зеркало из https://github.com/mozilla/pjs.git
Weave patch: bug 298630 r=nelson
This commit is contained in:
Родитель
a10b284613
Коммит
2c47437c90
|
@ -41,7 +41,7 @@
|
|||
# ***** END LICENSE BLOCK *****
|
||||
|
||||
#
|
||||
# $Id: Makefile,v 1.21 2005-02-02 22:28:22 gerv%gerv.net Exp $
|
||||
# $Id: Makefile,v 1.22 2005-11-22 07:16:43 relyea%netscape.com Exp $
|
||||
#
|
||||
|
||||
## Define CC to be the C compiler you wish to use. The GNU cc
|
||||
|
@ -89,7 +89,8 @@ VERS=1.7p6
|
|||
##
|
||||
## This is the list of source files that need to be packed into
|
||||
## the distribution file
|
||||
SRCS= mpi.c mpprime.c mplogic.c mp_gf2m.c mpmontg.c mpi-test.c primes.c tests/ \
|
||||
SRCS= mpi.c mpprime.c mplogic.c mp_gf2m.c mpmontg.c mpi-test.c primes.c \
|
||||
mpcpucache.c tests/ \
|
||||
utils/gcd.c utils/invmod.c utils/lap.c \
|
||||
utils/ptab.pl utils/sieve.c utils/isprime.c\
|
||||
utils/dec2hex.c utils/hex2dec.c utils/bbs_rand.c \
|
||||
|
|
|
@ -42,7 +42,7 @@
|
|||
* the terms of any one of the MPL, the GPL or the LGPL.
|
||||
*
|
||||
* ***** END LICENSE BLOCK ***** */
|
||||
/* $Id: mpi-priv.h,v 1.19 2005-08-16 19:25:48 saul.edwards%sun.com Exp $ */
|
||||
/* $Id: mpi-priv.h,v 1.20 2005-11-22 07:16:43 relyea%netscape.com Exp $ */
|
||||
#ifndef _MPI_PRIV_H_
|
||||
#define _MPI_PRIV_H_ 1
|
||||
|
||||
|
@ -300,6 +300,19 @@ mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
|
|||
mp_mont_modulus *mmm);
|
||||
mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm);
|
||||
|
||||
/*
|
||||
* s_mpi_getProcessorLineSize() returns the size in bytes of the cache line
|
||||
* if a cache exists, or zero if there is no cache. If more than one
|
||||
* cache line exists, it should return the smallest line size (which is
|
||||
* usually the L1 cache).
|
||||
*
|
||||
* mp_modexp uses this information to make sure that private key information
|
||||
* isn't being leaked through the cache.
|
||||
*
|
||||
* see mpcpucache.c for the implementation.
|
||||
*/
|
||||
unsigned long s_mpi_getProcessorLineSize();
|
||||
|
||||
/* }}} */
|
||||
#endif
|
||||
|
||||
|
|
|
@ -36,7 +36,7 @@
|
|||
* the terms of any one of the MPL, the GPL or the LGPL.
|
||||
*
|
||||
* ***** END LICENSE BLOCK ***** */
|
||||
/* $Id: mpmontg.c,v 1.15 2004-04-27 23:04:36 gerv%gerv.net Exp $ */
|
||||
/* $Id: mpmontg.c,v 1.16 2005-11-22 07:16:43 relyea%netscape.com Exp $ */
|
||||
|
||||
/* This file implements moduluar exponentiation using Montgomery's
|
||||
* method for modular reduction. This file implements the method
|
||||
|
@ -47,7 +47,7 @@
|
|||
* published by Springer Verlag.
|
||||
*/
|
||||
|
||||
/* #define MP_USING_MONT_MULF 1 */
|
||||
#define MP_USING_CACHE_SAFE_MOD_EXP 1
|
||||
#include <string.h>
|
||||
#include "mpi-priv.h"
|
||||
#include "mplogic.h"
|
||||
|
@ -55,11 +55,19 @@
|
|||
#ifdef MP_USING_MONT_MULF
|
||||
#include "montmulf.h"
|
||||
#endif
|
||||
#include <stddef.h> /* ptrdiff_t */
|
||||
|
||||
/* if MP_CHAR_STORE_SLOW is defined, we */
|
||||
/* need to know endianness of this platform. */
|
||||
#ifdef MP_CHAR_STORE_SLOW
|
||||
#if !defined(MPI_IS_BIG_ENDIAN) && !defined(MPI_IS_LITTLE_ENDIAN)
|
||||
#error "You must define MPI_IS_BIG_ENDIAN or MPI_IS_LITTLE_ENDIAN\n" \
|
||||
" if you define MP_CHAR_STORE_SLOW."
