mozperftest-tools/gen_backfill_report.py

602 строки
18 KiB
Python
Исходник Обычный вид История

2020-02-25 01:56:45 +03:00
"""
This script can be used to generate a report of the amount of
machine time used during all backfills between a start and end
date.
"""
import argparse
import os
import json
import re
import shutil
2020-02-25 02:14:31 +03:00
import signal
2020-02-25 01:56:45 +03:00
import threading
import time
import urllib
try:
2021-07-13 16:22:09 +03:00
from urllib.parse import urlencode
from urllib.request import urlopen, urlretrieve
2020-02-25 01:56:45 +03:00
except ImportError:
2021-07-13 16:22:09 +03:00
from urllib import urlencode, urlretrieve
from urllib2 import urlopen
2020-02-25 01:56:45 +03:00
DEBUG = True
2020-02-25 01:56:45 +03:00
TOTAL_REQUESTS = 0
MAX_REQUESTS = 50
OVERRIDE = False
TREEHERDER_LINK = "https://treeherder.mozilla.org/#/jobs?repo={}&tier=1%2C2%2C3&revision={}&searchStr={}"
BACKFILL_CACHE = os.path.join(os.path.expanduser("~"), ".backfill-cache")
2020-02-25 01:56:45 +03:00
"""
`where` clause will be created in the script.
It will be similar to this:
"where": {"and": [
{"eq":{"job.type.symbol":"Bk"}},
{"gte": {"date": STARTTIME},
{"lt": {"date": ENDTIME},
]}
All TIME values must follow the standards laid out in:
https://github.com/mozilla/ActiveData/blob/dev/docs/jx_time.md
"""
AD_BACKFILL_QUERY = {
2021-07-13 16:22:09 +03:00
"from": "treeherder",
"where": None,
"select": [
"build.revision",
"job.details.url",
"repo.branch.name",
"run.taskcluster.id",
],
"limit": 10000,
2020-02-25 01:56:45 +03:00
}
2020-03-12 00:05:59 +03:00
"""
This query is used to determine the owners of the backfill
request so that we can filter backfills based on owners.
To get specific tasks, this condition will be added to the
query: {"in":{"task.id": [<BACKFILL_TASK_IDS>]}},
"""
AD_BK_OWNER_QUERY = {
2021-07-13 16:22:09 +03:00
"from": "task",
"where": {
"and": [
{"eq": {"treeherder.symbol": "Bk"}},
{"in": {"task.tags.name": ["action.context.clientId"]}},
]
},
"select": ["task.tags.value", "task.id"],
"limit": 10000,
2020-03-12 00:05:59 +03:00
}
2020-02-25 01:56:45 +03:00
"""
`where` clause will be created in the script
It will be similar to this:
"where": {"and": [
# Make sure action.duration is positive
{"gt":{"action.duration":0}},
{"in": {"run.taskcluster.id": [TASKIDS]}}
]}
"""
AD_TIME_QUERY = {
2021-07-13 16:22:09 +03:00
"from": "treeherder",
"where": None,
"select": [
{"name": "action.duration", "value": "action.duration"},
# The rest of these are used to provide
# additional information to the user.
{"name": "build.revision", "value": "build.revision"},
{"name": "repo.branch.name", "value": "repo.branch.name"},
{"name": "run.key", "value": "run.key"},
{"name": "job.type.name", "value": "job.type.name"},
{"name": "job.type.group.symbol", "value": "job.type.group.symbol"},
{"name": "job.type.symbol", "value": "job.type.symbol"},
],
"limit": 10000,
2020-02-25 01:56:45 +03:00
}
def backfill_parser():
2021-07-13 16:22:09 +03:00
"""
Parser for the backfill generation script.
"""
parser = argparse.ArgumentParser(
"This tool can be used to generate a report of how much machine time "
+ "is being consumed by backfills."
