pjs/jpeg/jidctint.c

964 строки
31 KiB
C
Исходник Обычный вид История

1998-03-28 05:44:41 +03:00
/*
* jidctint.c
*
1998-07-23 01:15:59 +04:00
* Copyright (C) 1991-1998, Thomas G. Lane.
1998-03-28 05:44:41 +03:00
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a slow-but-accurate integer implementation of the
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
* must also perform dequantization of the input coefficients.
*
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
* on each row (or vice versa, but it's more convenient to emit a row at
* a time). Direct algorithms are also available, but they are much more
* complex and seem not to be any faster when reduced to code.
*
* This implementation is based on an algorithm described in
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
* The primary algorithm described there uses 11 multiplies and 29 adds.
* We use their alternate method with 12 multiplies and 32 adds.
* The advantage of this method is that no data path contains more than one
* multiplication; this allows a very simple and accurate implementation in
* scaled fixed-point arithmetic, with a minimal number of shifts.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_ISLOW_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/*
* The poop on this scaling stuff is as follows:
*
* Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
* larger than the true IDCT outputs. The final outputs are therefore
* a factor of N larger than desired; since N=8 this can be cured by
* a simple right shift at the end of the algorithm. The advantage of
* this arrangement is that we save two multiplications per 1-D IDCT,
* because the y0 and y4 inputs need not be divided by sqrt(N).
*
* We have to do addition and subtraction of the integer inputs, which
* is no problem, and multiplication by fractional constants, which is
* a problem to do in integer arithmetic. We multiply all the constants
* by CONST_SCALE and convert them to integer constants (thus retaining
* CONST_BITS bits of precision in the constants). After doing a
* multiplication we have to divide the product by CONST_SCALE, with proper
* rounding, to produce the correct output. This division can be done
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
* as long as possible so that partial sums can be added together with
* full fractional precision.
*
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
* they are represented to better-than-integral precision. These outputs
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
* with the recommended scaling. (To scale up 12-bit sample data further, an
* intermediate INT32 array would be needed.)
*
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
* shows that the values given below are the most effective.
*/
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 13
#define PASS1_BITS 2
#else
#define CONST_BITS 13
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 13
#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
#else
#define FIX_0_298631336 FIX(0.298631336)
#define FIX_0_390180644 FIX(0.390180644)
#define FIX_0_541196100 FIX(0.541196100)
#define FIX_0_765366865 FIX(0.765366865)
#define FIX_0_899976223 FIX(0.899976223)
#define FIX_1_175875602 FIX(1.175875602)
#define FIX_1_501321110 FIX(1.501321110)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_1_961570560 FIX(1.961570560)
#define FIX_2_053119869 FIX(2.053119869)
#define FIX_2_562915447 FIX(2.562915447)
#define FIX_3_072711026 FIX(3.072711026)
#endif
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
* For 12-bit samples, a full 32-bit multiplication will be needed.
*/
#if BITS_IN_JSAMPLE == 8
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const) ((var) * (const))
#endif
/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce an int result. In this module, both inputs and result
* are 16 bits or less, so either int or short multiply will work.
*/
#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
/*
* Perform dequantization and inverse DCT on one block of coefficients.
*/
1998-07-23 01:15:59 +04:00
GLOBAL(void)
1998-03-28 05:44:41 +03:00
jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp1, tmp2, tmp3;
INT32 tmp10, tmp11, tmp12, tmp13;
INT32 z1, z2, z3, z4, z5;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[DCTSIZE2]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; ctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any column in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
1998-07-23 01:15:59 +04:00
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
inptr[DCTSIZE*7] == 0) {
1998-03-28 05:44:41 +03:00
/* AC terms all zero */
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
wsptr[DCTSIZE*4] = dcval;
wsptr[DCTSIZE*5] = dcval;
wsptr[DCTSIZE*6] = dcval;
wsptr[DCTSIZE*7] = dcval;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
continue;
}
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp0 = (z2 + z3) << CONST_BITS;
tmp1 = (z2 - z3) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z1 = tmp0 + tmp3;
z2 = tmp1 + tmp2;
z3 = tmp0 + tmp2;
z4 = tmp1 + tmp3;
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z3 += z5;
z4 += z5;
tmp0 += z1 + z3;
tmp1 += z2 + z4;
tmp2 += z2 + z3;
tmp3 += z1 + z4;
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
wsptr = workspace;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Rows of zeroes can be exploited in the same way as we did with columns.
