Weave patch: bug 298630 r=nelson

This commit is contained in:
relyea%netscape.com 2005-11-22 07:16:43 +00:00
Родитель a10b284613
Коммит 2c47437c90
4 изменённых файлов: 649 добавлений и 8 удалений

Просмотреть файл

@ -41,7 +41,7 @@
# ***** END LICENSE BLOCK *****
#
# $Id: Makefile,v 1.21 2005-02-02 22:28:22 gerv%gerv.net Exp $
# $Id: Makefile,v 1.22 2005-11-22 07:16:43 relyea%netscape.com Exp $
#
## Define CC to be the C compiler you wish to use. The GNU cc
@ -89,7 +89,8 @@ VERS=1.7p6
##
## This is the list of source files that need to be packed into
## the distribution file
SRCS= mpi.c mpprime.c mplogic.c mp_gf2m.c mpmontg.c mpi-test.c primes.c tests/ \
SRCS= mpi.c mpprime.c mplogic.c mp_gf2m.c mpmontg.c mpi-test.c primes.c \
mpcpucache.c tests/ \
utils/gcd.c utils/invmod.c utils/lap.c \
utils/ptab.pl utils/sieve.c utils/isprime.c\
utils/dec2hex.c utils/hex2dec.c utils/bbs_rand.c \

Просмотреть файл

@ -42,7 +42,7 @@
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/* $Id: mpi-priv.h,v 1.19 2005-08-16 19:25:48 saul.edwards%sun.com Exp $ */
/* $Id: mpi-priv.h,v 1.20 2005-11-22 07:16:43 relyea%netscape.com Exp $ */
#ifndef _MPI_PRIV_H_
#define _MPI_PRIV_H_ 1
@ -300,6 +300,19 @@ mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
mp_mont_modulus *mmm);
mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm);
/*
* s_mpi_getProcessorLineSize() returns the size in bytes of the cache line
* if a cache exists, or zero if there is no cache. If more than one
* cache line exists, it should return the smallest line size (which is
* usually the L1 cache).
*
* mp_modexp uses this information to make sure that private key information
* isn't being leaked through the cache.
*
* see mpcpucache.c for the implementation.
*/
unsigned long s_mpi_getProcessorLineSize();
/* }}} */
#endif

Просмотреть файл

@ -36,7 +36,7 @@
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/* $Id: mpmontg.c,v 1.15 2004-04-27 23:04:36 gerv%gerv.net Exp $ */
/* $Id: mpmontg.c,v 1.16 2005-11-22 07:16:43 relyea%netscape.com Exp $ */
/* This file implements moduluar exponentiation using Montgomery's
* method for modular reduction. This file implements the method
@ -47,7 +47,7 @@
* published by Springer Verlag.
*/
/* #define MP_USING_MONT_MULF 1 */
#define MP_USING_CACHE_SAFE_MOD_EXP 1
#include <string.h>
#include "mpi-priv.h"
#include "mplogic.h"
@ -55,11 +55,19 @@
#ifdef MP_USING_MONT_MULF
#include "montmulf.h"
#endif
#include <stddef.h> /* ptrdiff_t */
/* if MP_CHAR_STORE_SLOW is defined, we */
/* need to know endianness of this platform. */
#ifdef MP_CHAR_STORE_SLOW
#if !defined(MPI_IS_BIG_ENDIAN) && !defined(MPI_IS_LITTLE_ENDIAN)
#error "You must define MPI_IS_BIG_ENDIAN or MPI_IS_LITTLE_ENDIAN\n" \
" if you define MP_CHAR_STORE_SLOW."