)
parser.add_argument(
"--start-date",
type=str,
default="",
help="The start date for where to start looking for backfilled jobs. "
"Defaults to 1 year back.",
)
parser.add_argument(
"--end-date",
type=str,
default="",
help="The end date for where to start looking for backfilled jobs.",
)
parser.add_argument(
"--branches",
type=str,
nargs="+",
default=["autoland"],
help="The branch to find backfilled jobs in.",
)
parser.add_argument(
"--owners",
type=str,
nargs="+",
default=[],
help="The owners to search for in backfilled tasks.",
)
parser.add_argument(
"--symbols",
type=str,
nargs="+",
default=[],
help="The task group symbols to search for.",
)
parser.add_argument(
"--talos",
action="store_true",
default=False,
help="Set this to search for talos backfilled tasks.",
)
parser.add_argument(
"--raptor",
action="store_true",
default=False,
help="Set this to search for raptor backfilled tasks.",
)
parser.add_argument(
"--browsertime",
action="store_true",
default=False,
help="Set this to search for browsertime backfilled tasks.",
)
parser.add_argument(
"--awsy",
action="store_true",
default=False,
help="Set this to search for AWSY backfilled tasks.",
)
parser.add_argument(
"--task-name-regex",
type=str,
default="",
help="A regular expression used to find a particular set of tasks (using run.key).",
)
parser.add_argument(
"--additional-conditions",
type=str,
nargs="+",
default=[],
help="Additional conditions for an ActiveData `where` clause. Used when finding the "
"backfilled task times. Expected a dict per entry in this command, i.e. "
'{"eq": {"job.type.group.symbol": "Btime"}}',
)
parser.add_argument(
"--find-long-tasks",
action="store_true",
default=False,
help="Outputs all long running tasks, along with their treeherder links. "
"A long running task is defined as one that exceeds x2 the run time of the "
"average task.",
)
parser.add_argument(
"--no-cache",
action="store_true",
default=False,
help="This will disable caching the downloaded data for future runs.",
)
parser.add_argument(
"--clobber-cache",
action="store_true",
default=False,
help="This will delete the current cache.",
)
return parser
2020-02-25 01:56:45 +03:00
def debug(msg):
2021-07-13 16:22:09 +03:00
"""Helper function for debug prints"""
if DEBUG:
print(msg)
2020-02-25 01:56:45 +03:00
def get_json(url, params=None):
2021-07-13 16:22:09 +03:00
"""
Gets a JSON artifact from a given URL.
"""
if params is not None:
url += "?" + urlencode(params)
2020-02-25 01:56:45 +03:00
2021-07-13 16:22:09 +03:00
r = urlopen(url).read().decode("utf-8")
2020-02-25 01:56:45 +03:00
2021-07-13 16:22:09 +03:00
return json.loads(r)
2020-02-25 01:56:45 +03:00
def open_json(path):
2021-07-13 16:22:09 +03:00
"""
Opens a JSON file and returns the data.
"""
data = {}
with open(path, "r") as f:
data = json.load(f)
return data
def write_json(data, path):
2021-07-13 16:22:09 +03:00
"""
Writes the given data at the given path.
"""
with open(path, "w") as f:
json.dump(data, f)
2020-02-25 01:56:45 +03:00
def query_activedata(query_json):
2021-07-13 16:22:09 +03:00
"""
Used to run queries on active data.
"""
active_data_url = "http://activedata.allizom.org/query"
2020-02-25 01:56:45 +03:00
2021-07-13 16:22:09 +03:00
req = urllib.request.Request(active_data_url)
req.add_header("Content-Type", "application/json")
jsondata = json.dumps(query_json)
2020-02-25 01:56:45 +03:00
2021-07-13 16:22:09 +03:00
jsondataasbytes = jsondata.encode("utf-8")
req.add_header("Content-Length", len(jsondataasbytes))
2020-02-25 01:56:45 +03:00
2021-07-13 16:22:09 +03:00
print("Querying Active-data...")
response = urllib.request.urlopen(req, jsondataasbytes)
print("Status:" + str(response.getcode()))
2020-02-25 01:56:45 +03:00
2021-07-13 16:22:09 +03:00
data = json.loads(response.read().decode("utf8").replace("'", '"'))["data"]
return data
2020-02-25 01:56:45 +03:00
2020-03-12 00:05:59 +03:00
def get_owner_information(owners, taskids):
2021-07-13 16:22:09 +03:00
"""
Uses the given task IDs to determine the owner or
person who created them.
