Bug 685767 - Factor blurring out into its own class, and use it from gfxAlphaBoxBlur. r=mattwoodrow

This commit is contained in:
Joe Drew 2011-11-14 17:29:28 +13:00
Родитель 14906f6012
Коммит 2a96c7591e
5 изменённых файлов: 750 добавлений и 425 удалений

526
gfx/2d/Blur.cpp Normal file
Просмотреть файл

@ -0,0 +1,526 @@
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla gfx.
*
* The Initial Developer of the Original Code is Mozilla Foundation.
* Portions created by the Initial Developer are Copyright (C) 2011
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#include <algorithm>
#include <math.h>
#include "CheckedInt.h"
#include "mozilla/Util.h"
#include "mozilla/gfx/Blur.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
using namespace std;
namespace mozilla {
namespace gfx {
/**
* Box blur involves looking at one pixel, and setting its value to the average
* of its neighbouring pixels.
* @param aInput The input buffer.
* @param aOutput The output buffer.
* @param aLeftLobe The number of pixels to blend on the left.
* @param aRightLobe The number of pixels to blend on the right.
* @param aWidth The number of columns in the buffers.
* @param aRows The number of rows in the buffers.
* @param aSkipRect An area to skip blurring in.
* XXX shouldn't we pass stride in separately here?
*/
static void
BoxBlurHorizontal(unsigned char* aInput,
unsigned char* aOutput,
int32_t aLeftLobe,
int32_t aRightLobe,
int32_t aWidth,
int32_t aRows,
const IntRect& aSkipRect)
{
MOZ_ASSERT(aWidth > 0);
int32_t boxSize = aLeftLobe + aRightLobe + 1;
bool skipRectCoversWholeRow = 0 >= aSkipRect.x &&
aWidth <= aSkipRect.XMost();
for (int32_t y = 0; y < aRows; y++) {
// Check whether the skip rect intersects this row. If the skip
// rect covers the whole surface in this row, we can avoid
// this row entirely (and any others along the skip rect).
bool inSkipRectY = y >= aSkipRect.y &&
y < aSkipRect.YMost();
if (inSkipRectY && skipRectCoversWholeRow) {
y = aSkipRect.YMost() - 1;
continue;
}
int32_t alphaSum = 0;
for (int32_t i = 0; i < boxSize; i++) {
int32_t pos = i - aLeftLobe;
// See assertion above; if aWidth is zero, then we would have no
// valid position to clamp to.
pos = max(pos, 0);
pos = min(pos, aWidth - 1);
alphaSum += aInput[aWidth * y + pos];
}
for (int32_t x = 0; x < aWidth; x++) {
// Check whether we are within the skip rect. If so, go
// to the next point outside the skip rect.
if (inSkipRectY && x >= aSkipRect.x &&
x < aSkipRect.XMost()) {
x = aSkipRect.XMost();
if (x >= aWidth)
break;
// Recalculate the neighbouring alpha values for
// our new point on the surface.
alphaSum = 0;
for (int32_t i = 0; i < boxSize; i++) {
int32_t pos = x + i - aLeftLobe;
// See assertion above; if aWidth is zero, then we would have no
// valid position to clamp to.
pos = max(pos, 0);
pos = min(pos, aWidth - 1);
alphaSum += aInput[aWidth * y + pos];
}
}
int32_t tmp = x - aLeftLobe;
int32_t last = max(tmp, 0);
int32_t next = min(tmp + boxSize, aWidth - 1);
aOutput[aWidth * y + x] = alphaSum / boxSize;
alphaSum += aInput[aWidth * y + next] -
aInput[aWidth * y + last];
}
}
}
/**
* Identical to BoxBlurHorizontal, except it blurs top and bottom instead of
* left and right.
* XXX shouldn't we pass stride in separately here?
*/
static void
BoxBlurVertical(unsigned char* aInput,
unsigned char* aOutput,
int32_t aTopLobe,
int32_t aBottomLobe,
int32_t aWidth,
int32_t aRows,
const IntRect& aSkipRect)
{
MOZ_ASSERT(aRows > 0);
int32_t boxSize = aTopLobe + aBottomLobe + 1;
bool skipRectCoversWholeColumn = 0 >= aSkipRect.y &&
aRows <= aSkipRect.YMost();
for (int32_t x = 0; x < aWidth; x++) {
bool inSkipRectX = x >= aSkipRect.x &&
x < aSkipRect.XMost();
if (inSkipRectX && skipRectCoversWholeColumn) {
x = aSkipRect.XMost() - 1;
continue;
}
int32_t alphaSum = 0;
for (int32_t i = 0; i < boxSize; i++) {
int32_t pos = i - aTopLobe;
// See assertion above; if aRows is zero, then we would have no
// valid position to clamp to.
pos = max(pos, 0);
pos = min(pos, aRows - 1);
alphaSum += aInput[aWidth * pos + x];
}
for (int32_t y = 0; y < aRows; y++) {
if (inSkipRectX && y >= aSkipRect.y &&
y < aSkipRect.YMost()) {
y = aSkipRect.YMost();
if (y >= aRows)
break;
alphaSum = 0;
for (int32_t i = 0; i < boxSize; i++) {
int32_t pos = y + i - aTopLobe;
// See assertion above; if aRows is zero, then we would have no
// valid position to clamp to.