#endif
#endif
#define STATIC
/* #define DEBUG 1 */
#define MAX_WINDOW_BITS 6
#define MAX_ODD_INTS 32 /* 2 ** (WINDOW_BITS - 1) */
#if defined(_WIN32_WCE)
@ -174,6 +182,13 @@ CLEANUP:
#ifdef MP_USING_MONT_MULF
/* the floating point multiply is already cache safe,
* don't turn on cache safe unless we specifically
* force it */
#ifndef MP_FORCE_CACHE_SAFE
#undef MP_USING_CACHE_SAFE_MOD_EXP
#endif
unsigned int mp_using_mont_mulf = 1;
/* computes montgomery square of the integer in mResult */
@ -504,6 +519,564 @@ CLEANUP:
#undef SQR
#undef MUL
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
unsigned int mp_using_cache_safe_exp = 1;
#endif
mp_err mp_set_safe_modexp(int value)
{
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
mp_using_cache_safe_exp = value;
return MP_OKAY;
#else
if (value == 0) {
return MP_OKAY;
}
return MP_BADARG;
#endif
}
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
#define WEAVE_WORD_SIZE 4
#ifndef MP_CHAR_STORE_SLOW
/*
* mpi_to_weave takes MPI data and stores in into a byte array interleaved.
*
* The purpose of this interleaving is to hide our access to the array of
* modulus powers from and attacker snooping on cache hits and misses. Because
* the array is interleaved, each reference will cause exactly the same cache
* lines to reload.
*
* There are 2 different implementations in this file, one which works with just
* byte loads and stores, the second which works with mp_weave_word loads and
* stores. These 2 implementations have DIFFERENT results in exactly which byte
* of an mp_digit winds up in which location in the byte array. That is why
* there are 2 sets of explanations for how the array is set up.
*
*
* a is an array of WEAVE_WORD_SIZE mp_ints (that is 4).
* It is a partial window into a logical array mp_int p[count] containing
* the base to the 0 through count-1 powers. Ideally this code would be
* simpler if we stored one element of that array at a time, but on some
* platforms the cost of storing a byte incurs a full read modify write cycle
* and increases the memory bandwidth cost by a factor of 4 or 8. By collecting
* for mp_ints together, we can arrange to store all 4 values in a single
* word write.
*
* b is the targeted weaved location. b[0] points to the first byte where
* first byte of the a array needs to be stored. Each b is an offset into the
* weave array.
*
* count is 2^window size.
*
* b_size is the size in mp_digits of each mp_int in the array. mp_ints
* with less than b_size elements are logically padded with zeros before
* storing.
*
*
* Data is stored as follows :
* The mp_int array is treated as a byte array.
*
*
* we want to eventually store the logical array mp_int p[count] into the
* weave array as follows:
* p[count].digit is treated as a byte array (rather than * an mp_digit array),
* N is count, and n is b_size * *sizeof(mp_digit):
*
* p[0].digit[0] p[1].digit[0] ...... p[N-2].digit[0] p[N-1].digit[0]
* p[0].digit[1] p[1].digit[1] ...... p[N-2].digit[1] p[N-1].digit[1]
* . .
* . .
* p[0].digit[n-2] p[1].digit[n-2] ...... p[N-2].digit[n-2] p[N-1].digit[n-2]
* p[0].digit[n-1] p[1].digit[n-1] ...... p[N-2].digit[n-1] p[N-1].digit[n-1]
*
* This function stores that a window of p in each call.
*/
mp_err mpi_to_weave(const mp_int *a, unsigned char *b,
mp_size b_size, mp_size count)
{
mp_size i, j;
unsigned char *bsave = b;
for (i=0; i < WEAVE_WORD_SIZE; i++) {
unsigned char *pb = (unsigned char *)MP_DIGITS(&a[i]);
mp_size useda = MP_USED(&a[i]);
mp_size zero = b_size - useda;
unsigned char *end = pb+ (useda*sizeof(mp_digit));
b = bsave+i;
ARGCHK(MP_SIGN(&a[i]) == MP_ZPOS, MP_BADARG);
ARGCHK(useda <= b_size, MP_BADARG);
for (; pb < end; pb++) {
*b = *pb;
b += count;
}
for (j=0; j < zero; j++) {
*b = 0;
b += count;
}
}
return MP_OKAY;
}
/* reverse the operation above for one entry.
