.9g ", minCross[i]);
}
SkDebugf("max\n");
for (int i = 0; i <= max; ++i) {
if (i > 0 && i % 10 == 0) {
SkDebugf("\n");
}
SkDebugf("%1.9g ", maxCross[i]);
}
SkDebugf("avg\n");
for (int i = 0; i <= max; ++i) {
if (i > 0 && i % 10 == 0) {
SkDebugf("\n");
}
SkDebugf("%1.9g ", sumCross[i] / results[i]);
}
#else
for (int i = 1; i < slopCount; ++i) {
SkDebugf(" slop%d,\n", i);
}
#endif
SkDebugf("\n");
}