mozjpeg/jchuff.c

690 строки
19 KiB
C
Исходник Ответственный История

Этот файл содержит невидимые символы Юникода!

Этот файл содержит невидимые символы Юникода, которые могут быть отображены не так, как показано ниже. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы показать скрытые символы.

/*
* jchuff.c
*
* Copyright (C) 1991, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains Huffman entropy encoding routines.
* These routines are invoked via the methods entropy_encode,
* entropy_encoder_init/term, and entropy_optimize.
*/
#include "jinclude.h"
/* Static variables to avoid passing 'round extra parameters */
static compress_info_ptr cinfo;
static INT32 huff_put_buffer; /* current bit-accumulation buffer */
static int huff_put_bits; /* # of bits now in it */
static char * output_buffer; /* output buffer */
static int bytes_in_buffer;
LOCAL void
fix_huff_tbl (HUFF_TBL * htbl)
/* Compute derived values for a Huffman table */
{
int p, i, l, lastp, si;
char huffsize[257];
UINT16 huffcode[257];
UINT16 code;
/* Figure 7.3.5.4.2.1: make table of Huffman code length for each symbol */
/* Note that this is in code-length order. */
p = 0;
for (l = 1; l <= 16; l++) {
for (i = 1; i <= htbl->bits[l]; i++)
huffsize[p++] = l;
}
huffsize[p] = 0;
lastp = p;
/* Figure 7.3.5.4.2.2: generate the codes themselves */
/* Note that this is in code-length order. */
code = 0;
si = huffsize[0];
p = 0;
while (huffsize[p]) {
while (huffsize[p] == si) {
huffcode[p++] = code;
code++;
}
code <<= 1;
si++;
}
/* Figure 7.3.5.4.2.3: generate encoding tables */
/* These are code and size indexed by symbol value */
for (p = 0; p < lastp; p++) {
htbl->ehufco[htbl->huffval[p]] = huffcode[p];
htbl->ehufsi[htbl->huffval[p]] = huffsize[p];
}
/* Figure 13.4.2.3.1: generate decoding tables */
p = 0;
for (l = 1; l <= 16; l++) {
if (htbl->bits[l]) {
htbl->valptr[l] = p; /* huffval[] index of 1st sym of code len l */
htbl->mincode[l] = huffcode[p]; /* minimum code of length l */
p += htbl->bits[l];
htbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
} else {
htbl->maxcode[l] = -1;
}
}
}
/* Outputting bytes to the file */
LOCAL void
flush_bytes (void)
{
if (bytes_in_buffer)
(*cinfo->methods->entropy_output) (cinfo, output_buffer, bytes_in_buffer);
bytes_in_buffer = 0;
}
#define emit_byte(val) ((bytes_in_buffer >= JPEG_BUF_SIZE ? \
(flush_bytes(), 0) : 0), \
output_buffer[bytes_in_buffer] = (val), \
bytes_in_buffer++)
/* Outputting bits to the file */
/* Only the right 24 bits of huff_put_buffer are used; the valid bits are
* left-justified in this part. At most 16 bits can be passed to emit_bits
* in one call, and we never retain more than 7 bits in huff_put_buffer
* between calls, so 24 bits are sufficient.