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define STATIC
|
||||
/* #define DEBUG 1 */
|
||||
|
||||
#define MAX_WINDOW_BITS 6
|
||||
#define MAX_ODD_INTS 32 /* 2 ** (WINDOW_BITS - 1) */
|
||||
|
||||
#if defined(_WIN32_WCE)
|
||||
|
@ -174,6 +182,13 @@ CLEANUP:
|
|||
|
||||
#ifdef MP_USING_MONT_MULF
|
||||
|
||||
/* the floating point multiply is already cache safe,
|
||||
* don't turn on cache safe unless we specifically
|
||||
* force it */
|
||||
#ifndef MP_FORCE_CACHE_SAFE
|
||||
#undef MP_USING_CACHE_SAFE_MOD_EXP
|
||||
#endif
|
||||
|
||||
unsigned int mp_using_mont_mulf = 1;
|
||||
|
||||
/* computes montgomery square of the integer in mResult */
|
||||
|
@ -504,6 +519,564 @@ CLEANUP:
|
|||
#undef SQR
|
||||
#undef MUL
|
||||
|
||||
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
||||
unsigned int mp_using_cache_safe_exp = 1;
|
||||
#endif
|
||||
|
||||
mp_err mp_set_safe_modexp(int value)
|
||||
{
|
||||
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
||||
mp_using_cache_safe_exp = value;
|
||||
return MP_OKAY;
|
||||
#else
|
||||
if (value == 0) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
return MP_BADARG;
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
||||
#define WEAVE_WORD_SIZE 4
|
||||
|
||||
#ifndef MP_CHAR_STORE_SLOW
|
||||
/*
|
||||
* mpi_to_weave takes MPI data and stores in into a byte array interleaved.
|
||||
*
|
||||
* The purpose of this interleaving is to hide our access to the array of
|
||||
* modulus powers from and attacker snooping on cache hits and misses. Because
|
||||
* the array is interleaved, each reference will cause exactly the same cache
|
||||
* lines to reload.
|
||||
*
|
||||
* There are 2 different implementations in this file, one which works with just
|
||||
* byte loads and stores, the second which works with mp_weave_word loads and
|
||||
* stores. These 2 implementations have DIFFERENT results in exactly which byte
|
||||
* of an mp_digit winds up in which location in the byte array. That is why
|
||||
* there are 2 sets of explanations for how the array is set up.
|
||||
*
|
||||
*
|
||||
* a is an array of WEAVE_WORD_SIZE mp_ints (that is 4).
|
||||
* It is a partial window into a logical array mp_int p[count] containing
|
||||
* the base to the 0 through count-1 powers. Ideally this code would be
|
||||
* simpler if we stored one element of that array at a time, but on some
|
||||
* platforms the cost of storing a byte incurs a full read modify write cycle
|
||||
* and increases the memory bandwidth cost by a factor of 4 or 8. By collecting
|
||||
* for mp_ints together, we can arrange to store all 4 values in a single
|
||||
* word write.
|
||||
*
|
||||
* b is the targeted weaved location. b[0] points to the first byte where
|
||||
* first byte of the a array needs to be stored. Each b is an offset into the
|
||||
* weave array.
|
||||
*
|
||||
* count is 2^window size.
|
||||
*
|
||||
* b_size is the size in mp_digits of each mp_int in the array. mp_ints
|
||||
* with less than b_size elements are logically padded with zeros before
|
||||
* storing.
|
||||
*
|
||||
*
|
||||
* Data is stored as follows :
|
||||
* The mp_int array is treated as a byte array.
|
||||
*
|
||||
*
|
||||
* we want to eventually store the logical array mp_int p[count] into the
|
||||
* weave array as follows:
|
||||
|
||||
* p[count].digit is treated as a byte array (rather than * an mp_digit array),
|
||||
* N is count, and n is b_size * *sizeof(mp_digit):
|
||||
*
|
||||
* p[0].digit[0] p[1].digit[0] ...... p[N-2].digit[0] p[N-1].digit[0]
|
||||
* p[0].digit[1] p[1].digit[1] ...... p[N-2].digit[1] p[N-1].digit[1]
|
||||
* . .
|
||||
* . .