* b points to the offset into the weave array of the power we are
* calculating */
mp_err weave_to_mpi(mp_int *a, const unsigned char *b,
mp_size b_size, mp_size count)
{
unsigned char *pb = (unsigned char *)MP_DIGITS(a);
unsigned char *end = pb+ (b_size*sizeof(mp_digit));
MP_SIGN(a) = MP_ZPOS;
MP_USED(a) = b_size;
for (; pb < end; b+=count, pb++) {
*pb = *b;
}
s_mp_clamp(a);
return MP_OKAY;
}
#else
/* Need a primitive that we know is 32 bits long... */
/* this is true on all modern processors we know of today*/
typedef unsigned int mp_weave_word;
/*
* on some platforms character stores into memory is very expensive since they
* generate a read/modify/write operation on the bus. On those platforms
* we need to do integer writes to the bus. Because of some unrolled code,
* in this current code the size of mp_weave_word must be four. The code that
* makes this assumption explicity is called out. (on some platforms a write
* of 4 bytes still requires a single read-modify-write operation.
*
* This function is takes the identical parameters as the function above,
* however it lays out the final array differently. Where the previous function
* treats the mpi_int as an byte array, this function treats it as an array of
* mp_digits where each digit is stored in big endian order.
*
* since we need to interleave on a byte by byte basis, we need to collect
* several mpi structures together into a single uint32 before we write. We
* also need to make sure the uint32 is arranged so that the first value of
* the first array winds up in b[0]. This means construction of that uint32
* is endian specific (even though the layout of the mp_digits in the array
* is always big endian).
*
* The final data is stored as follows :
*
* Our same logical array p array, m is sizeof(mp_digit),
* N is still count and n is now b_size. If we define p[i].digit[j]0 as the
* most significant byte of the word p[i].digit[j], p[i].digit[j]1 as
* the next most significant byte of p[i].digit[j], ... and p[i].digit[j]m-1
* is the least significant byte.
* Our array would look like:
* p[0].digit[0]0 p[1].digit[0]0 ... p[N-2].digit[0]0 p[N-1].digit[0]0
* p[0].digit[0]1 p[1].digit[0]1 ... p[N-2].digit[0]1 p[N-1].digit[0]1
* . .
* p[0].digit[0]m-1 p[1].digit[0]m-1 ... p[N-2].digit[0]m-1 p[N-1].digit[0]m-1
* p[0].digit[1]0 p[1].digit[1]0 ... p[N-2].digit[1]0 p[N-1].digit[1]0
* . .
* . .
* p[0].digit[n-1]m-2 p[1].digit[n-1]m-2 ... p[N-2].digit[n-1]m-2 p[N-1].digit[n-1]m-2
* p[0].digit[n-1]m-1 p[1].digit[n-1]m-1 ... p[N-2].digit[n-1]m-1 p[N-1].digit[n-1]m-1
*
*/
mp_err mpi_to_weave(const mp_int *a, unsigned char *b,
mp_size b_size, mp_size count)
{
mp_size i;
mp_digit *digitsa0;
mp_digit *digitsa1;
mp_digit *digitsa2;
mp_digit *digitsa3;
mp_size useda0;
mp_size useda1;
mp_size useda2;
mp_size useda3;
mp_weave_word *weaved = (mp_weave_word *)b;
count = count/sizeof(mp_weave_word);
/* this code pretty much depends on this ! */
#if MP_ARGCHK < 2
assert(WEAVE_WORD_SIZE == 4);
assert(sizeof(mp_weave_word) == 4);
#endif
digitsa0 = MP_DIGITS(&a[0]);
digitsa1 = MP_DIGITS(&a[1]);
digitsa2 = MP_DIGITS(&a[2]);
digitsa3 = MP_DIGITS(&a[3]);
useda0 = MP_USED(&a[0]);
useda1 = MP_USED(&a[1]);
useda2 = MP_USED(&a[2]);
useda3 = MP_USED(&a[3]);
ARGCHK(MP_SIGN(&a[0]) == MP_ZPOS, MP_BADARG);
ARGCHK(MP_SIGN(&a[1]) == MP_ZPOS, MP_BADARG);
ARGCHK(MP_SIGN(&a[2]) == MP_ZPOS, MP_BADARG);
ARGCHK(MP_SIGN(&a[3]) == MP_ZPOS, MP_BADARG);
ARGCHK(useda0 <= b_size, MP_BADARG);
ARGCHK(useda1 <= b_size, MP_BADARG);
ARGCHK(useda2 <= b_size, MP_BADARG);
ARGCHK(useda3 <= b_size, MP_BADARG);
#define SAFE_FETCH(digit, used, word) ((word) < (used) ? (digit[word]) : 0)
for (i=0; i < b_size; i++) {
mp_digit d0 = SAFE_FETCH(digitsa0,useda0,i);
mp_digit d1 = SAFE_FETCH(digitsa1,useda1,i);
mp_digit d2 = SAFE_FETCH(digitsa2,useda2,i);
mp_digit d3 = SAFE_FETCH(digitsa3,useda3,i);
register mp_weave_word acc;
/*
* ONE_STEP takes the MSB of each of our current digits and places that
* byte in the appropriate position for writing to the weaved array.
