moz-skia/gpu/include/GrTypes.h

602 строки
18 KiB
C++

/*
Copyright 2010 Google Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#ifndef GrTypes_DEFINED
#define GrTypes_DEFINED
#include "GrConfig.h"
#include <memory.h>
#include <string.h>
////////////////////////////////////////////////////////////////////////////////
/**
* Defines overloaded bitwise operators to make it easier to use an enum as a
* bitfield.
*/
#define GR_MAKE_BITFIELD_OPS(X) \
static inline X operator | (X a, X b) { \
return (X) (+a | +b); \
} \
\
static inline X operator & (X a, X b) { \
return (X) (+a & +b); \
} \
template <typename T> \
static inline X operator & (T a, X b) { \
return (X) (+a & +b); \
} \
template <typename T> \
static inline X operator & (X a, T b) { \
return (X) (+a & +b); \
} \
////////////////////////////////////////////////////////////////////////////////
/**
* Macro to round n up to the next multiple of 4, or return it unchanged if
* n is already a multiple of 4
*/
#define GrALIGN4(n) (((n) + 3) >> 2 << 2)
#define GrIsALIGN4(n) (((n) & 3) == 0)
template <typename T> const T& GrMin(const T& a, const T& b) {
return (a < b) ? a : b;
}
template <typename T> const T& GrMax(const T& a, const T& b) {
return (b < a) ? a : b;
}
// compile time versions of min/max
#define GR_CT_MAX(a, b) (((b) < (a)) ? (a) : (b))
#define GR_CT_MIN(a, b) (((b) < (a)) ? (b) : (a))
/**
* divide, rounding up
*/
static inline uint32_t GrUIDivRoundUp(uint32_t x, uint32_t y) {
return (x + (y-1)) / y;
}
static inline size_t GrSizeDivRoundUp(size_t x, uint32_t y) {
return (x + (y-1)) / y;
}
/**
* align up
*/
static inline uint32_t GrUIAlignUp(uint32_t x, uint32_t alignment) {
return GrUIDivRoundUp(x, alignment) * alignment;
}
static inline uint32_t GrSizeAlignUp(size_t x, uint32_t alignment) {
return GrSizeDivRoundUp(x, alignment) * alignment;
}
/**
* amount of pad needed to align up
*/
static inline uint32_t GrUIAlignUpPad(uint32_t x, uint32_t alignment) {
return (alignment - x % alignment) % alignment;
}
static inline size_t GrSizeAlignUpPad(size_t x, uint32_t alignment) {
return (alignment - x % alignment) % alignment;
}
/**
* align down
*/
static inline uint32_t GrUIAlignDown(uint32_t x, uint32_t alignment) {
return (x / alignment) * alignment;
}
static inline uint32_t GrSizeAlignDown(size_t x, uint32_t alignment) {
return (x / alignment) * alignment;
}
/**
* Count elements in an array
*/
#define GR_ARRAY_COUNT(array) (sizeof(array) / sizeof(array[0]))
//!< allocate a block of memory, will never return NULL
extern void* GrMalloc(size_t bytes);
//!< free block allocated by GrMalloc. ptr may be NULL
extern void GrFree(void* ptr);
static inline void Gr_bzero(void* dst, size_t size) {
memset(dst, 0, size);
}
///////////////////////////////////////////////////////////////////////////////
/**
* Return the number of leading zeros in n
*/
extern int Gr_clz(uint32_t n);
/**
* Return true if n is a power of 2
*/
static inline bool GrIsPow2(unsigned n) {
return n && 0 == (n & (n - 1));
}
/**
* Return the next power of 2 >= n.
*/
static inline uint32_t GrNextPow2(uint32_t n) {
return n ? (1 << (32 - Gr_clz(n - 1))) : 1;
}
///////////////////////////////////////////////////////////////////////////////
/**
* 16.16 fixed point type
*/
typedef int32_t GrFixed;
#if GR_DEBUG
static inline int16_t GrToS16(intptr_t x) {
GrAssert((int16_t)x == x);
return (int16_t)x;
}
#else
#define GrToS16(x) x
#endif
///////////////////////////////////////////////////////////////////////////////
/**
* Type used to describe format of vertices in arrays
* Values are defined in GrDrawTarget
*/
typedef int GrVertexLayout;
/**
* Geometric primitives used for drawing.
*/
enum GrPrimitiveType {
kTriangles_PrimitiveType,
kTriangleStrip_PrimitiveType,
kTriangleFan_PrimitiveType,
kPoints_PrimitiveType,
kLines_PrimitiveType,
kLineStrip_PrimitiveType
};
static inline bool GrIsPrimTypeLines(GrPrimitiveType type) {
return kLines_PrimitiveType == type || kLineStrip_PrimitiveType == type;
}
static inline bool GrIsPrimTypeTris(GrPrimitiveType type) {
return kTriangles_PrimitiveType == type ||
kTriangleStrip_PrimitiveType == type ||
kTriangleFan_PrimitiveType == type;
}
/**
* Coeffecients for alpha-blending.