|
||||
* p[0].digit[n-2] p[1].digit[n-2] ...... p[N-2].digit[n-2] p[N-1].digit[n-2]
|
||||
* p[0].digit[n-1] p[1].digit[n-1] ...... p[N-2].digit[n-1] p[N-1].digit[n-1]
|
||||
*
|
||||
* This function stores that a window of p in each call.
|
||||
*/
|
||||
mp_err mpi_to_weave(const mp_int *a, unsigned char *b,
|
||||
mp_size b_size, mp_size count)
|
||||
{
|
||||
mp_size i, j;
|
||||
unsigned char *bsave = b;
|
||||
|
||||
for (i=0; i < WEAVE_WORD_SIZE; i++) {
|
||||
unsigned char *pb = (unsigned char *)MP_DIGITS(&a[i]);
|
||||
mp_size useda = MP_USED(&a[i]);
|
||||
mp_size zero = b_size - useda;
|
||||
unsigned char *end = pb+ (useda*sizeof(mp_digit));
|
||||
b = bsave+i;
|
||||
|
||||
|
||||
ARGCHK(MP_SIGN(&a[i]) == MP_ZPOS, MP_BADARG);
|
||||
ARGCHK(useda <= b_size, MP_BADARG);
|
||||
|
||||
for (; pb < end; pb++) {
|
||||
*b = *pb;
|
||||
b += count;
|
||||
}
|
||||
for (j=0; j < zero; j++) {
|
||||
*b = 0;
|
||||
b += count;
|
||||
}
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* reverse the operation above for one entry.
|
||||
* b points to the offset into the weave array of the power we are
|
||||
* calculating */
|
||||
mp_err weave_to_mpi(mp_int *a, const unsigned char *b,
|
||||
mp_size b_size, mp_size count)
|
||||
{
|
||||
unsigned char *pb = (unsigned char *)MP_DIGITS(a);
|
||||
unsigned char *end = pb+ (b_size*sizeof(mp_digit));
|
||||
|
||||
MP_SIGN(a) = MP_ZPOS;
|
||||
MP_USED(a) = b_size;
|
||||
|
||||
for (; pb < end; b+=count, pb++) {
|
||||
*pb = *b;
|
||||
}
|
||||
s_mp_clamp(a);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#else
|
||||
/* Need a primitive that we know is 32 bits long... */
|
||||
/* this is true on all modern processors we know of today*/
|
||||
typedef unsigned int mp_weave_word;
|
||||
|
||||
/*
|
||||
* on some platforms character stores into memory is very expensive since they
|
||||
* generate a read/modify/write operation on the bus. On those platforms
|
||||
* we need to do integer writes to the bus. Because of some unrolled code,
|
||||
* in this current code the size of mp_weave_word must be four. The code that
|
||||
* makes this assumption explicity is called out. (on some platforms a write
|
||||
* of 4 bytes still requires a single read-modify-write operation.
|
||||
*
|
||||
* This function is takes the identical parameters as the function above,
|
||||
* however it lays out the final array differently. Where the previous function
|
||||
* treats the mpi_int as an byte array, this function treats it as an array of
|
||||
* mp_digits where each digit is stored in big endian order.
|
||||
*
|
||||
* since we need to interleave on a byte by byte basis, we need to collect
|
||||
* several mpi structures together into a single uint32 before we write. We
|
||||
* also need to make sure the uint32 is arranged so that the first value of
|
||||
* the first array winds up in b[0]. This means construction of that uint32
|
||||
* is endian specific (even though the layout of the mp_digits in the array
|
||||
* is always big endian).
|
||||
*
|
||||
* The final data is stored as follows :
|
||||
*
|
||||
* Our same logical array p array, m is sizeof(mp_digit),
|
||||
* N is still count and n is now b_size. If we define p[i].digit[j]0 as the
|
||||
* most significant byte of the word p[i].digit[j], p[i].digit[j]1 as
|
||||
* the next most significant byte of p[i].digit[j], ... and p[i].digit[j]m-1
|
||||
* is the least significant byte.
|
||||
* Our array would look like:
|
||||
* p[0].digit[0]0 p[1].digit[0]0 ... p[N-2].digit[0]0 p[N-1].digit[0]0
|
||||
* p[0].digit[0]1 p[1].digit[0]1 ... p[N-2].digit[0]1 p[N-1].digit[0]1
|
||||
* . .
|
||||
* p[0].digit[0]m-1 p[1].digit[0]m-1 ... p[N-2].digit[0]m-1 p[N-1].digit[0]m-1
|
||||
* p[0].digit[1]0 p[1].digit[1]0 ... p[N-2].digit[1]0 p[N-1].digit[1]0
|
||||
* . .