* On little endian:
* b3 b2 b1 b0
* On big endian:
* b0 b1 b2 b3
* When the data is written it would always wind up:
* b[0] = b0
* b[1] = b1
* b[2] = b2
* b[3] = b3
*
* Once we've written the MSB, we shift the whole digit up left one
* byte, putting the Next Most Significant Byte in the MSB position,
* so we we repeat the next one step that byte will be written.
* NOTE: This code assumes sizeof(mp_weave_word) and MP_WEAVE_WORD_SIZE
* is 4.
*/
#ifdef IS_LITTLE_ENDIAN
#define MPI_WEAVE_ONE_STEP \
acc = (d0 >> (MP_DIGIT_BITS-8)) & 0x000000ff; d0 <<= 8; /*b0*/ \
acc |= (d1 >> (MP_DIGIT_BITS-16)) & 0x0000ff00; d1 <<= 8; /*b1*/ \
acc |= (d2 >> (MP_DIGIT_BITS-24)) & 0x00ff0000; d2 <<= 8; /*b2*/ \
acc |= (d3 >> (MP_DIGIT_BITS-32)) & 0xff000000; d3 <<= 8; /*b3*/ \
*weaved = acc; weaved += count;
#else
#define MPI_WEAVE_ONE_STEP \
acc = (d0 >> (MP_DIGIT_BITS-32)) & 0xff000000; d0 <<= 8; /*b0*/ \
acc |= (d1 >> (MP_DIGIT_BITS-24)) & 0x00ff0000; d1 <<= 8; /*b1*/ \
acc |= (d2 >> (MP_DIGIT_BITS-16)) & 0x0000ff00; d2 <<= 8; /*b2*/ \
acc |= (d3 >> (MP_DIGIT_BITS-8)) & 0x000000ff; d3 <<= 8; /*b3*/ \
*weaved = acc; weaved += count;
#endif
switch (sizeof(mp_digit)) {
case 32:
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
case 16:
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
case 8:
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
case 4:
MPI_WEAVE_ONE_STEP
MPI_WEAVE_ONE_STEP
case 2:
MPI_WEAVE_ONE_STEP
case 1:
MPI_WEAVE_ONE_STEP
break;
}
}
return MP_OKAY;
}
/* reverse the operation above for one entry.