*/
LOCAL void
emit_bits (UINT16 code, int size)
{
/* This routine is heavily used, so it's worth coding tightly. */
register INT32 put_buffer = code;
register int put_bits = huff_put_bits;
put_buffer &= (((INT32) 1) << size) - 1; /* Mask off any excess bits in code */
put_bits += size; /* new number of bits in buffer */
put_buffer <<= 24 - put_bits; /* align incoming bits */
put_buffer |= huff_put_buffer; /* and merge with old buffer contents */
while (put_bits >= 8) {
int c = (int) ((put_buffer >> 16) & 0xFF);
emit_byte(c);
if (c == 0xFF) { /* need to stuff a zero byte? */
emit_byte(0);
}
put_buffer <<= 8;
put_bits -= 8;
}
huff_put_buffer = put_buffer; /* Update global variables */
huff_put_bits = put_bits;
}
LOCAL void
flush_bits (void)
{
emit_bits((UINT16) 0x7F, 7); /* fill any partial byte with ones */
huff_put_buffer = 0; /* and reset bit-buffer to empty */
huff_put_bits = 0;
}
/* Encode a single block's worth of coefficients */
/* Note that the DC coefficient has already been converted to a difference */
LOCAL void
encode_one_block (JBLOCK block, HUFF_TBL *dctbl, HUFF_TBL *actbl)
{
register INT32 temp;
register int nbits;
register int k, r, i;
/* Encode the DC coefficient difference per section 7.3.5.1 */
/* Find the number of bits needed for the magnitude of the coefficient */
temp = block[0];
if (temp < 0) temp = -temp;
nbits = 0;
while (temp) {
nbits++;
temp >>= 1;
}
/* Emit the Huffman-coded symbol for the number of bits */
emit_bits(dctbl->ehufco[nbits], dctbl->ehufsi[nbits]);
/* If positive, emit nbits low order bits; */
/* if negative, emit nbits low order bits of value-1 */
if ((temp = block[0]) < 0)
temp--;
emit_bits((UINT16) temp, nbits);
/* Encode the AC coefficients per section 7.3.5.2 */
r = 0; /* r = run length of zeros */
for (k = 1; k < DCTSIZE2; k++) {
if ((temp = block[k]) == 0) {
r++;
} else {
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
while (r > 15) {
emit_bits(actbl->ehufco[0xF0], actbl->ehufsi[0xF0]);
r -= 16;
}
/* Find the number of bits needed for the magnitude of the coefficient */
if (temp < 0) temp = -temp;
nbits = 1; /* there must be at least one 1 bit */
while (temp >>= 1)
nbits++;
/* Emit Huffman symbol for run length / number of bits */
i = (r << 4) + nbits;
emit_bits(actbl->ehufco[i], actbl->ehufsi[i]);
/* If positive, emit nbits low order bits; */
/* if negative, emit nbits low order bits of value-1 */
if ((temp = block[k]) < 0)
temp--;
emit_bits((UINT16) temp, nbits);
r = 0;
}
}
/* If the last coef(s) were zero, emit an end-of-block code */
if (r > 0)
emit_bits(actbl->ehufco[0], actbl->ehufsi[0]);
}
/*
* Initialize for a Huffman-compressed scan.
* This is invoked after writing the SOS marker.
* The pipeline controller must establish the entropy_output method pointer
* before calling this routine.
*/
METHODDEF void
huff_init (compress_info_ptr xinfo)
{
short ci;
jpeg_component_info * compptr;
/* Initialize static variables */
cinfo = xinfo;
huff_put_buffer = 0;
huff_put_bits = 0;
/* Initialize the output buffer */
output_buffer = (char *) (*cinfo->emethods->alloc_small)
((size_t) JPEG_BUF_SIZE);
bytes_in_buffer = 0;
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
/* Make sure requested tables are present */
if (cinfo->dc_huff_tbl_ptrs[compptr->dc_tbl_no] == NULL ||
cinfo->ac_huff_tbl_ptrs[compptr->ac_tbl_no] == NULL)
ERREXIT(cinfo->emethods, "Use of undefined Huffman table");
/* Compute derived values for Huffman tables */
/* We may do this more than once for same table, but it's not a big deal */
fix_huff_tbl(cinfo->dc_huff_tbl_ptrs[compptr->dc_tbl_no]);
fix_huff_tbl(cinfo->ac_huff_tbl_ptrs[compptr->ac_tbl_no]);
/* Initialize DC predictions to 0 */
cinfo->last_dc_val[ci] = 0;
}
/* Initialize restart stuff */
cinfo->restarts_to_go = cinfo->restart_interval;
cinfo->next_restart_num = 0;
}
/*
* Emit a restart marker & resynchronize predictions.
*/
LOCAL void
emit_restart (compress_info_ptr cinfo)
{
short ci;
flush_bits();
emit_byte(0xFF);
emit_byte(RST0 + cinfo->next_restart_num);
/* Re-initialize DC predictions to 0 */
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
cinfo->last_dc_val[ci] = 0;
/* Update restart state */
cinfo->restarts_to_go = cinfo->restart_interval;
cinfo->next_restart_num++;
cinfo->next_restart_num &= 7;
}
/*
* Encode and output one MCU's worth of Huffman-compressed coefficients.