|
||||
* . .
|
||||
* p[0].digit[n-1]m-2 p[1].digit[n-1]m-2 ... p[N-2].digit[n-1]m-2 p[N-1].digit[n-1]m-2
|
||||
* p[0].digit[n-1]m-1 p[1].digit[n-1]m-1 ... p[N-2].digit[n-1]m-1 p[N-1].digit[n-1]m-1
|
||||
*
|
||||
*/
|
||||
mp_err mpi_to_weave(const mp_int *a, unsigned char *b,
|
||||
mp_size b_size, mp_size count)
|
||||
{
|
||||
mp_size i;
|
||||
mp_digit *digitsa0;
|
||||
mp_digit *digitsa1;
|
||||
mp_digit *digitsa2;
|
||||
mp_digit *digitsa3;
|
||||
mp_size useda0;
|
||||
mp_size useda1;
|
||||
mp_size useda2;
|
||||
mp_size useda3;
|
||||
mp_weave_word *weaved = (mp_weave_word *)b;
|
||||
|
||||
count = count/sizeof(mp_weave_word);
|
||||
|
||||
/* this code pretty much depends on this ! */
|
||||
#if MP_ARGCHK < 2
|
||||
assert(WEAVE_WORD_SIZE == 4);
|
||||
assert(sizeof(mp_weave_word) == 4);
|
||||
#endif
|
||||
|
||||
digitsa0 = MP_DIGITS(&a[0]);
|
||||
digitsa1 = MP_DIGITS(&a[1]);
|
||||
digitsa2 = MP_DIGITS(&a[2]);
|
||||
digitsa3 = MP_DIGITS(&a[3]);
|
||||
useda0 = MP_USED(&a[0]);
|
||||
useda1 = MP_USED(&a[1]);
|
||||
useda2 = MP_USED(&a[2]);
|
||||
useda3 = MP_USED(&a[3]);
|
||||
|
||||
ARGCHK(MP_SIGN(&a[0]) == MP_ZPOS, MP_BADARG);
|
||||
ARGCHK(MP_SIGN(&a[1]) == MP_ZPOS, MP_BADARG);
|
||||
ARGCHK(MP_SIGN(&a[2]) == MP_ZPOS, MP_BADARG);
|
||||
ARGCHK(MP_SIGN(&a[3]) == MP_ZPOS, MP_BADARG);
|
||||
ARGCHK(useda0 <= b_size, MP_BADARG);
|
||||
ARGCHK(useda1 <= b_size, MP_BADARG);
|
||||
ARGCHK(useda2 <= b_size, MP_BADARG);
|
||||
ARGCHK(useda3 <= b_size, MP_BADARG);
|
||||
|
||||
#define SAFE_FETCH(digit, used, word) ((word) < (used) ? (digit[word]) : 0)
|
||||
|
||||
for (i=0; i < b_size; i++) {
|
||||
mp_digit d0 = SAFE_FETCH(digitsa0,useda0,i);
|
||||
mp_digit d1 = SAFE_FETCH(digitsa1,useda1,i);
|
||||
mp_digit d2 = SAFE_FETCH(digitsa2,useda2,i);
|
||||
mp_digit d3 = SAFE_FETCH(digitsa3,useda3,i);
|
||||
register mp_weave_word acc;
|
||||
|
||||
/*
|
||||
* ONE_STEP takes the MSB of each of our current digits and places that
|
||||
* byte in the appropriate position for writing to the weaved array.
|
||||
* On little endian:
|
||||
* b3 b2 b1 b0
|
||||
* On big endian:
|
||||
* b0 b1 b2 b3
|
||||
* When the data is written it would always wind up:
|
||||
* b[0] = b0
|
||||
* b[1] = b1
|
||||
* b[2] = b2
|
||||
* b[3] = b3
|
||||
*
|
||||
* Once we've written the MSB, we shift the whole digit up left one
|
||||
* byte, putting the Next Most Significant Byte in the MSB position,
|
||||
* so we we repeat the next one step that byte will be written.
|
||||
* NOTE: This code assumes sizeof(mp_weave_word) and MP_WEAVE_WORD_SIZE
|
||||
* is 4.
