diff --git a/js/src/dtoa.c b/js/src/dtoa.c new file mode 100644 index 00000000000..bd6edd1da23 --- /dev/null +++ b/js/src/dtoa.c @@ -0,0 +1,3332 @@ +/**************************************************************** + * + * The author of this software is David M. Gay. + * + * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. + * + * Permission to use, copy, modify, and distribute this software for any + * purpose without fee is hereby granted, provided that this entire notice + * is included in all copies of any software which is or includes a copy + * or modification of this software and in all copies of the supporting + * documentation for such software. + * + * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED + * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY + * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY + * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. + * + ***************************************************************/ + +/* Please send bug reports to David M. Gay (dmg at acm dot org, + * with " at " changed at "@" and " dot " changed to "."). */ + +/* On a machine with IEEE extended-precision registers, it is + * necessary to specify double-precision (53-bit) rounding precision + * before invoking strtod or dtoa. If the machine uses (the equivalent + * of) Intel 80x87 arithmetic, the call + * _control87(PC_53, MCW_PC); + * does this with many compilers. Whether this or another call is + * appropriate depends on the compiler; for this to work, it may be + * necessary to #include "float.h" or another system-dependent header + * file. + */ + +/* strtod for IEEE-, VAX-, and IBM-arithmetic machines. + * + * This strtod returns a nearest machine number to the input decimal + * string (or sets errno to ERANGE). With IEEE arithmetic, ties are + * broken by the IEEE round-even rule. Otherwise ties are broken by + * biased rounding (add half and chop). + * + * Inspired loosely by William D. Clinger's paper "How to Read Floating + * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. + * + * Modifications: + * + * 1. We only require IEEE, IBM, or VAX double-precision + * arithmetic (not IEEE double-extended). + * 2. We get by with floating-point arithmetic in a case that + * Clinger missed -- when we're computing d * 10^n + * for a small integer d and the integer n is not too + * much larger than 22 (the maximum integer k for which + * we can represent 10^k exactly), we may be able to + * compute (d*10^k) * 10^(e-k) with just one roundoff. + * 3. Rather than a bit-at-a-time adjustment of the binary + * result in the hard case, we use floating-point + * arithmetic to determine the adjustment to within + * one bit; only in really hard cases do we need to + * compute a second residual. + * 4. Because of 3., we don't need a large table of powers of 10 + * for ten-to-e (just some small tables, e.g. of 10^k + * for 0 <= k <= 22). + */ + +/* + * #define IEEE_8087 for IEEE-arithmetic machines where the least + * significant byte has the lowest address. + * #define IEEE_MC68k for IEEE-arithmetic machines where the most + * significant byte has the lowest address. + * #define Long int on machines with 32-bit ints and 64-bit longs. + * #define IBM for IBM mainframe-style floating-point arithmetic. + * #define VAX for VAX-style floating-point arithmetic (D_floating). + * #define No_leftright to omit left-right logic in fast floating-point + * computation of dtoa. + * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 + * and strtod and dtoa should round accordingly. + * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 + * and Honor_FLT_ROUNDS is not #defined. + * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines + * that use extended-precision instructions to compute rounded + * products and quotients) with IBM. + * #define ROUND_BIASED for IEEE-format with biased rounding. + * #define Inaccurate_Divide for IEEE-format with correctly rounded + * products but inaccurate quotients, e.g., for Intel i860. + * #define NO_LONG_LONG on machines that do not have a "long long" + * integer type (of >= 64 bits). On such machines, you can + * #define Just_16 to store 16 bits per 32-bit Long when doing + * high-precision integer arithmetic. Whether this speeds things + * up or slows things down depends on the machine and the number + * being converted. If long long is available and the name is + * something other than "long long", #define Llong to be the name, + * and if "unsigned Llong" does not work as an unsigned version of + * Llong, #define #ULLong to be the corresponding unsigned type. + * #define KR_headers for old-style C function headers. + * #define Bad_float_h if your system lacks a float.h or if it does not + * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, + * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. + * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) + * if memory is available and otherwise does something you deem + * appropriate. If MALLOC is undefined, malloc will be invoked + * directly -- and assumed always to succeed. + * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making + * memory allocations from a private pool of memory when possible. + * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, + * unless #defined to be a different length. This default length + * suffices to get rid of MALLOC calls except for unusual cases, + * such as decimal-to-binary conversion of a very long string of + * digits. The longest string dtoa can return is about 751 bytes + * long. For conversions by strtod of strings of 800 digits and + * all dtoa conversions in single-threaded executions with 8-byte + * pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte + * pointers, PRIVATE_MEM >= 7112 appears adequate. + * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK + * #defined automatically on IEEE systems. On such systems, + * when INFNAN_CHECK is #defined, strtod checks + * for Infinity and NaN (case insensitively). On some systems + * (e.g., some HP systems), it may be necessary to #define NAN_WORD0 + * appropriately -- to the most significant word of a quiet NaN. + * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) + * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, + * strtod also accepts (case insensitively) strings of the form + * NaN(x), where x is a string of hexadecimal digits and spaces; + * if there is only one string of hexadecimal digits, it is taken + * for the 52 fraction bits of the resulting NaN; if there are two + * or more strings of hex digits, the first is for the high 20 bits, + * the second and subsequent for the low 32 bits, with intervening + * white space ignored; but if this results in none of the 52 + * fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0 + * and NAN_WORD1 are used instead. + * #define MULTIPLE_THREADS if the system offers preemptively scheduled + * multiple threads. In this case, you must provide (or suitably + * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed + * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed + * in pow5mult, ensures lazy evaluation of only one copy of high + * powers of 5; omitting this lock would introduce a small + * probability of wasting memory, but would otherwise be harmless.) + * You must also invoke freedtoa(s) to free the value s returned by + * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. + * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that + * avoids underflows on inputs whose result does not underflow. + * If you #define NO_IEEE_Scale on a machine that uses IEEE-format + * floating-point numbers and flushes underflows to zero rather + * than implementing gradual underflow, then you must also #define + * Sudden_Underflow. + * #define YES_ALIAS to permit aliasing certain double values with + * arrays of ULongs. This leads to slightly better code with + * some compilers and was always used prior to 19990916, but it + * is not strictly legal and can cause trouble with aggressively + * optimizing compilers (e.g., gcc 2.95.1 under -O2). + * #define USE_LOCALE to use the current locale's decimal_point value. + * #define SET_INEXACT if IEEE arithmetic is being used and extra + * computation should be done to set the inexact flag when the + * result is inexact and avoid setting inexact when the result + * is exact. In this case, dtoa.c must be compiled in + * an environment, perhaps provided by #include "dtoa.c" in a + * suitable wrapper, that defines two functions, + * int get_inexact(void); + * void clear_inexact(void); + * such that get_inexact() returns a nonzero value if the + * inexact bit is already set, and clear_inexact() sets the + * inexact bit to 0. When SET_INEXACT is #defined, strtod + * also does extra computations to set the underflow and overflow + * flags when appropriate (i.e., when the result is tiny and + * inexact or when it is a numeric value rounded to +-infinity). + * #define NO_ERRNO if strtod should not assign errno = ERANGE when + * the result overflows to +-Infinity or underflows to 0. + */ + +#ifndef Long +#define Long long +#endif +#ifndef ULong +typedef unsigned Long ULong; +#endif + +#ifdef DEBUG +#include "stdio.h" +#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} +#endif + +#include "stdlib.h" +#include "string.h" + +#ifdef USE_LOCALE +#include "locale.h" +#endif + +#ifdef MALLOC +#ifdef KR_headers +extern char *MALLOC(); +#else +extern void *MALLOC(size_t); +#endif +#else +#define MALLOC malloc +#endif + +#ifndef Omit_Private_Memory +#ifndef PRIVATE_MEM +#define PRIVATE_MEM 2304 +#endif +#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) +static double private_mem[PRIVATE_mem], *pmem_next = private_mem; +#endif + +#undef IEEE_Arith +#undef Avoid_Underflow +#ifdef IEEE_MC68k +#define IEEE_Arith +#endif +#ifdef IEEE_8087 +#define IEEE_Arith +#endif + +#ifdef IEEE_Arith +#ifndef NO_INFNAN_CHECK +#undef INFNAN_CHECK +#define INFNAN_CHECK +#endif +#else +#undef INFNAN_CHECK +#endif + +#include "errno.h" + +#ifdef Bad_float_h + +#ifdef IEEE_Arith +#define DBL_DIG 15 +#define DBL_MAX_10_EXP 308 +#define DBL_MAX_EXP 1024 +#define FLT_RADIX 2 +#endif /*IEEE_Arith*/ + +#ifdef IBM +#define DBL_DIG 16 +#define DBL_MAX_10_EXP 75 +#define DBL_MAX_EXP 63 +#define FLT_RADIX 16 +#define DBL_MAX 7.2370055773322621e+75 +#endif + +#ifdef VAX +#define DBL_DIG 16 +#define DBL_MAX_10_EXP 38 +#define DBL_MAX_EXP 127 +#define FLT_RADIX 2 +#define DBL_MAX 1.7014118346046923e+38 +#endif + +#ifndef LONG_MAX +#define LONG_MAX 2147483647 +#endif + +#else /* ifndef Bad_float_h */ +#include "float.h" +#endif /* Bad_float_h */ + +#ifndef __MATH_H__ +#include "math.h" +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +#ifndef CONST +#ifdef KR_headers +#define CONST /* blank */ +#else +#define CONST const +#endif +#endif + +#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 +Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. +#endif + +typedef union { double d; ULong L[2]; } U; + +#ifdef YES_ALIAS +#define dval(x) x +#ifdef IEEE_8087 +#define word0(x) ((ULong *)&x)[1] +#define word1(x) ((ULong *)&x)[0] +#else +#define word0(x) ((ULong *)&x)[0] +#define word1(x) ((ULong *)&x)[1] +#endif +#else +#ifdef IEEE_8087 +#define word0(x) ((U*)&x)->L[1] +#define word1(x) ((U*)&x)->L[0] +#else +#define word0(x) ((U*)&x)->L[0] +#define word1(x) ((U*)&x)->L[1] +#endif +#define dval(x) ((U*)&x)->d +#endif + +/* The following definition of Storeinc is appropriate for MIPS processors. + * An alternative that might be better on some machines is + * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) + */ +#if defined(IEEE_8087) + defined(VAX) +#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ +((unsigned short *)a)[0] = (unsigned short)c, a++) +#else +#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ +((unsigned short *)a)[1] = (unsigned short)c, a++) +#endif + +/* #define P DBL_MANT_DIG */ +/* Ten_pmax = floor(P*log(2)/log(5)) */ +/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ +/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ +/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ + +#ifdef IEEE_Arith +#define Exp_shift 20 +#define Exp_shift1 20 +#define Exp_msk1 0x100000 +#define Exp_msk11 0x100000 +#define Exp_mask 0x7ff00000 +#define P 53 +#define Bias 1023 +#define Emin (-1022) +#define Exp_1 0x3ff00000 +#define Exp_11 0x3ff00000 +#define Ebits 11 +#define Frac_mask 0xfffff +#define Frac_mask1 0xfffff +#define Ten_pmax 22 +#define Bletch 0x10 +#define Bndry_mask 0xfffff +#define Bndry_mask1 0xfffff +#define LSB 1 +#define Sign_bit 0x80000000 +#define Log2P 1 +#define Tiny0 0 +#define Tiny1 1 +#define Quick_max 14 +#define Int_max 14 +#ifndef NO_IEEE_Scale +#define Avoid_Underflow +#ifdef Flush_Denorm /* debugging option */ +#undef Sudden_Underflow +#endif +#endif + +#ifndef Flt_Rounds +#ifdef FLT_ROUNDS +#define Flt_Rounds FLT_ROUNDS +#else +#define Flt_Rounds 1 +#endif +#endif /*Flt_Rounds*/ + +#ifdef Honor_FLT_ROUNDS +#define Rounding rounding +#undef Check_FLT_ROUNDS +#define Check_FLT_ROUNDS +#else +#define Rounding Flt_Rounds +#endif + +#else /* ifndef IEEE_Arith */ +#undef Check_FLT_ROUNDS +#undef Honor_FLT_ROUNDS +#undef SET_INEXACT +#undef Sudden_Underflow +#define Sudden_Underflow +#ifdef IBM +#undef Flt_Rounds +#define Flt_Rounds 0 +#define Exp_shift 24 +#define Exp_shift1 24 +#define Exp_msk1 0x1000000 +#define Exp_msk11 0x1000000 +#define Exp_mask 0x7f000000 +#define P 14 +#define Bias 65 +#define Exp_1 0x41000000 +#define Exp_11 0x41000000 +#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ +#define Frac_mask 0xffffff +#define Frac_mask1 0xffffff +#define Bletch 4 +#define Ten_pmax 22 +#define Bndry_mask 0xefffff +#define Bndry_mask1 0xffffff +#define LSB 1 +#define Sign_bit 0x80000000 +#define Log2P 4 +#define Tiny0 0x100000 +#define Tiny1 0 +#define Quick_max 14 +#define Int_max 15 +#else /* VAX */ +#undef Flt_Rounds +#define Flt_Rounds 1 +#define Exp_shift 23 +#define Exp_shift1 7 +#define Exp_msk1 0x80 +#define Exp_msk11 0x800000 +#define Exp_mask 0x7f80 +#define P 56 +#define Bias 129 +#define Exp_1 0x40800000 +#define Exp_11 0x4080 +#define Ebits 8 +#define Frac_mask 0x7fffff +#define Frac_mask1 0xffff007f +#define Ten_pmax 24 +#define Bletch 2 +#define Bndry_mask 0xffff007f +#define Bndry_mask1 0xffff007f +#define LSB 0x10000 +#define Sign_bit 0x8000 +#define Log2P 1 +#define Tiny0 0x80 +#define Tiny1 0 +#define Quick_max 15 +#define Int_max 15 +#endif /* IBM, VAX */ +#endif /* IEEE_Arith */ + +#ifndef IEEE_Arith +#define ROUND_BIASED +#endif + +#ifdef RND_PRODQUOT +#define rounded_product(a,b) a = rnd_prod(a, b) +#define rounded_quotient(a,b) a = rnd_quot(a, b) +#ifdef KR_headers +extern double rnd_prod(), rnd_quot(); +#else +extern double rnd_prod(double, double), rnd_quot(double, double); +#endif +#else +#define rounded_product(a,b) a *= b +#define rounded_quotient(a,b) a /= b +#endif + +#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) +#define Big1 0xffffffff + +#ifndef Pack_32 +#define Pack_32 +#endif + +#ifdef KR_headers +#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff) +#else +#define FFFFFFFF 0xffffffffUL +#endif + +#ifdef NO_LONG_LONG +#undef ULLong +#ifdef Just_16 +#undef Pack_32 +/* When Pack_32 is not defined, we store 16 bits per 32-bit Long. + * This makes some inner loops simpler and sometimes saves work + * during multiplications, but it often seems to make things slightly + * slower. Hence the default is now to store 32 bits per Long. + */ +#endif +#else /* long long available */ +#ifndef Llong +#define Llong long long +#endif +#ifndef ULLong +#define ULLong unsigned Llong +#endif +#endif /* NO_LONG_LONG */ + +#ifndef MULTIPLE_THREADS +#define ACQUIRE_DTOA_LOCK(n) /*nothing*/ +#define FREE_DTOA_LOCK(n) /*nothing*/ +#endif + +#define Kmax 15 + + struct +Bigint { + struct Bigint *next; + int k, maxwds, sign, wds; + ULong x[1]; + }; + + typedef struct Bigint Bigint; + + static Bigint *freelist[Kmax+1]; + + static Bigint * +Balloc +#ifdef KR_headers + (k) int k; +#else + (int k) +#endif +{ + int x; + Bigint *rv; +#ifndef Omit_Private_Memory + unsigned int len; +#endif + + ACQUIRE_DTOA_LOCK(0); + if ((rv = freelist[k])) { + freelist[k] = rv->next; + } + else { + x = 1 << k; +#ifdef Omit_Private_Memory + rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong)); +#else + len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) + /sizeof(double); + if (pmem_next - private_mem + len <= PRIVATE_mem) { + rv = (Bigint*)pmem_next; + pmem_next += len; + } + else + rv = (Bigint*)MALLOC(len*sizeof(double)); +#endif + rv->k = k; + rv->maxwds = x; + } + FREE_DTOA_LOCK(0); + rv->sign = rv->wds = 0; + return rv; + } + + static void +Bfree +#ifdef KR_headers + (v) Bigint *v; +#else + (Bigint *v) +#endif +{ + if (v) { + ACQUIRE_DTOA_LOCK(0); + v->next = freelist[v->k]; + freelist[v->k] = v; + FREE_DTOA_LOCK(0); + } + } + +#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ +y->wds*sizeof(Long) + 2*sizeof(int)) + + static Bigint * +multadd +#ifdef KR_headers + (b, m, a) Bigint *b; int m, a; +#else + (Bigint *b, int m, int a) /* multiply by m and add a */ +#endif +{ + int i, wds; +#ifdef ULLong + ULong *x; + ULLong carry, y; +#else + ULong carry, *x, y; +#ifdef Pack_32 + ULong xi, z; +#endif +#endif + Bigint *b1; + + wds = b->wds; + x = b->x; + i = 0; + carry = a; + do { +#ifdef ULLong + y = *x * (ULLong)m + carry; + carry = y >> 32; + *x++ = (ULong) y & FFFFFFFF; +#else +#ifdef Pack_32 + xi = *x; + y = (xi & 0xffff) * m + carry; + z = (xi >> 16) * m + (y >> 16); + carry = z >> 16; + *x++ = (z << 16) + (y & 0xffff); +#else + y = *x * m + carry; + carry = y >> 16; + *x++ = y & 0xffff; +#endif +#endif + } + while(++i < wds); + if (carry) { + if (wds >= b->maxwds) { + b1 = Balloc(b->k+1); + Bcopy(b1, b); + Bfree(b); + b = b1; + } + b->x[wds++] = (ULong) carry; + b->wds = wds; + } + return b; + } + + static Bigint * +s2b +#ifdef KR_headers + (s, nd0, nd, y9) CONST char *s; int nd0, nd; ULong y9; +#else + (CONST char *s, int nd0, int nd, ULong y9) +#endif +{ + Bigint *b; + int i, k; + Long x, y; + + x = (nd + 8) / 9; + for(k = 0, y = 1; x > y; y <<= 1, k++) ; +#ifdef Pack_32 + b = Balloc(k); + b->x[0] = y9; + b->wds = 1; +#else + b = Balloc(k+1); + b->x[0] = y9 & 0xffff; + b->wds = (b->x[1] = y9 >> 16) ? 