*/
METHODDEF void
huff_encode (compress_info_ptr cinfo, JBLOCK *MCU_data)
{
short blkn, ci;
jpeg_component_info * compptr;
JCOEF temp;
/* Account for restart interval, emit restart marker if needed */
if (cinfo->restart_interval) {
if (cinfo->restarts_to_go == 0)
emit_restart(cinfo);
cinfo->restarts_to_go--;
}
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
ci = cinfo->MCU_membership[blkn];
compptr = cinfo->cur_comp_info[ci];
/* Convert DC value to difference, update last_dc_val */
temp = MCU_data[blkn][0];
MCU_data[blkn][0] -= cinfo->last_dc_val[ci];
cinfo->last_dc_val[ci] = temp;
encode_one_block(MCU_data[blkn],
cinfo->dc_huff_tbl_ptrs[compptr->dc_tbl_no],
cinfo->ac_huff_tbl_ptrs[compptr->ac_tbl_no]);
}
}
/*
* Finish up at the end of a Huffman-compressed scan.
*/
METHODDEF void
huff_term (compress_info_ptr cinfo)
{
/* Flush out the last data */
flush_bits();
flush_bytes();
/* Release the I/O buffer */
(*cinfo->emethods->free_small) ((void *) output_buffer);
}
/*
* Huffman coding optimization.
*
* This actually is optimization, in the sense that we find the best possible
* Huffman table(s) for the given data. We first scan the supplied data and
* count the number of uses of each symbol that is to be Huffman-coded.
* (This process must agree with the code above.) Then we build an
* optimal Huffman coding tree for the observed counts.
*/
#ifdef ENTROPY_OPT_SUPPORTED
/* These are static so htest_one_block can find 'em */
static long * dc_count_ptrs[NUM_HUFF_TBLS];
static long * ac_count_ptrs[NUM_HUFF_TBLS];
LOCAL void
gen_huff_coding (compress_info_ptr cinfo, HUFF_TBL *htbl, long freq[])
/* Generate the optimal coding for the given counts */
{
#define MAX_CLEN 32 /* assumed maximum initial code length */
UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
short codesize[257]; /* codesize[k] = code length of symbol k */
short others[257]; /* next symbol in current branch of tree */
int c1, c2;
int p, i, j;
long v;
/* This algorithm is explained in section 13.2 of JPEG-8-R8 */
MEMZERO((void *) bits, SIZEOF(bits));
MEMZERO((void *) codesize, SIZEOF(codesize));
for (i = 0; i < 257; i++)
others[i] = -1; /* init links to empty */
freq[256] = 1; /* make sure there is a nonzero count */
/* including the pseudo-symbol 256 in the Huffman procedure guarantees
* that no real symbol is given code-value of all ones, because 256
* will be placed in the largest codeword category.
*/
/* Huffman's basic algorithm to assign optimal code lengths to symbols */
for (;;) {
/* Find the smallest nonzero frequency, set c1 = its symbol */
/* In case of ties, take the larger symbol number */
c1 = -1;
v = 1000000000L;
for (i = 0; i <= 256; i++) {
if (freq[i] && freq[i] <= v) {
v = freq[i];
c1 = i;
}
}
/* Find the next smallest nonzero frequency, set c2 = its symbol */
/* In case of ties, take the larger symbol number */
c2 = -1;
v = 1000000000L;
for (i = 0; i <= 256; i++) {
if (freq[i] && freq[i] <= v && i != c1) {
v = freq[i];
c2 = i;
}
}
/* Done if we've merged everything into one frequency */
if (c2 < 0)
break;
/* Else merge the two counts/trees */
freq[c1] += freq[c2];
freq[c2] = 0;
/* Increment the codesize of everything in c1's tree branch */
codesize[c1]++;
while (others[c1] >= 0) {
c1 = others[c1];
codesize[c1]++;
}
others[c1] = c2; /* chain c2 onto c1's tree branch */
/* Increment the codesize of everything in c2's tree branch */
codesize[c2]++;
while (others[c2] >= 0) {
c2 = others[c2];
codesize[c2]++;
}
}
/* Now count the number of symbols of each code length */
for (i = 0; i <= 256; i++) {
if (codesize[i]) {
/* The JPEG standard seems to think that this can't happen, */
/* but I'm paranoid... */
if (codesize[i] > MAX_CLEN)
ERREXIT(cinfo->emethods, "Huffman code size table overflow");
bits[codesize[i]]++;
}
}
/* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
* Huffman procedure assigned any such lengths, we must adjust the coding.