"""
filter_by_owners = {}
AD_BK_OWNER_QUERY["where"]["and"].append(
{"in": {"task.id": taskids}},
)
owner_data = query_activedata(AD_BK_OWNER_QUERY)
for c, taskid in enumerate(owner_data["task.id"]):
possible_owners = [o for o in owner_data["task.tags.value"][c] if o]
if not possible_owners:
# Missing owner information
continue
# There should only every be one owner. If
# either of the requested owners match it,
# then we keep this task and download
# artifacts from it.
task_owner = possible_owners[0]
for owner in owners:
if owner in task_owner:
filter_by_owners[taskid] = True
break
return filter_by_owners
2020-03-12 00:05:59 +03:00
def generate_backfill_report(
2021-07-13 16:22:09 +03:00
start_date="",
end_date="",
task_name_regex="",
talos=False,
raptor=False,
browsertime=False,
awsy=False,
symbols=[],
branches=["autoland"],
find_long_tasks=False,
owners=[],
additional_conditions=[],
no_cache=False,
clobber_cache=False,
):
"""
This generation works as follows:
(i): Find all backfill tasks between the given dates.
If no dates are given, then we look over the past year.
If only a start date is given, then we look from then to now.
If only an end date is given, then we look from 1 year ago up
to the end date.
(ii): Using the backfill tasks that were found, download all
the to-run-<PUSH_ID>.json files and label-to-taskid-<PUSH_ID>.json
files.
(iii): For each to-run file, find the tests that are
being retriggered and their taskid. Then, obtain the sum
of the runtime for all these taskids.
"""
if clobber_cache and os.path.exists(BACKFILL_CACHE):
shutil.rmtree(BACKFILL_CACHE)
if no_cache:
print("Not caching downloaded data")
else:
print("Downloaded data will be cached here: %s" % BACKFILL_CACHE)
os.makedirs(BACKFILL_CACHE, exist_ok=True)
conditions = [
{"eq": {"job.type.symbol": "Bk"}},
{"in": {"repo.branch.name": branches}},
]
where_clause = {"and": conditions}
# Setup the time range
if end_date:
conditions.append({"lt": {"action.start_time": {"date": str(end_date)}}})
if start_date:
conditions.append({"gte": {"action.start_time": {"date": str(start_date)}}})
else:
# Restrict to 1 year back
print("Setting start-date as 1 year ago. This query will take some time...")
conditions.append({"gte": {"action.start_time": {"date": "today-year"}}})
if start_date or end_date:
print(
"Date specifications detected. "
"Ensure that they follow these guidelines: "
"https://github.com/mozilla/ActiveData/blob/dev/docs/jx_time.md"
)
# Query active data for the backfilled tasks
AD_BACKFILL_QUERY["where"] = where_clause
debug(json.dumps(AD_BACKFILL_QUERY, indent=4))
data = query_activedata(AD_BACKFILL_QUERY)
if "build.revision" not in data:
print("No backfill tasks found for the given time range")
return
debug("Analyzing backfills performed on the revisions: %s" % data["build.revision"])
# Find the tasks that are specific to the requested owners
filter_by_owners = {}
if owners:
# Get the owners of the backfills if needed
print("Getting backfill task owner information...")
filter_by_owners = get_owner_information(owners, data["run.taskcluster.id"])
# Go through all the URL groupings and match up data from each PUSHID
alltaskids = []
total_groups = len(data["job.details.url"])
matcher = re.compile(r"-([\d]+).json")
# cache_mappings = {}
# cache_mapping_path = os.path.join(BACKFILL_CACHE, "mappings.json")
# if os.path.exists(cache_mapping_path):
# with open(cache_mapping_path, "r") as f:
# cache_mappings = json.load(f)
for c, url_grouping in enumerate(data["job.details.url"]):
if not url_grouping:
continue
if filter_by_owners and data["run.taskcluster.id"][c] not in filter_by_owners:
continue
print(
"\nProcessing %s from %s (%s/%s)"
% (
data["build.revision"][c],
data["repo.branch.name"][c],
(c + 1),
total_groups,
)
)
push_data = {}
# Gather groupings
for url in url_grouping:
if not url:
continue
matches = matcher.findall(url)
if not matches:
continue
# Only one match should be found
if len(matches) > 1:
print("Bad URL found: %s" % url)
continue
pushid = matches[0]
if pushid not in push_data:
push_data[pushid] = {}
fname = url.split("/")[-1]
orig_fname = fname
if "label-to-taskid" in fname:
fname = "label-to-taskid"
elif "to-run-" in fname:
fname = "to-run"
else:
# We don't care about these files
continue
push_data[pushid][fname] = {"url": url, "data": None}
if not no_cache:
# Setup the cache file name
cache_file = "%s_%s" % (data["run.taskcluster.id"][c], orig_fname)
if not cache_file.endswith(".json"):
cache_file = cache_file + ".json"
push_data[pushid][fname]["cache-file"] = os.path.join(
BACKFILL_CACHE, cache_file
)
# Setup a signal handler for simple timeouts
def handler(signum, frame):
raise Exception("Timed out.")
