2007-02-28 23:57:13 +03:00
|
|
|
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
|
|
* ***** BEGIN LICENSE BLOCK *****
|
|
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
|
|
*
|
|
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
|
|
* the License. You may obtain a copy of the License at
|
|
|
|
* http://www.mozilla.org/MPL/
|
|
|
|
*
|
|
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
|
|
* for the specific language governing rights and limitations under the
|
|
|
|
* License.
|
|
|
|
*
|
|
|
|
* The Original Code is Mozilla Foundation code.
|
|
|
|
*
|
|
|
|
* The Initial Developer of the Original Code is Mozilla Foundation.
|
|
|
|
* Portions created by the Initial Developer are Copyright (C) 2007
|
|
|
|
* the Initial Developer. All Rights Reserved.
|
|
|
|
*
|
|
|
|
* Contributor(s):
|
|
|
|
* Stuart Parmenter <stuart@mozilla.com>
|
|
|
|
*
|
|
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
|
|
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
|
|
|
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
|
|
* the provisions above, a recipient may use your version of this file under
|
|
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
|
|
*
|
|
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
|
|
|
|
#ifndef nsMathUtils_h__
|
|
|
|
#define nsMathUtils_h__
|
|
|
|
|
2009-11-02 22:36:43 +03:00
|
|
|
#define _USE_MATH_DEFINES /* needed for M_ constants on Win32 */
|
|
|
|
|
2007-02-28 23:57:13 +03:00
|
|
|
#include "nscore.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include <float.h>
|
|
|
|
|
2011-05-18 05:47:37 +04:00
|
|
|
#ifdef SOLARIS
|
|
|
|
#include <ieeefp.h>
|
|
|
|
#endif
|
|
|
|
|
2007-02-28 23:57:13 +03:00
|
|
|
/*
|
|
|
|
* round
|
|
|
|
*/
|
|
|
|
inline NS_HIDDEN_(double) NS_round(double x)
|
|
|
|
{
|
|
|
|
return x >= 0.0 ? floor(x + 0.5) : ceil(x - 0.5);
|
|
|
|
}
|
|
|
|
inline NS_HIDDEN_(float) NS_roundf(float x)
|
|
|
|
{
|
|
|
|
return x >= 0.0f ? floorf(x + 0.5f) : ceilf(x - 0.5f);
|
|
|
|
}
|
|
|
|
inline NS_HIDDEN_(PRInt32) NS_lround(double x)
|
|
|
|
{
|
|
|
|
return x >= 0.0 ? PRInt32(x + 0.5) : PRInt32(x - 0.5);
|
|
|
|
}
|
2008-04-02 07:47:07 +04:00
|
|
|
|
|
|
|
/* NS_roundup30 rounds towards infinity for positive and */
|
|
|
|
/* negative numbers. */
|
|
|
|
|
2008-04-02 08:21:31 +04:00
|
|
|
#if defined(XP_WIN32) && defined(_M_IX86) && !defined(__GNUC__)
|
2008-04-02 07:47:07 +04:00
|
|
|
inline NS_HIDDEN_(PRInt32) NS_lroundup30(float x)
|
|
|
|
{
|
|
|
|
/* Code derived from Laurent de Soras' paper at */
|
|
|
|
/* http://ldesoras.free.fr/doc/articles/rounding_en.pdf */
|
|
|
|
|
|
|
|
/* Rounding up on Windows is expensive using the float to */
|
|
|
|
/* int conversion and the floor function. A faster */
|
|
|
|
/* approach is to use f87 rounding while assuming the */
|
|
|
|
/* default rounding mode of rounding to the nearest */
|
|
|
|
/* integer. This rounding mode, however, actually rounds */
|
|
|
|
/* to the nearest integer so we add the floating point */
|
|
|
|
/* number to itself and add our rounding factor before */
|
|
|
|
/* doing the conversion to an integer. We then do a right */
|
|
|
|
/* shift of one bit on the integer to divide by two. */
|
|
|
|
|
|
|
|
/* This routine doesn't handle numbers larger in magnitude */
|
|
|
|
/* than 2^30 but this is fine for NSToCoordRound because */
|
|
|
|
/* Coords are limited to 2^30 in magnitude. */
|
|
|
|
|
|
|
|
static const double round_to_nearest = 0.5f;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
__asm {
|
|
|
|
fld x ; load fp argument
|
|
|
|
fadd st, st(0) ; double it
|
|
|
|
fadd round_to_nearest ; add the rounding factor
|
|
|
|
fistp dword ptr i ; convert the result to int
|
|
|
|
}
|
|
|
|
return i >> 1; /* divide by 2 */
|
|
|
|
}
|
2008-04-02 08:21:31 +04:00
|
|
|
#endif /* XP_WIN32 && _M_IX86 && !__GNUC__ */
|
2008-04-02 07:47:07 +04:00
|
|
|
|
2007-02-28 23:57:13 +03:00
|
|
|
inline NS_HIDDEN_(PRInt32) NS_lroundf(float x)
|
|
|
|
{
|
|
|
|
return x >= 0.0f ? PRInt32(x + 0.5f) : PRInt32(x - 0.5f);
|
|
|
|
}
|
|
|
|
|
2009-11-02 22:36:43 +03:00
|
|
|
/*
|
|
|
|
* hypot. We don't need a super accurate version of this, if a platform
|
|
|
|
* turns up with none of the possibilities below it would be okay to fall
|
|
|
|
* back to sqrt(x*x + y*y).
|
|
|
|
*/
|
|
|
|
inline NS_HIDDEN_(double) NS_hypot(double x, double y)
|
|
|
|
{
|
|
|
|
#if __GNUC__ >= 4
|
|
|
|
return __builtin_hypot(x, y);
|
|
|
|
#elif defined _WIN32
|
|
|
|
return _hypot(x, y);
|
|
|
|
#else
|
|
|
|
return hypot(x, y);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2011-08-01 21:43:23 +04:00
|
|
|
/**
|
|
|
|
* Check whether a floating point number is finite (not +/-infinity and not a
|
|
|
|
* NaN value).
|
|
|
|
*/
|
2011-04-02 22:18:40 +04:00
|
|
|
inline NS_HIDDEN_(bool) NS_finite(double d)
|
|
|
|
{
|
|
|
|
#ifdef WIN32
|
|
|
|
// NOTE: '!!' casts an int to bool without spamming MSVC warning C4800.
|
|
|
|
return !!_finite(d);
|
|
|
|
#else
|
|
|
|
return finite(d);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2007-02-28 23:57:13 +03:00
|
|
|
#endif
|