2 : 1; +#endif + + i = 9; + if (9 < nd0) { + s += 9; + do b = multadd(b, 10, *s++ - '0'); + while(++i < nd0); + s++; + } + else + s += 10; + for(; i < nd; i++) + b = multadd(b, 10, *s++ - '0'); + return b; + } + + static int +hi0bits +#ifdef KR_headers + (x) register ULong x; +#else + (register ULong x) +#endif +{ + register int k = 0; + + if (!(x & 0xffff0000)) { + k = 16; + x <<= 16; + } + if (!(x & 0xff000000)) { + k += 8; + x <<= 8; + } + if (!(x & 0xf0000000)) { + k += 4; + x <<= 4; + } + if (!(x & 0xc0000000)) { + k += 2; + x <<= 2; + } + if (!(x & 0x80000000)) { + k++; + if (!(x & 0x40000000)) + return 32; + } + return k; + } + + static int +lo0bits +#ifdef KR_headers + (y) ULong *y; +#else + (ULong *y) +#endif +{ + register int k; + register ULong x = *y; + + if (x & 7) { + if (x & 1) + return 0; + if (x & 2) { + *y = x >> 1; + return 1; + } + *y = x >> 2; + return 2; + } + k = 0; + if (!(x & 0xffff)) { + k = 16; + x >>= 16; + } + if (!(x & 0xff)) { + k += 8; + x >>= 8; + } + if (!(x & 0xf)) { + k += 4; + x >>= 4; + } + if (!(x & 0x3)) { + k += 2; + x >>= 2; + } + if (!(x & 1)) { + k++; + x >>= 1; + if (!x) + return 32; + } + *y = x; + return k; + } + + static Bigint * +i2b +#ifdef KR_headers + (i) int i; +#else + (int i) +#endif +{ + Bigint *b; + + b = Balloc(1); + b->x[0] = i; + b->wds = 1; + return b; + } + + static Bigint * +mult +#ifdef KR_headers + (a, b) Bigint *a, *b; +#else + (Bigint *a, Bigint *b) +#endif +{ + Bigint *c; + int k, wa, wb, wc; + ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; + ULong y; +#ifdef ULLong + ULLong carry, z; +#else + ULong carry, z; +#ifdef Pack_32 + ULong z2; +#endif +#endif + + if (a->wds < b->wds) { + c = a; + a = b; + b = c; + } + k = a->k; + wa = a->wds; + wb = b->wds; + wc = wa + wb; + if (wc > a->maxwds) + k++; + c = Balloc(k); + for(x = c->x, xa = x + wc; x < xa; x++) + *x = 0; + xa = a->x; + xae = xa + wa; + xb = b->x; + xbe = xb + wb; + xc0 = c->x; +#ifdef ULLong + for(; xb < xbe; xc0++) { + if ((y = *xb++)) { + x = xa; + xc = xc0; + carry = 0; + do { + z = *x++ * (ULLong)y + *xc + carry; + carry = z >> 32; + *xc++ = (ULong) z & FFFFFFFF; + } + while(x < xae); + *xc = (ULong) carry; + } + } +#else +#ifdef Pack_32 + for(; xb < xbe; xb++, xc0++) { + if (y = *xb & 0xffff) { + x = xa; + xc = xc0; + carry = 0; + do { + z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; + carry = z >> 16; + z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; + carry = z2 >> 16; + Storeinc(xc, z2, z); + } + while(x < xae); + *xc = carry; + } + if (y = *xb >> 16) { + x = xa; + xc = xc0; + carry = 0; + z2 = *xc; + do { + z = (*x & 0xffff) * y + (*xc >> 16) + carry; + carry = z >> 16; + Storeinc(xc, z, z2); + z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; + carry = z2 >> 16; + } + while(x < xae); + *xc = z2; + } + } +#else + for(; xb < xbe; xc0++) { + if (y = *xb++) { + x = xa; + xc = xc0; + carry = 0; + do { + z = *x++ * y + *xc + carry; + carry = z >> 16; + *xc++ = z & 0xffff; + } + while(x < xae); + *xc = carry; + } + } +#endif +#endif + for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; + c->wds = wc; + return c; + } + + static Bigint *p5s; + + static Bigint * +pow5mult +#ifdef KR_headers + (b, k) Bigint *b; int k; +#else + (Bigint *b, int k) +#endif +{ + Bigint *b1, *p5, *p51; + int i; + static int p05[3] = { 5, 25, 125 }; + + if ((i = k & 3)) + b = multadd(b, p05[i-1], 0); + + if (!(k >>= 2)) + return b; + if (!(p5 = p5s)) { + /* first time */ +#ifdef MULTIPLE_THREADS + ACQUIRE_DTOA_LOCK(1); + if (!(p5 = p5s)) { + p5 = p5s = i2b(625); + p5->next = 0; + } + FREE_DTOA_LOCK(1); +#else + p5 = p5s = i2b(625); + p5->next = 0; +#endif + } + for(;;) { + if (k & 1) { + b1 = mult(b, p5); + Bfree(b); + b = b1; + } + if (!(k >>= 1)) + break; + if (!(p51 = p5->next)) { +#ifdef MULTIPLE_THREADS + ACQUIRE_DTOA_LOCK(1); + if (!(p51 = p5->next)) { + p51 = p5->next = mult(p5,p5); + p51->next = 0; + } + FREE_DTOA_LOCK(1); +#else + p51 = p5->next = mult(p5,p5); + p51->next = 0; +#endif + } + p5 = p51; + } + return b; + } + + static Bigint * +lshift +#ifdef KR_headers + (b, k) Bigint *b; int k; +#else + (Bigint *b, int k) +#endif +{ + int i, k1, n, n1; + Bigint *b1; + ULong *x, *x1, *xe, z; + +#ifdef Pack_32 + n = k >> 5; +#else + n = k >> 4; +#endif + k1 = b->k; + n1 = n + b->wds + 1; + for(i = b->maxwds; n1 > i; i <<= 1) + k1++; + b1 = Balloc(k1); + x1 = b1->x; + for(i = 0; i < n; i++) + *x1++ = 0; + x = b->x; + xe = x + b->wds; +#ifdef Pack_32 + if (k &= 0x1f) { + k1 = 32 - k; + z = 0; + do { + *x1++ = *x << k | z; + z = *x++ >> k1; + } + while(x < xe); + if ((*x1 = z)) + ++n1; + } +#else + if (k &= 0xf) { + k1 = 16 - k; + z = 0; + do { + *x1++ = *x << k & 0xffff | z; + z = *x++ >> k1; + } + while(x < xe); + if (*x1 = z) + ++n1; + } +#endif + else do + *x1++ = *x++; + while(x < xe); + b1->wds = n1 - 1; + Bfree(b); + return b1; + } + + static int +cmp +#ifdef KR_headers + (a, b) Bigint *a, *b; +#else + (Bigint *a, Bigint *b) +#endif +{ + ULong *xa, *xa0, *xb, *xb0; + int i, j; + + i = a->wds; + j = b->wds; +#ifdef DEBUG + if (i > 1 && !a->x[i-1]) + Bug("cmp called with a->x[a->wds-1] == 0"); + if (j > 1 && !b->x[j-1]) + Bug("cmp called with b->x[b->wds-1] == 0"); +#endif + if (i -= j) + return i; + xa0 = a->x; + xa = xa0 + j; + xb0 = b->x; + xb = xb0 + j; + for(;;) { + if (*--xa != *--xb) + return *xa < *xb ? -1 : 1; + if (xa <= xa0) + break; + } + return 0; + } + + static Bigint * +diff +#ifdef KR_headers + (a, b) Bigint *a, *b; +#else + (Bigint *a, Bigint *b) +#endif +{ + Bigint *c; + int i, wa, wb; + ULong *xa, *xae, *xb, *xbe, *xc; +#ifdef ULLong + ULLong borrow, y; +#else + ULong borrow, y; +#ifdef Pack_32 + ULong z; +#endif +#endif + + i = cmp(a,b); + if (!i) { + c = Balloc(0); + c->wds = 1; + c->x[0] = 0; + return c; + } + if (i < 0) { + c = a; + a = b; + b = c; + i = 1; + } + else + i = 0; + c = Balloc(a->k); + c->sign = i; + wa = a->wds; + xa = a->x; + xae = xa + wa; + wb = b->wds; + xb = b->x; + xbe = xb + wb; + xc = c->x; + borrow = 0; +#ifdef ULLong + do { + y = (ULLong)*xa++ - *xb++ - borrow; + borrow = y >> 32 & (ULong)1; + *xc++ = (ULong) y & FFFFFFFF; + } + while(xb < xbe); + while(xa < xae) { + y = *xa++ - borrow; + borrow = y >> 32 & (ULong)1; + *xc++ = (ULong) y & FFFFFFFF; + } +#else +#ifdef Pack_32 + do { + y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(xc, z, y); + } + while(xb < xbe); + while(xa < xae) { + y = (*xa & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*xa++ >> 16) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(xc, z, y); + } +#else + do { + y = *xa++ - *xb++ - borrow; + borrow = (y & 0x10000) >> 16; + *xc++ = y & 0xffff; + } + while(xb < xbe); + while(xa < xae) { + y = *xa++ - borrow; + borrow = (y & 0x10000) >> 16; + *xc++ = y & 0xffff; + } +#endif +#endif + while(!*--xc) + wa--; + c->wds = wa; + return c; + } + + static double +ulp +#ifdef KR_headers + (x) double x; +#else + (double x) +#endif +{ + register Long L; + double a; + + L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; +#ifndef Avoid_Underflow +#ifndef Sudden_Underflow + if (L > 0) { +#endif +#endif +#ifdef IBM + L |= Exp_msk1 >> 4; +#endif + word0(a) = L; + word1(a) = 0; +#ifndef Avoid_Underflow +#ifndef Sudden_Underflow + } + else { + L = -L >> Exp_shift; + if (L < Exp_shift) { + word0(a) = 0x80000 >> L; + word1(a) = 0; + } + else { + word0(a) = 0; + L -= Exp_shift; + word1(a) = L >= 31 ? 1 : 1 << 31 - L; + } + } +#endif +#endif + return dval(a); + } + + static double +b2d +#ifdef KR_headers + (a, e) Bigint *a; int *e; +#else + (Bigint *a, int *e) +#endif +{ + ULong *xa, *xa0, w, y, z; + int k; + double d; +#ifdef VAX + ULong d0, d1; +#else +#define d0 word0(d) +#define d1 word1(d) +#endif + + xa0 = a->x; + xa = xa0 + a->wds; + y = *--xa; +#ifdef DEBUG + if (!y) Bug("zero y in b2d"); +#endif + k = hi0bits(y); + *e = 32 - k; +#ifdef Pack_32 + if (k < Ebits) { + d0 = Exp_1 | y >> (Ebits - k); + w = xa > xa0 ? *--xa : 0; + d1 = y << ((32-Ebits) + k) | w >> (Ebits - k); + goto ret_d; + } + z = xa > xa0 ? *--xa : 0; + if (k -= Ebits) { + d0 = Exp_1 | y << k | z >> (32 - k); + y = xa > xa0 ? *--xa : 0; + d1 = z << k | y >> (32 - k); + } + else { + d0 = Exp_1 | y; + d1 = z; + } +#else + if (k < Ebits + 16) { + z = xa > xa0 ? *--xa : 0; + d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k; + w = xa > xa0 ? *--xa : 0; + y = xa > xa0 ? *--xa : 0; + d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k; + goto ret_d; + } + z = xa > xa0 ? *--xa : 0; + w = xa > xa0 ? *--xa : 0; + k -= Ebits + 16; + d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k; + y = xa > xa0 ? *--xa : 0; + d1 = w << k + 16 | y << k; +#endif + ret_d: +#ifdef VAX + word0(d) = d0 >> 16 | d0 << 16; + word1(d) = d1 >> 16 | d1 << 16; +#else +#undef d0 +#undef d1 +#endif + return dval(d); + } + + static Bigint * +d2b +#ifdef KR_headers + (d, e, bits) double d; int *e, *bits; +#else + (double d, int *e, int *bits) +#endif +{ + Bigint *b; + int de, k; + ULong *x, y, z; +#ifndef Sudden_Underflow + int i; +#endif +#ifdef VAX + ULong d0, d1; + d0 = word0(d) >> 16 | word0(d) << 16; + d1 = word1(d) >> 16 | word1(d) << 16; +#else +#define d0 word0(d) +#define d1 word1(d) +#endif + +#ifdef Pack_32 + b = Balloc(1); +#else + b = Balloc(2); +#endif + x = b->x; + + z = d0 & Frac_mask; + d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ +#ifdef Sudden_Underflow + de = (int)(d0 >> Exp_shift); +#ifndef IBM + z |= Exp_msk11; +#endif +#else + if ((de = (int)(d0 >> Exp_shift))) + z |= Exp_msk1; +#endif +#ifdef Pack_32 + if ((y = d1)) { + if ((k = lo0bits(&y))) { + x[0] = y | z << (32 - k); + z >>= k; + } + else + x[0] = y; +#ifndef Sudden_Underflow + i = +#endif + b->wds = (x[1] = z) ? 2 : 1; + } + else { +#ifdef DEBUG + if (!z) + Bug("Zero passed to d2b"); +#endif + k = lo0bits(&z); + x[0] = z; +#ifndef Sudden_Underflow + i = +#endif + b->wds = 1; + k += 32; + } +#else + if (y = d1) { + if (k = lo0bits(&y)) + if (k >= 16) { + x[0] = y | z << 32 - k & 0xffff; + x[1] = z >> k - 16 & 0xffff; + x[2] = z >> k; + i = 2; + } + else { + x[0] = y & 0xffff; + x[1] = y >> 16 | z << 16 - k & 0xffff; + x[2] = z >> k & 0xffff; + x[3] = z >> k+16; + i = 3; + } + else { + x[0] = y & 0xffff; + x[1] = y >> 16; + x[2] = z & 0xffff; + x[3] = z >> 16; + i = 3; + } + } + else { +#ifdef DEBUG + if (!z) + Bug("Zero passed to d2b"); +#endif + k = lo0bits(&z); + if (k >= 16) { + x[0] = z; + i = 0; + } + else { + x[0] = z & 0xffff; + x[1] = z >> 16; + i = 1; + } + k += 32; + } + while(!x[i]) + --i; + b->wds = i + 1; +#endif +#ifndef Sudden_Underflow + if (de) { +#endif +#ifdef IBM + *e = (de - Bias - (P-1) << 2) + k; + *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask); +#else + *e = de - Bias - (P-1) + k; + *bits = P - k; +#endif +#ifndef Sudden_Underflow + } + else { + *e = de - Bias - (P-1) + 1 + k; +#ifdef Pack_32 + *bits = 32*i - hi0bits(x[i-1]); +#else + *bits = (i+2)*16 - hi0bits(x[i]); +#endif + } +#endif + return b; + } +#undef d0 +#undef d1 + + static double +ratio +#ifdef KR_headers + (a, b) Bigint *a, *b; +#else + (Bigint *a, Bigint *b) +#endif +{ + double da, db; + int k, ka, kb; + + dval(da) = b2d(a, &ka); + dval(db) = b2d(b, &kb); +#ifdef Pack_32 + k = ka - kb + 32*(a->wds - b->wds); +#else + k = ka - kb + 16*(a->wds - b->wds); +#endif +#ifdef IBM + if (k > 0) { + word0(da) += (k >> 2)*Exp_msk1; + if (k &= 3) + dval(da) *= 1 << k; + } + else { + k = -k; + word0(db) += (k >> 2)*Exp_msk1; + if (k &= 3) + dval(db) *= 1 << k; + } +#else + if (k > 0) + word0(da) += k*Exp_msk1; + else { + k = -k; + word0(db) += k*Exp_msk1; + } +#endif + return dval(da) / dval(db); + } + + static CONST double +tens[] = { + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, + 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, + 1e20, 1e21, 1e22 +#ifdef VAX + , 1e23, 1e24 +#endif + }; + + static CONST double +#ifdef IEEE_Arith +bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; +static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, +#ifdef Avoid_Underflow + 9007199254740992.*9007199254740992.e-256 + /* = 2^106 * 1e-53 */ +#else + 1e-256 +#endif + }; +/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ +/* flag unnecessarily. It leads to a song and dance at the end of strtod. */ +#define Scale_Bit 0x10 +#define n_bigtens 5 +#else +#ifdef IBM +bigtens[] = { 1e16, 1e32, 1e64 }; +static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 }; +#define n_bigtens 3 +#else +bigtens[] = { 1e16, 1e32 }; +static CONST double tinytens[] = { 1e-16, 1e-32 }; +#define n_bigtens 2 +#endif +#endif + +#ifdef INFNAN_CHECK + +#ifndef NAN_WORD0 +#define NAN_WORD0 0x7ff80000 +#endif + +#ifndef NAN_WORD1 +#define NAN_WORD1 0 +#endif + + static int +match +#ifdef KR_headers + (sp, t) char **sp, *t; +#else + (CONST char **sp, char *t) +#endif +{ + int c, d; + CONST char *s = *sp; + + while((d = *t++)) { + if ((c = *++s) >= 'A' && c <= 'Z') + c += 'a' - 'A'; + if (c != d) + return 0; + } + *sp = s + 1; + return 1; + } + +#ifndef No_Hex_NaN + static void +hexnan +#ifdef KR_headers + (rvp, sp) double *rvp; CONST char **sp; +#else + (double *rvp, CONST char **sp) +#endif +{ + ULong c, x[2]; + CONST char *s; + int havedig, udx0, xshift; + + x[0] = x[1] = 0; + havedig = xshift = 0; + udx0 = 1; + s = *sp; + /* allow optional initial 0x or 0X */ + while((c = *(CONST unsigned char*)(s+1)) && c <= ' ') + ++s; + if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X')) + s += 2; + while((c = *(CONST unsigned char*)++s)) { + if (c >= '0' && c <= '9') + c -= '0'; + else if (c >= 'a' && c <= 'f') + c += 10 - 'a'; + else if (c >= 'A' && c <= 'F') + c += 10 - 'A'; + else if (c <= ' ') { + if (udx0 && havedig) { + udx0 = 0; + xshift = 1; + } + continue; + } +#ifdef GDTOA_NON_PEDANTIC_NANCHECK + else if (/*(*/ c == ')' && havedig) { + *sp = s + 1; + break; + } + else + return; /* invalid form: don't change *sp */ +#else + else { + do { + if (/*(*/ c == ')') { + *sp = s + 1; + break; + } + } while((c = *++s)); + break; + } +#endif + havedig = 1; + if (xshift) { + xshift = 0; + x[0] = x[1]; + x[1] = 0; + } + if (udx0) + x[0] = (x[0] << 4) | (x[1] >> 28); + x[1] = (x[1] << 4) | c; + } + if ((x[0] &= 0xfffff) || x[1]) { + word0(*rvp) = Exp_mask | x[0]; + word1(*rvp) = x[1]; + } + } +#endif /*No_Hex_NaN*/ +#endif /* INFNAN_CHECK */ + + static double +_strtod +#ifdef KR_headers + (s00, se) CONST char *s00; char **se; +#else + (CONST char *s00, char **se) +#endif +{ +#ifdef Avoid_Underflow + int scale; +#endif + int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, + e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; + CONST char *s, *s0, *s1; + double aadj, aadj1, adj, rv, rv0; + Long L; + ULong y, z; + Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; +#ifdef SET_INEXACT + int inexact, oldinexact; +#endif +#ifdef Honor_FLT_ROUNDS + int rounding; +#endif +#ifdef USE_LOCALE + CONST char *s2; +#endif + +#ifdef __GNUC__ + delta = bb = bd = bs = 0; +#endif + + sign = nz0 = nz = 0; + dval(rv) = 0.; + for(s = s00;;s++) switch(*s) { + case '-': + sign = 1; + /* no break */ + case '+': + if (*++s) + goto break2; + /* no break */ + case 0: + goto ret0; + case '\t': + case '\n': + case '\v': + case '\f': + case '\r': + case ' ': + continue; + default: + goto break2; + } + break2: + if (*s == '0') { + nz0 = 1; + while(*++s == '0') ; + if (!*s) + goto ret; + } + s0 = s; + y = z = 0; + for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) + if (nd < 9) + y = 10*y + c - '0'; + else if (nd < 16) + z = 10*z + c - '0'; + nd0 = nd; +#ifdef USE_LOCALE + s1 = localeconv()->decimal_point; + if (c == *s1) { + c = '.'; + if (*++s1) { + s2 = s; + for(;;) { + if (*++s2 != *s1) { + c = 0; + break; + } + if (!