* However, the column calculation has created many nonzero AC terms, so
* the simplification applies less often (typically 5% to 10% of the time).
* On machines with very fast multiplication, it's possible that the
* test takes more time than it's worth. In that case this section
* may be commented out.
*/
#ifndef NO_ZERO_ROW_TEST
1998-07-23 01:15:59 +04:00
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
1998-03-28 05:44:41 +03:00
/* AC terms all zero */
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
& RANGE_MASK];
outptr[0] = dcval;
outptr[1] = dcval;
outptr[2] = dcval;
outptr[3] = dcval;
outptr[4] = dcval;
outptr[5] = dcval;
outptr[6] = dcval;
outptr[7] = dcval;
wsptr += DCTSIZE; /* advance pointer to next row */
continue;
}
#endif
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
z2 = (INT32) wsptr[2];
z3 = (INT32) wsptr[6];
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
tmp0 = (INT32) wsptr[7];
tmp1 = (INT32) wsptr[5];
tmp2 = (INT32) wsptr[3];
tmp3 = (INT32) wsptr[1];
z1 = tmp0 + tmp3;
z2 = tmp1 + tmp2;
z3 = tmp0 + tmp2;
z4 = tmp1 + tmp3;
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z3 += z5;
z4 += z5;
tmp0 += z1 + z3;
tmp1 += z2 + z4;
tmp2 += z2 + z3;
tmp3 += z1 + z4;
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
#ifdef HAVE_SSE2_INTEL_MNEMONICS
/*
* Intel SSE2 optimized Inverse Discrete Cosine Transform
*
*
* Copyright (c) 2001-2002 Intel Corporation
* All Rights Reserved
*
*
* Authors:
* Danilov G.
*
*
*-----------------------------------------------------------------------------
*
* References:
* K.R. Rao and P. Yip
* Discrete Cosine Transform.
* Algorithms, Advantages, Applications.
* Academic Press, Inc, London, 1990.
* JPEG Group's software.
* This implementation is based on Appendix A.2 of the book (R&Y) ...
*
*-----------------------------------------------------------------------------
*/
typedef unsigned char Ipp8u;
typedef unsigned short Ipp16u;
typedef unsigned int Ipp32u;
typedef signed char Ipp8s;
typedef signed short Ipp16s;
typedef signed int Ipp32s;
#define BITS_INV_ACC 4
#define SHIFT_INV_ROW 16 - BITS_INV_ACC
#define SHIFT_INV_COL 1 + BITS_INV_ACC
#define RND_INV_ROW 1024 * (6 - BITS_INV_ACC) /* 1 << (SHIFT_INV_ROW-1) */
#define RND_INV_COL = 16 * (BITS_INV_ACC - 3) /* 1 << (SHIFT_INV_COL-1) */
#define RND_INV_CORR = RND_INV_COL - 1 /* correction -1.0 and round */
#define c_inv_corr_0 -1024 * (6 - BITS_INV_ACC) + 65536 /* -0.5 + (16.0 or 32.0) */
#define c_inv_corr_1 1877 * (6 - BITS_INV_ACC) /* 0.9167 */
#define c_inv_corr_2 1236 * (6 - BITS_INV_ACC) /* 0.6035 */
#define c_inv_corr_3 680 * (6 - BITS_INV_ACC) /* 0.3322 */
#define c_inv_corr_4 0 * (6 - BITS_INV_ACC) /* 0.0 */
#define c_inv_corr_5 -569 * (6 - BITS_INV_ACC) /* -0.278 */
#define c_inv_corr_6 -512 * (6 - BITS_INV_ACC) /* -0.25 */
#define c_inv_corr_7 -651 * (6 - BITS_INV_ACC) /* -0.3176 */
#define RND_INV_ROW_0 RND_INV_ROW + c_inv_corr_0
#define RND_INV_ROW_1 RND_INV_ROW + c_inv_corr_1
#define RND_INV_ROW_2 RND_INV_ROW + c_inv_corr_2
#define RND_INV_ROW_3 RND_INV_ROW + c_inv_corr_3
#define RND_INV_ROW_4 RND_INV_ROW + c_inv_corr_4
#define RND_INV_ROW_5 RND_INV_ROW + c_inv_corr_5
#define RND_INV_ROW_6 RND_INV_ROW + c_inv_corr_6