pos = max(pos, 0);
pos = min(pos, aRows - 1);
alphaSum += aInput[aWidth * pos + x];
}
}
int32_t tmp = y - aTopLobe;
int32_t last = max(tmp, 0);
int32_t next = min(tmp + boxSize, aRows - 1);
aOutput[aWidth * y + x] = alphaSum/boxSize;
alphaSum += aInput[aWidth * next + x] -
aInput[aWidth * last + x];
}
}
}
static void ComputeLobes(int32_t aRadius, int32_t aLobes[3][2])
{
int32_t major, minor, final;
/* See http://www.w3.org/TR/SVG/filters.html#feGaussianBlur for
* some notes about approximating the Gaussian blur with box-blurs.
* The comments below are in the terminology of that page.
*/
int32_t z = aRadius / 3;
switch (aRadius % 3) {
case 0:
// aRadius = z*3; choose d = 2*z + 1
major = minor = final = z;
break;
case 1:
// aRadius = z*3 + 1
// This is a tricky case since there is no value of d which will
// yield a radius of exactly aRadius. If d is odd, i.e. d=2*k + 1
// for some integer k, then the radius will be 3*k. If d is even,
// i.e. d=2*k, then the radius will be 3*k - 1.
// So we have to choose values that don't match the standard
// algorithm.
major = z + 1;
minor = final = z;
break;
case 2:
// aRadius = z*3 + 2; choose d = 2*z + 2
major = final = z + 1;
minor = z;
break;
default:
// Mathematical impossibility!
MOZ_ASSERT(false);
major = minor = final = 0;
}
MOZ_ASSERT(major + minor + final == aRadius);
aLobes[0][0] = major;
aLobes[0][1] = minor;
aLobes[1][0] = minor;
aLobes[1][1] = major;
aLobes[2][0] = final;
aLobes[2][1] = final;
}
static void
SpreadHorizontal(unsigned char* aInput,
unsigned char* aOutput,
int32_t aRadius,
int32_t aWidth,
int32_t aRows,
int32_t aStride,
const IntRect& aSkipRect)
{
if (aRadius == 0) {
memcpy(aOutput, aInput, aStride * aRows);
return;
}
bool skipRectCoversWholeRow = 0 >= aSkipRect.x &&
aWidth <= aSkipRect.XMost();
for (int32_t y = 0; y < aRows; y++) {
// Check whether the skip rect intersects this row. If the skip
// rect covers the whole surface in this row, we can avoid
// this row entirely (and any others along the skip rect).
bool inSkipRectY = y >= aSkipRect.y &&
y < aSkipRect.YMost();
if (inSkipRectY && skipRectCoversWholeRow) {
y = aSkipRect.YMost() - 1;
continue;
}
for (int32_t x = 0; x < aWidth; x++) {
// Check whether we are within the skip rect. If so, go
// to the next point outside the skip rect.
if (inSkipRectY && x >= aSkipRect.x &&
x < aSkipRect.XMost()) {
x = aSkipRect.XMost();
if (x >= aWidth)
break;
}
int32_t sMin = max(x - aRadius, 0);
int32_t sMax = min(x + aRadius, aWidth - 1);
int32_t v = 0;
for (int32_t s = sMin; s <= sMax; ++s) {
v = max<int32_t>(v, aInput[aStride * y + s]);
}
aOutput[aStride * y + x] = v;
}
}
}
static void
SpreadVertical(unsigned char* aInput,
unsigned char* aOutput,
int32_t aRadius,
int32_t aWidth,
int32_t aRows,
int32_t aStride,
const IntRect& aSkipRect)
{
if (aRadius == 0) {
memcpy(aOutput, aInput, aStride * aRows);
return;
}
bool skipRectCoversWholeColumn = 0 >= aSkipRect.y &&
aRows <= aSkipRect.YMost();
for (int32_t x = 0; x < aWidth; x++) {
bool inSkipRectX = x >= aSkipRect.x &&
x < aSkipRect.XMost();
if (inSkipRectX && skipRectCoversWholeColumn) {
x = aSkipRect.XMost() - 1;
continue;
}
for (int32_t y = 0; y < aRows; y++) {
// Check whether we are within the skip rect. If so, go
// to the next point outside the skip rect.
if (inSkipRectX && y >= aSkipRect.y &&
y < aSkipRect.YMost()) {
y = aSkipRect.YMost();
if (y >= aRows)
break;
}
int32_t sMin = max(y - aRadius, 0);
int32_t sMax = min(y + aRadius, aRows - 1);
int32_t v = 0;
for (int32_t s = sMin; s <= sMax; ++s) {
v = max<int32_t>(v, aInput[aStride * s + x]);
}
aOutput[aStride * y + x] = v;
}
}
}
static CheckedInt<int32_t>
RoundUpToMultipleOf4(int32_t aVal)
{
CheckedInt<int32_t> val(aVal);
val += 3;
val /= 4;
val *= 4;
return val;
}
AlphaBoxBlur::AlphaBoxBlur(const Rect& aRect,
const IntSize& aSpreadRadius,
const IntSize& aBlurRadius,
const Rect* aDirtyRect,
const Rect* aSkipRect)
: mSpreadRadius(aSpreadRadius),
mBlurRadius(aBlurRadius),
mData(NULL)
{
Rect rect(aRect);
rect.Inflate(Size(aBlurRadius + aSpreadRadius));
rect.RoundOut();
if (aDirtyRect) {
// If we get passed a dirty rect from layout, we can minimize the
// shadow size and make painting faster.