*++s1) { + s = s2; + break; + } + } + } + } +#endif + if (c == '.') { + c = *++s; + if (!nd) { + for(; c == '0'; c = *++s) + nz++; + if (c > '0' && c <= '9') { + s0 = s; + nf += nz; + nz = 0; + goto have_dig; + } + goto dig_done; + } + for(; c >= '0' && c <= '9'; c = *++s) { + have_dig: + nz++; + if (c -= '0') { + nf += nz; + for(i = 1; i < nz; i++) + if (nd++ < 9) + y *= 10; + else if (nd <= DBL_DIG + 1) + z *= 10; + if (nd++ < 9) + y = 10*y + c; + else if (nd <= DBL_DIG + 1) + z = 10*z + c; + nz = 0; + } + } + } + dig_done: + e = 0; + if (c == 'e' || c == 'E') { + if (!nd && !nz && !nz0) { + goto ret0; + } + s00 = s; + esign = 0; + switch(c = *++s) { + case '-': + esign = 1; + case '+': + c = *++s; + } + if (c >= '0' && c <= '9') { + while(c == '0') + c = *++s; + if (c > '0' && c <= '9') { + L = c - '0'; + s1 = s; + while((c = *++s) >= '0' && c <= '9') + L = 10*L + c - '0'; + if (s - s1 > 8 || L > 19999) + /* Avoid confusion from exponents + * so large that e might overflow. + */ + e = 19999; /* safe for 16 bit ints */ + else + e = (int)L; + if (esign) + e = -e; + } + else + e = 0; + } + else + s = s00; + } + if (!nd) { + if (!nz && !nz0) { +#ifdef INFNAN_CHECK + /* Check for Nan and Infinity */ + switch(c) { + case 'i': + case 'I': + if (match(&s,"nf")) { + --s; + if (!match(&s,"inity")) + ++s; + word0(rv) = 0x7ff00000; + word1(rv) = 0; + goto ret; + } + break; + case 'n': + case 'N': + if (match(&s, "an")) { + word0(rv) = NAN_WORD0; + word1(rv) = NAN_WORD1; +#ifndef No_Hex_NaN + if (*s == '(') /*)*/ + hexnan(&rv, &s); +#endif + goto ret; + } + } +#endif /* INFNAN_CHECK */ + ret0: + s = s00; + sign = 0; + } + goto ret; + } + e1 = e -= nf; + + /* Now we have nd0 digits, starting at s0, followed by a + * decimal point, followed by nd-nd0 digits. The number we're + * after is the integer represented by those digits times + * 10**e */ + + if (!nd0) + nd0 = nd; + k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; + dval(rv) = y; + if (k > 9) { +#ifdef SET_INEXACT + if (k > DBL_DIG) + oldinexact = get_inexact(); +#endif + dval(rv) = tens[k - 9] * dval(rv) + z; + } + bd0 = 0; + if (nd <= DBL_DIG +#ifndef RND_PRODQUOT +#ifndef Honor_FLT_ROUNDS + && Flt_Rounds == 1 +#endif +#endif + ) { + if (!e) + goto ret; + if (e > 0) { + if (e <= Ten_pmax) { +#ifdef VAX + goto vax_ovfl_check; +#else +#ifdef Honor_FLT_ROUNDS + /* round correctly FLT_ROUNDS = 2 or 3 */ + if (sign) { + rv = -rv; + sign = 0; + } +#endif + /* rv = */ rounded_product(dval(rv), tens[e]); + goto ret; +#endif + } + i = DBL_DIG - nd; + if (e <= Ten_pmax + i) { + /* A fancier test would sometimes let us do + * this for larger i values. + */ +#ifdef Honor_FLT_ROUNDS + /* round correctly FLT_ROUNDS = 2 or 3 */ + if (sign) { + rv = -rv; + sign = 0; + } +#endif + e -= i; + dval(rv) *= tens[i]; +#ifdef VAX + /* VAX exponent range is so narrow we must + * worry about overflow here... + */ + vax_ovfl_check: + word0(rv) -= P*Exp_msk1; + /* rv = */ rounded_product(dval(rv), tens[e]); + if ((word0(rv) & Exp_mask) + > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) + goto ovfl; + word0(rv) += P*Exp_msk1; +#else + /* rv = */ rounded_product(dval(rv), tens[e]); +#endif + goto ret; + } + } +#ifndef Inaccurate_Divide + else if (e >= -Ten_pmax) { +#ifdef Honor_FLT_ROUNDS + /* round correctly FLT_ROUNDS = 2 or 3 */ + if (sign) { + rv = -rv; + sign = 0; + } +#endif + /* rv = */ rounded_quotient(dval(rv), tens[-e]); + goto ret; + } +#endif + } + e1 += nd - k; + +#ifdef IEEE_Arith +#ifdef SET_INEXACT + inexact = 1; + if (k <= DBL_DIG) + oldinexact = get_inexact(); +#endif +#ifdef Avoid_Underflow + scale = 0; +#endif +#ifdef Honor_FLT_ROUNDS + if ((rounding = Flt_Rounds) >= 2) { + if (sign) + rounding = rounding == 2 ? 0 : 2; + else + if (rounding != 2) + rounding = 0; + } +#endif +#endif /*IEEE_Arith*/ + + /* Get starting approximation = rv * 10**e1 */ + + if (e1 > 0) { + if ((i = e1 & 15)) + dval(rv) *= tens[i]; + if (e1 &= ~15) { + if (e1 > DBL_MAX_10_EXP) { + ovfl: +#ifndef NO_ERRNO + errno = ERANGE; +#endif + /* Can't trust HUGE_VAL */ +#ifdef IEEE_Arith +#ifdef Honor_FLT_ROUNDS + switch(rounding) { + case 0: /* toward 0 */ + case 3: /* toward -infinity */ + word0(rv) = Big0; + word1(rv) = Big1; + break; + default: + word0(rv) = Exp_mask; + word1(rv) = 0; + } +#else /*Honor_FLT_ROUNDS*/ + word0(rv) = Exp_mask; + word1(rv) = 0; +#endif /*Honor_FLT_ROUNDS*/ +#ifdef SET_INEXACT + /* set overflow bit */ + dval(rv0) = 1e300; + dval(rv0) *= dval(rv0); +#endif +#else /*IEEE_Arith*/ + word0(rv) = Big0; + word1(rv) = Big1; +#endif /*IEEE_Arith*/ + if (bd0) + goto retfree; + goto ret; + } + e1 >>= 4; + for(j = 0; e1 > 1; j++, e1 >>= 1) + if (e1 & 1) + dval(rv) *= bigtens[j]; + /* The last multiplication could overflow. */ + word0(rv) -= P*Exp_msk1; + dval(rv) *= bigtens[j]; + if ((z = word0(rv) & Exp_mask) + > Exp_msk1*(DBL_MAX_EXP+Bias-P)) + goto ovfl; + if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { + /* set to largest number */ + /* (Can't trust DBL_MAX) */ + word0(rv) = Big0; + word1(rv) = Big1; + } + else + word0(rv) += P*Exp_msk1; + } + } + else if (e1 < 0) { + e1 = -e1; + if ((i = e1 & 15)) + dval(rv) /= tens[i]; + if (e1 >>= 4) { + if (e1 >= 1 << n_bigtens) + goto undfl; +#ifdef Avoid_Underflow + if (e1 & Scale_Bit) + scale = 2*P; + for(j = 0; e1 > 0; j++, e1 >>= 1) + if (e1 & 1) + dval(rv) *= tinytens[j]; + if (scale && (j = 2*P + 1 - ((word0(rv) & Exp_mask) + >> Exp_shift)) > 0) { + /* scaled rv is denormal; zap j low bits */ + if (j >= 32) { + word1(rv) = 0; + if (j >= 53) + word0(rv) = (P+2)*Exp_msk1; + else + word0(rv) &= 0xffffffff << (j-32); + } + else + word1(rv) &= 0xffffffff << j; + } +#else + for(j = 0; e1 > 1; j++, e1 >>= 1) + if (e1 & 1) + dval(rv) *= tinytens[j]; + /* The last multiplication could underflow. */ + dval(rv0) = dval(rv); + dval(rv) *= tinytens[j]; + if (!dval(rv)) { + dval(rv) = 2.*dval(rv0); + dval(rv) *= tinytens[j]; +#endif + if (!dval(rv)) { + undfl: + dval(rv) = 0.; +#ifndef NO_ERRNO + errno = ERANGE; +#endif + if (bd0) + goto retfree; + goto ret; + } +#ifndef Avoid_Underflow + word0(rv) = Tiny0; + word1(rv) = Tiny1; + /* The refinement below will clean + * this approximation up. + */ + } +#endif + } + } + + /* Now the hard part -- adjusting rv to the correct value.*/ + + /* Put digits into bd: true value = bd * 10^e */ + + bd0 = s2b(s0, nd0, nd, y); + + for(;;) { + bd = Balloc(bd0->k); + Bcopy(bd, bd0); + bb = d2b(dval(rv), &bbe, &bbbits); /* rv = bb * 2^bbe */ + bs = i2b(1); + + if (e >= 0) { + bb2 = bb5 = 0; + bd2 = bd5 = e; + } + else { + bb2 = bb5 = -e; + bd2 = bd5 = 0; + } + if (bbe >= 0) + bb2 += bbe; + else + bd2 -= bbe; + bs2 = bb2; +#ifdef Honor_FLT_ROUNDS + if (rounding != 1) + bs2++; +#endif +#ifdef Avoid_Underflow + j = bbe - scale; + i = j + bbbits - 1; /* logb(rv) */ + if (i < Emin) /* denormal */ + j += P - Emin; + else + j = P + 1 - bbbits; +#else /*Avoid_Underflow*/ +#ifdef Sudden_Underflow +#ifdef IBM + j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3); +#else + j = P + 1 - bbbits; +#endif +#else /*Sudden_Underflow*/ + j = bbe; + i = j + bbbits - 1; /* logb(rv) */ + if (i < Emin) /* denormal */ + j += P - Emin; + else + j = P + 1 - bbbits; +#endif /*Sudden_Underflow*/ +#endif /*Avoid_Underflow*/ + bb2 += j; + bd2 += j; +#ifdef Avoid_Underflow + bd2 += scale; +#endif + i = bb2 < bd2 ? bb2 : bd2; + if (i > bs2) + i = bs2; + if (i > 0) { + bb2 -= i; + bd2 -= i; + bs2 -= i; + } + if (bb5 > 0) { + bs = pow5mult(bs, bb5); + bb1 = mult(bs, bb); + Bfree(bb); + bb = bb1; + } + if (bb2 > 0) + bb = lshift(bb, bb2); + if (bd5 > 0) + bd = pow5mult(bd, bd5); + if (bd2 > 0) + bd = lshift(bd, bd2); + if (bs2 > 0) + bs = lshift(bs, bs2); + delta = diff(bb, bd); + dsign = delta->sign; + delta->sign = 0; + i = cmp(delta, bs); +#ifdef Honor_FLT_ROUNDS + if (rounding != 1) { + if (i < 0) { + /* Error is less than an ulp */ + if (!delta->x[0] && delta->wds <= 1) { + /* exact */ +#ifdef SET_INEXACT + inexact = 0; +#endif + break; + } + if (rounding) { + if (dsign) { + adj = 1.; + goto apply_adj; + } + } + else if (!dsign) { + adj = -1.; + if (!word1(rv) + && !(word0(rv) & Frac_mask)) { + y = word0(rv) & Exp_mask; +#ifdef Avoid_Underflow + if (!scale || y > 2*P*Exp_msk1) +#else + if (y) +#endif + { + delta = lshift(delta,Log2P); + if (cmp(delta, bs) <= 0) + adj = -0.5; + } + } + apply_adj: +#ifdef Avoid_Underflow + if (scale && (y = word0(rv) & Exp_mask) + <= 2*P*Exp_msk1) + word0(adj) += (2*P+1)*Exp_msk1 - y; +#else +#ifdef Sudden_Underflow + if ((word0(rv) & Exp_mask) <= + P*Exp_msk1) { + word0(rv) += P*Exp_msk1; + dval(rv) += adj*ulp(dval(rv)); + word0(rv) -= P*Exp_msk1; + } + else +#endif /*Sudden_Underflow*/ +#endif /*Avoid_Underflow*/ + dval(rv) += adj*ulp(dval(rv)); + } + break; + } + adj = ratio(delta, bs); + if (adj < 1.) + adj = 1.; + if (adj <= 0x7ffffffe) { + /* adj = rounding ? ceil(adj) : floor(adj); */ + y = adj; + if (y != adj) { + if (!((rounding>>1) ^ dsign)) + y++; + adj = y; + } + } +#ifdef Avoid_Underflow + if (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1) + word0(adj) += (2*P+1)*Exp_msk1 - y; +#else +#ifdef Sudden_Underflow + if ((word0(rv) & Exp_mask) <= P*Exp_msk1) { + word0(rv) += P*Exp_msk1; + adj *= ulp(dval(rv)); + if (dsign) + dval(rv) += adj; + else + dval(rv) -= adj; + word0(rv) -= P*Exp_msk1; + goto cont; + } +#endif /*Sudden_Underflow*/ +#endif /*Avoid_Underflow*/ + adj *= ulp(dval(rv)); + if (dsign) + dval(rv) += adj; + else + dval(rv) -= adj; + goto cont; + } +#endif /*Honor_FLT_ROUNDS*/ + + if (i < 0) { + /* Error is less than half an ulp -- check for + * special case of mantissa a power of two. + */ + if (dsign || word1(rv) || word0(rv) & Bndry_mask +#ifdef IEEE_Arith +#ifdef Avoid_Underflow + || (word0(rv) & Exp_mask) <= (2*P+1)*Exp_msk1 +#else + || (word0(rv) & Exp_mask) <= Exp_msk1 +#endif +#endif + ) { +#ifdef SET_INEXACT + if (!delta->x[0] && delta->wds <= 1) + inexact = 0; +#endif + break; + } + if (!delta->x[0] && delta->wds <= 1) { + /* exact result */ +#ifdef SET_INEXACT + inexact = 0; +#endif + break; + } + delta = lshift(delta,Log2P); + if (cmp(delta, bs) > 0) + goto drop_down; + break; + } + if (i == 0) { + /* exactly half-way between */ + if (dsign) { + if ((word0(rv) & Bndry_mask1) == Bndry_mask1 + && word1(rv) == ( +#ifdef Avoid_Underflow + (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1) + ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : +#endif + 0xffffffff)) { + /*boundary case -- increment exponent*/ + word0(rv) = (word0(rv) & Exp_mask) + + Exp_msk1 +#ifdef IBM + | Exp_msk1 >> 4 +#endif + ; + word1(rv) = 0; +#ifdef Avoid_Underflow + dsign = 0; +#endif + break; + } + } + else if (!(word0(rv) & Bndry_mask) && !word1(rv)) { + drop_down: + /* boundary case -- decrement exponent */ +#ifdef Sudden_Underflow /*{{*/ + L = word0(rv) & Exp_mask; +#ifdef IBM + if (L < Exp_msk1) +#else +#ifdef Avoid_Underflow + if (L <= (scale ? (2*P+1)*Exp_msk1 : Exp_msk1)) +#else + if (L <= Exp_msk1) +#endif /*Avoid_Underflow*/ +#endif /*IBM*/ + goto undfl; + L -= Exp_msk1; +#else /*Sudden_Underflow}{*/ +#ifdef Avoid_Underflow + if (scale) { + L = word0(rv) & Exp_mask; + if (L <= (2*P+1)*Exp_msk1) { + if (L > (P+2)*Exp_msk1) + /* round even ==> */ + /* accept rv */ + break; + /* rv = smallest denormal */ + goto undfl; + } + } +#endif /*Avoid_Underflow*/ + L = (word0(rv) & Exp_mask) - Exp_msk1; +#endif /*Sudden_Underflow}}*/ + word0(rv) = L | Bndry_mask1; + word1(rv) = 0xffffffff; +#ifdef IBM + goto cont; +#else + break; +#endif + } +#ifndef ROUND_BIASED + if (!(word1(rv) & LSB)) + break; +#endif + if (dsign) + dval(rv) += ulp(dval(rv)); +#ifndef ROUND_BIASED + else { + dval(rv) -= ulp(dval(rv)); +#ifndef Sudden_Underflow + if (!dval(rv)) + goto undfl; +#endif + } +#ifdef Avoid_Underflow + dsign = 1 - dsign; +#endif +#endif + break; + } + if ((aadj = ratio(delta, bs)) <= 2.) { + if (dsign) + aadj = aadj1 = 1.; + else if (word1(rv) || word0(rv) & Bndry_mask) { +#ifndef Sudden_Underflow + if (word1(rv) == Tiny1 && !word0(rv)) + goto undfl; +#endif + aadj = 1.; + aadj1 = -1.; + } + else { + /* special case -- power of FLT_RADIX to be */ + /* rounded down... */ + + if (aadj < 2./FLT_RADIX) + aadj = 1./FLT_RADIX; + else + aadj *= 0.5; + aadj1 = -aadj; + } + } + else { + aadj *= 0.5; + aadj1 = dsign ? aadj : -aadj; +#ifdef Check_FLT_ROUNDS + switch(Rounding) { + case 2: /* towards +infinity */ + aadj1 -= 0.5; + break; + case 0: /* towards 0 */ + case 3: /* towards -infinity */ + aadj1 += 0.5; + } +#else + if (Flt_Rounds == 0) + aadj1 += 0.5; +#endif /*Check_FLT_ROUNDS*/ + } + y = word0(rv) & Exp_mask; + + /* Check for overflow */ + + if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { + dval(rv0) = dval(rv); + word0(rv) -= P*Exp_msk1; + adj = aadj1 * ulp(dval(rv)); + dval(rv) += adj; + if ((word0(rv) & Exp_mask) >= + Exp_msk1*(DBL_MAX_EXP+Bias-P)) { + if (word0(rv0) == Big0 && word1(rv0) == Big1) + goto ovfl; + word0(rv) = Big0; + word1(rv) = Big1; + goto cont; + } + else + word0(rv) += P*Exp_msk1; + } + else { +#ifdef Avoid_Underflow + if (scale && y <= 2*P*Exp_msk1) { + if (aadj <= 0x7fffffff) { + if ((z = (ULong) aadj) <= 0) + z = 1; + aadj = z; + aadj1 = dsign ? aadj : -aadj; + } + word0(aadj1) += (2*P+1)*Exp_msk1 - y; + } + adj = aadj1 * ulp(dval(rv)); + dval(rv) += adj; +#else +#ifdef Sudden_Underflow + if ((word0(rv) & Exp_mask) <= P*Exp_msk1) { + dval(rv0) = dval(rv); + word0(rv) += P*Exp_msk1; + adj = aadj1 * ulp(dval(rv)); + dval(rv) += adj; +#ifdef IBM + if ((word0(rv) & Exp_mask) < P*Exp_msk1) +#else + if ((word0(rv) & Exp_mask) <= P*Exp_msk1) +#endif + { + if (word0(rv0) == Tiny0 + && word1(rv0) == Tiny1) + goto undfl; + word0(rv) = Tiny0; + word1(rv) = Tiny1; + goto cont; + } + else + word0(rv) -= P*Exp_msk1; + } + else { + adj = aadj1 * ulp(dval(rv)); + dval(rv) += adj; + } +#else /*Sudden_Underflow*/ + /* Compute adj so that the IEEE rounding rules will + * correctly round rv + adj in some half-way cases. + * If rv * ulp(rv) is denormalized (i.e., + * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid + * trouble from bits lost to denormalization; + * example: 1.2e-307 . + */ + if (y <= (P-1)*Exp_msk1 && aadj > 1.) { + aadj1 = (double)(int)(aadj + 0.5); + if (!dsign) + aadj1 = -aadj1; + } + adj = aadj1 * ulp(dval(rv)); + dval(rv) += adj; +#endif /*Sudden_Underflow*/ +#endif /*Avoid_Underflow*/ + } + z = word0(rv) & Exp_mask; +#ifndef SET_INEXACT +#ifdef Avoid_Underflow + if (!scale) +#endif + if (y == z) { + /* Can we stop now? */ + L = (Long)aadj; + aadj -= L; + /* The tolerances below are conservative. */ + if (dsign || word1(rv) || word0(rv) & Bndry_mask) { + if (aadj < .4999999 || aadj > .5000001) + break; + } + else if (aadj < .4999999/FLT_RADIX) + break; + } +#endif + cont: + Bfree(bb); + Bfree(bd); + Bfree(bs); + Bfree(delta); + } +#ifdef SET_INEXACT + if (inexact) { + if (!oldinexact) { + word0(rv0) = Exp_1 + (70 << Exp_shift); + word1(rv0) = 0; + dval(rv0) += 1.; + } + } + else if (!oldinexact) + clear_inexact(); +#endif +#ifdef Avoid_Underflow + if (scale) { + word0(rv0) = Exp_1 - 2*P*Exp_msk1; + word1(rv0) = 0; + dval(rv) *= dval(rv0); +#ifndef NO_ERRNO + /* try to avoid the bug of testing an 8087 register value */ + if (word0(rv) == 0 && word1(rv) == 0) + errno = ERANGE; +#endif + } +#endif /* Avoid_Underflow */ +#ifdef SET_INEXACT + if (inexact && !(word0(rv) & Exp_mask)) { + /* set underflow bit */ + dval(rv0) = 1e-300; + dval(rv0) *= dval(rv0); + } +#endif + retfree: + Bfree(bb); + Bfree(bd); + Bfree(bs); + Bfree(bd0); + Bfree(delta); + ret: + if (se) + *se = (char *)s; + return sign ? -dval(rv) : dval(rv); + } + + static int +quorem +#ifdef KR_headers + (b, S) Bigint *b, *S; +#else + (Bigint *b, Bigint *S) +#endif +{ + int n; + ULong *bx, *bxe, q, *sx, *sxe; +#ifdef ULLong + ULLong borrow, carry, y, ys; +#else + ULong borrow, carry, y, ys; +#ifdef Pack_32 + ULong si, z, zs; +#endif +#endif + + n = S->wds; +#ifdef DEBUG + /*debug*/ if (b->wds > n) + /*debug*/ Bug("oversize b in quorem"); +#endif + if (b->wds < n) + return 0; + sx = S->x; + sxe = sx + --n; + bx = b->x; + bxe = bx + n; + q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ +#ifdef DEBUG + /*debug*/ if (q > 9) + /*debug*/ Bug("oversized quotient in quorem"); +#endif + if (q) { + borrow = 0; + carry = 0; + do { +#ifdef ULLong + ys = *sx++ * (ULLong)q + carry; + carry = ys >> 32; + y = *bx - (ys & FFFFFFFF) - borrow; + borrow = y >> 32 & (ULong)1; + *bx++ = (ULong) y & FFFFFFFF; +#else +#ifdef Pack_32 + si = *sx++; + ys = (si & 0xffff) * q + carry; + zs = (si >> 16) * q + (ys >> 16); + carry = zs >> 16; + y = (*bx & 0xffff) - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*bx >> 16) - (zs & 0xffff) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(bx, z, y); +#else + ys = *sx++ * q + carry; + carry = ys >> 16; + y = *bx - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + *bx++ = y & 0xffff; +#endif +#endif + } + while(sx <= sxe); + if (!