#define RND_INV_ROW_7 RND_INV_ROW + c_inv_corr_7
/* Table for rows 0,4 - constants are multiplied on cos_4_16 */
__declspec() short tab_i_04[] = {
16384, 21407, 16384, 8867,
-16384, 21407, 16384, -8867,
16384, -8867, 16384, -21407,
16384, 8867, -16384, -21407,
22725, 19266, 19266, -4520,
4520, 19266, 19266, -22725,
12873, -22725, 4520, -12873,
12873, 4520, -22725, -12873};
/* Table for rows 1,7 - constants are multiplied on cos_1_16 */
__declspec(align(16)) short tab_i_17[] = {
22725, 29692, 22725, 12299,
-22725, 29692, 22725, -12299,
22725, -12299, 22725, -29692,
22725, 12299, -22725, -29692,
31521, 26722, 26722, -6270,
6270, 26722, 26722, -31521,
17855, -31521, 6270, -17855,
17855, 6270, -31521, -17855};
/* Table for rows 2,6 - constants are multiplied on cos_2_16 */
__declspec(align(16)) short tab_i_26[] = {
21407, 27969, 21407, 11585,
-21407, 27969, 21407, -11585,
21407, -11585, 21407, -27969,
21407, 11585, -21407, -27969,
29692, 25172, 25172, -5906,
5906, 25172, 25172, -29692,
16819, -29692, 5906, -16819,
16819, 5906, -29692, -16819};
/* Table for rows 3,5 - constants are multiplied on cos_3_16 */
__declspec(align(16)) short tab_i_35[] = {
19266, 25172, 19266, 10426,
-19266, 25172, 19266, -10426,
19266, -10426, 19266, -25172,
19266, 10426, -19266, -25172,
26722, 22654, 22654, -5315,
5315, 22654, 22654, -26722,
15137, -26722, 5315, -15137,
15137, 5315, -26722, -15137};
__declspec(align(16)) long round_i_0[] = {RND_INV_ROW_0,RND_INV_ROW_0,
RND_INV_ROW_0,RND_INV_ROW_0};
__declspec(align(16)) long round_i_1[] = {RND_INV_ROW_1,RND_INV_ROW_1,
RND_INV_ROW_1,RND_INV_ROW_1};
__declspec(align(16)) long round_i_2[] = {RND_INV_ROW_2,RND_INV_ROW_2,
RND_INV_ROW_2,RND_INV_ROW_2};
__declspec(align(16)) long round_i_3[] = {RND_INV_ROW_3,RND_INV_ROW_3,
RND_INV_ROW_3,RND_INV_ROW_3};
__declspec(align(16)) long round_i_4[] = {RND_INV_ROW_4,RND_INV_ROW_4,
RND_INV_ROW_4,RND_INV_ROW_4};
__declspec(align(16)) long round_i_5[] = {RND_INV_ROW_5,RND_INV_ROW_5,
RND_INV_ROW_5,RND_INV_ROW_5};
__declspec(align(16)) long round_i_6[] = {RND_INV_ROW_6,RND_INV_ROW_6,
RND_INV_ROW_6,RND_INV_ROW_6};
__declspec(align(16)) long round_i_7[] = {RND_INV_ROW_7,RND_INV_ROW_7,
RND_INV_ROW_7,RND_INV_ROW_7};
__declspec(align(16)) short tg_1_16[] = {
13036, 13036, 13036, 13036, /* tg * (2<<16) + 0.5 */
13036, 13036, 13036, 13036};
__declspec(align(16)) short tg_2_16[] = {
27146, 27146, 27146, 27146, /* tg * (2<<16) + 0.5 */
27146, 27146, 27146, 27146};
__declspec(align(16)) short tg_3_16[] = {
-21746, -21746, -21746, -21746, /* tg * (2<<16) + 0.5 */
-21746, -21746, -21746, -21746};
__declspec(align(16)) short cos_4_16[] = {
-19195, -19195, -19195, -19195, /* cos * (2<<16) + 0.5 */
-19195, -19195, -19195, -19195};
/*
* In this implementation the outputs of the iDCT-1D are multiplied
* for rows 0,4 - on cos_4_16,
* for rows 1,7 - on cos_1_16,
* for rows 2,6 - on cos_2_16,
* for rows 3,5 - on cos_3_16
* and are shifted to the left for rise of accuracy
*
* For used constants
* FIX(float_const) = (short) (float_const * (1<<15) + 0.5)
*
*-----------------------------------------------------------------------------
*
* On the first stage the calculation is executed at once for two rows.