|
||||
*/
|
||||
#ifdef IS_LITTLE_ENDIAN
|
||||
#define MPI_WEAVE_ONE_STEP \
|
||||
acc = (d0 >> (MP_DIGIT_BITS-8)) & 0x000000ff; d0 <<= 8; /*b0*/ \
|
||||
acc |= (d1 >> (MP_DIGIT_BITS-16)) & 0x0000ff00; d1 <<= 8; /*b1*/ \
|
||||
acc |= (d2 >> (MP_DIGIT_BITS-24)) & 0x00ff0000; d2 <<= 8; /*b2*/ \
|
||||
acc |= (d3 >> (MP_DIGIT_BITS-32)) & 0xff000000; d3 <<= 8; /*b3*/ \
|
||||
*weaved = acc; weaved += count;
|
||||
#else
|
||||
#define MPI_WEAVE_ONE_STEP \
|
||||
acc = (d0 >> (MP_DIGIT_BITS-32)) & 0xff000000; d0 <<= 8; /*b0*/ \
|
||||
acc |= (d1 >> (MP_DIGIT_BITS-24)) & 0x00ff0000; d1 <<= 8; /*b1*/ \
|
||||
acc |= (d2 >> (MP_DIGIT_BITS-16)) & 0x0000ff00; d2 <<= 8; /*b2*/ \
|
||||
acc |= (d3 >> (MP_DIGIT_BITS-8)) & 0x000000ff; d3 <<= 8; /*b3*/ \
|
||||
*weaved = acc; weaved += count;
|
||||
#endif
|
||||
switch (sizeof(mp_digit)) {
|
||||
case 32:
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
case 16:
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
case 8:
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
case 4:
|
||||
MPI_WEAVE_ONE_STEP
|
||||
MPI_WEAVE_ONE_STEP
|
||||
case 2:
|
||||
MPI_WEAVE_ONE_STEP
|
||||
case 1:
|
||||
MPI_WEAVE_ONE_STEP
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* reverse the operation above for one entry.
|
||||
* b points to the offset into the weave array of the power we are
|
||||
* calculating */
|
||||
mp_err weave_to_mpi(mp_int *a, const unsigned char *b,
|
||||
mp_size b_size, mp_size count)
|
||||
{
|
||||
mp_digit *pb = MP_DIGITS(a);
|
||||
mp_digit *end = &pb[b_size];
|
||||
|
||||
MP_SIGN(a) = MP_ZPOS;
|
||||
MP_USED(a) = b_size;
|
||||
|
||||
for (; pb < end; pb++) {
|
||||
register mp_digit digit;
|
||||
|
||||
digit = *b << 8; b += count;
|
||||
#define MPI_UNWEAVE_ONE_STEP digit |= *b; b += count; digit = digit << 8;
|
||||
switch (sizeof(mp_digit)) {
|
||||
case 32:
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
case 16:
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
case 8:
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
case 4:
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
MPI_UNWEAVE_ONE_STEP
|
||||
case 2:
|
||||
break;
|
||||
}
|
||||
digit |= *b; b += count;
|
||||
|
||||
*pb = digit;
|
||||
}
|
||||
s_mp_clamp(a);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#define SQR(a,b) \
|
||||
MP_CHECKOK( mp_sqr(a, b) );\
|
||||
MP_CHECKOK( s_mp_redc(b, mmm) )
|
||||
|
||||
#if defined(MP_MONT_USE_MP_MUL)
|
||||
#define MUL_NOWEAVE(x,a,b) \
|
||||
MP_CHECKOK( mp_mul(a, x, b) ); \
|
||||
MP_CHECKOK( s_mp_redc(b, mmm) )
|
||||
#else
|
||||
#define MUL_NOWEAVE(x,a,b) \
|
||||
MP_CHECKOK( s_mp_mul_mont(a, x, b, mmm) )
|
||||
#endif
|
||||
|
||||
#define MUL(x,a,b) \
|
||||
MP_CHECKOK( weave_to_mpi(&tmp, powers + (x), nLen, num_powers) ); \
|
||||
MUL_NOWEAVE(&tmp,a,b)
|
||||
|
||||
#define SWAPPA ptmp = pa1; pa1 = pa2; pa2 = ptmp