* b points to the offset into the weave array of the power we are
* calculating */
mp_err weave_to_mpi(mp_int *a, const unsigned char *b,
mp_size b_size, mp_size count)
{
mp_digit *pb = MP_DIGITS(a);
mp_digit *end = &pb[b_size];
MP_SIGN(a) = MP_ZPOS;
MP_USED(a) = b_size;
for (; pb < end; pb++) {
register mp_digit digit;
digit = *b << 8; b += count;
#define MPI_UNWEAVE_ONE_STEP digit |= *b; b += count; digit = digit << 8;
switch (sizeof(mp_digit)) {
case 32:
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
case 16:
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
case 8:
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
case 4:
MPI_UNWEAVE_ONE_STEP
MPI_UNWEAVE_ONE_STEP
case 2:
break;
}
digit |= *b; b += count;
*pb = digit;
}
s_mp_clamp(a);
return MP_OKAY;
}
#endif
#define SQR(a,b) \
MP_CHECKOK( mp_sqr(a, b) );\
MP_CHECKOK( s_mp_redc(b, mmm) )
#if defined(MP_MONT_USE_MP_MUL)
#define MUL_NOWEAVE(x,a,b) \
MP_CHECKOK( mp_mul(a, x, b) ); \
MP_CHECKOK( s_mp_redc(b, mmm) )
#else
#define MUL_NOWEAVE(x,a,b) \
MP_CHECKOK( s_mp_mul_mont(a, x, b, mmm) )
#endif
#define MUL(x,a,b) \
MP_CHECKOK( weave_to_mpi(&tmp, powers + (x), nLen, num_powers) ); \
MUL_NOWEAVE(&tmp,a,b)
#define SWAPPA ptmp = pa1; pa1 = pa2; pa2 = ptmp
#define MP_ALIGN(x,y) ((((ptrdiff_t)(x))+((y)-1))&(~((y)-1)))
/* Do modular exponentiation using integer multiply code. */
mp_err mp_exptmod_safe_i(const mp_int * montBase,
const mp_int * exponent,
const mp_int * modulus,
mp_int * result,
mp_mont_modulus *mmm,
int nLen,
mp_size bits_in_exponent,
mp_size window_bits,
mp_size num_powers)
{
mp_int *pa1, *pa2, *ptmp;
mp_size i;
mp_size first_window;
mp_err res;
int expOff;
mp_int accum1, accum2, accum[WEAVE_WORD_SIZE];
mp_int tmp;
unsigned char *powersArray;
unsigned char *powers;
powersArray = (unsigned char *)malloc(num_powers*(nLen*sizeof(mp_digit)+1));
if (powersArray == NULL) {
res = MP_MEM;
goto CLEANUP;
}
/* powers[i] = base ** (i); */
powers = (unsigned char *)MP_ALIGN(powersArray,num_powers);
MP_DIGITS(&accum1) = 0;
MP_DIGITS(&accum2) = 0;
MP_DIGITS(&accum[0]) = 0;
MP_DIGITS(&accum[1]) = 0;
MP_DIGITS(&accum[2]) = 0;
MP_DIGITS(&accum[3]) = 0;
/* grab the first window value. This allows us to preload accumulator1
* and save a conversion, some squares and a multiple*/
MP_CHECKOK( mpl_get_bits(exponent,
bits_in_exponent-window_bits, window_bits) );
first_window = (mp_size)res;
MP_CHECKOK( mp_init_size(&accum1, 3 * nLen + 2) );
MP_CHECKOK( mp_init_size(&accum2, 3 * nLen + 2) );
MP_DIGITS(&tmp) = 0;
MP_CHECKOK( mp_init_size(&tmp, 3 * nLen + 2) );
/* build the first WEAVE_WORD powers inline */
/* if WEAVE_WORD_SIZE is not 4, this code will have to change */
if (num_powers > 2) {
MP_CHECKOK( mp_init_size(&accum[0], 3 * nLen + 2) );
MP_CHECKOK( mp_init_size(&accum[1], 3 * nLen + 2) );
MP_CHECKOK( mp_init_size(&accum[2], 3 * nLen + 2) );
MP_CHECKOK( mp_init_size(&accum[3], 3 * nLen + 2) );
mp_set(&accum[0], 1);
MP_CHECKOK( s_mp_to_mont(&accum[0], mmm, &accum[0]) );
MP_CHECKOK( mp_copy(montBase, &accum[1]) );
SQR(montBase, &accum[2]);
MUL_NOWEAVE(montBase, &accum[2], &accum[3]);
MP_CHECKOK( mpi_to_weave(accum, powers, nLen, num_powers) );
if (first_window < 4) {
MP_CHECKOK( mp_copy(&accum[first_window], &accum1) );
first_window = num_powers;
}
} else {
if (first_window == 0) {
mp_set(&accum1, 1);
MP_CHECKOK( s_mp_to_mont(&accum1, mmm, &accum1) );
} else {
/* assert first_window == 1? */
MP_CHECKOK( mp_copy(montBase, &accum1) );
}
}
/*
* calculate all the powers in the powers array.