*bxe) { + bx = b->x; + while(--bxe > bx && !*bxe) + --n; + b->wds = n; + } + } + if (cmp(b, S) >= 0) { + q++; + borrow = 0; + carry = 0; + bx = b->x; + sx = S->x; + do { +#ifdef ULLong + ys = *sx++ + carry; + carry = ys >> 32; + y = *bx - (ys & FFFFFFFF) - borrow; + borrow = y >> 32 & (ULong)1; + *bx++ = (ULong) y & FFFFFFFF; +#else +#ifdef Pack_32 + si = *sx++; + ys = (si & 0xffff) + carry; + zs = (si >> 16) + (ys >> 16); + carry = zs >> 16; + y = (*bx & 0xffff) - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*bx >> 16) - (zs & 0xffff) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(bx, z, y); +#else + ys = *sx++ + carry; + carry = ys >> 16; + y = *bx - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + *bx++ = y & 0xffff; +#endif +#endif + } + while(sx <= sxe); + bx = b->x; + bxe = bx + n; + if (!*bxe) { + while(--bxe > bx && !*bxe) + --n; + b->wds = n; + } + } + return q; + } + +#ifndef MULTIPLE_THREADS + static char *dtoa_result; +#endif + + static char * +#ifdef KR_headers +rv_alloc(i) int i; +#else +rv_alloc(int i) +#endif +{ + int j, k, *r; + + j = sizeof(ULong); + for(k = 0; + sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= sizeof(i); + j <<= 1) + k++; + r = (int*)Balloc(k); + *r = k; + return +#ifndef MULTIPLE_THREADS + dtoa_result = +#endif + (char *)(r+1); + } + + static char * +#ifdef KR_headers +nrv_alloc(s, rve, n) char *s, **rve; int n; +#else +nrv_alloc(char *s, char **rve, int n) +#endif +{ + char *rv, *t; + + t = rv = rv_alloc(n); + while((*t = *s++)) t++; + if (rve) + *rve = t; + return rv; + } + +/* freedtoa(s) must be used to free values s returned by dtoa + * when MULTIPLE_THREADS is #defined. It should be used in all cases, + * but for consistency with earlier versions of dtoa, it is optional + * when MULTIPLE_THREADS is not defined. + */ + + void +#ifdef KR_headers +freedtoa(s) char *s; +#else +freedtoa(char *s) +#endif +{ + Bigint *b = (Bigint *)((int *)s - 1); + b->maxwds = 1 << (b->k = *(int*)b); + Bfree(b); +#ifndef MULTIPLE_THREADS + if (s == dtoa_result) + dtoa_result = 0; +#endif + } + +/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. + * + * Inspired by "How to Print Floating-Point Numbers Accurately" by + * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. + * + * Modifications: + * 1. Rather than iterating, we use a simple numeric overestimate + * to determine k = floor(log10(d)). We scale relevant + * quantities using O(log2(k)) rather than O(k) multiplications. + * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't + * try to generate digits strictly left to right. Instead, we + * compute with fewer bits and propagate the carry if necessary + * when rounding the final digit up. This is often faster. + * 3. Under the assumption that input will be rounded nearest, + * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. + * That is, we allow equality in stopping tests when the + * round-nearest rule will give the same floating-point value + * as would satisfaction of the stopping test with strict + * inequality. + * 4. We remove common factors of powers of 2 from relevant + * quantities. + * 5. When converting floating-point integers less than 1e16, + * we use floating-point arithmetic rather than resorting + * to multiple-precision integers. + * 6. When asked to produce fewer than 15 digits, we first try + * to get by with floating-point arithmetic; we resort to + * multiple-precision integer arithmetic only if we cannot + * guarantee that the floating-point calculation has given + * the correctly rounded result. For k requested digits and + * "uniformly" distributed input, the probability is + * something like 10^(k-15) that we must resort to the Long + * calculation. + */ + + static char * +dtoa +#ifdef KR_headers + (d, mode, ndigits, decpt, sign, rve) + double d; int mode, ndigits, *decpt, *sign; char **rve; +#else + (double d, int mode, int ndigits, int *decpt, int *sign, char **rve) +#endif +{ + /* Arguments ndigits, decpt, sign are similar to those + of ecvt and fcvt; trailing zeros are suppressed from + the returned string. If not null, *rve is set to point + to the end of the return value. If d is +-Infinity or NaN, + then *decpt is set to 9999. + + mode: + 0 ==> shortest string that yields d when read in + and rounded to nearest. + 1 ==> like 0, but with Steele & White stopping rule; + e.g. with IEEE P754 arithmetic , mode 0 gives + 1e23 whereas mode 1 gives 9.999999999999999e22. + 2 ==> max(1,ndigits) significant digits. This gives a + return value similar to that of ecvt, except + that trailing zeros are suppressed. + 3 ==> through ndigits past the decimal point. This + gives a return value similar to that from fcvt, + except that trailing zeros are suppressed, and + ndigits can be negative. + 4,5 ==> similar to 2 and 3, respectively, but (in + round-nearest mode) with the tests of mode 0 to + possibly return a shorter string that rounds to d. + With IEEE arithmetic and compilation with + -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same + as modes 2 and 3 when FLT_ROUNDS != 1. + 6-9 ==> Debugging modes similar to mode - 4: don't try + fast floating-point estimate (if applicable). + + Values of mode other than 0-9 are treated as mode 0. + + Sufficient space is allocated to the return value + to hold the suppressed trailing zeros. + */ + + int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, + j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, + spec_case, try_quick; + Long L; +#ifndef Sudden_Underflow + int denorm; + ULong x; +#endif + Bigint *b, *b1, *delta, *mlo, *mhi, *S; + double d2, ds, eps; + char *s, *s0; +#ifdef Honor_FLT_ROUNDS + int rounding; +#endif +#ifdef SET_INEXACT + int inexact, oldinexact; +#endif + +#ifdef __GNUC__ + ilim = ilim1 = 0; + mlo = NULL; +#endif + +#ifndef MULTIPLE_THREADS + if (dtoa_result) { + freedtoa(dtoa_result); + dtoa_result = 0; + } +#endif + + if (word0(d) & Sign_bit) { + /* set sign for everything, including 0's and NaNs */ + *sign = 1; + word0(d) &= ~Sign_bit; /* clear sign bit */ + } + else + *sign = 0; + +#if defined(IEEE_Arith) + defined(VAX) +#ifdef IEEE_Arith + if ((word0(d) & Exp_mask) == Exp_mask) +#else + if (word0(d) == 0x8000) +#endif + { + /* Infinity or NaN */ + *decpt = 9999; +#ifdef IEEE_Arith + if (!word1(d) && !(word0(d) & 0xfffff)) + return nrv_alloc("Infinity", rve, 8); +#endif + return nrv_alloc("NaN", rve, 3); + } +#endif +#ifdef IBM + dval(d) += 0; /* normalize */ +#endif + if (!dval(d)) { + *decpt = 1; + return nrv_alloc("0", rve, 1); + } + +#ifdef SET_INEXACT + try_quick = oldinexact = get_inexact(); + inexact = 1; +#endif +#ifdef Honor_FLT_ROUNDS + if ((rounding = Flt_Rounds) >= 2) { + if (*sign) + rounding = rounding == 2 ? 0 : 2; + else + if (rounding != 2) + rounding = 0; + } +#endif + + b = d2b(dval(d), &be, &bbits); +#ifdef Sudden_Underflow + i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); +#else + if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) { +#endif + dval(d2) = dval(d); + word0(d2) &= Frac_mask1; + word0(d2) |= Exp_11; +#ifdef IBM + if (j = 11 - hi0bits(word0(d2) & Frac_mask)) + dval(d2) /= 1 << j; +#endif + + /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 + * log10(x) = log(x) / log(10) + * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) + * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) + * + * This suggests computing an approximation k to log10(d) by + * + * k = (i - Bias)*0.301029995663981 + * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); + * + * We want k to be too large rather than too small. + * The error in the first-order Taylor series approximation + * is in our favor, so we just round up the constant enough + * to compensate for any error in the multiplication of + * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, + * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, + * adding 1e-13 to the constant term more than suffices. + * Hence we adjust the constant term to 0.1760912590558. + * (We could get a more accurate k by invoking log10, + * but this is probably not worthwhile.) + */ + + i -= Bias; +#ifdef IBM + i <<= 2; + i += j; +#endif +#ifndef Sudden_Underflow + denorm = 0; + } + else { + /* d is denormalized */ + + i = bbits + be + (Bias + (P-1) - 1); + x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) + : word1(d) << (32 - i); + dval(d2) = x; + word0(d2) -= 31*Exp_msk1; /* adjust exponent */ + i -= (Bias + (P-1) - 1) + 1; + denorm = 1; + } +#endif + ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; + k = (int)ds; + if (ds < 0. && ds != k) + k--; /* want k = floor(ds) */ + k_check = 1; + if (k >= 0 && k <= Ten_pmax) { + if (dval(d) < tens[k]) + k--; + k_check = 0; + } + j = bbits - i - 1; + if (j >= 0) { + b2 = 0; + s2 = j; + } + else { + b2 = -j; + s2 = 0; + } + if (k >= 0) { + b5 = 0; + s5 = k; + s2 += k; + } + else { + b2 -= k; + b5 = -k; + s5 = 0; + } + if (mode < 0 || mode > 9) + mode = 0; + +#ifndef SET_INEXACT +#ifdef Check_FLT_ROUNDS + try_quick = Rounding == 1; +#else + try_quick = 1; +#endif +#endif /*SET_INEXACT*/ + + if (mode > 5) { + mode -= 4; + try_quick = 0; + } + leftright = 1; + switch(mode) { + case 0: + case 1: + ilim = ilim1 = -1; + i = 18; + ndigits = 0; + break; + case 2: + leftright = 0; + /* no break */ + case 4: + if (ndigits <= 0) + ndigits = 1; + ilim = ilim1 = i = ndigits; + break; + case 3: + leftright = 0; + /* no break */ + case 5: + i = ndigits + k + 1; + ilim = i; + ilim1 = i - 1; + if (i <= 0) + i = 1; + } + s = s0 = rv_alloc(i); + +#ifdef Honor_FLT_ROUNDS + if (mode > 1 && rounding != 1) + leftright = 0; +#endif + + if (ilim >= 0 && ilim <= Quick_max && try_quick) { + + /* Try to get by with floating-point arithmetic. */ + + i = 0; + dval(d2) = dval(d); + k0 = k; + ilim0 = ilim; + ieps = 2; /* conservative */ + if (k > 0) { + ds = tens[k&0xf]; + j = k >> 4; + if (j & Bletch) { + /* prevent overflows */ + j &= Bletch - 1; + dval(d) /= bigtens[n_bigtens-1]; + ieps++; + } + for(; j; j >>= 1, i++) + if (j & 1) { + ieps++; + ds *= bigtens[i]; + } + dval(d) /= ds; + } + else if ((j1 = -k)) { + dval(d) *= tens[j1 & 0xf]; + for(j = j1 >> 4; j; j >>= 1, i++) + if (j & 1) { + ieps++; + dval(d) *= bigtens[i]; + } + } + if (k_check && dval(d) < 1. && ilim > 0) { + if (ilim1 <= 0) + goto fast_failed; + ilim = ilim1; + k--; + dval(d) *= 10.; + ieps++; + } + dval(eps) = ieps*dval(d) + 7.; + word0(eps) -= (P-1)*Exp_msk1; + if (ilim == 0) { + S = mhi = 0; + dval(d) -= 5.; + if (dval(d) > dval(eps)) + goto one_digit; + if (dval(d) < -dval(eps)) + goto no_digits; + goto fast_failed; + } +#ifndef No_leftright + if (leftright) { + /* Use Steele & White method of only + * generating digits needed. + */ + dval(eps) = 0.5/tens[ilim-1] - dval(eps); + for(i = 0;;) { + L = (ULong) dval(d); + dval(d) -= L; + *s++ = '0' + (int)L; + if (dval(d) < dval(eps)) + goto ret1; + if (1. - dval(d) < dval(eps)) + goto bump_up; + if (++i >= ilim) + break; + dval(eps) *= 10.; + dval(d) *= 10.; + } + } + else { +#endif + /* Generate ilim digits, then fix them up. */ + dval(eps) *= tens[ilim-1]; + for(i = 1;; i++, dval(d) *= 10.) { + L = (Long)(dval(d)); + if (!(dval(d) -= L)) + ilim = i; + *s++ = '0' + (int)L; + if (i == ilim) { + if (dval(d) > 0.5 + dval(eps)) + goto bump_up; + else if (dval(d) < 0.5 - dval(eps)) { + while(*--s == '0'); + s++; + goto ret1; + } + break; + } + } +#ifndef No_leftright + } +#endif + fast_failed: + s = s0; + dval(d) = dval(d2); + k = k0; + ilim = ilim0; + } + + /* Do we have a "small" integer? */ + + if (be >= 0 && k <= Int_max) { + /* Yes. */ + ds = tens[k]; + if (ndigits < 0 && ilim <= 0) { + S = mhi = 0; + if (ilim < 0 || dval(d) <= 5*ds) + goto no_digits; + goto one_digit; + } + for(i = 1;; i++, dval(d) *= 10.) { + L = (Long)(dval(d) / ds); + dval(d) -= L*ds; +#ifdef Check_FLT_ROUNDS + /* If FLT_ROUNDS == 2, L will usually be high by 1 */ + if (dval(d) < 0) { + L--; + dval(d) += ds; + } +#endif + *s++ = '0' + (int)L; + if (!dval(d)) { +#ifdef SET_INEXACT + inexact = 0; +#endif + break; + } + if (i == ilim) { +#ifdef Honor_FLT_ROUNDS + if (mode > 1) + switch(rounding) { + case 0: goto ret1; + case 2: goto bump_up; + } +#endif + dval(d) += dval(d); + if (dval(d) > ds || dval(d) == ds && L & 1) { + bump_up: + while(*--s == '9') + if (s == s0) { + k++; + *s = '0'; + break; + } + ++*s++; + } + break; + } + } + goto ret1; + } + + m2 = b2; + m5 = b5; + mhi = mlo = 0; + if (leftright) { + i = +#ifndef Sudden_Underflow + denorm ? be + (Bias + (P-1) - 1 + 1) : +#endif +#ifdef IBM + 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3); +#else + 1 + P - bbits; +#endif + b2 += i; + s2 += i; + mhi = i2b(1); + } + if (m2 > 0 && s2 > 0) { + i = m2 < s2 ? m2 : s2; + b2 -= i; + m2 -= i; + s2 -= i; + } + if (b5 > 0) { + if (leftright) { + if (m5 > 0) { + mhi = pow5mult(mhi, m5); + b1 = mult(mhi, b); + Bfree(b); + b = b1; + } + if ((j = b5 - m5)) + b = pow5mult(b, j); + } + else + b = pow5mult(b, b5); + } + S = i2b(1); + if (s5 > 0) + S = pow5mult(S, s5); + + /* Check for special case that d is a normalized power of 2. */ + + spec_case = 0; + if ((mode < 2 || leftright) +#ifdef Honor_FLT_ROUNDS + && rounding == 1 +#endif + ) { + if (!word1(d) && !(word0(d) & Bndry_mask) +#ifndef Sudden_Underflow + && word0(d) & (Exp_mask & ~Exp_msk1) +#endif + ) { + /* The special case */ + b2 += Log2P; + s2 += Log2P; + spec_case = 1; + } + } + + /* Arrange for convenient computation of quotients: + * shift left if necessary so divisor has 4 leading 0 bits. + * + * Perhaps we should just compute leading 28 bits of S once + * and for all and pass them and a shift to quorem, so it + * can do shifts and ors to compute the numerator for q. + */ +#ifdef Pack_32 + if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f)) + i = 32 - i; +#else + if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) + i = 16 - i; +#endif + if (i > 4) { + i -= 4; + b2 += i; + m2 += i; + s2 += i; + } + else if (i < 4) { + i += 28; + b2 += i; + m2 += i; + s2 += i; + } + if (b2 > 0) + b = lshift(b, b2); + if (s2 > 0) + S = lshift(S, s2); + if (k_check) { + if (cmp(b,S) < 0) { + k--; + b = multadd(b, 10, 0); /* we botched the k estimate */ + if (leftright) + mhi = multadd(mhi, 10, 0); + ilim = ilim1; + } + } + if (ilim <= 0 && (mode == 3 || mode == 5)) { + if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) { + /* no digits, fcvt style */ + no_digits: + k = -1 - ndigits; + goto ret; + } + one_digit: + *s++ = '1'; + k++; + goto ret; + } + if (leftright) { + if (m2 > 0) + mhi = lshift(mhi, m2); + + /* Compute mlo -- check for special case + * that d is a normalized power of 2. + */ + + mlo = mhi; + if (spec_case) { + mhi = Balloc(mhi->k); + Bcopy(mhi, mlo); + mhi = lshift(mhi, Log2P); + } + + for(i = 1;;i++) { + dig = quorem(b,S) + '0'; + /* Do we yet have the shortest decimal string + * that will round to d? + */ + j = cmp(b, mlo); + delta = diff(S, mhi); + j1 = delta->sign ? 1 : cmp(b, delta); + Bfree(delta); +#ifndef ROUND_BIASED + if (j1 == 0 && mode != 1 && !(word1(d) & 1) +#ifdef Honor_FLT_ROUNDS + && rounding >= 1 +#endif + ) { + if (dig == '9') + goto round_9_up; + if (j > 0) + dig++; +#ifdef SET_INEXACT + else if (!b->x[0] && b->wds <= 1) + inexact = 0; +#endif + *s++ = dig; + goto ret; + } +#endif + if (j < 0 || j == 0 && mode != 1 +#ifndef ROUND_BIASED + && !(word1(d) & 1) +#endif + ) { + if (!b->x[0] && b->wds <= 1) { +#ifdef SET_INEXACT + inexact = 0; +#endif + goto accept_dig; + } +#ifdef Honor_FLT_ROUNDS + if (mode > 1) + switch(rounding) { + case 0: goto accept_dig; + case 2: goto keep_dig; + } +#endif /*Honor_FLT_ROUNDS*/ + if (j1 > 0) { + b = lshift(b, 1); + j1 = cmp(b, S); + if ((j1 > 0 || j1 == 0 && dig & 1) + && dig++ == '9') + goto round_9_up; + } + accept_dig: + *s++ = dig; + goto ret; + } + if (j1 > 0) { +#ifdef Honor_FLT_ROUNDS + if (!rounding) + goto accept_dig; +#endif + if (dig == '9') { /* possible if i == 1 */ + round_9_up: + *s++ = '9'; + goto roundoff; + } + *s++ = dig + 1; + goto ret; + } +#ifdef Honor_FLT_ROUNDS + keep_dig: +#endif + *s++ = dig; + if (i == ilim) + break; + b = multadd(b, 10, 0); + if (mlo == mhi) + mlo = mhi = multadd(mhi, 10, 0); + else { + mlo = multadd(mlo, 10, 0); + mhi = multadd(mhi, 10, 0); + } + } + } + else + for(i = 1;; i++) { + *s++ = dig = quorem(b,S) + '0'; + if (!b->x[0] && b->wds <= 1) { +#ifdef SET_INEXACT + inexact = 0; +#endif + goto ret; + } + if (i >= ilim) + break; + b = multadd(b, 10, 0); + } + + /* Round off last digit */ + +#ifdef Honor_FLT_ROUNDS + switch(rounding) { + case 0: goto trimzeros; + case 2: goto roundoff; + } +#endif + b = lshift(b, 1); + j = cmp(b, S); + if (j > 0 || j == 0 && dig & 1) { + roundoff: + while(*--s == '9') + if (s == s0) { + k++; + *s++ = '1'; + goto ret; + } + ++*s++; + } + else { +#ifdef Honor_FLT_ROUNDS + trimzeros: +#endif + while(*--s == '0'); + s++; + } + ret: + Bfree(S); + if (mhi) { + if (mlo && mlo != mhi) + Bfree(mlo); + Bfree(mhi); + } + ret1: +#ifdef SET_INEXACT + if (inexact) { + if (!oldinexact) { + word0(d) = Exp_1 + (70 << Exp_shift); + word1(d) = 0; + dval(d) += 1.; + } + } + else if (!oldinexact) + clear_inexact(); +#endif + Bfree(b); + *s = 0; + *decpt = k + 1; + if (rve) + *rve = s; + return s0; + } +#ifdef __cplusplus +} +#endif diff --git a/js/src/jsapi.cpp b/js/src/jsapi.cpp index f6c89ed4def..b0cd009b40f 100644 --- a/js/src/jsapi.cpp +++ b/js/src/jsapi.cpp @@ -741,6 +741,8 @@ JS_NewRuntime(uint32 maxbytes) JS_INIT_CLIST(&rt->trapList); JS_INIT_CLIST(&rt->watchPointList); + if (!js_InitDtoa()) + goto bad; if (!js_InitGC(rt, maxbytes)) goto bad; if (!js_InitAtomState(rt)) diff --git a/js/src/jsdtoa.cpp b/js/src/jsdtoa.cpp index e8bb1858c6c..cf8d8d74b56 100644 --- a/js/src/jsdtoa.cpp +++ b/js/src/jsdtoa.cpp @@ -51,131 +51,9 @@ #include "jsbit.h" #ifdef JS_THREADSAFE -#include "prlock.h" +#include "jslock.h" #endif -/**************************************************************** - * - * The author of this software is David M. Gay. - * - * Copyright (c) 1991 by Lucent Technologies. - * - * Permission to use, copy, modify, and distribute this software for any - * purpose without fee is hereby granted, provided that this entire notice - * is included in all copies of any software which is or includes a copy - * or modification of this software and in all copies of the supporting - * documentation for such software. - * - * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED - * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY - * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY - * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. - * - ***************************************************************/ - -/* Please send bug reports to - David M. Gay - Bell Laboratories, Room 2C-463 - 600 Mountain Avenue - Murray Hill, NJ 07974-0636 - U.S.A. - dmg@bell-labs.com - */ - -/* On a machine with IEEE extended-precision registers, it is - * necessary to specify double-precision (53-bit) rounding precision - * before invoking strtod or dtoa. If the machine uses (the equivalent - * of) Intel 80x87 arithmetic, the call - * _control87(PC_53, MCW_PC); - * does this with many compilers. Whether this or another call is - * appropriate depends on the compiler; for this to work, it may be - * necessary to #include "float.h" or another system-dependent header - * file. - */ - -/* strtod for IEEE-arithmetic machines. - * - * This strtod returns a nearest machine number to the input decimal - * string (or sets err to JS_DTOA_ERANGE or JS_DTOA_ENOMEM). With IEEE - * arithmetic, ties are broken by the IEEE round-even rule. Otherwise - * ties are broken by biased rounding (add half and chop). - * - * Inspired loosely by William D. Clinger's paper "How to Read Floating - * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. - * - * Modifications: - * - * 1. We only require IEEE double-precision - * arithmetic (not IEEE double-extended). - * 2. We get by with floating-point arithmetic in a case that - * Clinger missed -- when we're computing d * 10^n - * for a small integer d and the integer n is not too - * much larger than 22 (the maximum integer k for which - * we can represent 10^k exactly), we may be able to - * compute (d*10^k) * 10^(e-k) with just one roundoff. - * 3. Rather than a bit-at-a-time adjustment of the binary - * result in the hard case, we use floating-point - * arithmetic to determine the adjustment to within - * one bit; only in really hard cases do we need to - * compute a second residual. - * 4. Because of 3., we don't need a large table of powers of 10 - * for ten-to-e (just some small tables, e.g. of 10^k - * for 0 <= k <= 22). - */ - -/* - * #define IEEE_8087 for IEEE-arithmetic machines where the least - * significant byte has the lowest address. - * #define IEEE_MC68k for IEEE-arithmetic machines where the most - * significant byte has the lowest address. - * #define Long int on machines with 32-bit ints and 64-bit longs. - * #define Sudden_Underflow for IEEE-format machines without gradual - * underflow (i.e., that flush to zero on underflow). - * #define No_leftright to omit left-right logic in fast floating-point - * computation of js_dtoa. - * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. - * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines - * that use extended-precision instructions to compute rounded - * products and quotients) with IBM. - * #define ROUND_BIASED for IEEE-format with biased rounding. - * #define Inaccurate_Divide for IEEE-format with correctly rounded - * products but inaccurate quotients, e.g., for Intel i860. - * #define JS_HAVE_LONG_LONG on machines that have a "long long" - * integer type (of >= 64 bits). If long long is available and the name is - * something other than "long long", #define Llong to be the name, - * and if "unsigned Llong" does not work as an unsigned version of - * Llong, #define #ULLong to be the corresponding unsigned type. - * #define Bad_float_h if your system lacks a float.h or if it does not - * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, - * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. - * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) - * if memory is available and otherwise does something you deem - * appropriate. If MALLOC is undefined, malloc will be invoked - * directly -- and assumed always to succeed. - * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making - * memory allocations from a private pool of memory when possible. - * When used, the private pool is PRIVATE_MEM bytes long: 2000 bytes, - * unless #defined to be a different length. This default length - * suffices to get rid of MALLOC calls except for unusual cases, - * such as decimal-to-binary conversion of a very long string of - * digits. - * #define INFNAN_CHECK on IEEE systems to cause strtod to check for - * Infinity and NaN (case insensitively). On some systems (e.g., - * some HP systems), it may be necessary to #define NAN_WORD0 - * appropriately -- to the most significant word of a quiet NaN. - * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) - * #define MULTIPLE_THREADS if the system offers preemptively scheduled - * multiple threads. In this case, you must provide (or suitably - * #define) two locks, acquired by ACQUIRE_DTOA_LOCK() and released - * by RELEASE_DTOA_LOCK(). (The second lock, accessed - * in pow5mult, ensures lazy evaluation of only one copy of high - * powers of 5; omitting this lock would introduce a small - * probability of wasting memory, but would otherwise be harmless.) - * You must also invoke freedtoa(s) to free the value s returned by - * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. - * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that - * avoids underflows on inputs whose result does not underflow. - */ #ifdef IS_LITTLE_ENDIAN #define IEEE_8087 #else @@ -190,2630 +68,119 @@ #define ULong uint32 #endif -#define Bug(errorMessageString) JS_ASSERT(!errorMessageString) - -#include "stdlib.h" -#include "string.h" - -#ifdef MALLOC -extern void *MALLOC(size_t); -#else -#define MALLOC malloc -#endif - -#define Omit_Private_Memory -/* Private memory currently doesn't work with JS_THREADSAFE */ -#ifndef Omit_Private_Memory -#ifndef PRIVATE_MEM -#define PRIVATE_MEM 2000 -#endif -#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) -static double private_mem[PRIVATE_mem], *pmem_next = private_mem; -#endif - -#ifdef Bad_float_h -#undef __STDC__ - -#define DBL_DIG 15 -#define DBL_MAX_10_EXP 308 -#define DBL_MAX_EXP 1024 -#define FLT_RADIX 2 -#define FLT_ROUNDS 1 -#define DBL_MAX 1.7976931348623157e+308 - - - -#ifndef LONG_MAX -#define LONG_MAX 2147483647 -#endif - -#else /* ifndef Bad_float_h */ -#include "float.h" -#endif /* Bad_float_h */ - -#ifndef __MATH_H__ -#include "math.h" -#endif - -#ifndef CONST -#define CONST const -#endif - -#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1 -Exactly one of IEEE_8087 or IEEE_MC68k should be defined. -#endif - -#define word0(x) JSDOUBLE_HI32(x) -#define set_word0(x, y) JSDOUBLE_SET_HI32(x, y) -#define word1(x) JSDOUBLE_LO32(x) -#define set_word1(x, y) JSDOUBLE_SET_LO32(x, y) - -#define Storeinc(a,b,c) (*(a)++ = (b) << 16 | (c) & 0xffff) - -/* #define P DBL_MANT_DIG */ -/* Ten_pmax = floor(P*log(2)/log(5)) */ -/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ -/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ -/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ - -#define Exp_shift 20 -#define Exp_shift1 20 -#define Exp_msk1 0x100000 -#define Exp_msk11 0x100000 -#define Exp_mask 0x7ff00000 -#define P 53 -#define Bias 1023 -#define Emin (-1022) -#define Exp_1 0x3ff00000 -#define Exp_11 0x3ff00000 -#define Ebits 11 -#define Frac_mask 0xfffff -#define Frac_mask1 0xfffff -#define Ten_pmax 22 -#define Bletch 0x10 -#define Bndry_mask 0xfffff -#define Bndry_mask1 0xfffff -#define LSB 1 -#define Sign_bit 0x80000000 -#define Log2P 1 -#define Tiny0 0 -#define Tiny1 1 -#define Quick_max 14 -#define Int_max 14 -#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */ -#ifndef NO_IEEE_Scale -#define Avoid_Underflow -#endif - - - -#ifdef RND_PRODQUOT -#define rounded_product(a,b) a = rnd_prod(a, b) -#define rounded_quotient(a,b) a = rnd_quot(a, b) -extern double rnd_prod(double, double), rnd_quot(double, double); -#else -#define rounded_product(a,b) a *= b -#define rounded_quotient(a,b) a /= b -#endif - -#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) -#define Big1 0xffffffff - -#ifndef JS_HAVE_LONG_LONG -#undef ULLong -#else /* long long available */ +/* #ifndef Llong #define Llong JSInt64 #endif -#ifndef ULLong -#define ULLong JSUint64 + +#ifndef ULlong +#define ULlong JSUint64 #endif -#endif /* JS_HAVE_LONG_LONG */ +*/ #ifdef JS_THREADSAFE -#define MULTIPLE_THREADS -static PRLock *freelist_lock; -#define ACQUIRE_DTOA_LOCK() \ - JS_BEGIN_MACRO \ - if (!initialized) \ - InitDtoa(); \ - PR_Lock(freelist_lock); \ - JS_END_MACRO -#define RELEASE_DTOA_LOCK() PR_Unlock(freelist_lock) +static PRLock *dtoalock; +static JSBool _dtoainited = JS_FALSE; + +#define LOCK_DTOA() PR_Lock(dtoalock); +#define UNLOCK_DTOA() PR_Unlock(dtoalock) #else -#undef MULTIPLE_THREADS -#define ACQUIRE_DTOA_LOCK() /*nothing*/ -#define RELEASE_DTOA_LOCK() /*nothing*/ +#define LOCK_DTOA() +#define UNLOCK_DTOA() #endif +#include "dtoa.c" -#define Kmax 15 - -struct Bigint { - struct Bigint *next; /* Free list link */ - int32 k; /* lg2(maxwds) */ - int32 maxwds; /* Number of words allocated for x */ - int32 sign; /* Zero if positive, 1 if negative. Ignored by most Bigint routines! */ - int32 wds; /* Actual number of words. If value is nonzero, the most significant word must be nonzero. */ - ULong x[1]; /* wds words of number in little endian order */ -}; - -#ifdef ENABLE_OOM_TESTING -/* Out-of-memory testing. Use a good testcase (over and over) and then use - * these routines to cause a memory failure on every possible Balloc allocation, - * to make sure that all out-of-memory paths can be followed. See bug 14044. - */ - -static int allocationNum; /* which allocation is next? */ -static int desiredFailure; /* which allocation should fail? */ - -/** - * js_BigintTestingReset - * - * Call at the beginning of a test run to set the allocation failure position. - * (Set to 0 to just have the engine count allocations without failing.) - */ -JS_PUBLIC_API(void) -js_BigintTestingReset(int newFailure) +JSBool +js_InitDtoa() { - allocationNum = 0; - desiredFailure = newFailure; -} - -/** - * js_BigintTestingWhere - * - * Report the current allocation position. This is really only useful when you - * want to learn how many allocations a test run has. - */ -JS_PUBLIC_API(int) -js_BigintTestingWhere() -{ - return allocationNum; -} - - -/* - * So here's what you do: Set up a fantastic test case that exercises the - * elements of the code you wish. Set the failure point at 0 and run the test, - * then get the allocation position. This number is the number of allocations - * your test makes. Now loop from 1 to that number, setting the failure point - * at each loop count, and run the test over and over, causing failures at each - * step. Any memory failure *should* cause a Out-Of-Memory exception; if it - * doesn't, then there's still an error here. - */ -#endif - -typedef struct Bigint Bigint; - -static Bigint *freelist[Kmax+1]; - -/* - * Allocate a Bigint with 2^k words. - * This is not threadsafe. The caller must use thread locks - */ -static Bigint *Balloc(int32 k) -{ - int32 x; - Bigint *rv; -#ifndef Omit_Private_Memory - uint32 len; -#endif - -#ifdef ENABLE_OOM_TESTING - if (++allocationNum == desiredFailure) { - printf("Forced Failing Allocation number %d\n", allocationNum); - return NULL; - } -#endif - - if ((rv = freelist[k]) != NULL) - freelist[k] = rv->next; - if (rv == NULL) { - x = 1 << k; -#ifdef Omit_Private_Memory - rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong)); -#else - len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) - /sizeof(double); - if (pmem_next - private_mem + len <= PRIVATE_mem) { - rv = (Bigint*)pmem_next; - pmem_next += len; - } - else - rv = (Bigint*)MALLOC(len*sizeof(double)); -#endif - if (!rv) - return NULL; - rv->k = k; - rv->maxwds = x; - } - rv->sign = rv->wds = 0; - return rv; -} - -static void Bfree(Bigint *v) -{ - if (v) { - v->next = freelist[v->k]; - freelist[v->k] = v; - } -} - -#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ - y->wds*sizeof(Long) + 2*sizeof(int32)) - -/* Return b*m + a. Deallocate the old b. Both a and m must be between 0 and - * 65535 inclusive. NOTE: old b is deallocated on memory failure. - */ -static Bigint *multadd(Bigint *b, int32 m, int32 a) -{ - int32 i, wds; -#ifdef ULLong - ULong *x; - ULLong carry, y; -#else - ULong carry, *x, y; - ULong xi, z; -#endif - Bigint *b1; - -#ifdef ENABLE_OOM_TESTING - if (++allocationNum == desiredFailure) { - /* Faux allocation, because I'm not getting all of the failure paths - * without it. - */ - printf("Forced Failing Allocation number %d\n", allocationNum); - Bfree(b); - return NULL; - } -#endif - - wds = b->wds; - x = b->x; - i = 0; - carry = a; - do { -#ifdef ULLong - y = *x * (ULLong)m + carry; - carry = y >> 32; - *x++ = (ULong)(y & 0xffffffffUL); -#else - xi = *x; - y = (xi & 0xffff) * m + carry; - z = (xi >> 16) * m + (y >> 16); - carry = z >> 16; - *x++ = (z << 16) + (y & 0xffff); -#endif - } - while(++i < wds); - if (carry) { - if (wds >= b->maxwds) { - b1 = Balloc(b->k+1); - if (!b1) { - Bfree(b); - return NULL; - } - Bcopy(b1, b); - Bfree(b); - b = b1; - } - b->x[wds++] = (ULong)carry; - b->wds = wds; - } - return b; -} - -static Bigint *s2b(CONST char *s, int32 nd0, int32 nd, ULong y9) -{ - Bigint *b; - int32 i, k; - Long x, y; - - x = (nd + 8) / 9; - for(k = 0, y = 1; x > y; y <<= 1, k++) ; - b = Balloc(k); - if (!b) - return NULL; - b->x[0] = y9; - b->wds = 1; - - i = 9; - if (9 < nd0) { - s += 9; - do { - b = multadd(b, 10, *s++ - '0'); - if (!b) - return NULL; - } while(++i < nd0); - s++; - } - else - s += 10; - for(; i < nd; i++) { - b = multadd(b, 10, *s++ - '0'); - if (!b) - return NULL; - } - return b; -} - - -/* Return the number (0 through 32) of most significant zero bits in x. */ -static int32 hi0bits(register ULong x) -{ -#ifdef JS_HAS_BUILTIN_BITSCAN32 - return( (!x) ? 32 : js_bitscan_clz32(x) ); -#else - register int32 k = 0; - - if (!(x & 0xffff0000)) { - k = 16; - x <<= 16; - } - if (!(x & 0xff000000)) { - k += 8; - x <<= 8; - } - if (!(x & 0xf0000000)) { - k += 4; - x <<= 4; - } - if (!(x & 0xc0000000)) { - k += 2; - x <<= 2; - } - if (!(x & 0x80000000)) { - k++; - if (!(x & 0x40000000)) - return 32; - } - return k; -#endif /* JS_HAS_BUILTIN_BITSCAN32 */ -} - - -/* Return the number (0 through 32) of least significant zero bits in y. - * Also shift y to the right past these 0 through 32 zeros so that y's - * least significant bit will be set unless y was originally zero. */ -static int32 lo0bits(ULong *y) -{ -#ifdef JS_HAS_BUILTIN_BITSCAN32 - int32 k; - ULong x = *y; - - if (x>1) - *y = ( x >> (k = js_bitscan_ctz32(x)) ); - else - k = ((x ^ 1) << 5); -#else - register int32 k; - register ULong x = *y; - - if (x & 7) { - if (x & 1) - return 0; - if (x & 2) { - *y = x >> 1; - return 1; - } - *y = x >> 2; - return 2; - } - k = 0; - if (!(x & 0xffff)) { - k = 16; - x >>= 16; - } - if (!(x & 0xff)) { - k += 8; - x >>= 8; - } - if (!(x & 0xf)) { - k += 4; - x >>= 4; - } - if (!(x & 0x3)) { - k += 2; - x >>= 2; - } - if (!(x & 1)) { - k++; - x >>= 1; - if (!x & 1) - return 32; - } - *y = x; -#endif /* JS_HAS_BUILTIN_BITSCAN32 */ - return k; -} - -/* Return a new Bigint with the given integer value, which must be nonnegative. */ -static Bigint *i2b(int32 i) -{ - Bigint *b; - - b = Balloc(1); - if (!b) - return NULL; - b->x[0] = i; - b->wds = 1; - return b; -} - -/* Return a newly allocated product of a and b. */ -static Bigint *mult(CONST Bigint *a, CONST Bigint *b) -{ - CONST Bigint *t; - Bigint *c; - int32 k, wa, wb, wc; - ULong y; - ULong *xc, *xc0, *xce; - CONST ULong *x, *xa, *xae, *xb, *xbe; -#ifdef ULLong - ULLong carry, z; -#else - ULong carry, z; - ULong z2; -#endif - - if (a->wds < b->wds) { - t = a; - a = b; - b = t; - } - k = a->k; - wa = a->wds; - wb = b->wds; - wc = wa + wb; - if (wc > a->maxwds) - k++; - c = Balloc(k); - if (!c) - return NULL; - for(xc = c->x, xce = xc + wc; xc < xce; xc++) - *xc = 0; - xa = a->x; - xae = xa + wa; - xb = b->x; - xbe = xb + wb; - xc0 = c->x; -#ifdef ULLong - for(; xb < xbe; xc0++) { - if ((y = *xb++) != 0) { - x = xa; - xc = xc0; - carry = 0; - do { - z = *x++ * (ULLong)y + *xc + carry; - carry = z >> 32; - *xc++ = (ULong)(z & 0xffffffffUL); - } - while(x < xae); - *xc = (ULong)carry; - } - } -#else - for(; xb < xbe; xb++, xc0++) { - if ((y = *xb & 0xffff) != 0) { - x = xa; - xc = xc0; - carry = 0; - do { - z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; - carry = z >> 16; - z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; - carry = z2 >> 16; - Storeinc(xc, z2, z); - } - while(x < xae); - *xc = carry; - } - if ((y = *xb >> 16) != 0) { - x = xa; - xc = xc0; - carry = 0; - z2 = *xc; - do { - z = (*x & 0xffff) * y + (*xc >> 16) + carry; - carry = z >> 16; - Storeinc(xc, z, z2); - z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; - carry = z2 >> 16; - } - while(x < xae); - *xc = z2; - } - } -#endif - for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; - c->wds = wc; - return c; -} - -/* - * 'p5s' points to a linked list of Bigints that are powers of 5. - * This list grows on demand, and it can only grow: it won't change - * in any other way. So if we read 'p5s' or the 'next' field of - * some Bigint on the list, and it is not NULL, we know it won't - * change to NULL or some other value. Only when the value of - * 'p5s' or 'next' is NULL do we need to acquire the lock and add - * a new Bigint to the list. - */ - -static Bigint *p5s; - #ifdef JS_THREADSAFE -static PRLock *p5s_lock; -#endif - -/* Return b * 5^k. Deallocate the old b. k must be nonnegative. */ -/* NOTE: old b is deallocated on memory failure. */ -static Bigint *pow5mult(Bigint *b, int32 k) -{ - Bigint *b1, *p5, *p51; - int32 i; - static CONST int32 p05[3] = { 5, 25, 125 }; - - if ((i = k & 3) != 0) { - b = multadd(b, p05[i-1], 0); - if (!b) - return NULL; + if (!_dtoainited) { + dtoalock = PR_NewLock(); + JS_ASSERT(dtoalock); + _dtoainited = JS_TRUE; } - if (!(k >>= 2)) - return b; - if (!(p5 = p5s)) { -#ifdef JS_THREADSAFE - /* - * We take great care to not call i2b() and Bfree() - * while holding the lock. - */ - Bigint *wasted_effort = NULL; - p5 = i2b(625); - if (!p5) { - Bfree(b); - return NULL; - } - /* lock and check again */ - PR_Lock(p5s_lock); - if (!p5s) { - /* first time */ - p5s = p5; - p5->next = 0; - } else { - /* some other thread just beat us */ - wasted_effort = p5; - p5 = p5s; - } - PR_Unlock(p5s_lock); - if (wasted_effort) { - Bfree(wasted_effort); - } + return (dtoalock != 0); #else - /* first time */ - p5 = p5s = i2b(625); - if (!p5) { - Bfree(b); - return NULL; - } - p5->next = 0; -#endif - } - for(;;) { - if (k & 1) { - b1 = mult(b, p5); - Bfree(b); - if (!b1) - return NULL; - b = b1; - } - if (!(k >>= 1)) - break; - if (!(p51 = p5->next)) { -#ifdef JS_THREADSAFE - Bigint *wasted_effort = NULL; - p51 = mult(p5, p5); - if (!p51) { - Bfree(b); - return NULL; - } - PR_Lock(p5s_lock); - if (!p5->next) { - p5->next = p51; - p51->next = 0; - } else { - wasted_effort = p51; - p51 = p5->next; - } - PR_Unlock(p5s_lock); - if (wasted_effort) { - Bfree(wasted_effort); - } -#else - p51 = mult(p5,p5); - if (!p51) { - Bfree(b); - return NULL; - } - p51->next = 0; - p5->next = p51; -#endif - } - p5 = p51; - } - return b; -} - -/* Return b * 2^k. Deallocate the old b. k must be nonnegative. - * NOTE: on memory failure, old b is deallocated. */ -static Bigint *lshift(Bigint *b, int32 k) -{ - int32 i, k1, n, n1; - Bigint *b1; - ULong *x, *x1, *xe, z; - - n = k >> 5; - k1 = b->k; - n1 = n + b->wds + 1; - for(i = b->maxwds; n1 > i; i <<= 1) - k1++; - b1 = Balloc(k1); - if (!b1) - goto done; - x1 = b1->x; - for(i = 0; i < n; i++) - *x1++ = 0; - x = b->x; - xe = x + b->wds; - if (k &= 0x1f) { - k1 = 32 - k; - z = 0; - do { - *x1++ = *x << k | z; - z = *x++ >> k1; - } - while(x < xe); - if ((*x1 = z) != 0) - ++n1; - } - else do - *x1++ = *x++; - while(x < xe); - b1->wds = n1 - 1; -done: - Bfree(b); - return b1; -} - -/* Return -1, 0, or 1 depending on whether ab, respectively. */ -static int32 cmp(Bigint *a, Bigint *b) -{ - ULong *xa, *xa0, *xb, *xb0; - int32 i, j; - - i = a->wds; - j = b->wds; -#ifdef DEBUG - if (i > 1 && !a->x[i-1]) - Bug("cmp called with a->x[a->wds-1] == 0"); - if (j > 1 && !b->x[j-1]) - Bug("cmp called with b->x[b->wds-1] == 0"); -#endif - if (i -= j) - return i; - xa0 = a->x; - xa = xa0 + j; - xb0 = b->x; - xb = xb0 + j; - for(;;) { - if (*--xa != *--xb) - return *xa < *xb ? -1 : 1; - if (xa <= xa0) - break; - } - return 0; -} - -static Bigint *diff(Bigint *a, Bigint *b) -{ - Bigint *c; - int32 i, wa, wb; - ULong *xa, *xae, *xb, *xbe, *xc; -#ifdef ULLong - ULLong borrow, y; -#else - ULong borrow, y; - ULong z; -#endif - - i = cmp(a,b); - if (!i) { - c = Balloc(0); - if (!c) - return NULL; - c->wds = 1; - c->x[0] = 0; - return c; - } - if (i < 0) { - c = a; - a = b; - b = c; - i = 1; - } - else - i = 0; - c = Balloc(a->k); - if (!c) - return NULL; - c->sign = i; - wa = a->wds; - xa = a->x; - xae = xa + wa; - wb = b->wds; - xb = b->x; - xbe = xb + wb; - xc = c->x; - borrow = 0; -#ifdef ULLong - do { - y = (ULLong)*xa++ - *xb++ - borrow; - borrow = y >> 32 & 1UL; - *xc++ = (ULong)(y & 0xffffffffUL); - } - while(xb < xbe); - while(xa < xae) { - y = *xa++ - borrow; - borrow = y >> 32 & 1UL; - *xc++ = (ULong)(y & 0xffffffffUL); - } -#else - do { - y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; - borrow = (y & 0x10000) >> 16; - z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; - borrow = (z & 0x10000) >> 16; - Storeinc(xc, z, y); - } - while(xb < xbe); - while(xa < xae) { - y = (*xa & 0xffff) - borrow; - borrow = (y & 0x10000) >> 16; - z = (*xa++ >> 16) - borrow; - borrow = (z & 0x10000) >> 16; - Storeinc(xc, z, y); - } -#endif - while(!*--xc) - wa--; - c->wds = wa; - return c; -} - -/* Return the absolute difference between x and the adjacent greater-magnitude double number (ignoring exponent overflows). */ -static double ulp(double x) -{ - register Long L; - double a = 0; - - L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; -#ifndef Sudden_Underflow - if (L > 0) { -#endif - set_word0(a, L); - set_word1(a, 0); -#ifndef Sudden_Underflow - } - else { - L = -L >> Exp_shift; - if (L < Exp_shift) { - set_word0(a, 0x80000 >> L); - set_word1(a, 0); - } - else { - set_word0(a, 0); - L -= Exp_shift; - set_word1(a, L >= 31 ? 1 : 1 << (31 - L)); - } - } -#endif - return a; -} - - -static double b2d(Bigint *a, int32 *e) -{ - ULong *xa, *xa0, w, y, z; - int32 k; - double d = 0; -#define d0 word0(d) -#define d1 word1(d) -#define set_d0(x) set_word0(d, x) -#define set_d1(x) set_word1(d, x) - - xa0 = a->x; - xa = xa0 + a->wds; - y = *--xa; -#ifdef DEBUG - if (!y) Bug("zero y in b2d"); -#endif - k = hi0bits(y); - *e = 32 - k; - if (k < Ebits) { - set_d0(Exp_1 | y >> (Ebits - k)); - w = xa > xa0 ? *--xa : 0; - set_d1(y << (32-Ebits + k) | w >> (Ebits - k)); - goto ret_d; - } - z = xa > xa0 ? *--xa : 0; - if (k -= Ebits) { - set_d0(Exp_1 | y << k | z >> (32 - k)); - y = xa > xa0 ? *--xa : 0; - set_d1(z << k | y >> (32 - k)); - } - else { - set_d0(Exp_1 | y); - set_d1(z); - } - ret_d: -#undef d0 -#undef d1 -#undef set_d0 -#undef set_d1 - return d; -} - - -/* Convert d into the form b*2^e, where b is an odd integer. b is the returned - * Bigint and e is the returned binary exponent. Return the number of significant - * bits in b in bits. d must be finite and nonzero. */ -static Bigint *d2b(double d, int32 *e, int32 *bits) -{ - Bigint *b; - int32 de, i, k; - ULong *x, y, z; -#define d0 word0(d) -#define d1 word1(d) -#define set_d0(x) set_word0(d, x) -#define set_d1(x) set_word1(d, x) - - b = Balloc(1); - if (!b) - return NULL; - x = b->x; - - z = d0 & Frac_mask; - set_d0(d0 & 0x7fffffff); /* clear sign bit, which we ignore */ -#ifdef Sudden_Underflow - de = (int32)(d0 >> Exp_shift); - z |= Exp_msk11; -#else - if ((de = (int32)(d0 >> Exp_shift)) != 0) - z |= Exp_msk1; -#endif - if ((y = d1) != 0) { - if ((k = lo0bits(&y)) != 0) { - x[0] = y | z << (32 - k); - z >>= k; - } - else - x[0] = y; - i = b->wds = (x[1] = z) ? 2 : 1; - } - else { - JS_ASSERT(z); - k = lo0bits(&z); - x[0] = z; - i = b->wds = 1; - k += 32; - } -#ifndef Sudden_Underflow - if (de) { -#endif - *e = de - Bias - (P-1) + k; - *bits = P - k; -#ifndef Sudden_Underflow - } - else { - *e = de - Bias - (P-1) + 1 + k; - *bits = 32*i - hi0bits(x[i-1]); - } -#endif - return b; -} -#undef d0 -#undef d1 -#undef set_d0 -#undef set_d1 - - -static double ratio(Bigint *a, Bigint *b) -{ - double da, db; - int32 k, ka, kb; - - da = b2d(a, &ka); - db = b2d(b, &kb); - k = ka - kb + 32*(a->wds - b->wds); - if (k > 0) - set_word0(da, word0(da) + k*Exp_msk1); - else { - k = -k; - set_word0(db, word0(db) + k*Exp_msk1); - } - return da / db; -} - -static CONST double -tens[] = { - 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, - 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, - 1e20, 1e21, 1e22 -}; - -static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; -static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, -#ifdef Avoid_Underflow - 9007199254740992.e-256 -#else - 1e-256 -#endif - }; -/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ -/* flag unnecessarily. It leads to a song and dance at the end of strtod. */ -#define Scale_Bit 0x10 -#define n_bigtens 5 - - -#ifdef INFNAN_CHECK - -#ifndef NAN_WORD0 -#define NAN_WORD0 0x7ff80000 -#endif - -#ifndef NAN_WORD1 -#define NAN_WORD1 0 -#endif - -static int match(CONST char **sp, char *t) -{ - int c, d; - CONST char *s = *sp; - - while(d = *t++) { - if ((c = *++s) >= 'A' && c <= 'Z') - c += 'a' - 'A'; - if (c != d) - return 0; - } - *sp = s + 1; - return 1; - } -#endif /* INFNAN_CHECK */ - - -#ifdef JS_THREADSAFE -static JSBool initialized = JS_FALSE; - -/* hacked replica of nspr _PR_InitDtoa */ -static void InitDtoa(void) -{ - freelist_lock = PR_NewLock(); - p5s_lock = PR_NewLock(); - initialized = JS_TRUE; -} -#endif - -void js_FinishDtoa(void) -{ - int count; - Bigint *temp; - -#ifdef JS_THREADSAFE - if (initialized == JS_TRUE) { - PR_DestroyLock(freelist_lock); - PR_DestroyLock(p5s_lock); - initialized = JS_FALSE; - } -#endif - - /* clear down the freelist array and p5s */ - - /* static Bigint *freelist[Kmax+1]; */ - for (count = 0; count <= Kmax; count++) { - Bigint **listp = &freelist[count]; - while ((temp = *listp) != NULL) { - *listp = temp->next; - free(temp); - } - freelist[count] = NULL; - } - - /* static Bigint *p5s; */ - while (p5s) { - temp = p5s; - p5s = p5s->next; - free(temp); - } -} - -/* nspr2 watcom bug ifdef omitted */ - -JS_FRIEND_API(double) -JS_strtod(CONST char *s00, char **se, int *err) -{ - int32 scale; - int32 bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, - e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; - CONST char *s, *s0, *s1; - double aadj, aadj1, adj, rv, rv0; - Long L; - ULong y, z; - Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; - - *err = 0; - - bb = bd = bs = delta = NULL; - sign = nz0 = nz = 0; - rv = 0.; - - /* Locking for Balloc's shared buffers that will be used in this block */ - ACQUIRE_DTOA_LOCK(); - - for(s = s00;;s++) switch(*s) { - case '-': - sign = 1; - /* no break */ - case '+': - if (*++s) - goto break2; - /* no break */ - case 0: - s = s00; - goto ret; - case '\t': - case '\n': - case '\v': - case '\f': - case '\r': - case ' ': - continue; - default: - goto break2; - } -break2: - - if (*s == '0') { - nz0 = 1; - while(*++s == '0') ; - if (!*s) - goto ret; - } - s0 = s; - y = z = 0; - for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) - if (nd < 9) - y = 10*y + c - '0'; - else if (nd < 16) - z = 10*z + c - '0'; - nd0 = nd; - if (c == '.') { - c = *++s; - if (!nd) { - for(; c == '0'; c = *++s) - nz++; - if (c > '0' && c <= '9') { - s0 = s; - nf += nz; - nz = 0; - goto have_dig; - } - goto dig_done; - } - for(; c >= '0' && c <= '9'; c = *++s) { - have_dig: - nz++; - if (c -= '0') { - nf += nz; - for(i = 1; i < nz; i++) - if (nd++ < 9) - y *= 10; - else if (nd <= DBL_DIG + 1) - z *= 10; - if (nd++ < 9) - y = 10*y + c; - else if (nd <= DBL_DIG + 1) - z = 10*z + c; - nz = 0; - } - } - } -dig_done: - e = 0; - if (c == 'e' || c == 'E') { - if (!nd && !nz && !nz0) { - s = s00; - goto ret; - } - s00 = s; - esign = 0; - switch(c = *++s) { - case '-': - esign = 1; - case '+': - c = *++s; - } - if (c >= '0' && c <= '9') { - while(c == '0') - c = *++s; - if (c > '0' && c <= '9') { - L = c - '0'; - s1 = s; - while((c = *++s) >= '0' && c <= '9') - L = 10*L + c - '0'; - if (s - s1 > 8 || L > 19999) - /* Avoid confusion from exponents - * so large that e might overflow. - */ - e = 19999; /* safe for 16 bit ints */ - else - e = (int32)L; - if (esign) - e = -e; - } - else - e = 0; - } - else - s = s00; - } - if (!nd) { - if (!nz && !nz0) { -#ifdef INFNAN_CHECK - /* Check for Nan and Infinity */ - switch(c) { - case 'i': - case 'I': - if (match(&s,"nfinity")) { - set_word0(rv, 0x7ff00000); - set_word1(rv, 0); - goto ret; - } - break; - case 'n': - case 'N': - if (match(&s, "an")) { - set_word0(rv, NAN_WORD0); - set_word1(rv, NAN_WORD1); - goto ret; - } - } -#endif /* INFNAN_CHECK */ - s = s00; - } - goto ret; - } - e1 = e -= nf; - - /* Now we have nd0 digits, starting at s0, followed by a - * decimal point, followed by nd-nd0 digits. The number we're - * after is the integer represented by those digits times - * 10**e */ - - if (!nd0) - nd0 = nd; - k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; - rv = y; - if (k > 9) - rv = tens[k - 9] * rv + z; - bd0 = 0; - if (nd <= DBL_DIG -#ifndef RND_PRODQUOT - && FLT_ROUNDS == 1 -#endif - ) { - if (!e) - goto ret; - if (e > 0) { - if (e <= Ten_pmax) { - /* rv = */ rounded_product(rv, tens[e]); - goto ret; - } - i = DBL_DIG - nd; - if (e <= Ten_pmax + i) { - /* A fancier test would sometimes let us do - * this for larger i values. - */ - e -= i; - rv *= tens[i]; - /* rv = */ rounded_product(rv, tens[e]); - goto ret; - } - } -#ifndef Inaccurate_Divide - else if (e >= -Ten_pmax) { - /* rv = */ rounded_quotient(rv, tens[-e]); - goto ret; - } -#endif - } - e1 += nd - k; - - scale = 0; - - /* Get starting approximation = rv * 10**e1 */ - - if (e1 > 0) { - if ((i = e1 & 15) != 0) - rv *= tens[i]; - if (e1 &= ~15) { - if (e1 > DBL_MAX_10_EXP) { - ovfl: - *err = JS_DTOA_ERANGE; -#ifdef __STDC__ - rv = HUGE_VAL; -#else - /* Can't trust HUGE_VAL */ - set_word0(rv, Exp_mask); - set_word1(rv, 0); -#endif - if (bd0) - goto retfree; - goto ret; - } - e1 >>= 4; - for(j = 0; e1 > 1; j++, e1 >>= 1) - if (e1 & 1) - rv *= bigtens[j]; - /* The last multiplication could overflow. */ - set_word0(rv, word0(rv) - P*Exp_msk1); - rv *= bigtens[j]; - if ((z = word0(rv) & Exp_mask) > Exp_msk1*(DBL_MAX_EXP+Bias-P)) - goto ovfl; - if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { - /* set to largest number */ - /* (Can't trust DBL_MAX) */ - set_word0(rv, Big0); - set_word1(rv, Big1); - } - else - set_word0(rv, word0(rv) + P*Exp_msk1); - } - } - else if (e1 < 0) { - e1 = -e1; - if ((i = e1 & 15) != 0) - rv /= tens[i]; - if (e1 &= ~15) { - e1 >>= 4; - if (e1 >= 1 << n_bigtens) - goto undfl; -#ifdef Avoid_Underflow - if (e1 & Scale_Bit) - scale = P; - for(j = 0; e1 > 0; j++, e1 >>= 1) - if (e1 & 1) - rv *= tinytens[j]; - if (scale && (j = P + 1 - ((word0(rv) & Exp_mask) - >> Exp_shift)) > 0) { - /* scaled rv is denormal; zap j low bits */ - if (j >= 32) { - set_word1(rv, 0); - set_word0(rv, word0(rv) & (0xffffffff << (j-32))); - if (!word0(rv)) - set_word0(rv, 1); - } - else - set_word1(rv, word1(rv) & (0xffffffff << j)); - } -#else - for(j = 0; e1 > 1; j++, e1 >>= 1) - if (e1 & 1) - rv *= tinytens[j]; - /* The last multiplication could underflow. */ - rv0 = rv; - rv *= tinytens[j]; - if (!rv) { - rv = 2.*rv0; - rv *= tinytens[j]; -#endif - if (!rv) { - undfl: - rv = 0.; - *err = JS_DTOA_ERANGE; - if (bd0) - goto retfree; - goto ret; - } -#ifndef Avoid_Underflow - set_word0(rv, Tiny0); - set_word1(rv, Tiny1); - /* The refinement below will clean - * this approximation up. - */ - } -#endif - } - } - - /* Now the hard part -- adjusting rv to the correct value.*/ - - /* Put digits into bd: true value = bd * 10^e */ - - bd0 = s2b(s0, nd0, nd, y); - if (!bd0) - goto nomem; - - for(;;) { - bd = Balloc(bd0->k); - if (!bd) - goto nomem; - Bcopy(bd, bd0); - bb = d2b(rv, &bbe, &bbbits); /* rv = bb * 2^bbe */ - if (!bb) - goto nomem; - bs = i2b(1); - if (!bs) - goto nomem; - - if (e >= 0) { - bb2 = bb5 = 0; - bd2 = bd5 = e; - } - else { - bb2 = bb5 = -e; - bd2 = bd5 = 0; - } - if (bbe >= 0) - bb2 += bbe; - else - bd2 -= bbe; - bs2 = bb2; -#ifdef Sudden_Underflow - j = P + 1 - bbbits; -#else -#ifdef Avoid_Underflow - j = bbe - scale; -#else - j = bbe; -#endif - i = j + bbbits - 1; /* logb(rv) */ - if (i < Emin) /* denormal */ - j += P - Emin; - else - j = P + 1 - bbbits; -#endif - bb2 += j; - bd2 += j; -#ifdef Avoid_Underflow - bd2 += scale; -#endif - i = bb2 < bd2 ? bb2 : bd2; - if (i > bs2) - i = bs2; - if (i > 0) { - bb2 -= i; - bd2 -= i; - bs2 -= i; - } - if (bb5 > 0) { - bs = pow5mult(bs, bb5); - if (!bs) - goto nomem; - bb1 = mult(bs, bb); - if (!bb1) - goto nomem; - Bfree(bb); - bb = bb1; - } - if (bb2 > 0) { - bb = lshift(bb, bb2); - if (!bb) - goto nomem; - } - if (bd5 > 0) { - bd = pow5mult(bd, bd5); - if (!bd) - goto nomem; - } - if (bd2 > 0) { - bd = lshift(bd, bd2); - if (!bd) - goto nomem; - } - if (bs2 > 0) { - bs = lshift(bs, bs2); - if (!bs) - goto nomem; - } - delta = diff(bb, bd); - if (!delta) - goto nomem; - dsign = delta->sign; - delta->sign = 0; - i = cmp(delta, bs); - if (i < 0) { - /* Error is less than half an ulp -- check for - * special case of mantissa a power of two. - */ - if (dsign || word1(rv) || word0(rv) & Bndry_mask -#ifdef Avoid_Underflow - || (word0(rv) & Exp_mask) <= Exp_msk1 + P*Exp_msk1 -#else - || (word0(rv) & Exp_mask) <= Exp_msk1 -#endif - ) { -#ifdef Avoid_Underflow - if (!delta->x[0] && delta->wds == 1) - dsign = 2; -#endif - break; - } - delta = lshift(delta,Log2P); - if (!delta) - goto nomem; - if (cmp(delta, bs) > 0) - goto drop_down; - break; - } - if (i == 0) { - /* exactly half-way between */ - if (dsign) { - if ((word0(rv) & Bndry_mask1) == Bndry_mask1 - && word1(rv) == 0xffffffff) { - /*boundary case -- increment exponent*/ - set_word0(rv, (word0(rv) & Exp_mask) + Exp_msk1); - set_word1(rv, 0); -#ifdef Avoid_Underflow - dsign = 0; -#endif - break; - } - } - else if (!(word0(rv) & Bndry_mask) && !word1(rv)) { -#ifdef Avoid_Underflow - dsign = 2; -#endif - drop_down: - /* boundary case -- decrement exponent */ -#ifdef Sudden_Underflow - L = word0(rv) & Exp_mask; - if (L <= Exp_msk1) - goto undfl; - L -= Exp_msk1; -#else - L = (word0(rv) & Exp_mask) - Exp_msk1; -#endif - set_word0(rv, L | Bndry_mask1); - set_word1(rv, 0xffffffff); - break; - } -#ifndef ROUND_BIASED - if (!(word1(rv) & LSB)) - break; -#endif - if (dsign) - rv += ulp(rv); -#ifndef ROUND_BIASED - else { - rv -= ulp(rv); -#ifndef Sudden_Underflow - if (!rv) - goto undfl; -#endif - } -#ifdef Avoid_Underflow - dsign = 1 - dsign; -#endif -#endif - break; - } - if ((aadj = ratio(delta, bs)) <= 2.) { - if (dsign) - aadj = aadj1 = 1.; - else if (word1(rv) || word0(rv) & Bndry_mask) { -#ifndef Sudden_Underflow - if (word1(rv) == Tiny1 && !word0(rv)) - goto undfl; -#endif - aadj = 1.; - aadj1 = -1.; - } - else { - /* special case -- power of FLT_RADIX to be */ - /* rounded down... */ - - if (aadj < 2./FLT_RADIX) - aadj = 1./FLT_RADIX; - else - aadj *= 0.5; - aadj1 = -aadj; - } - } - else { - aadj *= 0.5; - aadj1 = dsign ? aadj : -aadj; -#ifdef Check_FLT_ROUNDS - switch(FLT_ROUNDS) { - case 2: /* towards +infinity */ - aadj1 -= 0.5; - break; - case 0: /* towards 0 */ - case 3: /* towards -infinity */ - aadj1 += 0.5; - } -#else - if (FLT_ROUNDS == 0) - aadj1 += 0.5; -#endif - } - y = word0(rv) & Exp_mask; - - /* Check for overflow */ - - if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { - rv0 = rv; - set_word0(rv, word0(rv) - P*Exp_msk1); - adj = aadj1 * ulp(rv); - rv += adj; - if ((word0(rv) & Exp_mask) >= - Exp_msk1*(DBL_MAX_EXP+Bias-P)) { - if (word0(rv0) == Big0 && word1(rv0) == Big1) - goto ovfl; - set_word0(rv, Big0); - set_word1(rv, Big1); - goto cont; - } - else - set_word0(rv, word0(rv) + P*Exp_msk1); - } - else { -#ifdef Sudden_Underflow - if ((word0(rv) & Exp_mask) <= P*Exp_msk1) { - rv0 = rv; - set_word0(rv, word0(rv) + P*Exp_msk1); - adj = aadj1 * ulp(rv); - rv += adj; - if ((word0(rv) & Exp_mask) <= P*Exp_msk1) - { - if (word0(rv0) == Tiny0 - && word1(rv0) == Tiny1) - goto undfl; - set_word0(rv, Tiny0); - set_word1(rv, Tiny1); - goto cont; - } - else - set_word0(rv, word0(rv) - P*Exp_msk1); - } - else { - adj = aadj1 * ulp(rv); - rv += adj; - } -#else - /* Compute adj so that the IEEE rounding rules will - * correctly round rv + adj in some half-way cases. - * If rv * ulp(rv) is denormalized (i.e., - * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid - * trouble from bits lost to denormalization; - * example: 1.2e-307 . - */ -#ifdef Avoid_Underflow - if (y <= P*Exp_msk1 && aadj > 1.) -#else - if (y <= (P-1)*Exp_msk1 && aadj > 1.) -#endif - { - aadj1 = (double)(int32)(aadj + 0.5); - if (!dsign) - aadj1 = -aadj1; - } -#ifdef Avoid_Underflow - if (scale && y <= P*Exp_msk1) - set_word0(aadj1, word0(aadj1) + (P+1)*Exp_msk1 - y); -#endif - adj = aadj1 * ulp(rv); - rv += adj; -#endif - } - z = word0(rv) & Exp_mask; -#ifdef Avoid_Underflow - if (!scale) -#endif - if (y == z) { - /* Can we stop now? */ - L = (Long)aadj; - aadj -= L; - /* The tolerances below are conservative. */ - if (dsign || word1(rv) || word0(rv) & Bndry_mask) { - if (aadj < .4999999 || aadj > .5000001) - break; - } - else if (aadj < .4999999/FLT_RADIX) - break; - } - cont: - Bfree(bb); - Bfree(bd); - Bfree(bs); - Bfree(delta); - bb = bd = bs = delta = NULL; - } -#ifdef Avoid_Underflow - if (scale) { - rv0 = 0.; - set_word0(rv0, Exp_1 - P*Exp_msk1); - set_word1(rv0, 0); - if ((word0(rv) & Exp_mask) <= P*Exp_msk1 - && word1(rv) & 1 - && dsign != 2) { - if (dsign) { -#ifdef Sudden_Underflow - /* rv will be 0, but this would give the */ - /* right result if only rv *= rv0 worked. */ - set_word0(rv, word0(rv) + P*Exp_msk1); - set_word0(rv0, Exp_1 - 2*P*Exp_msk1); -#endif - rv += ulp(rv); - } - else - set_word1(rv, word1(rv) & ~1); - } - rv *= rv0; - } -#endif /* Avoid_Underflow */ -retfree: - Bfree(bb); - Bfree(bd); - Bfree(bs); - Bfree(bd0); - Bfree(delta); -ret: - RELEASE_DTOA_LOCK(); - if (se) - *se = (char *)s; - return sign ? -rv : rv; - -nomem: - Bfree(bb); - Bfree(bd); - Bfree(bs); - Bfree(bd0); - Bfree(delta); - RELEASE_DTOA_LOCK(); - *err = JS_DTOA_ENOMEM; - return 0; -} - - -/* Return floor(b/2^k) and set b to be the remainder. The returned quotient must be less than 2^32. */ -static uint32 quorem2(Bigint *b, int32 k) -{ - ULong mask; - ULong result; - ULong *bx, *bxe; - int32 w; - int32 n = k >> 5; - k &= 0x1F; - mask = (1<wds - n; - if (w <= 0) - return 0; - JS_ASSERT(w <= 2); - bx = b->x; - bxe = bx + n; - result = *bxe >> k; - *bxe &= mask; - if (w == 2) { - JS_ASSERT(!(bxe[1] & ~mask)); - if (k) - result |= bxe[1] << (32 - k); - } - n++; - while (!*bxe && bxe != bx) { - n--; - bxe--; - } - b->wds = n; - return result; -} - -/* Return floor(b/S) and set b to be the remainder. As added restrictions, b must not have - * more words than S, the most significant word of S must not start with a 1 bit, and the - * returned quotient must be less than 36. */ -static int32 quorem(Bigint *b, Bigint *S) -{ - int32 n; - ULong *bx, *bxe, q, *sx, *sxe; -#ifdef ULLong - ULLong borrow, carry, y, ys; -#else - ULong borrow, carry, y, ys; - ULong si, z, zs; -#endif - - n = S->wds; - JS_ASSERT(b->wds <= n); - if (b->wds < n) - return 0; - sx = S->x; - sxe = sx + --n; - bx = b->x; - bxe = bx + n; - JS_ASSERT(*sxe <= 0x7FFFFFFF); - q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ - JS_ASSERT(q < 36); - if (q) { - borrow = 0; - carry = 0; - do { -#ifdef ULLong - ys = *sx++ * (ULLong)q + carry; - carry = ys >> 32; - y = *bx - (ys & 0xffffffffUL) - borrow; - borrow = y >> 32 & 1UL; - *bx++ = (ULong)(y & 0xffffffffUL); -#else - si = *sx++; - ys = (si & 0xffff) * q + carry; - zs = (si >> 16) * q + (ys >> 16); - carry = zs >> 16; - y = (*bx & 0xffff) - (ys & 0xffff) - borrow; - borrow = (y & 0x10000) >> 16; - z = (*bx >> 16) - (zs & 0xffff) - borrow; - borrow = (z & 0x10000) >> 16; - Storeinc(bx, z, y); -#endif - } - while(sx <= sxe); - if (!*bxe) { - bx = b->x; - while(--bxe > bx && !*bxe) - --n; - b->wds = n; - } - } - if (cmp(b, S) >= 0) { - q++; - borrow = 0; - carry = 0; - bx = b->x; - sx = S->x; - do { -#ifdef ULLong - ys = *sx++ + carry; - carry = ys >> 32; - y = *bx - (ys & 0xffffffffUL) - borrow; - borrow = y >> 32 & 1UL; - *bx++ = (ULong)(y & 0xffffffffUL); -#else - si = *sx++; - ys = (si & 0xffff) + carry; - zs = (si >> 16) + (ys >> 16); - carry = zs >> 16; - y = (*bx & 0xffff) - (ys & 0xffff) - borrow; - borrow = (y & 0x10000) >> 16; - z = (*bx >> 16) - (zs & 0xffff) - borrow; - borrow = (z & 0x10000) >> 16; - Storeinc(bx, z, y); -#endif - } while(sx <= sxe); - bx = b->x; - bxe = bx + n; - if (!*bxe) { - while(--bxe > bx && !*bxe) - --n; - b->wds = n; - } - } - return (int32)q; -} - -/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. - * - * Inspired by "How to Print Floating-Point Numbers Accurately" by - * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. - * - * Modifications: - * 1. Rather than iterating, we use a simple numeric overestimate - * to determine k = floor(log10(d)). We scale relevant - * quantities using O(log2(k)) rather than O(k) multiplications. - * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't - * try to generate digits strictly left to right. Instead, we - * compute with fewer bits and propagate the carry if necessary - * when rounding the final digit up. This is often faster. - * 3. Under the assumption that input will be rounded nearest, - * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. - * That is, we allow equality in stopping tests when the - * round-nearest rule will give the same floating-point value - * as would satisfaction of the stopping test with strict - * inequality. - * 4. We remove common factors of powers of 2 from relevant - * quantities. - * 5. When converting floating-point integers less than 1e16, - * we use floating-point arithmetic rather than resorting - * to multiple-precision integers. - * 6. When asked to produce fewer than 15 digits, we first try - * to get by with floating-point arithmetic; we resort to - * multiple-precision integer arithmetic only if we cannot - * guarantee that the floating-point calculation has given - * the correctly rounded result. For k requested digits and - * "uniformly" distributed input, the probability is - * something like 10^(k-15) that we must resort to the Long - * calculation. - */ - -/* Always emits at least one digit. */ -/* If biasUp is set, then rounding in modes 2 and 3 will round away from zero - * when the number is exactly halfway between two representable values. For example, - * rounding 2.5 to zero digits after the decimal point will return 3 and not 2. - * 2.49 will still round to 2, and 2.51 will still round to 3. */ -/* bufsize should be at least 20 for modes 0 and 1. For the other modes, - * bufsize should be two greater than the maximum number of output characters expected. */ -static JSBool -js_dtoa(double d, int mode, JSBool biasUp, int ndigits, - int *decpt, int *sign, char **rve, char *buf, size_t bufsize) -{ - /* Arguments ndigits, decpt, sign are similar to those - of ecvt and fcvt; trailing zeros are suppressed from - the returned string. If not null, *rve is set to point - to the end of the return value. If d is +-Infinity or NaN, - then *decpt is set to 9999. - - mode: - 0 ==> shortest string that yields d when read in - and rounded to nearest. - 1 ==> like 0, but with Steele & White stopping rule; - e.g. with IEEE P754 arithmetic , mode 0 gives - 1e23 whereas mode 1 gives 9.999999999999999e22. - 2 ==> max(1,ndigits) significant digits. This gives a - return value similar to that of ecvt, except - that trailing zeros are suppressed. - 3 ==> through ndigits past the decimal point. This - gives a return value similar to that from fcvt, - except that trailing zeros are suppressed, and - ndigits can be negative. - 4-9 should give the same return values as 2-3, i.e., - 4 <= mode <= 9 ==> same return as mode - 2 + (mode & 1). These modes are mainly for - debugging; often they run slower but sometimes - faster than modes 2-3. - 4,5,8,9 ==> left-to-right digit generation. - 6-9 ==> don't try fast floating-point estimate - (if applicable). - - Values of mode other than 0-9 are treated as mode 0. - - Sufficient space is allocated to the return value - to hold the suppressed trailing zeros. - */ - - int32 bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, - j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, - spec_case, try_quick; - Long L; -#ifndef Sudden_Underflow - int32 denorm; - ULong x; -#endif - Bigint *b, *b1, *delta, *mlo, *mhi, *S; - double d2, ds, eps; - char *s; - const char *cs; - - if (word0(d) & Sign_bit) { - /* set sign for everything, including 0's and NaNs */ - *sign = 1; - set_word0(d, word0(d) & ~Sign_bit); /* clear sign bit */ - } - else - *sign = 0; - - if ((word0(d) & Exp_mask) == Exp_mask) { - /* Infinity or NaN */ - *decpt = 9999; - cs = !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN"; - if ((cs[0] == 'I' && bufsize < 9) || (cs[0] == 'N' && bufsize < 4)) { - JS_ASSERT(JS_FALSE); -/* JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */ - return JS_FALSE; - } - strcpy(buf, cs); - if (rve) { - *rve = buf[3] ? buf + 8 : buf + 3; - JS_ASSERT(**rve == '\0'); - } - return JS_TRUE; - } - - b = NULL; /* initialize for abort protection */ - S = NULL; - mlo = mhi = NULL; - - if (!d) { - no_digits: - *decpt = 1; - if (bufsize < 2) { - JS_ASSERT(JS_FALSE); -/* JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */ - return JS_FALSE; - } - buf[0] = '0'; buf[1] = '\0'; /* copy "0" to buffer */ - if (rve) - *rve = buf + 1; - /* We might have jumped to "no_digits" from below, so we need - * to be sure to free the potentially allocated Bigints to avoid - * memory leaks. */ - Bfree(b); - Bfree(S); - if (mlo != mhi) - Bfree(mlo); - Bfree(mhi); - return JS_TRUE; - } - - b = d2b(d, &be, &bbits); - if (!b) - goto nomem; -#ifdef Sudden_Underflow - i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); -#else - if ((i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) { -#endif - d2 = d; - set_word0(d2, word0(d2) & Frac_mask1); - set_word0(d2, word0(d2) | Exp_11); - - /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 - * log10(x) = log(x) / log(10) - * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) - * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) - * - * This suggests computing an approximation k to log10(d) by - * - * k = (i - Bias)*0.301029995663981 - * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); - * - * We want k to be too large rather than too small. - * The error in the first-order Taylor series approximation - * is in our favor, so we just round up the constant enough - * to compensate for any error in the multiplication of - * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, - * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, - * adding 1e-13 to the constant term more than suffices. - * Hence we adjust the constant term to 0.1760912590558. - * (We could get a more accurate k by invoking log10, - * but this is probably not worthwhile.) - */ - - i -= Bias; -#ifndef Sudden_Underflow - denorm = 0; - } - else { - /* d is denormalized */ - - i = bbits + be + (Bias + (P-1) - 1); - x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) : word1(d) << (32 - i); - d2 = x; - set_word0(d2, word0(d2) - 31*Exp_msk1); /* adjust exponent */ - i -= (Bias + (P-1) - 1) + 1; - denorm = 1; - } -#endif - /* At this point d = f*2^i, where 1 <= f < 2. d2 is an approximation of f. */ - ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; - k = (int32)ds; - if (ds < 0. && ds != k) - k--; /* want k = floor(ds) */ - k_check = 1; - if (k >= 0 && k <= Ten_pmax) { - if (d < tens[k]) - k--; - k_check = 0; - } - /* At this point floor(log10(d)) <= k <= floor(log10(d))+1. - If k_check is zero, we're guaranteed that k = floor(log10(d)). */ - j = bbits - i - 1; - /* At this point d = b/2^j, where b is an odd integer. */ - if (j >= 0) { - b2 = 0; - s2 = j; - } - else { - b2 = -j; - s2 = 0; - } - if (k >= 0) { - b5 = 0; - s5 = k; - s2 += k; - } - else { - b2 -= k; - b5 = -k; - s5 = 0; - } - /* At this point d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5), where b is an odd integer, - b2 >= 0, b5 >= 0, s2 >= 0, and s5 >= 0. */ - if (mode < 0 || mode > 9) - mode = 0; - try_quick = 1; - if (mode > 5) { - mode -= 4; - try_quick = 0; - } - leftright = 1; - ilim = ilim1 = 0; - switch(mode) { - case 0: - case 1: - ilim = ilim1 = -1; - i = 18; - ndigits = 0; - break; - case 2: - leftright = 0; - /* no break */ - case 4: - if (ndigits <= 0) - ndigits = 1; - ilim = ilim1 = i = ndigits; - break; - case 3: - leftright = 0; - /* no break */ - case 5: - i = ndigits + k + 1; - ilim = i; - ilim1 = i - 1; - if (i <= 0) - i = 1; - } - /* ilim is the maximum number of significant digits we want, based on k and ndigits. */ - /* ilim1 is the maximum number of significant digits we want, based on k and ndigits, - when it turns out that k was computed too high by one. */ - - /* Ensure space for at least i+1 characters, including trailing null. */ - if (bufsize <= (size_t)i) { - Bfree(b); - JS_ASSERT(JS_FALSE); - return JS_FALSE; - } - s = buf; - - if (ilim >= 0 && ilim <= Quick_max && try_quick) { - - /* Try to get by with floating-point arithmetic. */ - - i = 0; - d2 = d; - k0 = k; - ilim0 = ilim; - ieps = 2; /* conservative */ - /* Divide d by 10^k, keeping track of the roundoff error and avoiding overflows. */ - if (k > 0) { - ds = tens[k&0xf]; - j = k >> 4; - if (j & Bletch) { - /* prevent overflows */ - j &= Bletch - 1; - d /= bigtens[n_bigtens-1]; - ieps++; - } - for(; j; j >>= 1, i++) - if (j & 1) { - ieps++; - ds *= bigtens[i]; - } - d /= ds; - } - else if ((j1 = -k) != 0) { - d *= tens[j1 & 0xf]; - for(j = j1 >> 4; j; j >>= 1, i++) - if (j & 1) { - ieps++; - d *= bigtens[i]; - } - } - /* Check that k was computed correctly. */ - if (k_check && d < 1. && ilim > 0) { - if (ilim1 <= 0) - goto fast_failed; - ilim = ilim1; - k--; - d *= 10.; - ieps++; - } - /* eps bounds the cumulative error. */ - eps = ieps*d + 7.; - set_word0(eps, word0(eps) - (P-1)*Exp_msk1); - if (ilim == 0) { - S = mhi = 0; - d -= 5.; - if (d > eps) - goto one_digit; - if (d < -eps) - goto no_digits; - goto fast_failed; - } -#ifndef No_leftright - if (leftright) { - /* Use Steele & White method of only - * generating digits needed. - */ - eps = 0.5/tens[ilim-1] - eps; - for(i = 0;;) { - L = (Long)d; - d -= L; - *s++ = '0' + (char)L; - if (d < eps) - goto ret1; - if (1. - d < eps) { -#ifdef DEBUG - /* Clear d to avoid precision warning. */ - d = 0; -#endif - goto bump_up; - } - if (++i >= ilim) - break; - eps *= 10.; - d *= 10.; - } - } - else { -#endif - /* Generate ilim digits, then fix them up. */ - eps *= tens[ilim-1]; - for(i = 1;; i++, d *= 10.) { - L = (Long)d; - d -= L; - *s++ = '0' + (char)L; - if (i == ilim) { - if (d > 0.5 + eps) { -#ifdef DEBUG - /* Clear d to avoid precision warning. */ - d = 0; -#endif - goto bump_up; - } - else if (d < 0.5 - eps) { - while(*--s == '0') ; - s++; - goto ret1; - } - break; - } - } -#ifndef No_leftright - } -#endif - fast_failed: - s = buf; - d = d2; - k = k0; - ilim = ilim0; - } - - /* Do we have a "small" integer? */ - - if (be >= 0 && k <= Int_max) { - /* Yes. */ - ds = tens[k]; - if (ndigits < 0 && ilim <= 0) { - S = mhi = 0; - if (ilim < 0 || d < 5*ds || (!biasUp && d == 5*ds)) - goto no_digits; - goto one_digit; - } - - /* Use true number of digits to limit looping. */ - for(i = 1; i<=k+1; i++) { - L = (Long) (d / ds); - d -= L*ds; -#ifdef Check_FLT_ROUNDS - /* If FLT_ROUNDS == 2, L will usually be high by 1 */ - if (d < 0) { - L--; - d += ds; - } -#endif - *s++ = '0' + (char)L; - if (i == ilim) { - d += d; - if ((d > ds) || (d == ds && (L & 1 || biasUp))) { - bump_up: - while(*--s == '9') - if (s == buf) { - k++; - *s = '0'; - break; - } - ++*s++; - } - break; - } - d *= 10.; - } -#ifdef DEBUG - if (d != 0.0) { - fprintf(stderr, -"WARNING: A loss of precision for double floating point is detected.\n" -" The result of any operation on doubles can be meaningless.\n" -" A possible cause is missing code to restore FPU state, see\n" -" bug 360282 for details.\n"); - } -#endif - goto ret1; - } - - m2 = b2; - m5 = b5; - if (leftright) { - if (mode < 2) { - i = -#ifndef Sudden_Underflow - denorm ? be + (Bias + (P-1) - 1 + 1) : -#endif - 1 + P - bbits; - /* i is 1 plus the number of trailing zero bits in d's significand. Thus, - (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 lsb of d)/10^k. */ - } - else { - j = ilim - 1; - if (m5 >= j) - m5 -= j; - else { - s5 += j -= m5; - b5 += j; - m5 = 0; - } - if ((i = ilim) < 0) { - m2 -= i; - i = 0; - } - /* (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 * 10^(1-ilim))/10^k. */ - } - b2 += i; - s2 += i; - mhi = i2b(1); - if (!mhi) - goto nomem; - /* (mhi * 2^m2 * 5^m5) / (2^s2 * 5^s5) = one-half of last printed (when mode >= 2) or - input (when mode < 2) significant digit, divided by 10^k. */ - } - /* We still have d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5). Reduce common factors in - b2, m2, and s2 without changing the equalities. */ - if (m2 > 0 && s2 > 0) { - i = m2 < s2 ? m2 : s2; - b2 -= i; - m2 -= i; - s2 -= i; - } - - /* Fold b5 into b and m5 into mhi. */ - if (b5 > 0) { - if (leftright) { - if (m5 > 0) { - mhi = pow5mult(mhi, m5); - if (!mhi) - goto nomem; - b1 = mult(mhi, b); - if (!b1) - goto nomem; - Bfree(b); - b = b1; - } - if ((j = b5 - m5) != 0) { - b = pow5mult(b, j); - if (!b) - goto nomem; - } - } - else { - b = pow5mult(b, b5); - if (!b) - goto nomem; - } - } - /* Now we have d/10^k = (b * 2^b2) / (2^s2 * 5^s5) and - (mhi * 2^m2) / (2^s2 * 5^s5) = one-half of last printed or input significant digit, divided by 10^k. */ - - S = i2b(1); - if (!S) - goto nomem; - if (s5 > 0) { - S = pow5mult(S, s5); - if (!S) - goto nomem; - } - /* Now we have d/10^k = (b * 2^b2) / (S * 2^s2) and - (mhi * 2^m2) / (S * 2^s2) = one-half of last printed or input significant digit, divided by 10^k. */ - - /* Check for special case that d is a normalized power of 2. */ - spec_case = 0; - if (mode < 2) { - if (!word1(d) && !(word0(d) & Bndry_mask) -#ifndef Sudden_Underflow - && word0(d) & (Exp_mask & Exp_mask << 1) -#endif - ) { - /* The special case. Here we want to be within a quarter of the last input - significant digit instead of one half of it when the decimal output string's value is less than d. */ - b2 += Log2P; - s2 += Log2P; - spec_case = 1; - } - } - - /* Arrange for convenient computation of quotients: - * shift left if necessary so divisor has 4 leading 0 bits. - * - * Perhaps we should just compute leading 28 bits of S once - * and for all and pass them and a shift to quorem, so it - * can do shifts and ors to compute the numerator for q. - */ - if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) != 0) - i = 32 - i; - /* i is the number of leading zero bits in the most significant word of S*2^s2. */ - if (i > 4) { - i -= 4; - b2 += i; - m2 += i; - s2 += i; - } - else if (i < 4) { - i += 28; - b2 += i; - m2 += i; - s2 += i; - } - /* Now S*2^s2 has exactly four leading zero bits in its most significant word. */ - if (b2 > 0) { - b = lshift(b, b2); - if (!b) - goto nomem; - } - if (s2 > 0) { - S = lshift(S, s2); - if (!S) - goto nomem; - } - /* Now we have d/10^k = b/S and - (mhi * 2^m2) / S = maximum acceptable error, divided by 10^k. */ - if (k_check) { - if (cmp(b,S) < 0) { - k--; - b = multadd(b, 10, 0); /* we botched the k estimate */ - if (!b) - goto nomem; - if (leftright) { - mhi = multadd(mhi, 10, 0); - if (!mhi) - goto nomem; - } - ilim = ilim1; - } - } - /* At this point 1 <= d/10^k = b/S < 10. */ - - if (ilim <= 0 && mode > 2) { - /* We're doing fixed-mode output and d is less than the minimum nonzero output in this mode. - Output either zero or the minimum nonzero output depending on which is closer to d. */ - if (ilim < 0) - goto no_digits; - S = multadd(S,5,0); - if (!S) - goto nomem; - i = cmp(b,S); - if (i < 0 || (i == 0 && !biasUp)) { - /* Always emit at least one digit. If the number appears to be zero - using the current mode, then emit one '0' digit and set decpt to 1. */ - /*no_digits: - k = -1 - ndigits; - goto ret; */ - goto no_digits; - } - one_digit: - *s++ = '1'; - k++; - goto ret; - } - if (leftright) { - if (m2 > 0) { - mhi = lshift(mhi, m2); - if (!mhi) - goto nomem; - } - - /* Compute mlo -- check for special case - * that d is a normalized power of 2. - */ - - mlo = mhi; - if (spec_case) { - mhi = Balloc(mhi->k); - if (!mhi) - goto nomem; - Bcopy(mhi, mlo); - mhi = lshift(mhi, Log2P); - if (!mhi) - goto nomem; - } - /* mlo/S = maximum acceptable error, divided by 10^k, if the output is less than d. */ - /* mhi/S = maximum acceptable error, divided by 10^k, if the output is greater than d. */ - - for(i = 1;;i++) { - dig = quorem(b,S) + '0'; - /* Do we yet have the shortest decimal string - * that will round to d? - */ - j = cmp(b, mlo); - /* j is b/S compared with mlo/S. */ - delta = diff(S, mhi); - if (!delta) - goto nomem; - j1 = delta->sign ? 1 : cmp(b, delta); - Bfree(delta); - /* j1 is b/S compared with 1 - mhi/S. */ -#ifndef ROUND_BIASED - if (j1 == 0 && !mode && !(word1(d) & 1)) { - if (dig == '9') - goto round_9_up; - if (j > 0) - dig++; - *s++ = (char)dig; - goto ret; - } -#endif - if ((j < 0) || (j == 0 && !mode -#ifndef ROUND_BIASED - && !(word1(d) & 1) -#endif - )) { - if (j1 > 0) { - /* Either dig or dig+1 would work here as the least significant decimal digit. - Use whichever would produce a decimal value closer to d. */ - b = lshift(b, 1); - if (!b) - goto nomem; - j1 = cmp(b, S); - if (((j1 > 0) || (j1 == 0 && (dig & 1 || biasUp))) - && (dig++ == '9')) - goto round_9_up; - } - *s++ = (char)dig; - goto ret; - } - if (j1 > 0) { - if (dig == '9') { /* possible if i == 1 */ - round_9_up: - *s++ = '9'; - goto roundoff; - } - *s++ = (char)dig + 1; - goto ret; - } - *s++ = (char)dig; - if (i == ilim) - break; - b = multadd(b, 10, 0); - if (!b) - goto nomem; - if (mlo == mhi) { - mlo = mhi = multadd(mhi, 10, 0); - if (!mhi) - goto nomem; - } - else { - mlo = multadd(mlo, 10, 0); - if (!mlo) - goto nomem; - mhi = multadd(mhi, 10, 0); - if (!mhi) - goto nomem; - } - } - } - else - for(i = 1;; i++) { - *s++ = (char)(dig = quorem(b,S) + '0'); - if (i >= ilim) - break; - b = multadd(b, 10, 0); - if (!b) - goto nomem; - } - - /* Round off last digit */ - - b = lshift(b, 1); - if (!b) - goto nomem; - j = cmp(b, S); - if ((j > 0) || (j == 0 && (dig & 1 || biasUp))) { - roundoff: - while(*--s == '9') - if (s == buf) { - k++; - *s++ = '1'; - goto ret; - } - ++*s++; - } - else { - /* Strip trailing zeros */ - while(*--s == '0') ; - s++; - } - ret: - Bfree(S); - if (mhi) { - if (mlo && mlo != mhi) - Bfree(mlo); - Bfree(mhi); - } - ret1: - Bfree(b); - JS_ASSERT(s < buf + bufsize); - *s = '\0'; - if (rve) - *rve = s; - *decpt = k + 1; return JS_TRUE; - -nomem: - Bfree(S); - if (mhi) { - if (mlo && mlo != mhi) - Bfree(mlo); - Bfree(mhi); - } - Bfree(b); - return JS_FALSE; +#endif } +void +js_FinishDtoa() +{ +#ifdef JS_THREADSAFE + if (_dtoainited) { + PR_DestroyLock(dtoalock); + dtoalock = NULL; + _dtoainited = JS_FALSE; + } +#endif +} /* Mapping of JSDToStrMode -> js_dtoa mode */ -static const int dtoaModes[] = { +static const uint8 dtoaModes[] = { 0, /* DTOSTR_STANDARD */ 0, /* DTOSTR_STANDARD_EXPONENTIAL, */ 3, /* DTOSTR_FIXED, */ 2, /* DTOSTR_EXPONENTIAL, */ 2}; /* DTOSTR_PRECISION */ +JS_FRIEND_API(double) +JS_strtod(const char *s00, char **se, int *err) +{ + double retval; + LOCK_DTOA(); + retval = _strtod(s00, se); + UNLOCK_DTOA(); + return retval; +} + JS_FRIEND_API(char *) JS_dtostr(char *buffer, size_t bufferSize, JSDToStrMode mode, int precision, double d) { - int decPt; /* Position of decimal point relative to first digit returned by js_dtoa */ - int sign; /* Nonzero if the sign bit was set in d */ - int nDigits; /* Number of significand digits returned by js_dtoa */ - char *numBegin = buffer+2; /* Pointer to the digits returned by js_dtoa; the +2 leaves space for */ - /* the sign and/or decimal point */ - char *numEnd; /* Pointer past the digits returned by js_dtoa */ - JSBool dtoaRet; + int decPt; /* Offset of decimal point from first digit */ + int sign; /* Nonzero if the sign bit was set in d */ + int nDigits; /* Number of significand digits returned by js_dtoa */ + char *numBegin; /* Pointer to the digits returned by js_dtoa */ + char *numEnd = 0; /* Pointer past the digits returned by js_dtoa */ - JS_ASSERT(bufferSize >= (size_t)(mode <= DTOSTR_STANDARD_EXPONENTIAL ? DTOSTR_STANDARD_BUFFER_SIZE : - DTOSTR_VARIABLE_BUFFER_SIZE(precision))); + JS_ASSERT(bufferSize >= (size_t)(mode <= DTOSTR_STANDARD_EXPONENTIAL + ? DTOSTR_STANDARD_BUFFER_SIZE + : DTOSTR_VARIABLE_BUFFER_SIZE(precision))); + /* + * Change mode here rather than below because the buffer may not be large + * enough to hold a large integer. + */ if (mode == DTOSTR_FIXED && (d >= 1e21 || d <= -1e21)) - mode = DTOSTR_STANDARD; /* Change mode here rather than below because the buffer may not be large enough to hold a large integer. */ + mode = DTOSTR_STANDARD; - /* Locking for Balloc's shared buffers */ - ACQUIRE_DTOA_LOCK(); - dtoaRet = js_dtoa(d, dtoaModes[mode], mode >= DTOSTR_FIXED, precision, &decPt, &sign, &numEnd, numBegin, bufferSize-2); - RELEASE_DTOA_LOCK(); - if (!dtoaRet) - return 0; + LOCK_DTOA(); + numBegin = dtoa(d, dtoaModes[mode], precision, &decPt, &sign, &numEnd); + if (!numBegin) { + UNLOCK_DTOA(); + return NULL; + } nDigits = numEnd - numBegin; + JS_ASSERT((size_t) nDigits <= bufferSize - 2); + if ((size_t) nDigits > bufferSize - 2) { + UNLOCK_DTOA(); + return NULL; + } - /* If Infinity, -Infinity, or NaN, return the string regardless of the mode. */ + memcpy(buffer + 2, numBegin, nDigits); + freedtoa(numBegin); + UNLOCK_DTOA(); + numBegin = buffer + 2; /* +2 leaves space for sign and/or decimal point */ + numEnd = numBegin + nDigits; + *numEnd = '\0'; + + /* If Infinity, -Infinity, or NaN, return the string regardless of mode. */ if (decPt != 9999) { JSBool exponentialNotation = JS_FALSE; - int minNDigits = 0; /* Minimum number of significand digits required by mode and precision */ + int minNDigits = 0; /* Min number of significant digits required */ char *p; char *q; @@ -2848,7 +215,7 @@ JS_dtostr(char *buffer, size_t bufferSize, JSDToStrMode mode, int precision, dou break; } - /* If the number has fewer than minNDigits, pad it with zeros at the end */ + /* If the number has fewer than minNDigits, end-pad it with zeros. */ if (nDigits < minNDigits) { p = numBegin + minNDigits; nDigits = minNDigits; @@ -2942,6 +309,39 @@ divrem(Bigint *b, uint32 divisor) return remainder; } +/* Return floor(b/2^k) and set b to be the remainder. The returned quotient must be less than 2^32. */ +static uint32 quorem2(Bigint *b, int32 k) +{ + ULong mask; + ULong result; + ULong *bx, *bxe; + int32 w; + int32 n = k >> 5; + k &= 0x1F; + mask = (1<wds - n; + if (w <= 0) + return 0; + JS_ASSERT(w <= 2); + bx = b->x; + bxe = bx + n; + result = *bxe >> k; + *bxe &= mask; + if (w == 2) { + JS_ASSERT(!(bxe[1] & ~mask)); + if (k) + result |= bxe[1] << (32 - k); + } + n++; + while (!*bxe && bxe != bx) { + n--; + bxe--; + } + b->wds = n; + return result; +} + /* "-0.0000...(1073 zeros after decimal point)...0001\0" is the longest string that we could produce, * which occurs when printing -5e-324 in binary. We could compute a better estimate of the size of @@ -2980,9 +380,7 @@ JS_dtobasestr(int base, double d) return buffer; } - /* Locking for Balloc's shared buffers */ - ACQUIRE_DTOA_LOCK(); - + LOCK_DTOA(); /* Output the integer part of d with the digits in reverse order. */ pInt = p; di = fd_floor(d); @@ -2998,8 +396,8 @@ JS_dtobasestr(int base, double d) } while (n); else *p++ = '0'; } else { - int32 e; - int32 bits; /* Number of significant bits in di; not used. */ + int e; + int bits; /* Number of significant bits in di; not used. */ Bigint *b = d2b(di, &e, &bits); if (!b) goto nomem1; @@ -3007,7 +405,7 @@ JS_dtobasestr(int base, double d) if (!b) { nomem1: Bfree(b); - RELEASE_DTOA_LOCK(); + UNLOCK_DTOA(); free(buffer); return NULL; } @@ -3029,7 +427,8 @@ JS_dtobasestr(int base, double d) df = d - di; if (df != 0.0) { /* We have a fraction. */ - int32 e, bbits, s2, done; + int e, bbits; + int32 s2, done; Bigint *b, *s, *mlo, *mhi; b = s = mlo = mhi = NULL; @@ -3043,7 +442,7 @@ JS_dtobasestr(int base, double d) if (mlo != mhi) Bfree(mlo); Bfree(mhi); - RELEASE_DTOA_LOCK(); + UNLOCK_DTOA(); free(buffer); return NULL; } @@ -3161,7 +560,7 @@ JS_dtobasestr(int base, double d) } JS_ASSERT(p < buffer + DTOBASESTR_BUFFER_SIZE); *p = '\0'; - RELEASE_DTOA_LOCK(); + UNLOCK_DTOA(); } return buffer; } diff --git a/js/src/jsdtoa.h b/js/src/jsdtoa.h index 409f45454b5..b074c9aba70 100644 --- a/js/src/jsdtoa.h +++ b/js/src/jsdtoa.h @@ -123,7 +123,8 @@ JS_dtobasestr(int base, double d); * Clean up any persistent RAM allocated during the execution of DtoA * routines, and remove any locks that might have been created. */ -extern void js_FinishDtoa(void); +JS_FRIEND_API(JSBool) js_InitDtoa(void); +JS_FRIEND_API(void) js_FinishDtoa(void); JS_END_EXTERN_C diff --git a/js/src/jsnum.cpp b/js/src/jsnum.cpp index 49fe0c71ed0..82c81a8c171 100644 --- a/js/src/jsnum.cpp +++ b/js/src/jsnum.cpp @@ -1015,18 +1015,10 @@ js_strtod(JSContext *cx, const jschar *s, const jschar *send, } else { int err; d = JS_strtod(cstr, &estr, &err); - if (err == JS_DTOA_ENOMEM) { - JS_ReportOutOfMemory(cx); - if (cstr != cbuf) - JS_free(cx, cstr); - return JS_FALSE; - } - if (err == JS_DTOA_ERANGE) { - if (d == HUGE_VAL) - d = *cx->runtime->jsPositiveInfinity; - else if (d == -HUGE_VAL) - d = *cx->runtime->jsNegativeInfinity; - } + if (d == HUGE_VAL) + d = *cx->runtime->jsPositiveInfinity; + else if (d == -HUGE_VAL) + d = *cx->runtime->jsNegativeInfinity; #ifdef HPUX if (d == 0.0 && negative) { /*