* The permutation for each output row is done on second stage
* t7 t6 t5 t4 t3 t2 t1 t0 -> t4 t5 t6 t7 t3 t2 t1 t0
*
*-----------------------------------------------------------------------------
*/
#define DCT_8_INV_ROW_2R(TABLE, ROUND1, ROUND2) __asm { \
__asm pshuflw xmm1, xmm0, 10001000b \
__asm pshuflw xmm0, xmm0, 11011101b \
__asm pshufhw xmm1, xmm1, 10001000b \
__asm pshufhw xmm0, xmm0, 11011101b \
__asm movdqa xmm2, XMMWORD PTR [TABLE] \
__asm pmaddwd xmm2, xmm1 \
__asm movdqa xmm3, XMMWORD PTR [TABLE + 32] \
__asm pmaddwd xmm3, xmm0 \
__asm pmaddwd xmm1, XMMWORD PTR [TABLE + 16] \
__asm pmaddwd xmm0, XMMWORD PTR [TABLE + 48] \
__asm pshuflw xmm5, xmm4, 10001000b \
__asm pshuflw xmm4, xmm4, 11011101b \
__asm pshufhw xmm5, xmm5, 10001000b \
__asm pshufhw xmm4, xmm4, 11011101b \
__asm movdqa xmm6, XMMWORD PTR [TABLE] \
__asm pmaddwd xmm6, xmm5 \
__asm movdqa xmm7, XMMWORD PTR [TABLE + 32] \
__asm pmaddwd xmm7, xmm4 \
__asm pmaddwd xmm5, XMMWORD PTR [TABLE + 16] \
__asm pmaddwd xmm4, XMMWORD PTR [TABLE + 48] \
__asm pshufd xmm1, xmm1, 01001110b \
__asm pshufd xmm0, xmm0, 01001110b \
__asm paddd xmm2, XMMWORD PTR [ROUND1] \
__asm paddd xmm3, xmm0 \
__asm paddd xmm1, xmm2 \
__asm pshufd xmm5, xmm5, 01001110b \
__asm pshufd xmm4, xmm4, 01001110b \
__asm movdqa xmm2, xmm1 \
__asm psubd xmm2, xmm3 \
__asm psrad xmm2, SHIFT_INV_ROW \
__asm paddd xmm1, xmm3 \
__asm psrad xmm1, SHIFT_INV_ROW \
__asm packssdw xmm1, xmm2 \
__asm paddd xmm6, XMMWORD PTR [ROUND2] \
__asm paddd xmm7, xmm4 \
__asm paddd xmm5, xmm6 \
__asm movdqa xmm6, xmm5 \
__asm psubd xmm6, xmm7 \
__asm psrad xmm6, SHIFT_INV_ROW \
__asm paddd xmm5, xmm7 \
__asm psrad xmm5, SHIFT_INV_ROW \
__asm packssdw xmm5, xmm6 \
}
/*
*
* The second stage - inverse DCTs of columns
*
* The inputs are multiplied
* for rows 0,4 - on cos_4_16,
* for rows 1,7 - on cos_1_16,
* for rows 2,6 - on cos_2_16,
* for rows 3,5 - on cos_3_16
* and are shifted to the left for rise of accuracy
*/
#define DCT_8_INV_COL_8R(INP, OUTP) __asm { \
__asm movdqa xmm0, [INP + 5*16] \
__asm movdqa xmm1, XMMWORD PTR tg_3_16 \
__asm movdqa xmm2, xmm0 \
__asm movdqa xmm3, [INP + 3*16] \
__asm pmulhw xmm0, xmm1 \
__asm movdqa xmm4, [INP + 7*16] \
__asm pmulhw xmm1, xmm3 \
__asm movdqa xmm5, XMMWORD PTR tg_1_16 \
__asm movdqa xmm6, xmm4 \
__asm pmulhw xmm4, xmm5 \
__asm paddsw xmm0, xmm2 \
__asm pmulhw xmm5, [INP + 1*16] \
__asm paddsw xmm1, xmm3 \
__asm movdqa xmm7, [INP + 6*16] \
__asm paddsw xmm0, xmm3 \
__asm movdqa xmm3, XMMWORD PTR tg_2_16 \
__asm psubsw xmm2, xmm1 \
__asm pmulhw xmm7, xmm3 \
__asm movdqa xmm1, xmm0 \
__asm pmulhw xmm3, [INP + 2*16] \
__asm psubsw xmm5, xmm6 \
__asm paddsw xmm4, [INP + 1*16] \
__asm paddsw xmm0, xmm4 \
__asm psubsw xmm4, xmm1 \
__asm pshufhw xmm0, xmm0, 00011011b \
__asm paddsw xmm7, [INP + 2*16] \
__asm movdqa xmm6, xmm5 \
__asm psubsw xmm3, [INP + 6*16] \
__asm psubsw xmm5, xmm2 \
__asm paddsw xmm6, xmm2 \
__asm movdqa [OUTP + 7*16], xmm0 \
__asm movdqa xmm1, xmm4 \
__asm movdqa xmm2, XMMWORD PTR cos_4_16 \
__asm paddsw xmm4, xmm5 \
__asm movdqa xmm0, XMMWORD PTR cos_4_16 \
__asm pmulhw xmm2, xmm4 \
__asm pshufhw xmm6, xmm6, 00011011b \
__asm movdqa [OUTP + 3*16], xmm6 \
__asm psubsw xmm1, xmm5 \
__asm movdqa xmm6, [INP + 0*16] \
__asm pmulhw xmm0, xmm1 \
__asm movdqa xmm5, [INP + 4*16] \
__asm paddsw xmm4, xmm2 \
__asm paddsw xmm5, xmm6 \
__asm psubsw xmm6, [INP + 4*16] \
__asm paddsw xmm0, xmm1 \
__asm pshufhw xmm4, xmm4, 00011011b \
__asm movdqa xmm2, xmm5 \
__asm paddsw xmm5, xmm7 \
__asm movdqa xmm1, xmm6 \
__asm psubsw xmm2, xmm7 \
__asm movdqa xmm7, [OUTP + 7*16] \
__asm paddsw xmm6, xmm3 \
__asm pshufhw xmm5, xmm5, 00011011b \
__asm paddsw xmm7, xmm5 \
__asm psubsw xmm1, xmm3 \
__asm pshufhw xmm6, xmm6, 00011011b \
__asm movdqa xmm3, xmm6 \
__asm paddsw xmm6, xmm4 \
__asm pshufhw xmm2, xmm2, 00011011b \
__asm psraw xmm7, SHIFT_INV_COL \
__asm movdqa [OUTP + 0*16], xmm7 \
__asm movdqa xmm7, xmm1 \
__asm paddsw xmm1, xmm0 \
__asm psraw xmm6, SHIFT_INV_COL \
__asm movdqa [OUTP + 1*16], xmm6 \
__asm pshufhw xmm1, xmm1, 00011011b \
__asm movdqa xmm6, [OUTP + 3*16] \
__asm psubsw xmm7, xmm0 \
__asm psraw xmm1, SHIFT_INV_COL \
__asm movdqa [OUTP + 2*16], xmm1 \
__asm psubsw xmm5, [OUTP + 7*16] \
__asm paddsw xmm6, xmm2 \
__asm psubsw xmm2, [OUTP + 3*16] \
__asm psubsw xmm3, xmm4 \
__asm psraw xmm7, SHIFT_INV_COL \
__asm pshufhw xmm7, xmm7, 00011011b \
__asm movdqa [OUTP + 5*16], xmm7 \
__asm psraw xmm5, SHIFT_INV_COL \
__asm movdqa [OUTP + 7*16], xmm5 \
__asm psraw xmm6, SHIFT_INV_COL \
__asm movdqa [OUTP + 3*16], xmm6 \
__asm psraw xmm2, SHIFT_INV_COL \
__asm movdqa [OUTP + 4*16], xmm2 \
__asm psraw xmm3, SHIFT_INV_COL \
__asm movdqa [OUTP + 6*16], xmm3 \
}
/*
*
* Name: dct_8x8_inv_16s
* Purpose: Inverse Discrete Cosine Transform 8x8 with
* 2D buffer of short int data
* Context:
* void dct_8x8_inv_16s ( short *src, short *dst )
* Parameters:
* src - Pointer to the source buffer
* dst - Pointer to the destination buffer
*
*/
GLOBAL(void)
dct_8x8_inv_16s ( short *src, short *dst ) {
__asm {
mov ecx, src
mov edx, dst
movdqa xmm0, [ecx+0*16]
movdqa xmm4, [ecx+4*16]
DCT_8_INV_ROW_2R(tab_i_04, round_i_0, round_i_4)
movdqa [edx+0*16], xmm1
movdqa [edx+4*16], xmm5
movdqa xmm0, [ecx+1*16]
movdqa xmm4, [ecx+7*16]
DCT_8_INV_ROW_2R(tab_i_17, round_i_1, round_i_7)
movdqa [edx+1*16], xmm1
movdqa [edx+7*16], xmm5
movdqa xmm0, [ecx+3*16]
movdqa xmm4, [ecx+5*16]
DCT_8_INV_ROW_2R(tab_i_35, round_i_3, round_i_5);
movdqa [edx+3*16], xmm1
movdqa [edx+5*16], xmm5
movdqa xmm0, [ecx+2*16]
movdqa xmm4, [ecx+6*16]
DCT_8_INV_ROW_2R(tab_i_26, round_i_2, round_i_6);
movdqa [edx+2*16], xmm1
movdqa [edx+6*16], xmm5
DCT_8_INV_COL_8R(edx+0, edx+0);
}
}
/*
* Name:
* ownpj_QuantInv_8x8_16s
*
* Purpose:
* Dequantize 8x8 block of DCT coefficients
*
* Context:
* void ownpj_QuantInv_8x8_16s
* Ipp16s* pSrc,
* Ipp16s* pDst,
* const Ipp16u* pQTbl)*
*
*/
GLOBAL(void)
ownpj_QuantInv_8x8_16s(short * pSrc, short * pDst, const unsigned short * pQTbl)
{
__asm {
push ebx
push ecx
push edx
push esi
push edi
mov esi, pSrc
mov edi, pDst
mov edx, pQTbl
mov ecx, 4
mov ebx, 32
again:
movq mm0, QWORD PTR [esi+0]
movq mm1, QWORD PTR [esi+8]
movq mm2, QWORD PTR [esi+16]
movq mm3, QWORD PTR [esi+24]
prefetcht0 [esi+ebx] ; fetch next cache line
pmullw mm0, QWORD PTR [edx+0]
pmullw mm1, QWORD PTR [edx+8]
pmullw mm2, QWORD PTR [edx+16]
pmullw mm3, QWORD PTR [edx+24]
movq QWORD PTR [edi+0], mm0
movq QWORD PTR [edi+8], mm1
movq QWORD PTR [edi+16], mm2
movq QWORD PTR [edi+24], mm3
add esi, ebx
add edi, ebx
add edx, ebx
dec ecx
jnz again
emms
pop edi
pop esi
pop edx
pop ecx
pop ebx
}
}
/*
* Name:
* ownpj_Add128_8x8_16s8u
*
* Purpose:
* signed to unsigned conversion (level shift)
* for 8x8 block of DCT coefficients
*
* Context:
* void ownpj_Add128_8x8_16s8u
* const Ipp16s* pSrc,
* Ipp8u* pDst,
* int DstStep);
*
*/
__declspec(align(16)) long const_128[]= {0x00800080, 0x00800080, 0x00800080, 0x00800080};
GLOBAL(void)
ownpj_Add128_8x8_16s8u(const short * pSrc, unsigned char * pDst, int DstStep)
{
__asm {
push eax
push ebx
push ecx
push edx
push esi
push edi
mov esi, pSrc
mov edi, pDst
mov edx, DstStep
mov ecx, 2
mov ebx, edx
mov eax, edx
sal ebx, 1
add eax, ebx
movdqa xmm7, XMMWORD PTR const_128
again:
movdqa xmm0, XMMWORD PTR [esi+0] ; line 0
movdqa xmm1, XMMWORD PTR [esi+16] ; line 1
movdqa xmm2, XMMWORD PTR [esi+32] ; line 2
movdqa xmm3, XMMWORD PTR [esi+48] ; line 3
paddw xmm0, xmm7
paddw xmm1, xmm7
paddw xmm2, xmm7
paddw xmm3, xmm7
packuswb xmm0, xmm1
packuswb xmm2, xmm3
movq QWORD PTR [edi], xmm0 ;0*DstStep
movq QWORD PTR [edi+ebx], xmm2 ;2*DstStep
psrldq xmm0, 8
psrldq xmm2, 8
movq QWORD PTR [edi+edx], xmm0 ;1*DstStep
movq QWORD PTR [edi+eax], xmm2 ;3*DstStep
add edi, ebx
add esi, 64
add edi, ebx
dec ecx
jnz again
pop edi
pop esi
pop edx
pop ecx
pop ebx
pop eax
}
}
/*
* Name:
* ippiDCTQuantInv8x8LS_JPEG_16s8u_C1R
*
* Purpose:
* Inverse DCT transform, de-quantization and level shift
*
* Parameters:
* pSrc - pointer to source
* pDst - pointer to output array
* DstStep - line offset for output data
* pEncoderQuantTable - pointer to Quantization table
*
*/
GLOBAL(void)
ippiDCTQuantInv8x8LS_JPEG_16s8u_C1R(
short * pSrc,
unsigned char * pDst,
int DstStep,
const unsigned short * pQuantInvTable)
{
__declspec(align(16)) Ipp8u buf[DCTSIZE2*sizeof(Ipp16s)];
Ipp16s * workbuf = (Ipp16s *)buf;
ownpj_QuantInv_8x8_16s(pSrc,workbuf,pQuantInvTable);
dct_8x8_inv_16s(workbuf,workbuf);
ownpj_Add128_8x8_16s8u(workbuf,pDst,DstStep);
}
GLOBAL(void)
jpeg_idct_islow_sse2 (
j_decompress_ptr cinfo,
jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf,
JDIMENSION output_col)
{
int ctr;
JCOEFPTR inptr;
Ipp16u* quantptr;
Ipp8u* wsptr;
__declspec(align(16)) Ipp8u workspace[DCTSIZE2];
JSAMPROW outptr;
inptr = coef_block;
quantptr = (Ipp16u*)compptr->dct_table;
wsptr = workspace;
ippiDCTQuantInv8x8LS_JPEG_16s8u_C1R(inptr, workspace, 8, quantptr);
for(ctr = 0; ctr < DCTSIZE; ctr++)
{
outptr = output_buf[ctr] + output_col;
outptr[0] = wsptr[0];
outptr[1] = wsptr[1];
outptr[2] = wsptr[2];
outptr[3] = wsptr[3];
outptr[4] = wsptr[4];
outptr[5] = wsptr[5];
outptr[6] = wsptr[6];
outptr[7] = wsptr[7];
wsptr += DCTSIZE;
}
}
#endif /* HAVE_SSE2_INTEL_MNEMONICS */
1998-03-28 05:44:41 +03:00
#endif /* DCT_ISLOW_SUPPORTED */