* this adds 2**(k-1)-2 square operations over just calculating the
* odd powers where k is the window size in the two other mp_modexpt
* implementations in this file. We will get some of that
* back by not needing the first 'k' squares and one multiply for the
* first window */
for (i = WEAVE_WORD_SIZE; i < num_powers; i++) {
int acc_index = i & (WEAVE_WORD_SIZE-1); /* i % WEAVE_WORD_SIZE */
if ( i & 1 ) {
MUL_NOWEAVE(montBase, &accum[acc_index-1] , &accum[acc_index]);
/* we've filled the array do our 'per array' processing */
if (acc_index == (WEAVE_WORD_SIZE-1)) {
MP_CHECKOK( mpi_to_weave(accum, powers + i - (WEAVE_WORD_SIZE-1),
nLen, num_powers) );
if (first_window <= i) {
MP_CHECKOK( mp_copy(&accum[first_window & (WEAVE_WORD_SIZE-1)],
&accum1) );
first_window = num_powers;
}
}
} else {
/* up to 8 we can find 2^i-1 in the accum array, but at 8 we our source
* and target are the same so we need to copy.. After that, the
* value is overwritten, so we need to fetch it from the stored
* weave array */
if (i > 2* WEAVE_WORD_SIZE) {
MP_CHECKOK(weave_to_mpi(&accum2, powers+i/2, nLen, num_powers));
SQR(&accum2, &accum[acc_index]);
} else {
int half_power_index = (i/2) & (WEAVE_WORD_SIZE-1);
if (half_power_index == acc_index) {
/* copy is cheaper than weave_to_mpi */
MP_CHECKOK(mp_copy(&accum[half_power_index], &accum2));
SQR(&accum2,&accum[acc_index]);
} else {
SQR(&accum[half_power_index],&accum[acc_index]);
}
}
}
}
/* if the accum1 isn't set, Then there is something wrong with our logic
* above and is an internal programming error.
*/
#if MP_ARGCHK == 2
assert(MP_USED(&accum1) != 0);
#endif
/* set accumulator to montgomery residue of 1 */
pa1 = &accum1;
pa2 = &accum2;
for (expOff = bits_in_exponent - window_bits*2; expOff >= 0; expOff -= window_bits) {
mp_size smallExp;
MP_CHECKOK( mpl_get_bits(exponent, expOff, window_bits) );
smallExp = (mp_size)res;
/* handle unroll the loops */
switch (window_bits) {
case 1:
if (!smallExp) {
SQR(pa1,pa2); SWAPPA;
} else if (smallExp & 1) {
SQR(pa1,pa2); MUL_NOWEAVE(montBase,pa2,pa1);
} else {
ABORT;
}
break;
case 6:
SQR(pa1,pa2); SQR(pa2,pa1);
/* fall through */
case 4:
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
MUL(smallExp, pa1,pa2); SWAPPA;
break;
case 5:
SQR(pa1,pa2); SQR(pa2,pa1); SQR(pa1,pa2); SQR(pa2,pa1);
SQR(pa1,pa2); MUL(smallExp,pa2,pa1);
break;
default:
ABORT; /* could do a loop? */
}
}
res = s_mp_redc(pa1, mmm);
mp_exch(pa1, result);
CLEANUP:
mp_clear(&accum1);
mp_clear(&accum2);
mp_clear(&accum[0]);
mp_clear(&accum[1]);
mp_clear(&accum[2]);
mp_clear(&accum[3]);
/* PORT_Memset(powers,0,num_powers*nLen*sizeof(mp_digit)); */
free(powersArray);
return res;
}
#undef SQR
#undef MUL
#endif
mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent,
const mp_int *modulus, mp_int *result)
@ -514,6 +1087,9 @@ mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent,
int nLen;
mp_int montBase, goodBase;
mp_mont_modulus mmm;
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
static unsigned int max_window_bits;
#endif
/* function for computing n0prime only works if n0 is odd */
if (!mp_isodd(modulus))
@ -546,6 +1122,21 @@ mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent,
MP_CHECKOK( s_mp_to_mont(base, &mmm, &montBase) );
bits_in_exponent = mpl_significant_bits(exponent);
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
if (mp_using_cache_safe_exp) {
if (bits_in_exponent > 780)
window_bits = 6;
else if (bits_in_exponent > 256)
window_bits = 5;
else if (bits_in_exponent > 20)
window_bits = 4;
/* RSA public key exponents are typically under 20 bits (common values
* are: 3, 17, 65537) and a 4-bit window is inefficient
*/
else
window_bits = 1;
} else
#endif
if (bits_in_exponent > 480)
window_bits = 6;
else if (bits_in_exponent > 160)
@ -557,6 +1148,35 @@ mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent,
*/
else
window_bits = 1;
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
/*
* clamp the window size based on
* the cache line size.