* Here is what the JPEG spec says about how this next bit works:
* Since symbols are paired for the longest Huffman code, the symbols are
* removed from this length category two at a time. The prefix for the pair
* (which is one bit shorter) is allocated to one of the pair; then,
* skipping the BITS entry for that prefix length, a code word from the next
* shortest nonzero BITS entry is converted into a prefix for two code words
* one bit longer.
*/
for (i = MAX_CLEN; i > 16; i--) {
while (bits[i] > 0) {
j = i - 2; /* find length of new prefix to be used */
while (bits[j] == 0)
j--;
bits[i] -= 2; /* remove two symbols */
bits[i-1]++; /* one goes in this length */
bits[j+1] += 2; /* two new symbols in this length */
bits[j]--; /* symbol of this length is now a prefix */
}
}
/* Remove the count for the pseudo-symbol 256 from the largest codelength */
while (bits[i] == 0) /* find largest codelength still in use */
i--;
bits[i]--;
/* Return final symbol counts (only for lengths 0..16) */
memcpy((void *) htbl->bits, (void *) bits, SIZEOF(htbl->bits));
/* Return a list of the symbols sorted by code length */
/* It's not real clear to me why we don't need to consider the codelength
* changes made above, but the JPEG spec seems to think this works.
*/
p = 0;
for (i = 1; i <= MAX_CLEN; i++) {
for (j = 0; j <= 255; j++) {
if (codesize[j] == i) {
htbl->huffval[p] = j;
p++;
}
}
}
}
/* Process a single block's worth of coefficients */
/* Note that the DC coefficient has already been converted to a difference */
LOCAL void
htest_one_block (JBLOCK block, JCOEF block0,
long dc_counts[], long ac_counts[])
{
register INT32 temp;
register int nbits;
register int k, r;
/* Encode the DC coefficient difference per section 7.3.5.1 */
/* Find the number of bits needed for the magnitude of the coefficient */
temp = block0;
if (temp < 0) temp = -temp;
for (nbits = 0; temp; nbits++)
temp >>= 1;
/* Count the Huffman symbol for the number of bits */
dc_counts[nbits]++;
/* Encode the AC coefficients per section 7.3.5.2 */
r = 0; /* r = run length of zeros */
for (k = 1; k < DCTSIZE2; k++) {
if ((temp = block[k]) == 0) {
r++;
} else {
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
while (r > 15) {
ac_counts[0xF0]++;
r -= 16;
}
/* Find the number of bits needed for the magnitude of the coefficient */
if (temp < 0) temp = -temp;
for (nbits = 0; temp; nbits++)
temp >>= 1;
/* Count Huffman symbol for run length / number of bits */
ac_counts[(r << 4) + nbits]++;
r = 0;
}
}
/* If the last coef(s) were zero, emit an end-of-block code */
if (r > 0)
ac_counts[0]++;
}
/*
* Trial-encode one MCU's worth of Huffman-compressed coefficients.
*/
LOCAL void
htest_encode (compress_info_ptr cinfo, JBLOCK *MCU_data)
{
short blkn, ci;
jpeg_component_info * compptr;
/* Take care of restart intervals if needed */
if (cinfo->restart_interval) {
if (cinfo->restarts_to_go == 0) {
/* Re-initialize DC predictions to 0 */
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
cinfo->last_dc_val[ci] = 0;
/* Update restart state */
cinfo->restarts_to_go = cinfo->restart_interval;
}
cinfo->restarts_to_go--;
}
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
ci = cinfo->MCU_membership[blkn];
compptr = cinfo->cur_comp_info[ci];
/* NB: unlike the real entropy encoder, we may not change the input data */
htest_one_block(MCU_data[blkn],
(JCOEF) (MCU_data[blkn][0] - cinfo->last_dc_val[ci]),
dc_count_ptrs[compptr->dc_tbl_no],
ac_count_ptrs[compptr->ac_tbl_no]);
cinfo->last_dc_val[ci] = MCU_data[blkn][0];
}
}
/*
* Find the best coding parameters for a Huffman-coded scan.