mHasDirtyRect = true;
mDirtyRect = *aDirtyRect;
Rect requiredBlurArea = mDirtyRect.Intersect(rect);
requiredBlurArea.Inflate(Size(aBlurRadius + aSpreadRadius));
rect = requiredBlurArea.Intersect(rect);
} else {
mHasDirtyRect = false;
}
if (rect.IsEmpty()) {
return;
}
if (aSkipRect) {
// If we get passed a skip rect, we can lower the amount of
// blurring/spreading we need to do. We convert it to IntRect to avoid
// expensive int<->float conversions if we were to use Rect instead.
Rect skipRect = *aSkipRect;
skipRect.RoundIn();
skipRect.Deflate(Size(aBlurRadius + aSpreadRadius));
mSkipRect = IntRect(skipRect.x, skipRect.y, skipRect.width, skipRect.height);
IntRect shadowIntRect(rect.x, rect.y, rect.width, rect.height);
mSkipRect.IntersectRect(mSkipRect, shadowIntRect);
if (mSkipRect.IsEqualInterior(shadowIntRect))
return;
mSkipRect -= shadowIntRect.TopLeft();
} else {
mSkipRect = IntRect(0, 0, 0, 0);
}
mRect = IntRect(rect.x, rect.y, rect.width, rect.height);
CheckedInt<int32_t> stride = RoundUpToMultipleOf4(mRect.width);
if (stride.valid()) {
mStride = stride.value();
CheckedInt<int32_t> size = CheckedInt<int32_t>(mStride) * mRect.height *
sizeof(unsigned char);
if (size.valid()) {
mData = static_cast<unsigned char*>(malloc(size.value()));
memset(mData, 0, size.value());
}
}
}
AlphaBoxBlur::~AlphaBoxBlur()
{
free(mData);
}
unsigned char*
AlphaBoxBlur::GetData()
{
return mData;
}
IntSize
AlphaBoxBlur::GetSize()
{
IntSize size(mRect.width, mRect.height);
return size;
}
int32_t
AlphaBoxBlur::GetStride()
{
return mStride;
}
IntRect
AlphaBoxBlur::GetRect()
{
return mRect;
}
Rect*
AlphaBoxBlur::GetDirtyRect()
{
if (mHasDirtyRect) {
return &mDirtyRect;
}
return NULL;
}
void
AlphaBoxBlur::Blur()
{
if (!mData) {
return;
}
// no need to do all this if not blurring or spreading
if (mBlurRadius != IntSize(0,0) || mSpreadRadius != IntSize(0,0)) {
int32_t stride = GetStride();
// No need to use CheckedInt here - we have validated it in the constructor.
size_t szB = stride * GetSize().height * sizeof(unsigned char);
unsigned char* tmpData = static_cast<unsigned char*>(malloc(szB));
if (!tmpData)
return; // OOM
memset(tmpData, 0, szB);
if (mSpreadRadius.width > 0 || mSpreadRadius.height > 0) {
SpreadHorizontal(mData, tmpData, mSpreadRadius.width, GetSize().width, GetSize().height, stride, mSkipRect);
SpreadVertical(tmpData, mData, mSpreadRadius.height, GetSize().width, GetSize().height, stride, mSkipRect);
}
if (mBlurRadius.width > 0) {
int32_t lobes[3][2];
ComputeLobes(mBlurRadius.width, lobes);
BoxBlurHorizontal(mData, tmpData, lobes[0][0], lobes[0][1], stride, GetSize().height, mSkipRect);
BoxBlurHorizontal(tmpData, mData, lobes[1][0], lobes[1][1], stride, GetSize().height, mSkipRect);
BoxBlurHorizontal(mData, tmpData, lobes[2][0], lobes[2][1], stride, GetSize().height, mSkipRect);
} else {
memcpy(tmpData, mData, stride * GetSize().height);
}
if (mBlurRadius.height > 0) {
int32_t lobes[3][2];
ComputeLobes(mBlurRadius.height, lobes);
BoxBlurVertical(tmpData, mData, lobes[0][0], lobes[0][1], stride, GetSize().height, mSkipRect);
BoxBlurVertical(mData, tmpData, lobes[1][0], lobes[1][1], stride, GetSize().height, mSkipRect);
BoxBlurVertical(tmpData, mData, lobes[2][0], lobes[2][1], stride, GetSize().height, mSkipRect);
} else {
memcpy(mData, tmpData, stride * GetSize().height);
}
free(tmpData);
}
}
/**
* Compute the box blur size (which we're calling the blur radius) from
* the standard deviation.
*
* Much of this, the 3 * sqrt(2 * pi) / 4, is the known value for
* approximating a Gaussian using box blurs. This yields quite a good
* approximation for a Gaussian. Then we multiply this by 1.5 since our
* code wants the radius of the entire triple-box-blur kernel instead of
* the diameter of an individual box blur. For more details, see:
* http://www.w3.org/TR/SVG11/filters.html#feGaussianBlurElement
* https://bugzilla.mozilla.org/show_bug.cgi?id=590039#c19
*/
static const Float GAUSSIAN_SCALE_FACTOR = (3 * sqrt(2 * M_PI) / 4) * 1.5;
IntSize
AlphaBoxBlur::CalculateBlurRadius(const Point& aStd)
{
IntSize size(static_cast<int32_t>(floor(aStd.x * GAUSSIAN_SCALE_FACTOR + 0.5)),
static_cast<int32_t>(floor(aStd.y * GAUSSIAN_SCALE_FACTOR + 0.5)));
return size;
}
}
}

180
gfx/2d/Blur.h Normal file
Просмотреть файл

@ -0,0 +1,180 @@
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Mozilla gfx.
*
* The Initial Developer of the Original Code is Mozilla Foundation.
* Portions created by the Initial Developer are Copyright (C) 2011
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#include "mozilla/gfx/Rect.h"
#include "mozilla/gfx/Point.h"
namespace mozilla {
namespace gfx {
/**
* Implementation of a triple box blur approximation of a Gaussian blur.
*
* A Gaussian blur is good for blurring because, when done independently
* in the horizontal and vertical directions, it matches the result that
* would be obtained using a different (rotated) set of axes. A triple
* box blur is a very close approximation of a Gaussian.
*
* Creates an 8-bit alpha channel context for callers to draw in,
* spreads the contents of that context, and blurs the contents.
*
* A spread N makes each output pixel the maximum value of all source
* pixels within a square of side length 2N+1 centered on the output pixel.
*
* A temporary surface is created in the Init function. The caller then draws
* any desired content onto the context acquired through GetContext, and lastly
* calls Paint to apply the blurred content as an alpha mask.
*/
class AlphaBoxBlur
{
public:
/** Constructs a box blur and initializes the backing surface.
*
* @param aRect The coordinates of the surface to create in device units.
*
* @param aBlurRadius The blur radius in pixels. This is the radius of the
* entire (triple) kernel function. Each individual box blur has radius
* approximately 1/3 this value, or diameter approximately 2/3 this value.
* This parameter should nearly always be computed using CalculateBlurRadius,
* below.
*
* @param aDirtyRect A pointer to a dirty rect, measured in device units, if
* available. This will be used for optimizing the blur operation. It is
* safe to pass NULL here.
*
* @param aSkipRect A pointer to a rect, measured in device units, that
* represents an area where blurring is unnecessary and shouldn't be done for
* speed reasons. It is safe to pass NULL here.
*/
AlphaBoxBlur(const Rect& aRect,
const IntSize& aSpreadRadius,
const IntSize& aBlurRadius,
const Rect* aDirtyRect,
const Rect* aSkipRect);
~AlphaBoxBlur();
/**
* Return the pointer to memory allocated by the constructor for the 8-bit
* alpha surface you need to be blurred. After you draw to this surface, call
* Blur(), below, to have its contents blurred.
*/
unsigned char* GetData();
/**
* Return the size, in pixels, of the 8-bit alpha surface backed by the
* pointer returned by GetData().
*/
IntSize GetSize();
/**
* Return the stride, in bytes, of the 8-bit alpha surface backed by the
* pointer returned by GetData().
*/
int32_t GetStride();
/**
* Returns the device-space rectangle the 8-bit alpha surface covers.
*/
IntRect GetRect();
/**
* Return a pointer to a dirty rect, as passed in to the constructor, or NULL
* if none was passed in.
*/
Rect* GetDirtyRect();
/**
* Perform the blur in-place on the surface backed by the pointer returned by
* GetData().
*/
void Blur();
/**
* Calculates a blur radius that, when used with box blur, approximates a
* Gaussian blur with the given standard deviation. The result of this
* function should be used as the aBlurRadius parameter to AlphaBoxBlur's
* constructor, above.
*/
static IntSize CalculateBlurRadius(const Point& aStandardDeviation);
private:
/**
* A rect indicating the area where blurring is unnecessary, and the blur
* algorithm should skip over it.
*/
IntRect mSkipRect;
/**
* The device-space rectangle the the backing 8-bit alpha surface covers.
*/
IntRect mRect;
/**
* A copy of the dirty rect passed to the constructor. This will only be valid if
* mHasDirtyRect is true.
*/
Rect mDirtyRect;
/**
* The spread radius, in pixels.
*/
IntSize mSpreadRadius;
/**
* The blur radius, in pixels.
*/
IntSize mBlurRadius;
/**
* A pointer to the backing 8-bit alpha surface.
*/
unsigned char* mData;
/**
* The stride of the data contained in mData.
*/
int32_t mStride;
/**
* Whether mDirtyRect contains valid data.