*/
enum GrBlendCoeff {
kZero_BlendCoeff, //<! 0
kOne_BlendCoeff, //<! 1
kSC_BlendCoeff, //<! src color
kISC_BlendCoeff, //<! one minus src color
kDC_BlendCoeff, //<! dst color
kIDC_BlendCoeff, //<! one minus dst color
kSA_BlendCoeff, //<! src alpha
kISA_BlendCoeff, //<! one minus src alpha
kDA_BlendCoeff, //<! dst alpha
kIDA_BlendCoeff, //<! one minus dst alpha
kConstC_BlendCoeff, //<! constant color
kIConstC_BlendCoeff, //<! one minus constant color
kConstA_BlendCoeff, //<! constant color alpha
kIConstA_BlendCoeff, //<! one minus constant color alpha
kBlendCoeffCount
};
/**
* Formats for masks, used by the font cache.
* Important that these are 0-based.
*/
enum GrMaskFormat {
kA8_GrMaskFormat, //!< 1-byte per pixel
kA565_GrMaskFormat //!< 2-bytes per pixel
};
#define kCount_GrMaskFormats 2
/**
* Return the number of bytes-per-pixel for the specified mask format.
*/
static inline int GrMaskFormatBytesPerPixel(GrMaskFormat format) {
GrAssert((unsigned)format <= 1);
return (int)format + 1;
}
/**
* Pixel configurations.
*/
enum GrPixelConfig {
kUnknown_GrPixelConfig,
kAlpha_8_GrPixelConfig,
kIndex_8_GrPixelConfig,
kRGB_565_GrPixelConfig,
kRGBA_4444_GrPixelConfig, //!< premultiplied
kRGBA_8888_GrPixelConfig, //!< premultiplied
kRGBX_8888_GrPixelConfig, //!< treat the alpha channel as opaque
};
static inline size_t GrBytesPerPixel(GrPixelConfig config) {
switch (config) {
case kAlpha_8_GrPixelConfig:
case kIndex_8_GrPixelConfig:
return 1;
case kRGB_565_GrPixelConfig:
case kRGBA_4444_GrPixelConfig:
return 2;
case kRGBA_8888_GrPixelConfig:
case kRGBX_8888_GrPixelConfig:
return 4;
default:
return 0;
}
}
static inline bool GrPixelConfigIsOpaque(GrPixelConfig config) {
switch (config) {
case kRGB_565_GrPixelConfig:
case kRGBX_8888_GrPixelConfig:
return true;
default:
return false;
}
}
static inline bool GrPixelConfigIsAlphaOnly(GrPixelConfig config) {
switch (config) {
case kAlpha_8_GrPixelConfig:
return true;
default:
return false;
}
}
/**
* Used to control the level of antialiasing available for a rendertarget.
* Anti-alias quality levels depend on the underlying API/GPU capabilities.
*/
enum GrAALevels {
kNone_GrAALevel, //<! No antialiasing available.
kLow_GrAALevel, //<! Low quality antialiased rendering. Actual
// interpretation is platform-dependent.
kMed_GrAALevel, //<! Medium quality antialiased rendering. Actual
// interpretation is platform-dependent.
kHigh_GrAALevel, //<! High quality antialiased rendering. Actual
// interpretation is platform-dependent.
};
/**
* Optional bitfield flags that can be passed to createTexture.
*/
enum GrTextureFlags {
kNone_GrTextureFlags = 0x0,
/**
* Creates a texture that can be rendered to as a GrRenderTarget. Use
* GrTexture::asRenderTarget() to access.
*/
kRenderTarget_GrTextureFlagBit = 0x1,
/**
* By default all render targets have an associated stencil buffer that
* may be required for path filling. This flag overrides stencil buffer
* creation.
* MAKE THIS PRIVATE?
*/
kNoStencil_GrTextureFlagBit = 0x2,
/**
* Hint that the CPU may modify this texture after creation.
*/
kDynamicUpdate_GrTextureFlagBit = 0x4,
};
GR_MAKE_BITFIELD_OPS(GrTextureFlags)
enum {
/**
* For Index8 pixel config, the colortable must be 256 entries
*/
kGrColorTableSize = 256 * 4 //sizeof(GrColor)
};
/**
* Describes a texture to be created.
*/
struct GrTextureDesc {
GrTextureFlags fFlags; //!< bitfield of TextureFlags
/**
* The level of antialiasing available for a rendertarget texture. Only used
* fFlags contains kRenderTarget_GrTextureFlag.