* When called, the scan data has already been converted to a sequence of
* MCU groups of quantized coefficients, which are stored in a "big" array.
* The source_method knows how to iterate through that array.
* On return, the MCU data is unmodified, but the Huffman tables referenced
* by the scan components may have been altered.
*/
METHODDEF void
huff_optimize (compress_info_ptr cinfo, MCU_output_caller_ptr source_method)
/* Optimize Huffman-coding parameters (Huffman symbol table) */
{
int i, tbl;
HUFF_TBL **htblptr;
/* Allocate and zero the count tables */
/* Note that gen_huff_coding expects 257 entries in each table! */
for (i = 0; i < NUM_HUFF_TBLS; i++) {
dc_count_ptrs[i] = NULL;
ac_count_ptrs[i] = NULL;
}
for (i = 0; i < cinfo->comps_in_scan; i++) {
/* Create DC table */
tbl = cinfo->cur_comp_info[i]->dc_tbl_no;
if (dc_count_ptrs[tbl] == NULL) {
dc_count_ptrs[tbl] = (long *) (*cinfo->emethods->alloc_small)
(257 * SIZEOF(long));
MEMZERO((void *) dc_count_ptrs[tbl], 257 * SIZEOF(long));
}
/* Create AC table */
tbl = cinfo->cur_comp_info[i]->ac_tbl_no;
if (ac_count_ptrs[tbl] == NULL) {
ac_count_ptrs[tbl] = (long *) (*cinfo->emethods->alloc_small)
(257 * SIZEOF(long));
MEMZERO((void *) ac_count_ptrs[tbl], 257 * SIZEOF(long));
}
}
/* Initialize DC predictions to 0 */
for (i = 0; i < cinfo->comps_in_scan; i++) {
cinfo->last_dc_val[i] = 0;
}
/* Initialize restart stuff */
cinfo->restarts_to_go = cinfo->restart_interval;
/* Scan the MCU data, count symbol uses */
(*source_method) (cinfo, htest_encode);
/* Now generate optimal Huffman tables */
for (tbl = 0; tbl < NUM_HUFF_TBLS; tbl++) {
if (dc_count_ptrs[tbl] != NULL) {
htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
if (*htblptr == NULL)
*htblptr = (*cinfo->emethods->alloc_small) (SIZEOF(HUFF_TBL));
/* Set sent_table FALSE so updated table will be written to JPEG file. */
(*htblptr)->sent_table = FALSE;
/* Compute the optimal Huffman encoding */
gen_huff_coding(cinfo, *htblptr, dc_count_ptrs[tbl]);
/* Release the count table */
(*cinfo->emethods->free_small) ((void *) dc_count_ptrs[tbl]);
}
if (ac_count_ptrs[tbl] != NULL) {
htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
if (*htblptr == NULL)
*htblptr = (*cinfo->emethods->alloc_small) (SIZEOF(HUFF_TBL));
/* Set sent_table FALSE so updated table will be written to JPEG file. */
(*htblptr)->sent_table = FALSE;
/* Compute the optimal Huffman encoding */
gen_huff_coding(cinfo, *htblptr, ac_count_ptrs[tbl]);
/* Release the count table */
(*cinfo->emethods->free_small) ((void *) ac_count_ptrs[tbl]);
}
}
}
#endif /* ENTROPY_OPT_SUPPORTED */
/*
* The method selection routine for Huffman entropy encoding.
*/
GLOBAL void
jselchuffman (compress_info_ptr cinfo)
{
if (! cinfo->arith_code) {
cinfo->methods->entropy_encoder_init = huff_init;
cinfo->methods->entropy_encode = huff_encode;
cinfo->methods->entropy_encoder_term = huff_term;
#ifdef ENTROPY_OPT_SUPPORTED
cinfo->methods->entropy_optimize = huff_optimize;
#endif
}
}