*/
if (!max_window_bits) {
unsigned long cache_size = s_mpi_getProcessorLineSize();
/* processor has no cache, use 'fast' code always */
if (cache_size == 0) {
mp_using_cache_safe_exp = 0;
}
if ((cache_size == 0) || (cache_size >= 64)) {
max_window_bits = 6;
} else if (cache_size >= 32) {
max_window_bits = 5;
} else if (cache_size >= 16) {
max_window_bits = 4;
} else max_window_bits = 1; /* should this be an assert? */
}
/* clamp the window size down before we caclulate bits_in_exponent */
if (mp_using_cache_safe_exp) {
if (window_bits > max_window_bits) {
window_bits = max_window_bits;
}
}
#endif
odd_ints = 1 << (window_bits - 1);
i = bits_in_exponent % window_bits;
if (i != 0) {
@ -569,6 +1189,12 @@ mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent,
res = mp_exptmod_f(&montBase, exponent, modulus, result, &mmm, nLen,
bits_in_exponent, window_bits, odd_ints);
} else
#endif
#ifdef MP_USING_CACHE_SAFE_MOD_EXP
if (mp_using_cache_safe_exp) {
res = mp_exptmod_safe_i(&montBase, exponent, modulus, result, &mmm, nLen,
bits_in_exponent, window_bits, 1 << window_bits);
} else
#endif
res = mp_exptmod_i(&montBase, exponent, modulus, result, &mmm, nLen,
bits_in_exponent, window_bits, odd_ints);

Просмотреть файл

@ -206,7 +206,7 @@ ifeq ($(TARGET),x86LINUX)
#Linux
AS_OBJS = mpi_x86.o
MPICMN += -DMP_ASSEMBLY_MULTIPLY -DMP_ASSEMBLY_SQUARE -DMP_ASSEMBLY_DIV_2DX1D
MPICMN += -DMP_MONT_USE_MP_MUL
MPICMN += -DMP_MONT_USE_MP_MUL -DMP_CHAR_STORE_SLOW -DMP_IS_LITTLE_ENDIAN
CFLAGS= -O2 -fPIC -DLINUX1_2 -Di386 -D_XOPEN_SOURCE -DLINUX2_1 -ansi -Wall \
-pipe -DLINUX -Dlinux -D_POSIX_SOURCE -D_BSD_SOURCE -DHAVE_STRERROR \
-DXP_UNIX -UDEBUG -DNDEBUG -D_REENTRANT $(MPICMN)
@ -222,6 +222,7 @@ ifeq ($(TARGET),AMD64SOLARIS)
ASFLAGS += -xarch=generic64
AS_OBJS = mpi_amd64.o mpi_amd64_sun.o
MP_CONFIG = -DMP_ASSEMBLY_MULTIPLY -DMPI_AMD64
MP_CONFIG += -DMP_CHAR_STORE_SLOW -DMP_IS_LITTLE_ENDIAN
CFLAGS = -xarch=generic64 -xO4 -I. -DMP_API_COMPATIBLE -DMP_IOFUNC $(MP_CONFIG)
MPICMN += $(MP_CONFIG)