|
||||
#define MP_ALIGN(x,y) ((((ptrdiff_t)(x))+((y)-1))&(~((y)-1)))
|
||||
|
||||
/* Do modular exponentiation using integer multiply code. */
|
||||
mp_err mp_exptmod_safe_i(const mp_int * montBase,
|
||||
const mp_int * exponent,
|
||||
const mp_int * modulus,
|
||||
mp_int * result,
|
||||
mp_mont_modulus *mmm,
|
||||
int nLen,
|
||||
mp_size bits_in_exponent,
|
||||
mp_size window_bits,
|
||||
mp_size num_powers)
|
||||
{
|
||||
mp_int *pa1, *pa2, *ptmp;
|
||||
mp_size i;
|
||||
mp_size first_window;
|
||||
mp_err res;
|
||||
int expOff;
|
||||
mp_int accum1, accum2, accum[WEAVE_WORD_SIZE];
|
||||
mp_int tmp;
|
||||
unsigned char *powersArray;
|
||||
unsigned char *powers;
|
||||
|
||||
powersArray = (unsigned char *)malloc(num_powers*(nLen*sizeof(mp_digit)+1));
|
||||
if (powersArray == NULL) {
|
||||
res = MP_MEM;
|
||||
goto CLEANUP;
|
||||
}
|
||||
|
||||
/* powers[i] = base ** (i); */
|
||||
powers = (unsigned char *)MP_ALIGN(powersArray,num_powers);
|
||||
|
||||
MP_DIGITS(&accum1) = 0;
|
||||
MP_DIGITS(&accum2) = 0;
|
||||
MP_DIGITS(&accum[0]) = 0;
|
||||
MP_DIGITS(&accum[1]) = 0;
|
||||
MP_DIGITS(&accum[2]) = 0;
|
||||
MP_DIGITS(&accum[3]) = 0;
|
||||
|
||||
/* grab the first window value. This allows us to preload accumulator1
|
||||
* and save a conversion, some squares and a multiple*/
|
||||
MP_CHECKOK( mpl_get_bits(exponent,
|
||||
bits_in_exponent-window_bits, window_bits) );
|
||||
first_window = (mp_size)res;
|
||||
|
||||
MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
|
||||
MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) );
|
||||
MP_DIGITS(&tmp) = 0;
|
||||
MP_CHECKOK( mp_init_size(&tmp, 3 * nLen + 2) );
|
||||
|
||||
/* build the first WEAVE_WORD powers inline */
|
||||
/* if WEAVE_WORD_SIZE is not 4, this code will have to change */
|
||||
if (num_powers > 2) {
|
||||
MP_CHECKOK( mp_init_size(&accum[0], 3 * nLen + 2) );
|
||||
MP_CHECKOK( mp_init_size(&accum[1], 3 * nLen + 2) );
|
||||
MP_CHECKOK( mp_init_size(&accum[2], 3 * nLen + 2) );
|
||||
MP_CHECKOK( mp_init_size(&accum[3], 3 * nLen + 2) );
|
||||
mp_set(&accum[0], 1);
|
||||
MP_CHECKOK( s_mp_to_mont(&accum[0], mmm, &accum[0]) );
|
||||
MP_CHECKOK( mp_copy(montBase, &accum[1]) );
|
||||
SQR(montBase, &accum[2]);
|
||||
MUL_NOWEAVE(montBase, &accum[2], &accum[3]);
|
||||
MP_CHECKOK( mpi_to_weave(accum, powers, nLen, num_powers) );
|
||||
if (first_window < 4) {
|
||||
MP_CHECKOK( mp_copy(&accum[first_window], &accum1) );
|
||||
first_window = num_powers;
|
||||
}
|
||||
} else {
|
||||
if (first_window == 0) {
|
||||
mp_set(&accum1, 1);
|
||||
MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
|
||||
} else {
|
||||
/* assert first_window == 1? */
|
||||
MP_CHECKOK( mp_copy(montBase, &accum1) );
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* calculate all the powers in the powers array.