*/
bool mHasDirtyRect;
};
}
}

Просмотреть файл

@ -56,6 +56,7 @@ EXPORTS_mozilla/gfx = \
BaseMargin.h \
BaseRect.h \
BaseSize.h \
Blur.h \
PathHelpers.h \
Point.h \
Matrix.h \
@ -68,6 +69,7 @@ CPPSRCS = \
Matrix.cpp \
DrawTargetCairo.cpp \
SourceSurfaceCairo.cpp \
Blur.cpp \
$(NULL)

Просмотреть файл

@ -37,14 +37,12 @@
#include "gfxBlur.h"
#include "nsMathUtils.h"
#include "nsTArray.h"
#include "mozilla/gfx/Blur.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
using namespace mozilla::gfx;
gfxAlphaBoxBlur::gfxAlphaBoxBlur()
: mBlur(nsnull)
{
}
@ -59,418 +57,63 @@ gfxAlphaBoxBlur::Init(const gfxRect& aRect,
const gfxRect* aDirtyRect,
const gfxRect* aSkipRect)
{
mSpreadRadius = aSpreadRadius;
mBlurRadius = aBlurRadius;
gfxRect rect(aRect);
rect.Inflate(aBlurRadius + aSpreadRadius);
rect.RoundOut();
Rect rect(aRect.x, aRect.y, aRect.width, aRect.height);
IntSize spreadRadius(aSpreadRadius.width, aSpreadRadius.height);
IntSize blurRadius(aBlurRadius.width, aBlurRadius.height);
nsAutoPtr<Rect> dirtyRect;
if (aDirtyRect) {
// If we get passed a dirty rect from layout, we can minimize the
// shadow size and make painting faster.
mHasDirtyRect = true;
mDirtyRect = *aDirtyRect;
gfxRect requiredBlurArea = mDirtyRect.Intersect(rect);
requiredBlurArea.Inflate(aBlurRadius + aSpreadRadius);
rect = requiredBlurArea.Intersect(rect);
} else {
mHasDirtyRect = false;
dirtyRect = new Rect(aDirtyRect->x, aDirtyRect->y, aDirtyRect->width, aDirtyRect->height);
}
// Check rect empty after accounting for aDirtyRect, since that may have
// make the rectangle empty. BoxBlurVertical and BoxBlurHorizontal require
// that we have a nonzero number of rows and columns.
if (rect.IsEmpty())
return nsnull;
nsAutoPtr<Rect> skipRect;
if (aSkipRect) {
// If we get passed a skip rect, we can lower the amount of
// blurring/spreading we need to do. We convert it to nsIntRect to avoid
// expensive int<->float conversions if we were to use gfxRect instead.
gfxRect skipRect = *aSkipRect;
skipRect.RoundIn();
skipRect.Deflate(aBlurRadius + aSpreadRadius);
gfxUtils::GfxRectToIntRect(skipRect, &mSkipRect);
nsIntRect shadowIntRect;
gfxUtils::GfxRectToIntRect(rect, &shadowIntRect);
mSkipRect.IntersectRect(mSkipRect, shadowIntRect);
if (mSkipRect.IsEqualInterior(shadowIntRect))
return nsnull;
mSkipRect -= shadowIntRect.TopLeft();
} else {
mSkipRect = nsIntRect(0, 0, 0, 0);
skipRect = new Rect(aSkipRect->x, aSkipRect->y, aSkipRect->width, aSkipRect->height);
}
mBlur = new AlphaBoxBlur(rect, spreadRadius, blurRadius, dirtyRect, skipRect);
unsigned char* data = mBlur->GetData();
if (!data)
return nsnull;
IntSize size = mBlur->GetSize();
// Make an alpha-only surface to draw on. We will play with the data after
// everything is drawn to create a blur effect.
mImageSurface = new gfxImageSurface(gfxIntSize(static_cast<PRInt32>(rect.Width()), static_cast<PRInt32>(rect.Height())),
mImageSurface = new gfxImageSurface(data, gfxIntSize(size.width, size.height),
mBlur->GetStride(),
gfxASurface::ImageFormatA8);
if (!mImageSurface || mImageSurface->CairoStatus())
if (mImageSurface->CairoStatus())
return nsnull;
IntRect irect = mBlur->GetRect();
gfxPoint topleft(irect.TopLeft().x, irect.TopLeft().y);
// Use a device offset so callers don't need to worry about translating
// coordinates, they can draw as if this was part of the destination context
// at the coordinates of rect.
mImageSurface->SetDeviceOffset(-rect.TopLeft());
mImageSurface->SetDeviceOffset(-topleft);
mContext = new gfxContext(mImageSurface);
return mContext;
}
/**
* Box blur involves looking at one pixel, and setting its value to the average
* of its neighbouring pixels.
* @param aInput The input buffer.
* @param aOutput The output buffer.
* @param aLeftLobe The number of pixels to blend on the left.
* @param aRightLobe The number of pixels to blend on the right.
* @param aWidth The number of columns in the buffers.
* @param aRows The number of rows in the buffers.
* @param aSkipRect An area to skip blurring in.
* XXX shouldn't we pass stride in separately here?