*/
GrAALevels fAALevel;
uint32_t fWidth; //!< Width of the texture
uint32_t fHeight; //!< Height of the texture
/**
* Format of source data of the texture. Not guaraunteed to be the same as
* internal format used by 3D API.
*/
GrPixelConfig fFormat;
};
/**
* Set Operations used to construct clips.
*/
enum GrSetOp {
kReplace_SetOp,
kIntersect_SetOp,
kUnion_SetOp,
kXor_SetOp,
kDifference_SetOp,
kReverseDifference_SetOp,
};
/**
* Clips are composed from these objects.
*/
enum GrClipType {
kRect_ClipType,
kPath_ClipType
};
/**
* Commands used to describe a path. Each command
* is accompanied by some number of points.
*/
enum GrPathCmd {
kMove_PathCmd, //!< Starts a new subpath at
// at the returned point
// 1 point
kLine_PathCmd, //!< Adds a line segment
// 2 points
kQuadratic_PathCmd, //!< Adds a quadratic segment
// 3 points
kCubic_PathCmd, //!< Adds a cubic segment
// 4 points
kClose_PathCmd, //!< Closes the current subpath
// by connecting a line to the
// starting point.
// 0 points
kEnd_PathCmd //!< Indicates the end of the last subpath
// when iterating
// 0 points.
};
/**
* Gets the number of points associated with a path command.
*/
static int inline NumPathCmdPoints(GrPathCmd cmd) {
static const int gNumPoints[] = {
1, 2, 3, 4, 0, 0
};
return gNumPoints[cmd];
}
/**
* Path filling rules
*/
enum GrPathFill {
kWinding_PathFill,
kEvenOdd_PathFill,
kInverseWinding_PathFill,
kInverseEvenOdd_PathFill,
kHairLine_PathFill,
kPathFillCount
};
static inline GrPathFill NonInvertedFill(GrPathFill fill) {
static const GrPathFill gNonInvertedFills[] = {
kWinding_PathFill, // kWinding_PathFill
kEvenOdd_PathFill, // kEvenOdd_PathFill
kWinding_PathFill, // kInverseWinding_PathFill
kEvenOdd_PathFill, // kInverseEvenOdd_PathFill
kHairLine_PathFill,// kHairLine_PathFill
};
GR_STATIC_ASSERT(0 == kWinding_PathFill);
GR_STATIC_ASSERT(1 == kEvenOdd_PathFill);
GR_STATIC_ASSERT(2 == kInverseWinding_PathFill);
GR_STATIC_ASSERT(3 == kInverseEvenOdd_PathFill);
GR_STATIC_ASSERT(4 == kHairLine_PathFill);
GR_STATIC_ASSERT(5 == kPathFillCount);
return gNonInvertedFills[fill];
}
static inline bool IsFillInverted(GrPathFill fill) {
static const bool gIsFillInverted[] = {
false, // kWinding_PathFill
false, // kEvenOdd_PathFill
true, // kInverseWinding_PathFill
true, // kInverseEvenOdd_PathFill
false, // kHairLine_PathFill
};
GR_STATIC_ASSERT(0 == kWinding_PathFill);
GR_STATIC_ASSERT(1 == kEvenOdd_PathFill);
GR_STATIC_ASSERT(2 == kInverseWinding_PathFill);
GR_STATIC_ASSERT(3 == kInverseEvenOdd_PathFill);
GR_STATIC_ASSERT(4 == kHairLine_PathFill);
GR_STATIC_ASSERT(5 == kPathFillCount);
return gIsFillInverted[fill];
}
/**
* Hints provided about a path's convexity (or lack thereof).
*/
enum GrConvexHint {
kNone_ConvexHint, //<! No hint about convexity
// of the path
kConvex_ConvexHint, //<! Path is one convex piece
kNonOverlappingConvexPieces_ConvexHint, //<! Multiple convex pieces,
// pieces are known to be
// disjoint
kSameWindingConvexPieces_ConvexHint, //<! Multiple convex pieces,
// may or may not intersect,
// either all wind cw or all
// wind ccw.
kConcave_ConvexHint //<! Path is known to be
// concave
};
///////////////////////////////////////////////////////////////////////////////
enum GrPlatformSurfaceType {
/**
* Specifies that the object being created is a render target.
*/
kRenderTarget_GrPlatformSurfaceType,
/**
* Specifies that the object being created is a texture.
*/
kTexture_GrPlatformSurfaceType,
/**
* Specifies that the object being created is a texture and a render
* target.
*/
kTextureRenderTarget_GrPlatformSurfaceType,
};
enum GrPlatformRenderTargetFlags {
kNone_GrPlatformRenderTargetFlagBit = 0x0,
/**
* Specifies that the object being created is multisampled.
*/
kIsMultisampled_GrPlatformRenderTargetFlagBit = 0x1,
/**
* Gives permission to Gr to perform the downsample-resolve of a
* multisampled render target. If this is not set then read pixel
* operations may fail. If the object is both a texture and render target
* then this *must* be set. Otherwise, if the client wants do its own
* resolves it must create separate GrRenderTarget and GrTexture objects
* and insert appropriate flushes and resolves betweeen data hazards.
* GrRenderTarget has a flagForResolve()
*/
kGrCanResolve_GrPlatformRenderTargetFlagBit = 0x2,
};
GR_MAKE_BITFIELD_OPS(GrPlatformRenderTargetFlags)
// opaque type for 3D API object handles
typedef intptr_t GrPlatform3DObject;
/**
* Description of platform surface to create. See below for GL example.
*/
struct GrPlatformSurfaceDesc {
GrPlatformSurfaceType fSurfaceType; // type of surface to create
/**
* Flags for kRenderTarget and kTextureRenderTarget surface types
*/
GrPlatformRenderTargetFlags fRenderTargetFlags;
int fWidth; // width in pixels
int fHeight; // height in pixels
GrPixelConfig fConfig; // color format
/**
* Number of per sample stencil buffer. Only relevant if kIsRenderTarget is
* set in fFlags.
*/
int fStencilBits;
/**
* Texture object in 3D API. Only relevant if fSurfaceType is kTexture or
* kTextureRenderTarget.
* GL: this is a texture object (glGenTextures)
*/
GrPlatform3DObject fPlatformTexture;
/**
* Render target object in 3D API. Only relevant if fSurfaceType is
* kRenderTarget or kTextureRenderTarget
* GL: this is a FBO object (glGenFramebuffers)
*/
GrPlatform3DObject fPlatformRenderTarget;
/**
* 3D API object used as destination of resolve. Only relevant if
* fSurfaceType is kRenderTarget or kTextureRenderTarget and
* kGrCanResolve is set in fRenderTargetFlags.
* fFlags.
* GL: this is a FBO object (glGenFramebuffers)
*/
GrPlatform3DObject fPlatformResolveDestination;
void reset() { memset(this, 0, sizeof(GrPlatformSurfaceDesc)); }
};
/**
* Example of how to wrap render-to-texture-with-MSAA GL objects with a GrPlatformSurace
*
* GLint colorBufferID;
* glGenRenderbuffers(1, &colorID);
* glBindRenderbuffer(GL_RENDERBUFFER, colorBufferID);
* glRenderbufferStorageMultisample(GL_RENDERBUFFER, S, GL_RGBA, W, H);
*
* GLint stencilBufferID;
* glGenRenderBuffers(1, &stencilBufferID);
* glBindRenderbuffer(GL_RENDERBUFFER, stencilBufferID);
* glRenderbufferStorageMultisample(GL_RENDERBUFFER, S, GL_STENCIL_INDEX8, W, H);
*
* GLint drawFBOID;
* glGenFramebuffers(1, &drawFBOID);
* glBindFramebuffer(GL_FRAMEBUFFER, drawFBOID);
* glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, colorBufferID);
* glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER, stencilBufferID);
*
* GLint textureID;
* glGenTextures(1, &textureID);
* glBindTexture(GL_TEXTURE_2D, textureID);
* glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, W, H, ...);
*
* GLint readFBOID;
* glGenFramebuffers(1, &readFBOID);
* glBindFramebuffer(GL_FRAMEBUFFER, readFBOID);
* glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, textureID, 0);
*
* GrPlatformSurfaceDesc renderTargetTextureDesc;
* renderTargetTextureDesc.fSurfaceType = kTextureRenderTarget_GrPlatformSurfaceType;
* renderTargetTextureDesc.fRenderTargetFlags = (kIsMultisampled_GrPlatformRenderTargetFlagBit | kGrCanResolve_GrPlatformRenderTargetFlagBit);
* renderTargetTextureDesc.fWidth = W;
* renderTargetTextureDesc.fHeight = H;
* renderTargetTextureDesc.fConfig = kRGBA_8888_GrPixelConfig
* renderTargetTextureDesc.fStencilBits = 8;
* renderTargetTextureDesc.fPlatformTexture = textureID;
* renderTargetTextureDesc.fPlatformRenderTarget = drawFBOID;
* renderTargetTextureDesc.fPlatformResolveDestination = readFBOID;
*
* GrTexture* texture = static_cast<GrTexture*>(grContext->createPlatrformSurface(renderTargetTextureDesc));
*/
///////////////////////////////////////////////////////////////////////////////
// this is included only to make it easy to use this debugging facility
#include "GrInstanceCounter.h"
#endif