|
||||
* this adds 2**(k-1)-2 square operations over just calculating the
|
||||
* odd powers where k is the window size in the two other mp_modexpt
|
||||
* implementations in this file. We will get some of that
|
||||
* back by not needing the first 'k' squares and one multiply for the
|
||||
* first window */
|
||||
for (i = WEAVE_WORD_SIZE; i < num_powers; i++) {
|
||||
int acc_index = i & (WEAVE_WORD_SIZE-1); /* i % WEAVE_WORD_SIZE */
|
||||
if ( i & 1 ) {
|
||||
MUL_NOWEAVE(montBase, &accum[acc_index-1] , &accum[acc_index]);
|
||||
/* we've filled the array do our 'per array' processing */
|
||||
if (acc_index == (WEAVE_WORD_SIZE-1)) {
|
||||
MP_CHECKOK( mpi_to_weave(accum, powers + i - (WEAVE_WORD_SIZE-1),
|
||||
nLen, num_powers) );
|
||||
|
||||
if (first_window <= i) {
|
||||
MP_CHECKOK( mp_copy(&accum[first_window & (WEAVE_WORD_SIZE-1)],
|
||||
&accum1) );
|
||||
first_window = num_powers;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* up to 8 we can find 2^i-1 in the accum array, but at 8 we our source
|
||||
* and target are the same so we need to copy.. After that, the
|
||||
* value is overwritten, so we need to fetch it from the stored
|
||||
* weave array */
|
||||
if (i > 2* WEAVE_WORD_SIZE) {
|
||||
MP_CHECKOK(weave_to_mpi(&accum2, powers+i/2, nLen, num_powers));
|
||||
SQR(&accum2, &accum[acc_index]);
|
||||
} else {
|
||||
int half_power_index = (i/2) & (WEAVE_WORD_SIZE-1);
|
||||
if (half_power_index == acc_index) {
|
||||
/* copy is cheaper than weave_to_mpi */
|
||||
MP_CHECKOK(mp_copy(&accum[half_power_index], &accum2));
|
||||
SQR(&accum2,&accum[acc_index]);
|
||||
} else {
|
||||
SQR(&accum[half_power_index],&accum[acc_index]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* if the accum1 isn't set, Then there is something wrong with our logic
|
||||
* above and is an internal programming error.
|
||||
*/
|
||||
#if MP_ARGCHK == 2
|
||||
assert(MP_USED(&accum1) != 0);
|
||||
#endif
|
||||
|
||||
/* set accumulator to montgomery residue of 1 */
|
||||
pa1 = &accum1;
|
||||
pa2 = &accum2;
|
||||
|
||||
for (expOff = bits_in_exponent - window_bits*2; expOff >= 0; expOff -= window_bits) {
|
||||
mp_size smallExp;
|
||||
MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
|
||||
smallExp = (mp_size)res;
|
||||
|
||||
/* handle unroll the loops */
|
||||
switch (window_bits) {
|
||||
case 1:
|
||||
if (!smallExp) {
|
||||
SQR(pa1,pa2); SWAPPA;
|
||||
} else if (smallExp & 1) {
|
||||
SQR(pa1,pa2); MUL_NOWEAVE(montBase,pa2,pa1);
|
||||
} else {
|
||||
ABORT;
|
||||
}
|
||||
break;
|
||||
case 6:
|
||||
SQR(pa1,pa2); SQR(pa2,pa1);
|
||||
/* fall through */
|
||||
case 4:
|
||||
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
||||
MUL(smallExp, pa1,pa2); SWAPPA;
|
||||
break;
|
||||
case 5:
|
||||
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
|
||||
SQR(pa1,pa2); MUL(smallExp,pa2,pa1);
|
||||
break;
|
||||
default:
|
||||
ABORT; /* could do a loop? */
|
||||
}
|
||||
}
|
||||
|
||||
res = s_mp_redc(pa1, mmm);
|
||||
mp_exch(pa1, result);
|
||||
|
||||
CLEANUP:
|
||||
mp_clear(&accum1);
|
||||
mp_clear(&accum2);
|
||||
mp_clear(&accum[0]);
|
||||
mp_clear(&accum[1]);
|
||||
mp_clear(&accum[2]);
|
||||
mp_clear(&accum[3]);
|
||||
/* PORT_Memset(powers,0,num_powers*nLen*sizeof(mp_digit)); */
|
||||
free(powersArray);
|
||||
return res;
|
||||
}
|
||||
#undef SQR
|
||||
#undef MUL
|
||||
#endif
|
||||
|
||||
mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent,
|
||||
const mp_int *modulus, mp_int *result)
|
||||
|
@ -514,6 +1087,9 @@ mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent,
|
|||
int nLen;
|
||||
mp_int montBase, goodBase;
|
||||
mp_mont_modulus mmm;
|
||||
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
||||
static unsigned int max_window_bits;
|
||||
#endif
|
||||
|
||||
/* function for computing n0prime only works if n0 is odd */
|
||||
if (!mp_isodd(modulus))
|
||||
|
@ -546,6 +1122,21 @@ mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent,
|
|||
MP_CHECKOK( s_mp_to_mont(base, &mmm, &montBase) );
|
||||
|
||||
bits_in_exponent = mpl_significant_bits(exponent);
|
||||
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
||||
if (mp_using_cache_safe_exp) {
|
||||
if (bits_in_exponent > 780)
|
||||
window_bits = 6;
|
||||
else if (bits_in_exponent > 256)
|
||||
window_bits = 5;
|
||||
else if (bits_in_exponent > 20)
|
||||
window_bits = 4;
|
||||
/* RSA public key exponents are typically under 20 bits (common values
|
||||
* are: 3, 17, 65537) and a 4-bit window is inefficient
|
||||
*/
|
||||
else
|
||||
window_bits = 1;
|
||||
} else
|
||||
#endif
|
||||
if (bits_in_exponent > 480)
|
||||
window_bits = 6;
|
||||
else if (bits_in_exponent > 160)
|
||||
|
@ -557,6 +1148,35 @@ mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent,
|
|||
*/
|
||||
else
|
||||
window_bits = 1;
|
||||
|
||||
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
||||
/*
|
||||
* clamp the window size based on
|
||||
* the cache line size.