*/
static void
BoxBlurHorizontal(unsigned char* aInput,
unsigned char* aOutput,
PRInt32 aLeftLobe,
PRInt32 aRightLobe,
PRInt32 aWidth,
PRInt32 aRows,
const nsIntRect& aSkipRect)
{
NS_ASSERTION(aWidth > 0, "Can't handle zero width here");
PRInt32 boxSize = aLeftLobe + aRightLobe + 1;
bool skipRectCoversWholeRow = 0 >= aSkipRect.x &&
aWidth <= aSkipRect.XMost();
if (boxSize == 1) {
memcpy(aOutput, aInput, aWidth*aRows);
return;
}
PRUint32 reciprocal = (PRUint64(1) << 32)/boxSize;
for (PRInt32 y = 0; y < aRows; y++) {
// Check whether the skip rect intersects this row. If the skip
// rect covers the whole surface in this row, we can avoid
// this row entirely (and any others along the skip rect).
bool inSkipRectY = y >= aSkipRect.y &&
y < aSkipRect.YMost();
if (inSkipRectY && skipRectCoversWholeRow) {
y = aSkipRect.YMost() - 1;
continue;
}
PRUint32 alphaSum = 0;
for (PRInt32 i = 0; i < boxSize; i++) {
PRInt32 pos = i - aLeftLobe;
// See assertion above; if aWidth is zero, then we would have no
// valid position to clamp to.
pos = NS_MAX(pos, 0);
pos = NS_MIN(pos, aWidth - 1);
alphaSum += aInput[aWidth * y + pos];
}
for (PRInt32 x = 0; x < aWidth; x++) {
// Check whether we are within the skip rect. If so, go
// to the next point outside the skip rect.
if (inSkipRectY && x >= aSkipRect.x &&
x < aSkipRect.XMost()) {
x = aSkipRect.XMost();
if (x >= aWidth)
break;
// Recalculate the neighbouring alpha values for
// our new point on the surface.
alphaSum = 0;
for (PRInt32 i = 0; i < boxSize; i++) {
PRInt32 pos = x + i - aLeftLobe;
// See assertion above; if aWidth is zero, then we would have no
// valid position to clamp to.
pos = NS_MAX(pos, 0);
pos = NS_MIN(pos, aWidth - 1);
alphaSum += aInput[aWidth * y + pos];
}
}
PRInt32 tmp = x - aLeftLobe;
PRInt32 last = NS_MAX(tmp, 0);
PRInt32 next = NS_MIN(tmp + boxSize, aWidth - 1);
aOutput[aWidth * y + x] = (PRUint64(alphaSum)*reciprocal) >> 32;
alphaSum += aInput[aWidth * y + next] -
aInput[aWidth * y + last];
}
}
}
/**
* Identical to BoxBlurHorizontal, except it blurs top and bottom instead of
* left and right.
* XXX shouldn't we pass stride in separately here?
*/
static void
BoxBlurVertical(unsigned char* aInput,
unsigned char* aOutput,
PRInt32 aTopLobe,
PRInt32 aBottomLobe,
PRInt32 aWidth,
PRInt32 aRows,
const nsIntRect& aSkipRect)
{
NS_ASSERTION(aRows > 0, "Can't handle zero rows here");
PRInt32 boxSize = aTopLobe + aBottomLobe + 1;
bool skipRectCoversWholeColumn = 0 >= aSkipRect.y &&
aRows <= aSkipRect.YMost();
if (boxSize == 1) {
memcpy(aOutput, aInput, aWidth*aRows);
return;
}
PRUint32 reciprocal = (PRUint64(1) << 32)/boxSize;
for (PRInt32 x = 0; x < aWidth; x++) {
bool inSkipRectX = x >= aSkipRect.x &&
x < aSkipRect.XMost();
if (inSkipRectX && skipRectCoversWholeColumn) {
x = aSkipRect.XMost() - 1;
continue;
}
PRUint32 alphaSum = 0;
for (PRInt32 i = 0; i < boxSize; i++) {
PRInt32 pos = i - aTopLobe;
// See assertion above; if aRows is zero, then we would have no
// valid position to clamp to.
pos = NS_MAX(pos, 0);
pos = NS_MIN(pos, aRows - 1);
alphaSum += aInput[aWidth * pos + x];
}
for (PRInt32 y = 0; y < aRows; y++) {
if (inSkipRectX && y >= aSkipRect.y &&
y < aSkipRect.YMost()) {
y = aSkipRect.YMost();
if (y >= aRows)
break;
alphaSum = 0;
for (PRInt32 i = 0; i < boxSize; i++) {
PRInt32 pos = y + i - aTopLobe;
// See assertion above; if aRows is zero, then we would have no
// valid position to clamp to.
pos = NS_MAX(pos, 0);
pos = NS_MIN(pos, aRows - 1);
alphaSum += aInput[aWidth * pos + x];
}
}
PRInt32 tmp = y - aTopLobe;
PRInt32 last = NS_MAX(tmp, 0);
PRInt32 next = NS_MIN(tmp + boxSize, aRows - 1);
aOutput[aWidth * y + x] = (PRUint64(alphaSum)*reciprocal) >> 32;
alphaSum += aInput[aWidth * next + x] -
aInput[aWidth * last + x];
}
}
}
static void ComputeLobes(PRInt32 aRadius, PRInt32 aLobes[3][2])
{
PRInt32 major, minor, final;
/* See http://www.w3.org/TR/SVG/filters.html#feGaussianBlur for
* some notes about approximating the Gaussian blur with box-blurs.
* The comments below are in the terminology of that page.
*/
PRInt32 z = aRadius/3;
switch (aRadius % 3) {
case 0:
// aRadius = z*3; choose d = 2*z + 1
major = minor = final = z;
break;
case 1:
// aRadius = z*3 + 1
// This is a tricky case since there is no value of d which will
// yield a radius of exactly aRadius. If d is odd, i.e. d=2*k + 1
// for some integer k, then the radius will be 3*k. If d is even,
// i.e. d=2*k, then the radius will be 3*k - 1.
// So we have to choose values that don't match the standard
// algorithm.
major = z + 1;
minor = final = z;
break;
case 2:
// aRadius = z*3 + 2; choose d = 2*z + 2
major = final = z + 1;
minor = z;
break;
default:
NS_ERROR("Mathematical impossibility.");
major = minor = final = 0;
}
NS_ASSERTION(major + minor + final == aRadius,
"Lobes don't sum to the right length");
aLobes[0][0] = major;
aLobes[0][1] = minor;
aLobes[1][0] = minor;
aLobes[1][1] = major;
aLobes[2][0] = final;
aLobes[2][1] = final;
}
static void
SpreadHorizontal(unsigned char* aInput,
unsigned char* aOutput,
PRInt32 aRadius,
PRInt32 aWidth,
PRInt32 aRows,
PRInt32 aStride,
const nsIntRect& aSkipRect)
{
if (aRadius == 0) {
memcpy(aOutput, aInput, aStride*aRows);
return;
}
bool skipRectCoversWholeRow = 0 >= aSkipRect.x &&
aWidth <= aSkipRect.XMost();
for (PRInt32 y = 0; y < aRows; y++) {
// Check whether the skip rect intersects this row. If the skip
// rect covers the whole surface in this row, we can avoid
// this row entirely (and any others along the skip rect).
bool inSkipRectY = y >= aSkipRect.y &&
y < aSkipRect.YMost();
if (inSkipRectY && skipRectCoversWholeRow) {
y = aSkipRect.YMost() - 1;
continue;
}
for (PRInt32 x = 0; x < aWidth; x++) {
// Check whether we are within the skip rect. If so, go
// to the next point outside the skip rect.
if (inSkipRectY && x >= aSkipRect.x &&
x < aSkipRect.XMost()) {
x = aSkipRect.XMost();
if (x >= aWidth)
break;
}
PRInt32 sMin = NS_MAX(x - aRadius, 0);
PRInt32 sMax = NS_MIN(x + aRadius, aWidth - 1);
PRInt32 v = 0;
for (PRInt32 s = sMin; s <= sMax; ++s) {
v = NS_MAX<PRInt32>(v, aInput[aStride * y + s]);
}
aOutput[aStride * y + x] = v;
}
}
}
static void
SpreadVertical(unsigned char* aInput,
unsigned char* aOutput,
PRInt32 aRadius,
PRInt32 aWidth,
PRInt32 aRows,
PRInt32 aStride,
const nsIntRect& aSkipRect)
{
if (aRadius == 0) {
memcpy(aOutput, aInput, aStride*aRows);
return;
}
bool skipRectCoversWholeColumn = 0 >= aSkipRect.y &&
aRows <= aSkipRect.YMost();
for (PRInt32 x = 0; x < aWidth; x++) {
bool inSkipRectX = x >= aSkipRect.x &&
x < aSkipRect.XMost();
if (inSkipRectX && skipRectCoversWholeColumn) {
x = aSkipRect.XMost() - 1;
continue;
}
for (PRInt32 y = 0; y < aRows; y++) {
// Check whether we are within the skip rect. If so, go
// to the next point outside the skip rect.
if (inSkipRectX && y >= aSkipRect.y &&
y < aSkipRect.YMost()) {
y = aSkipRect.YMost();
if (y >= aRows)
break;
}
PRInt32 sMin = NS_MAX(y - aRadius, 0);
PRInt32 sMax = NS_MIN(y + aRadius, aRows - 1);
PRInt32 v = 0;
for (PRInt32 s = sMin; s <= sMax; ++s) {
v = NS_MAX<PRInt32>(v, aInput[aStride * s + x]);
}
aOutput[aStride * y + x] = v;
}
}
}
void
gfxAlphaBoxBlur::Paint(gfxContext* aDestinationCtx, const gfxPoint& offset)
{
if (!mContext)
return;
unsigned char* boxData = mImageSurface->Data();
mBlur->Blur();
// no need to do all this if not blurring or spreading
if (mBlurRadius != gfxIntSize(0,0) || mSpreadRadius != gfxIntSize(0,0)) {
nsTArray<unsigned char> tempAlphaDataBuf;
PRSize szB = mImageSurface->GetDataSize();
if (!tempAlphaDataBuf.SetLength(szB))
return; // OOM
unsigned char* tmpData = tempAlphaDataBuf.Elements();
// .SetLength above doesn't initialise the new elements since
// they are unsigned chars and so have no default constructor.
// So we have to initialise them by hand.
memset(tmpData, 0, szB);
PRInt32 stride = mImageSurface->Stride();
PRInt32 rows = mImageSurface->Height();
PRInt32 width = mImageSurface->Width();
if (mSpreadRadius.width > 0 || mSpreadRadius.height > 0) {
SpreadHorizontal(boxData, tmpData, mSpreadRadius.width, width, rows, stride, mSkipRect);
SpreadVertical(tmpData, boxData, mSpreadRadius.height, width, rows, stride, mSkipRect);
}
if (mBlurRadius.width > 0) {
PRInt32 lobes[3][2];
ComputeLobes(mBlurRadius.width, lobes);
BoxBlurHorizontal(boxData, tmpData, lobes[0][0], lobes[0][1], stride, rows, mSkipRect);
BoxBlurHorizontal(tmpData, boxData, lobes[1][0], lobes[1][1], stride, rows, mSkipRect);
BoxBlurHorizontal(boxData, tmpData, lobes[2][0], lobes[2][1], stride, rows, mSkipRect);
} else {
memcpy(tmpData, boxData, stride*rows);
}
if (mBlurRadius.height > 0) {
PRInt32 lobes[3][2];
ComputeLobes(mBlurRadius.height, lobes);
BoxBlurVertical(tmpData, boxData, lobes[0][0], lobes[0][1], stride, rows, mSkipRect);
BoxBlurVertical(boxData, tmpData, lobes[1][0], lobes[1][1], stride, rows, mSkipRect);
BoxBlurVertical(tmpData, boxData, lobes[2][0], lobes[2][1], stride, rows, mSkipRect);
} else {
memcpy(boxData, tmpData, stride*rows);
}
}
Rect* dirtyrect = mBlur->GetDirtyRect();
// Avoid a semi-expensive clip operation if we can, otherwise
// clip to the dirty rect
if (mHasDirtyRect) {
if (dirtyrect) {
aDestinationCtx->Save();
aDestinationCtx->NewPath();
aDestinationCtx->Rectangle(mDirtyRect);
gfxRect dirty(dirtyrect->x, dirtyrect->y, dirtyrect->width, dirtyrect->height);
aDestinationCtx->Rectangle(dirty);
aDestinationCtx->Clip();
aDestinationCtx->Mask(mImageSurface, offset);
aDestinationCtx->Restore();
@ -479,23 +122,9 @@ gfxAlphaBoxBlur::Paint(gfxContext* aDestinationCtx, const gfxPoint& offset)
}
}
/**
* Compute the box blur size (which we're calling the blur radius) from
* the standard deviation.
*
* Much of this, the 3 * sqrt(2 * pi) / 4, is the known value for
* approximating a Gaussian using box blurs. This yields quite a good
* approximation for a Gaussian. Then we multiply this by 1.5 since our
* code wants the radius of the entire triple-box-blur kernel instead of
* the diameter of an individual box blur. For more details, see:
* http://www.w3.org/TR/SVG11/filters.html#feGaussianBlurElement
* https://bugzilla.mozilla.org/show_bug.cgi?id=590039#c19
*/
static const gfxFloat GAUSSIAN_SCALE_FACTOR = (3 * sqrt(2 * M_PI) / 4) * 1.5;
gfxIntSize gfxAlphaBoxBlur::CalculateBlurRadius(const gfxPoint& aStd)
{
return gfxIntSize(
static_cast<PRInt32>(floor(aStd.x * GAUSSIAN_SCALE_FACTOR + 0.5)),
static_cast<PRInt32>(floor(aStd.y * GAUSSIAN_SCALE_FACTOR + 0.5)));
Point std(aStd.x, aStd.y);
IntSize size = AlphaBoxBlur::CalculateBlurRadius(std);
return gfxIntSize(size.width, size.height);
}

Просмотреть файл

@ -42,7 +42,12 @@
#include "gfxImageSurface.h"
#include "gfxTypes.h"
#include "gfxUtils.h"
#include "nsRect.h"
namespace mozilla {
namespace gfx {
class AlphaBoxBlur;
}
}
/**
* Implementation of a triple box blur approximation of a Gaussian blur.
@ -122,15 +127,6 @@ public:
static gfxIntSize CalculateBlurRadius(const gfxPoint& aStandardDeviation);
protected:
/**
* The spread radius, in pixels.
*/
gfxIntSize mSpreadRadius;
/**
* The blur radius, in pixels.
*/
gfxIntSize mBlurRadius;
/**
* The context of the temporary alpha surface.
*/
@ -141,18 +137,10 @@ protected:
*/
nsRefPtr<gfxImageSurface> mImageSurface;
/**
* A copy of the dirty rect passed to Init(). This will only be valid if
* mHasDirtyRect is TRUE.
*/
gfxRect mDirtyRect;
/**
* A rect indicating the area where blurring is unnecessary, and the blur
* algorithm should skip over it.
*/
nsIntRect mSkipRect;
bool mHasDirtyRect;
/**
* The object that actually does the blurring for us.
*/
nsAutoPtr<mozilla::gfx::AlphaBoxBlur> mBlur;
};
#endif /* GFX_BLUR_H */