signal.signal(signal.SIGALRM, handler)
def download(url, storage):
"""Downloads a JSON through a thread"""
global TOTAL_REQUESTS
global MAX_REQUESTS
global OVERRIDE
while TOTAL_REQUESTS >= MAX_REQUESTS and not OVERRIDE:
time.sleep(0.5)
TOTAL_REQUESTS += 1
print("Downloading %s" % url)
try:
# Timeout after 20 seconds
signal.alarm(20)
storage["data"] = get_json(url)
if "cache-file" in storage:
write_json(storage["data"], storage["cache-file"])
except Exception:
pass
TOTAL_REQUESTS -= 1
# Download all the artifacts - batch them in case
# we are looking very far back.
threads = []
for _, push_files in push_data.items():
for file, file_info in push_files.items():
if not no_cache:
cached = file_info["cache-file"]
if os.path.exists(cached):
file_info["data"] = open_json(cached)
continue
t = threading.Thread(
target=download, args=(file_info["url"], file_info)
)
t.daemon = True
t.start()
threads.append(t)
for t in threads:
try:
t.join()
except Exception:
pass
# Cancel the timeout alarm
signal.alarm(0)
# Get all of the TASKIDs of the backfilled jobs
taskids = []
for pid, push_files in push_data.items():
tasks_running = push_files["to-run"]["data"]
labeled_tasks = push_files["label-to-taskid"]["data"]
if not tasks_running or not labeled_tasks:
print("Skipping push %s, could not obtain required artifacts" % pid)
continue
# Artifacts don't exist - skip them
if "code" in tasks_running or "code" in labeled_tasks:
print("Artifacts don't exist in push %s" % pid)
continue
taskids.extend([labeled_tasks[taskname] for taskname in tasks_running])
alltaskids.extend(taskids)
conditions = [
{"gt": {"action.duration": 0}},
{"in": {"run.taskcluster.id": alltaskids}},
]
# Setup additional settings
if talos:
symbols.append("T")
if raptor:
symbols.append("Rap")
if browsertime:
symbols.append("Btime")
if awsy:
symbols.append("SY")
if symbols:
conditions.append({"in": {"job.type.group.symbol": symbols}})
if task_name_regex:
conditions.append({"regex": {"run.key": regex}})
if additional_conditions:
conditions.extend(additional_conditions)
where_clause = {"and": conditions}
AD_TIME_QUERY["where"] = where_clause
debug(json.dumps(AD_TIME_QUERY, indent=4))
data = query_activedata(AD_TIME_QUERY)
if "action.duration" not in data:
print("No backfilled tasks found matching the given criteria")
return
if DEBUG:
print("\nAll times:")
print(data["action.duration"])
print("")
total = 0
for c, i in enumerate(data["action.duration"]):
total += i
avgtime = total / len(data["action.duration"])
print("Average task time: %s" % avgtime)
if find_long_tasks:
print("Searching for tasks that are x2 this value...")
printed = False
for c, i in enumerate(data["action.duration"]):
if i > avgtime * 2:
if not printed:
print("Long running tasks:")
printed = True
url = TREEHERDER_LINK.format(
data["repo.branch.name"][c],
data["build.revision"][c],
data["job.type.name"][c],
)
print("Test %s: %s" % (data["run.key"][c], url))
print(" Time: %s\n" % i)
print("Total runtime of backfilled tasks: %s hours" % (int(total) / 3600))
2020-02-25 01:56:45 +03:00
def main():
2021-07-13 16:22:09 +03:00
args = backfill_parser().parse_args()
report = generate_backfill_report(
start_date=args.start_date,
end_date=args.end_date,
task_name_regex=args.task_name_regex,
owners=args.owners,
talos=args.talos,
raptor=args.raptor,
browsertime=args.browsertime,
awsy=args.awsy,
symbols=args.symbols,
branches=args.branches,
find_long_tasks=args.find_long_tasks,
additional_conditions=args.additional_conditions,
no_cache=args.no_cache,
clobber_cache=args.clobber_cache,
)
if __name__ == "__main__":
main()