|
||||
*/
|
||||
if (!max_window_bits) {
|
||||
unsigned long cache_size = s_mpi_getProcessorLineSize();
|
||||
/* processor has no cache, use 'fast' code always */
|
||||
if (cache_size == 0) {
|
||||
mp_using_cache_safe_exp = 0;
|
||||
}
|
||||
if ((cache_size == 0) || (cache_size >= 64)) {
|
||||
max_window_bits = 6;
|
||||
} else if (cache_size >= 32) {
|
||||
max_window_bits = 5;
|
||||
} else if (cache_size >= 16) {
|
||||
max_window_bits = 4;
|
||||
} else max_window_bits = 1; /* should this be an assert? */
|
||||
}
|
||||
|
||||
/* clamp the window size down before we caclulate bits_in_exponent */
|
||||
if (mp_using_cache_safe_exp) {
|
||||
if (window_bits > max_window_bits) {
|
||||
window_bits = max_window_bits;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
odd_ints = 1 << (window_bits - 1);
|
||||
i = bits_in_exponent % window_bits;
|
||||
if (i != 0) {
|
||||
|
@ -569,6 +1189,12 @@ mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent,
|
|||
res = mp_exptmod_f(&montBase, exponent, modulus, result, &mmm, nLen,
|
||||
bits_in_exponent, window_bits, odd_ints);
|
||||
} else
|
||||
#endif
|
||||
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
|
||||
if (mp_using_cache_safe_exp) {
|
||||
res = mp_exptmod_safe_i(&montBase, exponent, modulus, result, &mmm, nLen,
|
||||
bits_in_exponent, window_bits, 1 << window_bits);
|
||||
} else
|
||||
#endif
|
||||
res = mp_exptmod_i(&montBase, exponent, modulus, result, &mmm, nLen,
|
||||
bits_in_exponent, window_bits, odd_ints);
|
||||
|
|
|
@ -206,7 +206,7 @@ ifeq ($(TARGET),x86LINUX)
|
|||
#Linux
|
||||
AS_OBJS = mpi_x86.o
|
||||
MPICMN += -DMP_ASSEMBLY_MULTIPLY -DMP_ASSEMBLY_SQUARE -DMP_ASSEMBLY_DIV_2DX1D
|
||||
MPICMN += -DMP_MONT_USE_MP_MUL
|
||||
MPICMN += -DMP_MONT_USE_MP_MUL -DMP_CHAR_STORE_SLOW -DMP_IS_LITTLE_ENDIAN
|
||||
CFLAGS= -O2 -fPIC -DLINUX1_2 -Di386 -D_XOPEN_SOURCE -DLINUX2_1 -ansi -Wall \
|
||||
-pipe -DLINUX -Dlinux -D_POSIX_SOURCE -D_BSD_SOURCE -DHAVE_STRERROR \
|
||||
-DXP_UNIX -UDEBUG -DNDEBUG -D_REENTRANT $(MPICMN)
|
||||
|
@ -222,6 +222,7 @@ ifeq ($(TARGET),AMD64SOLARIS)
|
|||
ASFLAGS += -xarch=generic64
|
||||
AS_OBJS = mpi_amd64.o mpi_amd64_sun.o
|
||||
MP_CONFIG = -DMP_ASSEMBLY_MULTIPLY -DMPI_AMD64
|
||||
MP_CONFIG += -DMP_CHAR_STORE_SLOW -DMP_IS_LITTLE_ENDIAN
|
||||
CFLAGS = -xarch=generic64 -xO4 -I. -DMP_API_COMPATIBLE -DMP_IOFUNC $(MP_CONFIG)
|
||||
MPICMN += $(MP_CONFIG)
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче