зеркало из https://github.com/mozilla/pjs.git
Backout of Bug 341137
This commit is contained in:
Родитель
5ec812d395
Коммит
6cb92e7b35
|
@ -21,7 +21,6 @@
|
|||
#
|
||||
# Contributor(s):
|
||||
# Vladimir Vukicevic <vladimir.vukicevic@oracle.com>
|
||||
# Shawn Wilsher <me@shawnwilsher.com>
|
||||
#
|
||||
# Alternatively, the contents of this file may be used under the terms of
|
||||
# either of the GNU General Public License Version 2 or later (the "GPL"),
|
||||
|
@ -49,22 +48,52 @@ LIBRARY_NAME = sqlite3_s
|
|||
MODULE_NAME = sqlite3
|
||||
FORCE_STATIC_LIB = 1
|
||||
|
||||
ifdef GNU_CC
|
||||
MODULE_OPTIMIZE_FLAGS = -O3
|
||||
else
|
||||
ifeq ($(OS_ARCH),SunOS)
|
||||
MODULE_OPTIMIZE_FLAGS = -fast
|
||||
endif
|
||||
ifeq ($(OS_ARCH),WINNT)
|
||||
MODULE_OPTIMIZE_FLAGS = -Ox
|
||||
endif
|
||||
endif
|
||||
|
||||
|
||||
EXPORTS = sqlite3.h sqlite3file.h
|
||||
|
||||
CSRCS = \
|
||||
sqlite3.c \
|
||||
alter.c \
|
||||
analyze.c \
|
||||
attach.c \
|
||||
auth.c \
|
||||
btree.c \
|
||||
build.c \
|
||||
callback.c \
|
||||
complete.c \
|
||||
date.c \
|
||||
delete.c \
|
||||
experimental.c \
|
||||
expr.c \
|
||||
func.c \
|
||||
hash.c \
|
||||
insert.c \
|
||||
legacy.c \
|
||||
main.c \
|
||||
opcodes.c \
|
||||
os.c \
|
||||
os_unix.c \
|
||||
os_win.c \
|
||||
os_os2.c \
|
||||
os_beos.c \
|
||||
pager.c \
|
||||
parse.c \
|
||||
pragma.c \
|
||||
prepare.c \
|
||||
printf.c \
|
||||
random.c \
|
||||
select.c \
|
||||
table.c \
|
||||
tokenize.c \
|
||||
trigger.c \
|
||||
update.c \
|
||||
utf.c \
|
||||
util.c \
|
||||
vacuum.c \
|
||||
vdbe.c \
|
||||
vdbeapi.c \
|
||||
vdbeaux.c \
|
||||
vdbefifo.c \
|
||||
vdbemem.c \
|
||||
where.c \
|
||||
$(NULL)
|
||||
|
||||
# REFEF_IO allows us to override IO functions, which is used in the AsyncIO
|
||||
|
|
|
@ -0,0 +1,562 @@
|
|||
/*
|
||||
** 2005 February 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains C code routines that used to generate VDBE code
|
||||
** that implements the ALTER TABLE command.
|
||||
**
|
||||
** $Id: alter.c,v 1.9 2007/06/19 23:47:38 sdwilsh%shawnwilsher.com Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include <ctype.h>
|
||||
|
||||
/*
|
||||
** The code in this file only exists if we are not omitting the
|
||||
** ALTER TABLE logic from the build.
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_ALTERTABLE
|
||||
|
||||
|
||||
/*
|
||||
** This function is used by SQL generated to implement the
|
||||
** ALTER TABLE command. The first argument is the text of a CREATE TABLE or
|
||||
** CREATE INDEX command. The second is a table name. The table name in
|
||||
** the CREATE TABLE or CREATE INDEX statement is replaced with the second
|
||||
** argument and the result returned. Examples:
|
||||
**
|
||||
** sqlite_rename_table('CREATE TABLE abc(a, b, c)', 'def')
|
||||
** -> 'CREATE TABLE def(a, b, c)'
|
||||
**
|
||||
** sqlite_rename_table('CREATE INDEX i ON abc(a)', 'def')
|
||||
** -> 'CREATE INDEX i ON def(a, b, c)'
|
||||
*/
|
||||
static void renameTableFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
unsigned char const *zSql = sqlite3_value_text(argv[0]);
|
||||
unsigned char const *zTableName = sqlite3_value_text(argv[1]);
|
||||
|
||||
int token;
|
||||
Token tname;
|
||||
unsigned char const *zCsr = zSql;
|
||||
int len = 0;
|
||||
char *zRet;
|
||||
|
||||
/* The principle used to locate the table name in the CREATE TABLE
|
||||
** statement is that the table name is the first token that is immediatedly
|
||||
** followed by a left parenthesis - TK_LP.
|
||||
*/
|
||||
if( zSql ){
|
||||
do {
|
||||
/* Store the token that zCsr points to in tname. */
|
||||
tname.z = zCsr;
|
||||
tname.n = len;
|
||||
|
||||
/* Advance zCsr to the next token. Store that token type in 'token',
|
||||
** and it's length in 'len' (to be used next iteration of this loop).
|
||||
*/
|
||||
do {
|
||||
zCsr += len;
|
||||
len = sqlite3GetToken(zCsr, &token);
|
||||
} while( token==TK_SPACE );
|
||||
assert( len>0 );
|
||||
} while( token!=TK_LP );
|
||||
|
||||
zRet = sqlite3MPrintf("%.*s%Q%s", tname.z - zSql, zSql,
|
||||
zTableName, tname.z+tname.n);
|
||||
sqlite3_result_text(context, zRet, -1, sqlite3FreeX);
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
/* This function is used by SQL generated to implement the ALTER TABLE
|
||||
** ALTER TABLE command. The first argument is the text of a CREATE TRIGGER
|
||||
** statement. The second is a table name. The table name in the CREATE
|
||||
** TRIGGER statement is replaced with the second argument and the result
|
||||
** returned. This is analagous to renameTableFunc() above, except for CREATE
|
||||
** TRIGGER, not CREATE INDEX and CREATE TABLE.
|
||||
*/
|
||||
static void renameTriggerFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
unsigned char const *zSql = sqlite3_value_text(argv[0]);
|
||||
unsigned char const *zTableName = sqlite3_value_text(argv[1]);
|
||||
|
||||
int token;
|
||||
Token tname;
|
||||
int dist = 3;
|
||||
unsigned char const *zCsr = zSql;
|
||||
int len = 0;
|
||||
char *zRet;
|
||||
|
||||
/* The principle used to locate the table name in the CREATE TRIGGER
|
||||
** statement is that the table name is the first token that is immediatedly
|
||||
** preceded by either TK_ON or TK_DOT and immediatedly followed by one
|
||||
** of TK_WHEN, TK_BEGIN or TK_FOR.
|
||||
*/
|
||||
if( zSql ){
|
||||
do {
|
||||
/* Store the token that zCsr points to in tname. */
|
||||
tname.z = zCsr;
|
||||
tname.n = len;
|
||||
|
||||
/* Advance zCsr to the next token. Store that token type in 'token',
|
||||
** and it's length in 'len' (to be used next iteration of this loop).
|
||||
*/
|
||||
do {
|
||||
zCsr += len;
|
||||
len = sqlite3GetToken(zCsr, &token);
|
||||
}while( token==TK_SPACE );
|
||||
assert( len>0 );
|
||||
|
||||
/* Variable 'dist' stores the number of tokens read since the most
|
||||
** recent TK_DOT or TK_ON. This means that when a WHEN, FOR or BEGIN
|
||||
** token is read and 'dist' equals 2, the condition stated above
|
||||
** to be met.
|
||||
**
|
||||
** Note that ON cannot be a database, table or column name, so
|
||||
** there is no need to worry about syntax like
|
||||
** "CREATE TRIGGER ... ON ON.ON BEGIN ..." etc.
|
||||
*/
|
||||
dist++;
|
||||
if( token==TK_DOT || token==TK_ON ){
|
||||
dist = 0;
|
||||
}
|
||||
} while( dist!=2 || (token!=TK_WHEN && token!=TK_FOR && token!=TK_BEGIN) );
|
||||
|
||||
/* Variable tname now contains the token that is the old table-name
|
||||
** in the CREATE TRIGGER statement.
|
||||
*/
|
||||
zRet = sqlite3MPrintf("%.*s%Q%s", tname.z - zSql, zSql,
|
||||
zTableName, tname.z+tname.n);
|
||||
sqlite3_result_text(context, zRet, -1, sqlite3FreeX);
|
||||
}
|
||||
}
|
||||
#endif /* !SQLITE_OMIT_TRIGGER */
|
||||
|
||||
/*
|
||||
** Register built-in functions used to help implement ALTER TABLE
|
||||
*/
|
||||
void sqlite3AlterFunctions(sqlite3 *db){
|
||||
static const struct {
|
||||
char *zName;
|
||||
signed char nArg;
|
||||
void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
|
||||
} aFuncs[] = {
|
||||
{ "sqlite_rename_table", 2, renameTableFunc},
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
{ "sqlite_rename_trigger", 2, renameTriggerFunc},
|
||||
#endif
|
||||
};
|
||||
int i;
|
||||
|
||||
for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
|
||||
sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
|
||||
SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate the text of a WHERE expression which can be used to select all
|
||||
** temporary triggers on table pTab from the sqlite_temp_master table. If
|
||||
** table pTab has no temporary triggers, or is itself stored in the
|
||||
** temporary database, NULL is returned.
|
||||
*/
|
||||
static char *whereTempTriggers(Parse *pParse, Table *pTab){
|
||||
Trigger *pTrig;
|
||||
char *zWhere = 0;
|
||||
char *tmp = 0;
|
||||
const Schema *pTempSchema = pParse->db->aDb[1].pSchema; /* Temp db schema */
|
||||
|
||||
/* If the table is not located in the temp-db (in which case NULL is
|
||||
** returned, loop through the tables list of triggers. For each trigger
|
||||
** that is not part of the temp-db schema, add a clause to the WHERE
|
||||
** expression being built up in zWhere.
|
||||
*/
|
||||
if( pTab->pSchema!=pTempSchema ){
|
||||
for( pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext ){
|
||||
if( pTrig->pSchema==pTempSchema ){
|
||||
if( !zWhere ){
|
||||
zWhere = sqlite3MPrintf("name=%Q", pTrig->name);
|
||||
}else{
|
||||
tmp = zWhere;
|
||||
zWhere = sqlite3MPrintf("%s OR name=%Q", zWhere, pTrig->name);
|
||||
sqliteFree(tmp);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return zWhere;
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code to drop and reload the internal representation of table
|
||||
** pTab from the database, including triggers and temporary triggers.
|
||||
** Argument zName is the name of the table in the database schema at
|
||||
** the time the generated code is executed. This can be different from
|
||||
** pTab->zName if this function is being called to code part of an
|
||||
** "ALTER TABLE RENAME TO" statement.
|
||||
*/
|
||||
static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){
|
||||
Vdbe *v;
|
||||
char *zWhere;
|
||||
int iDb; /* Index of database containing pTab */
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
Trigger *pTrig;
|
||||
#endif
|
||||
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
if( !v ) return;
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
||||
assert( iDb>=0 );
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
/* Drop any table triggers from the internal schema. */
|
||||
for(pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext){
|
||||
int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
|
||||
assert( iTrigDb==iDb || iTrigDb==1 );
|
||||
sqlite3VdbeOp3(v, OP_DropTrigger, iTrigDb, 0, pTrig->name, 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Drop the table and index from the internal schema */
|
||||
sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0);
|
||||
|
||||
/* Reload the table, index and permanent trigger schemas. */
|
||||
zWhere = sqlite3MPrintf("tbl_name=%Q", zName);
|
||||
if( !zWhere ) return;
|
||||
sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, zWhere, P3_DYNAMIC);
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
/* Now, if the table is not stored in the temp database, reload any temp
|
||||
** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined.
|
||||
*/
|
||||
if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
|
||||
sqlite3VdbeOp3(v, OP_ParseSchema, 1, 0, zWhere, P3_DYNAMIC);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy"
|
||||
** command.
|
||||
*/
|
||||
void sqlite3AlterRenameTable(
|
||||
Parse *pParse, /* Parser context. */
|
||||
SrcList *pSrc, /* The table to rename. */
|
||||
Token *pName /* The new table name. */
|
||||
){
|
||||
int iDb; /* Database that contains the table */
|
||||
char *zDb; /* Name of database iDb */
|
||||
Table *pTab; /* Table being renamed */
|
||||
char *zName = 0; /* NULL-terminated version of pName */
|
||||
sqlite3 *db = pParse->db; /* Database connection */
|
||||
Vdbe *v;
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
char *zWhere = 0; /* Where clause to locate temp triggers */
|
||||
#endif
|
||||
|
||||
if( sqlite3MallocFailed() ) goto exit_rename_table;
|
||||
assert( pSrc->nSrc==1 );
|
||||
|
||||
pTab = sqlite3LocateTable(pParse, pSrc->a[0].zName, pSrc->a[0].zDatabase);
|
||||
if( !pTab ) goto exit_rename_table;
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
||||
zDb = db->aDb[iDb].zName;
|
||||
|
||||
/* Get a NULL terminated version of the new table name. */
|
||||
zName = sqlite3NameFromToken(pName);
|
||||
if( !zName ) goto exit_rename_table;
|
||||
|
||||
/* Check that a table or index named 'zName' does not already exist
|
||||
** in database iDb. If so, this is an error.
|
||||
*/
|
||||
if( sqlite3FindTable(db, zName, zDb) || sqlite3FindIndex(db, zName, zDb) ){
|
||||
sqlite3ErrorMsg(pParse,
|
||||
"there is already another table or index with this name: %s", zName);
|
||||
goto exit_rename_table;
|
||||
}
|
||||
|
||||
/* Make sure it is not a system table being altered, or a reserved name
|
||||
** that the table is being renamed to.
|
||||
*/
|
||||
if( strlen(pTab->zName)>6 && 0==sqlite3StrNICmp(pTab->zName, "sqlite_", 7) ){
|
||||
sqlite3ErrorMsg(pParse, "table %s may not be altered", pTab->zName);
|
||||
goto exit_rename_table;
|
||||
}
|
||||
if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
|
||||
goto exit_rename_table;
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
/* Invoke the authorization callback. */
|
||||
if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
|
||||
goto exit_rename_table;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Begin a transaction and code the VerifyCookie for database iDb.
|
||||
** Then modify the schema cookie (since the ALTER TABLE modifies the
|
||||
** schema).
|
||||
*/
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
if( v==0 ){
|
||||
goto exit_rename_table;
|
||||
}
|
||||
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
||||
sqlite3ChangeCookie(db, v, iDb);
|
||||
|
||||
/* Modify the sqlite_master table to use the new table name. */
|
||||
sqlite3NestedParse(pParse,
|
||||
"UPDATE %Q.%s SET "
|
||||
#ifdef SQLITE_OMIT_TRIGGER
|
||||
"sql = sqlite_rename_table(sql, %Q), "
|
||||
#else
|
||||
"sql = CASE "
|
||||
"WHEN type = 'trigger' THEN sqlite_rename_trigger(sql, %Q)"
|
||||
"ELSE sqlite_rename_table(sql, %Q) END, "
|
||||
#endif
|
||||
"tbl_name = %Q, "
|
||||
"name = CASE "
|
||||
"WHEN type='table' THEN %Q "
|
||||
"WHEN name LIKE 'sqlite_autoindex%%' AND type='index' THEN "
|
||||
"'sqlite_autoindex_' || %Q || substr(name, %d+18,10) "
|
||||
"ELSE name END "
|
||||
"WHERE tbl_name=%Q AND "
|
||||
"(type='table' OR type='index' OR type='trigger');",
|
||||
zDb, SCHEMA_TABLE(iDb), zName, zName, zName,
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
zName,
|
||||
#endif
|
||||
zName, strlen(pTab->zName), pTab->zName
|
||||
);
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
||||
/* If the sqlite_sequence table exists in this database, then update
|
||||
** it with the new table name.
|
||||
*/
|
||||
if( sqlite3FindTable(db, "sqlite_sequence", zDb) ){
|
||||
sqlite3NestedParse(pParse,
|
||||
"UPDATE %Q.sqlite_sequence set name = %Q WHERE name = %Q",
|
||||
zDb, zName, pTab->zName);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
/* If there are TEMP triggers on this table, modify the sqlite_temp_master
|
||||
** table. Don't do this if the table being ALTERed is itself located in
|
||||
** the temp database.
|
||||
*/
|
||||
if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
|
||||
sqlite3NestedParse(pParse,
|
||||
"UPDATE sqlite_temp_master SET "
|
||||
"sql = sqlite_rename_trigger(sql, %Q), "
|
||||
"tbl_name = %Q "
|
||||
"WHERE %s;", zName, zName, zWhere);
|
||||
sqliteFree(zWhere);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Drop and reload the internal table schema. */
|
||||
reloadTableSchema(pParse, pTab, zName);
|
||||
|
||||
exit_rename_table:
|
||||
sqlite3SrcListDelete(pSrc);
|
||||
sqliteFree(zName);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** This function is called after an "ALTER TABLE ... ADD" statement
|
||||
** has been parsed. Argument pColDef contains the text of the new
|
||||
** column definition.
|
||||
**
|
||||
** The Table structure pParse->pNewTable was extended to include
|
||||
** the new column during parsing.
|
||||
*/
|
||||
void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
|
||||
Table *pNew; /* Copy of pParse->pNewTable */
|
||||
Table *pTab; /* Table being altered */
|
||||
int iDb; /* Database number */
|
||||
const char *zDb; /* Database name */
|
||||
const char *zTab; /* Table name */
|
||||
char *zCol; /* Null-terminated column definition */
|
||||
Column *pCol; /* The new column */
|
||||
Expr *pDflt; /* Default value for the new column */
|
||||
|
||||
if( pParse->nErr ) return;
|
||||
pNew = pParse->pNewTable;
|
||||
assert( pNew );
|
||||
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pNew->pSchema);
|
||||
zDb = pParse->db->aDb[iDb].zName;
|
||||
zTab = pNew->zName;
|
||||
pCol = &pNew->aCol[pNew->nCol-1];
|
||||
pDflt = pCol->pDflt;
|
||||
pTab = sqlite3FindTable(pParse->db, zTab, zDb);
|
||||
assert( pTab );
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
/* Invoke the authorization callback. */
|
||||
if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* If the default value for the new column was specified with a
|
||||
** literal NULL, then set pDflt to 0. This simplifies checking
|
||||
** for an SQL NULL default below.
|
||||
*/
|
||||
if( pDflt && pDflt->op==TK_NULL ){
|
||||
pDflt = 0;
|
||||
}
|
||||
|
||||
/* Check that the new column is not specified as PRIMARY KEY or UNIQUE.
|
||||
** If there is a NOT NULL constraint, then the default value for the
|
||||
** column must not be NULL.
|
||||
*/
|
||||
if( pCol->isPrimKey ){
|
||||
sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column");
|
||||
return;
|
||||
}
|
||||
if( pNew->pIndex ){
|
||||
sqlite3ErrorMsg(pParse, "Cannot add a UNIQUE column");
|
||||
return;
|
||||
}
|
||||
if( pCol->notNull && !pDflt ){
|
||||
sqlite3ErrorMsg(pParse,
|
||||
"Cannot add a NOT NULL column with default value NULL");
|
||||
return;
|
||||
}
|
||||
|
||||
/* Ensure the default expression is something that sqlite3ValueFromExpr()
|
||||
** can handle (i.e. not CURRENT_TIME etc.)
|
||||
*/
|
||||
if( pDflt ){
|
||||
sqlite3_value *pVal;
|
||||
if( sqlite3ValueFromExpr(pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){
|
||||
/* malloc() has failed */
|
||||
return;
|
||||
}
|
||||
if( !pVal ){
|
||||
sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default");
|
||||
return;
|
||||
}
|
||||
sqlite3ValueFree(pVal);
|
||||
}
|
||||
|
||||
/* Modify the CREATE TABLE statement. */
|
||||
zCol = sqliteStrNDup((char*)pColDef->z, pColDef->n);
|
||||
if( zCol ){
|
||||
char *zEnd = &zCol[pColDef->n-1];
|
||||
while( (zEnd>zCol && *zEnd==';') || isspace(*(unsigned char *)zEnd) ){
|
||||
*zEnd-- = '\0';
|
||||
}
|
||||
sqlite3NestedParse(pParse,
|
||||
"UPDATE %Q.%s SET "
|
||||
"sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d,length(sql)) "
|
||||
"WHERE type = 'table' AND name = %Q",
|
||||
zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1,
|
||||
zTab
|
||||
);
|
||||
sqliteFree(zCol);
|
||||
}
|
||||
|
||||
/* If the default value of the new column is NULL, then set the file
|
||||
** format to 2. If the default value of the new column is not NULL,
|
||||
** the file format becomes 3.
|
||||
*/
|
||||
sqlite3MinimumFileFormat(pParse, iDb, pDflt ? 3 : 2);
|
||||
|
||||
/* Reload the schema of the modified table. */
|
||||
reloadTableSchema(pParse, pTab, pTab->zName);
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is called by the parser after the table-name in
|
||||
** an "ALTER TABLE <table-name> ADD" statement is parsed. Argument
|
||||
** pSrc is the full-name of the table being altered.
|
||||
**
|
||||
** This routine makes a (partial) copy of the Table structure
|
||||
** for the table being altered and sets Parse.pNewTable to point
|
||||
** to it. Routines called by the parser as the column definition
|
||||
** is parsed (i.e. sqlite3AddColumn()) add the new Column data to
|
||||
** the copy. The copy of the Table structure is deleted by tokenize.c
|
||||
** after parsing is finished.
|
||||
**
|
||||
** Routine sqlite3AlterFinishAddColumn() will be called to complete
|
||||
** coding the "ALTER TABLE ... ADD" statement.
|
||||
*/
|
||||
void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){
|
||||
Table *pNew;
|
||||
Table *pTab;
|
||||
Vdbe *v;
|
||||
int iDb;
|
||||
int i;
|
||||
int nAlloc;
|
||||
|
||||
/* Look up the table being altered. */
|
||||
assert( pParse->pNewTable==0 );
|
||||
if( sqlite3MallocFailed() ) goto exit_begin_add_column;
|
||||
pTab = sqlite3LocateTable(pParse, pSrc->a[0].zName, pSrc->a[0].zDatabase);
|
||||
if( !pTab ) goto exit_begin_add_column;
|
||||
|
||||
/* Make sure this is not an attempt to ALTER a view. */
|
||||
if( pTab->pSelect ){
|
||||
sqlite3ErrorMsg(pParse, "Cannot add a column to a view");
|
||||
goto exit_begin_add_column;
|
||||
}
|
||||
|
||||
assert( pTab->addColOffset>0 );
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
||||
|
||||
/* Put a copy of the Table struct in Parse.pNewTable for the
|
||||
** sqlite3AddColumn() function and friends to modify.
|
||||
*/
|
||||
pNew = (Table *)sqliteMalloc(sizeof(Table));
|
||||
if( !pNew ) goto exit_begin_add_column;
|
||||
pParse->pNewTable = pNew;
|
||||
pNew->nRef = 1;
|
||||
pNew->nCol = pTab->nCol;
|
||||
assert( pNew->nCol>0 );
|
||||
nAlloc = (((pNew->nCol-1)/8)*8)+8;
|
||||
assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 );
|
||||
pNew->aCol = (Column *)sqliteMalloc(sizeof(Column)*nAlloc);
|
||||
pNew->zName = sqliteStrDup(pTab->zName);
|
||||
if( !pNew->aCol || !pNew->zName ){
|
||||
goto exit_begin_add_column;
|
||||
}
|
||||
memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol);
|
||||
for(i=0; i<pNew->nCol; i++){
|
||||
Column *pCol = &pNew->aCol[i];
|
||||
pCol->zName = sqliteStrDup(pCol->zName);
|
||||
pCol->zColl = 0;
|
||||
pCol->zType = 0;
|
||||
pCol->pDflt = 0;
|
||||
}
|
||||
pNew->pSchema = pParse->db->aDb[iDb].pSchema;
|
||||
pNew->addColOffset = pTab->addColOffset;
|
||||
pNew->nRef = 1;
|
||||
|
||||
/* Begin a transaction and increment the schema cookie. */
|
||||
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
if( !v ) goto exit_begin_add_column;
|
||||
sqlite3ChangeCookie(pParse->db, v, iDb);
|
||||
|
||||
exit_begin_add_column:
|
||||
sqlite3SrcListDelete(pSrc);
|
||||
return;
|
||||
}
|
||||
#endif /* SQLITE_ALTER_TABLE */
|
|
@ -0,0 +1,403 @@
|
|||
/*
|
||||
** 2005 July 8
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains code associated with the ANALYZE command.
|
||||
**
|
||||
** @(#) $Id: analyze.c,v 1.6 2007/06/19 23:47:38 sdwilsh%shawnwilsher.com Exp $
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_ANALYZE
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** This routine generates code that opens the sqlite_stat1 table on cursor
|
||||
** iStatCur.
|
||||
**
|
||||
** If the sqlite_stat1 tables does not previously exist, it is created.
|
||||
** If it does previously exist, all entires associated with table zWhere
|
||||
** are removed. If zWhere==0 then all entries are removed.
|
||||
*/
|
||||
static void openStatTable(
|
||||
Parse *pParse, /* Parsing context */
|
||||
int iDb, /* The database we are looking in */
|
||||
int iStatCur, /* Open the sqlite_stat1 table on this cursor */
|
||||
const char *zWhere /* Delete entries associated with this table */
|
||||
){
|
||||
sqlite3 *db = pParse->db;
|
||||
Db *pDb;
|
||||
int iRootPage;
|
||||
Table *pStat;
|
||||
Vdbe *v = sqlite3GetVdbe(pParse);
|
||||
|
||||
pDb = &db->aDb[iDb];
|
||||
if( (pStat = sqlite3FindTable(db, "sqlite_stat1", pDb->zName))==0 ){
|
||||
/* The sqlite_stat1 tables does not exist. Create it.
|
||||
** Note that a side-effect of the CREATE TABLE statement is to leave
|
||||
** the rootpage of the new table on the top of the stack. This is
|
||||
** important because the OpenWrite opcode below will be needing it. */
|
||||
sqlite3NestedParse(pParse,
|
||||
"CREATE TABLE %Q.sqlite_stat1(tbl,idx,stat)",
|
||||
pDb->zName
|
||||
);
|
||||
iRootPage = 0; /* Cause rootpage to be taken from top of stack */
|
||||
}else if( zWhere ){
|
||||
/* The sqlite_stat1 table exists. Delete all entries associated with
|
||||
** the table zWhere. */
|
||||
sqlite3NestedParse(pParse,
|
||||
"DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q",
|
||||
pDb->zName, zWhere
|
||||
);
|
||||
iRootPage = pStat->tnum;
|
||||
}else{
|
||||
/* The sqlite_stat1 table already exists. Delete all rows. */
|
||||
iRootPage = pStat->tnum;
|
||||
sqlite3VdbeAddOp(v, OP_Clear, pStat->tnum, iDb);
|
||||
}
|
||||
|
||||
/* Open the sqlite_stat1 table for writing. Unless it was created
|
||||
** by this vdbe program, lock it for writing at the shared-cache level.
|
||||
** If this vdbe did create the sqlite_stat1 table, then it must have
|
||||
** already obtained a schema-lock, making the write-lock redundant.
|
||||
*/
|
||||
if( iRootPage>0 ){
|
||||
sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1");
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
|
||||
sqlite3VdbeAddOp(v, OP_OpenWrite, iStatCur, iRootPage);
|
||||
sqlite3VdbeAddOp(v, OP_SetNumColumns, iStatCur, 3);
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code to do an analysis of all indices associated with
|
||||
** a single table.
|
||||
*/
|
||||
static void analyzeOneTable(
|
||||
Parse *pParse, /* Parser context */
|
||||
Table *pTab, /* Table whose indices are to be analyzed */
|
||||
int iStatCur, /* Cursor that writes to the sqlite_stat1 table */
|
||||
int iMem /* Available memory locations begin here */
|
||||
){
|
||||
Index *pIdx; /* An index to being analyzed */
|
||||
int iIdxCur; /* Cursor number for index being analyzed */
|
||||
int nCol; /* Number of columns in the index */
|
||||
Vdbe *v; /* The virtual machine being built up */
|
||||
int i; /* Loop counter */
|
||||
int topOfLoop; /* The top of the loop */
|
||||
int endOfLoop; /* The end of the loop */
|
||||
int addr; /* The address of an instruction */
|
||||
int iDb; /* Index of database containing pTab */
|
||||
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
if( pTab==0 || pTab->pIndex==0 ){
|
||||
/* Do no analysis for tables that have no indices */
|
||||
return;
|
||||
}
|
||||
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
||||
assert( iDb>=0 );
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
|
||||
pParse->db->aDb[iDb].zName ) ){
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Establish a read-lock on the table at the shared-cache level. */
|
||||
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
|
||||
|
||||
iIdxCur = pParse->nTab;
|
||||
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
||||
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
|
||||
|
||||
/* Open a cursor to the index to be analyzed
|
||||
*/
|
||||
assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) );
|
||||
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
|
||||
VdbeComment((v, "# %s", pIdx->zName));
|
||||
sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum,
|
||||
(char *)pKey, P3_KEYINFO_HANDOFF);
|
||||
nCol = pIdx->nColumn;
|
||||
if( iMem+nCol*2>=pParse->nMem ){
|
||||
pParse->nMem = iMem+nCol*2+1;
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, nCol+1);
|
||||
|
||||
/* Memory cells are used as follows:
|
||||
**
|
||||
** mem[iMem]: The total number of rows in the table.
|
||||
** mem[iMem+1]: Number of distinct values in column 1
|
||||
** ...
|
||||
** mem[iMem+nCol]: Number of distinct values in column N
|
||||
** mem[iMem+nCol+1] Last observed value of column 1
|
||||
** ...
|
||||
** mem[iMem+nCol+nCol]: Last observed value of column N
|
||||
**
|
||||
** Cells iMem through iMem+nCol are initialized to 0. The others
|
||||
** are initialized to NULL.
|
||||
*/
|
||||
for(i=0; i<=nCol; i++){
|
||||
sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem+i);
|
||||
}
|
||||
for(i=0; i<nCol; i++){
|
||||
sqlite3VdbeAddOp(v, OP_MemNull, iMem+nCol+i+1, 0);
|
||||
}
|
||||
|
||||
/* Do the analysis.
|
||||
*/
|
||||
endOfLoop = sqlite3VdbeMakeLabel(v);
|
||||
sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, endOfLoop);
|
||||
topOfLoop = sqlite3VdbeCurrentAddr(v);
|
||||
sqlite3VdbeAddOp(v, OP_MemIncr, 1, iMem);
|
||||
for(i=0; i<nCol; i++){
|
||||
sqlite3VdbeAddOp(v, OP_Column, iIdxCur, i);
|
||||
sqlite3VdbeAddOp(v, OP_MemLoad, iMem+nCol+i+1, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Ne, 0x100, 0);
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_Goto, 0, endOfLoop);
|
||||
for(i=0; i<nCol; i++){
|
||||
addr = sqlite3VdbeAddOp(v, OP_MemIncr, 1, iMem+i+1);
|
||||
sqlite3VdbeChangeP2(v, topOfLoop + 3*i + 3, addr);
|
||||
sqlite3VdbeAddOp(v, OP_Column, iIdxCur, i);
|
||||
sqlite3VdbeAddOp(v, OP_MemStore, iMem+nCol+i+1, 1);
|
||||
}
|
||||
sqlite3VdbeResolveLabel(v, endOfLoop);
|
||||
sqlite3VdbeAddOp(v, OP_Next, iIdxCur, topOfLoop);
|
||||
sqlite3VdbeAddOp(v, OP_Close, iIdxCur, 0);
|
||||
|
||||
/* Store the results.
|
||||
**
|
||||
** The result is a single row of the sqlite_stmt1 table. The first
|
||||
** two columns are the names of the table and index. The third column
|
||||
** is a string composed of a list of integer statistics about the
|
||||
** index. The first integer in the list is the total number of entires
|
||||
** in the index. There is one additional integer in the list for each
|
||||
** column of the table. This additional integer is a guess of how many
|
||||
** rows of the table the index will select. If D is the count of distinct
|
||||
** values and K is the total number of rows, then the integer is computed
|
||||
** as:
|
||||
**
|
||||
** I = (K+D-1)/D
|
||||
**
|
||||
** If K==0 then no entry is made into the sqlite_stat1 table.
|
||||
** If K>0 then it is always the case the D>0 so division by zero
|
||||
** is never possible.
|
||||
*/
|
||||
sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
|
||||
addr = sqlite3VdbeAddOp(v, OP_IfNot, 0, 0);
|
||||
sqlite3VdbeAddOp(v, OP_NewRowid, iStatCur, 0);
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0, pIdx->zName, 0);
|
||||
sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0, " ", 0);
|
||||
for(i=0; i<nCol; i++){
|
||||
sqlite3VdbeAddOp(v, OP_MemLoad, iMem, 0);
|
||||
sqlite3VdbeAddOp(v, OP_MemLoad, iMem+i+1, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Add, 0, 0);
|
||||
sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
|
||||
sqlite3VdbeAddOp(v, OP_MemLoad, iMem+i+1, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Divide, 0, 0);
|
||||
sqlite3VdbeAddOp(v, OP_ToInt, 0, 0);
|
||||
if( i==nCol-1 ){
|
||||
sqlite3VdbeAddOp(v, OP_Concat, nCol*2-1, 0);
|
||||
}else{
|
||||
sqlite3VdbeAddOp(v, OP_Dup, 1, 0);
|
||||
}
|
||||
}
|
||||
sqlite3VdbeOp3(v, OP_MakeRecord, 3, 0, "aaa", 0);
|
||||
sqlite3VdbeAddOp(v, OP_Insert, iStatCur, 0);
|
||||
sqlite3VdbeJumpHere(v, addr);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code that will cause the most recent index analysis to
|
||||
** be laoded into internal hash tables where is can be used.
|
||||
*/
|
||||
static void loadAnalysis(Parse *pParse, int iDb){
|
||||
Vdbe *v = sqlite3GetVdbe(pParse);
|
||||
sqlite3VdbeAddOp(v, OP_LoadAnalysis, iDb, 0);
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code that will do an analysis of an entire database
|
||||
*/
|
||||
static void analyzeDatabase(Parse *pParse, int iDb){
|
||||
sqlite3 *db = pParse->db;
|
||||
Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
|
||||
HashElem *k;
|
||||
int iStatCur;
|
||||
int iMem;
|
||||
|
||||
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
||||
iStatCur = pParse->nTab++;
|
||||
openStatTable(pParse, iDb, iStatCur, 0);
|
||||
iMem = pParse->nMem;
|
||||
for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
|
||||
Table *pTab = (Table*)sqliteHashData(k);
|
||||
analyzeOneTable(pParse, pTab, iStatCur, iMem);
|
||||
}
|
||||
loadAnalysis(pParse, iDb);
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code that will do an analysis of a single table in
|
||||
** a database.
|
||||
*/
|
||||
static void analyzeTable(Parse *pParse, Table *pTab){
|
||||
int iDb;
|
||||
int iStatCur;
|
||||
|
||||
assert( pTab!=0 );
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
||||
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
||||
iStatCur = pParse->nTab++;
|
||||
openStatTable(pParse, iDb, iStatCur, pTab->zName);
|
||||
analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem);
|
||||
loadAnalysis(pParse, iDb);
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code for the ANALYZE command. The parser calls this routine
|
||||
** when it recognizes an ANALYZE command.
|
||||
**
|
||||
** ANALYZE -- 1
|
||||
** ANALYZE <database> -- 2
|
||||
** ANALYZE ?<database>.?<tablename> -- 3
|
||||
**
|
||||
** Form 1 causes all indices in all attached databases to be analyzed.
|
||||
** Form 2 analyzes all indices the single database named.
|
||||
** Form 3 analyzes all indices associated with the named table.
|
||||
*/
|
||||
void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
|
||||
sqlite3 *db = pParse->db;
|
||||
int iDb;
|
||||
int i;
|
||||
char *z, *zDb;
|
||||
Table *pTab;
|
||||
Token *pTableName;
|
||||
|
||||
/* Read the database schema. If an error occurs, leave an error message
|
||||
** and code in pParse and return NULL. */
|
||||
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
||||
return;
|
||||
}
|
||||
|
||||
if( pName1==0 ){
|
||||
/* Form 1: Analyze everything */
|
||||
for(i=0; i<db->nDb; i++){
|
||||
if( i==1 ) continue; /* Do not analyze the TEMP database */
|
||||
analyzeDatabase(pParse, i);
|
||||
}
|
||||
}else if( pName2==0 || pName2->n==0 ){
|
||||
/* Form 2: Analyze the database or table named */
|
||||
iDb = sqlite3FindDb(db, pName1);
|
||||
if( iDb>=0 ){
|
||||
analyzeDatabase(pParse, iDb);
|
||||
}else{
|
||||
z = sqlite3NameFromToken(pName1);
|
||||
pTab = sqlite3LocateTable(pParse, z, 0);
|
||||
sqliteFree(z);
|
||||
if( pTab ){
|
||||
analyzeTable(pParse, pTab);
|
||||
}
|
||||
}
|
||||
}else{
|
||||
/* Form 3: Analyze the fully qualified table name */
|
||||
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
|
||||
if( iDb>=0 ){
|
||||
zDb = db->aDb[iDb].zName;
|
||||
z = sqlite3NameFromToken(pTableName);
|
||||
pTab = sqlite3LocateTable(pParse, z, zDb);
|
||||
sqliteFree(z);
|
||||
if( pTab ){
|
||||
analyzeTable(pParse, pTab);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Used to pass information from the analyzer reader through to the
|
||||
** callback routine.
|
||||
*/
|
||||
typedef struct analysisInfo analysisInfo;
|
||||
struct analysisInfo {
|
||||
sqlite3 *db;
|
||||
const char *zDatabase;
|
||||
};
|
||||
|
||||
/*
|
||||
** This callback is invoked once for each index when reading the
|
||||
** sqlite_stat1 table.
|
||||
**
|
||||
** argv[0] = name of the index
|
||||
** argv[1] = results of analysis - on integer for each column
|
||||
*/
|
||||
static int analysisLoader(void *pData, int argc, char **argv, char **azNotUsed){
|
||||
analysisInfo *pInfo = (analysisInfo*)pData;
|
||||
Index *pIndex;
|
||||
int i, c;
|
||||
unsigned int v;
|
||||
const char *z;
|
||||
|
||||
assert( argc==2 );
|
||||
if( argv==0 || argv[0]==0 || argv[1]==0 ){
|
||||
return 0;
|
||||
}
|
||||
pIndex = sqlite3FindIndex(pInfo->db, argv[0], pInfo->zDatabase);
|
||||
if( pIndex==0 ){
|
||||
return 0;
|
||||
}
|
||||
z = argv[1];
|
||||
for(i=0; *z && i<=pIndex->nColumn; i++){
|
||||
v = 0;
|
||||
while( (c=z[0])>='0' && c<='9' ){
|
||||
v = v*10 + c - '0';
|
||||
z++;
|
||||
}
|
||||
pIndex->aiRowEst[i] = v;
|
||||
if( *z==' ' ) z++;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Load the content of the sqlite_stat1 table into the index hash tables.
|
||||
*/
|
||||
void sqlite3AnalysisLoad(sqlite3 *db, int iDb){
|
||||
analysisInfo sInfo;
|
||||
HashElem *i;
|
||||
char *zSql;
|
||||
|
||||
/* Clear any prior statistics */
|
||||
for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
|
||||
Index *pIdx = sqliteHashData(i);
|
||||
sqlite3DefaultRowEst(pIdx);
|
||||
}
|
||||
|
||||
/* Check to make sure the sqlite_stat1 table existss */
|
||||
sInfo.db = db;
|
||||
sInfo.zDatabase = db->aDb[iDb].zName;
|
||||
if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
/* Load new statistics out of the sqlite_stat1 table */
|
||||
zSql = sqlite3MPrintf("SELECT idx, stat FROM %Q.sqlite_stat1",
|
||||
sInfo.zDatabase);
|
||||
sqlite3SafetyOff(db);
|
||||
sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
|
||||
sqlite3SafetyOn(db);
|
||||
sqliteFree(zSql);
|
||||
}
|
||||
|
||||
|
||||
#endif /* SQLITE_OMIT_ANALYZE */
|
|
@ -0,0 +1,498 @@
|
|||
/*
|
||||
** 2003 April 6
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains code used to implement the ATTACH and DETACH commands.
|
||||
**
|
||||
** $Id: attach.c,v 1.51 2006/04/10 13:37:47 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** Resolve an expression that was part of an ATTACH or DETACH statement. This
|
||||
** is slightly different from resolving a normal SQL expression, because simple
|
||||
** identifiers are treated as strings, not possible column names or aliases.
|
||||
**
|
||||
** i.e. if the parser sees:
|
||||
**
|
||||
** ATTACH DATABASE abc AS def
|
||||
**
|
||||
** it treats the two expressions as literal strings 'abc' and 'def' instead of
|
||||
** looking for columns of the same name.
|
||||
**
|
||||
** This only applies to the root node of pExpr, so the statement:
|
||||
**
|
||||
** ATTACH DATABASE abc||def AS 'db2'
|
||||
**
|
||||
** will fail because neither abc or def can be resolved.
|
||||
*/
|
||||
static int resolveAttachExpr(NameContext *pName, Expr *pExpr)
|
||||
{
|
||||
int rc = SQLITE_OK;
|
||||
if( pExpr ){
|
||||
if( pExpr->op!=TK_ID ){
|
||||
rc = sqlite3ExprResolveNames(pName, pExpr);
|
||||
}else{
|
||||
pExpr->op = TK_STRING;
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** An SQL user-function registered to do the work of an ATTACH statement. The
|
||||
** three arguments to the function come directly from an attach statement:
|
||||
**
|
||||
** ATTACH DATABASE x AS y KEY z
|
||||
**
|
||||
** SELECT sqlite_attach(x, y, z)
|
||||
**
|
||||
** If the optional "KEY z" syntax is omitted, an SQL NULL is passed as the
|
||||
** third argument.
|
||||
*/
|
||||
static void attachFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
int i;
|
||||
int rc = 0;
|
||||
sqlite3 *db = sqlite3_user_data(context);
|
||||
const char *zName;
|
||||
const char *zFile;
|
||||
Db *aNew;
|
||||
char zErr[128];
|
||||
char *zErrDyn = 0;
|
||||
|
||||
zFile = (const char *)sqlite3_value_text(argv[0]);
|
||||
zName = (const char *)sqlite3_value_text(argv[1]);
|
||||
|
||||
/* Check for the following errors:
|
||||
**
|
||||
** * Too many attached databases,
|
||||
** * Transaction currently open
|
||||
** * Specified database name already being used.
|
||||
*/
|
||||
if( db->nDb>=MAX_ATTACHED+2 ){
|
||||
sqlite3_snprintf(
|
||||
127, zErr, "too many attached databases - max %d", MAX_ATTACHED
|
||||
);
|
||||
goto attach_error;
|
||||
}
|
||||
if( !db->autoCommit ){
|
||||
strcpy(zErr, "cannot ATTACH database within transaction");
|
||||
goto attach_error;
|
||||
}
|
||||
for(i=0; i<db->nDb; i++){
|
||||
char *z = db->aDb[i].zName;
|
||||
if( z && sqlite3StrICmp(z, zName)==0 ){
|
||||
sqlite3_snprintf(127, zErr, "database %s is already in use", zName);
|
||||
goto attach_error;
|
||||
}
|
||||
}
|
||||
|
||||
/* Allocate the new entry in the db->aDb[] array and initialise the schema
|
||||
** hash tables.
|
||||
*/
|
||||
if( db->aDb==db->aDbStatic ){
|
||||
aNew = sqliteMalloc( sizeof(db->aDb[0])*3 );
|
||||
if( aNew==0 ){
|
||||
return;
|
||||
}
|
||||
memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
|
||||
}else{
|
||||
aNew = sqliteRealloc(db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
|
||||
if( aNew==0 ){
|
||||
return;
|
||||
}
|
||||
}
|
||||
db->aDb = aNew;
|
||||
aNew = &db->aDb[db->nDb++];
|
||||
memset(aNew, 0, sizeof(*aNew));
|
||||
|
||||
/* Open the database file. If the btree is successfully opened, use
|
||||
** it to obtain the database schema. At this point the schema may
|
||||
** or may not be initialised.
|
||||
*/
|
||||
rc = sqlite3BtreeFactory(db, zFile, 0, MAX_PAGES, &aNew->pBt);
|
||||
if( rc==SQLITE_OK ){
|
||||
aNew->pSchema = sqlite3SchemaGet(aNew->pBt);
|
||||
if( !aNew->pSchema ){
|
||||
rc = SQLITE_NOMEM;
|
||||
}else if( aNew->pSchema->file_format && aNew->pSchema->enc!=ENC(db) ){
|
||||
strcpy(zErr,
|
||||
"attached databases must use the same text encoding as main database");
|
||||
goto attach_error;
|
||||
}
|
||||
}
|
||||
aNew->zName = sqliteStrDup(zName);
|
||||
aNew->safety_level = 3;
|
||||
|
||||
#if SQLITE_HAS_CODEC
|
||||
{
|
||||
extern int sqlite3CodecAttach(sqlite3*, int, void*, int);
|
||||
extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
|
||||
int nKey;
|
||||
char *zKey;
|
||||
int t = sqlite3_value_type(argv[2]);
|
||||
switch( t ){
|
||||
case SQLITE_INTEGER:
|
||||
case SQLITE_FLOAT:
|
||||
zErrDyn = sqliteStrDup("Invalid key value");
|
||||
rc = SQLITE_ERROR;
|
||||
break;
|
||||
|
||||
case SQLITE_TEXT:
|
||||
case SQLITE_BLOB:
|
||||
nKey = sqlite3_value_bytes(argv[2]);
|
||||
zKey = (char *)sqlite3_value_blob(argv[2]);
|
||||
sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
|
||||
break;
|
||||
|
||||
case SQLITE_NULL:
|
||||
/* No key specified. Use the key from the main database */
|
||||
sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey);
|
||||
sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
|
||||
break;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* If the file was opened successfully, read the schema for the new database.
|
||||
** If this fails, or if opening the file failed, then close the file and
|
||||
** remove the entry from the db->aDb[] array. i.e. put everything back the way
|
||||
** we found it.
|
||||
*/
|
||||
if( rc==SQLITE_OK ){
|
||||
sqlite3SafetyOn(db);
|
||||
rc = sqlite3Init(db, &zErrDyn);
|
||||
sqlite3SafetyOff(db);
|
||||
}
|
||||
if( rc ){
|
||||
int iDb = db->nDb - 1;
|
||||
assert( iDb>=2 );
|
||||
if( db->aDb[iDb].pBt ){
|
||||
sqlite3BtreeClose(db->aDb[iDb].pBt);
|
||||
db->aDb[iDb].pBt = 0;
|
||||
db->aDb[iDb].pSchema = 0;
|
||||
}
|
||||
sqlite3ResetInternalSchema(db, 0);
|
||||
db->nDb = iDb;
|
||||
if( rc==SQLITE_NOMEM ){
|
||||
if( !sqlite3MallocFailed() ) sqlite3FailedMalloc();
|
||||
sqlite3_snprintf(127, zErr, "out of memory");
|
||||
}else{
|
||||
sqlite3_snprintf(127, zErr, "unable to open database: %s", zFile);
|
||||
}
|
||||
goto attach_error;
|
||||
}
|
||||
|
||||
return;
|
||||
|
||||
attach_error:
|
||||
/* Return an error if we get here */
|
||||
if( zErrDyn ){
|
||||
sqlite3_result_error(context, zErrDyn, -1);
|
||||
sqliteFree(zErrDyn);
|
||||
}else{
|
||||
zErr[sizeof(zErr)-1] = 0;
|
||||
sqlite3_result_error(context, zErr, -1);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** An SQL user-function registered to do the work of an DETACH statement. The
|
||||
** three arguments to the function come directly from a detach statement:
|
||||
**
|
||||
** DETACH DATABASE x
|
||||
**
|
||||
** SELECT sqlite_detach(x)
|
||||
*/
|
||||
static void detachFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
const char *zName = (const char *)sqlite3_value_text(argv[0]);
|
||||
sqlite3 *db = sqlite3_user_data(context);
|
||||
int i;
|
||||
Db *pDb = 0;
|
||||
char zErr[128];
|
||||
|
||||
assert(zName);
|
||||
for(i=0; i<db->nDb; i++){
|
||||
pDb = &db->aDb[i];
|
||||
if( pDb->pBt==0 ) continue;
|
||||
if( sqlite3StrICmp(pDb->zName, zName)==0 ) break;
|
||||
}
|
||||
|
||||
if( i>=db->nDb ){
|
||||
sqlite3_snprintf(sizeof(zErr), zErr, "no such database: %s", zName);
|
||||
goto detach_error;
|
||||
}
|
||||
if( i<2 ){
|
||||
sqlite3_snprintf(sizeof(zErr), zErr, "cannot detach database %s", zName);
|
||||
goto detach_error;
|
||||
}
|
||||
if( !db->autoCommit ){
|
||||
strcpy(zErr, "cannot DETACH database within transaction");
|
||||
goto detach_error;
|
||||
}
|
||||
|
||||
sqlite3BtreeClose(pDb->pBt);
|
||||
pDb->pBt = 0;
|
||||
pDb->pSchema = 0;
|
||||
sqlite3ResetInternalSchema(db, 0);
|
||||
return;
|
||||
|
||||
detach_error:
|
||||
sqlite3_result_error(context, zErr, -1);
|
||||
}
|
||||
|
||||
/*
|
||||
** This procedure generates VDBE code for a single invocation of either the
|
||||
** sqlite_detach() or sqlite_attach() SQL user functions.
|
||||
*/
|
||||
static void codeAttach(
|
||||
Parse *pParse, /* The parser context */
|
||||
int type, /* Either SQLITE_ATTACH or SQLITE_DETACH */
|
||||
const char *zFunc, /* Either "sqlite_attach" or "sqlite_detach */
|
||||
int nFunc, /* Number of args to pass to zFunc */
|
||||
Expr *pAuthArg, /* Expression to pass to authorization callback */
|
||||
Expr *pFilename, /* Name of database file */
|
||||
Expr *pDbname, /* Name of the database to use internally */
|
||||
Expr *pKey /* Database key for encryption extension */
|
||||
){
|
||||
int rc;
|
||||
NameContext sName;
|
||||
Vdbe *v;
|
||||
FuncDef *pFunc;
|
||||
sqlite3* db = pParse->db;
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
assert( sqlite3MallocFailed() || pAuthArg );
|
||||
if( pAuthArg ){
|
||||
char *zAuthArg = sqlite3NameFromToken(&pAuthArg->span);
|
||||
if( !zAuthArg ){
|
||||
goto attach_end;
|
||||
}
|
||||
rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0);
|
||||
sqliteFree(zAuthArg);
|
||||
if(rc!=SQLITE_OK ){
|
||||
goto attach_end;
|
||||
}
|
||||
}
|
||||
#endif /* SQLITE_OMIT_AUTHORIZATION */
|
||||
|
||||
memset(&sName, 0, sizeof(NameContext));
|
||||
sName.pParse = pParse;
|
||||
|
||||
if(
|
||||
SQLITE_OK!=(rc = resolveAttachExpr(&sName, pFilename)) ||
|
||||
SQLITE_OK!=(rc = resolveAttachExpr(&sName, pDbname)) ||
|
||||
SQLITE_OK!=(rc = resolveAttachExpr(&sName, pKey))
|
||||
){
|
||||
pParse->nErr++;
|
||||
goto attach_end;
|
||||
}
|
||||
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
sqlite3ExprCode(pParse, pFilename);
|
||||
sqlite3ExprCode(pParse, pDbname);
|
||||
sqlite3ExprCode(pParse, pKey);
|
||||
|
||||
assert( v || sqlite3MallocFailed() );
|
||||
if( v ){
|
||||
sqlite3VdbeAddOp(v, OP_Function, 0, nFunc);
|
||||
pFunc = sqlite3FindFunction(db, zFunc, strlen(zFunc), nFunc, SQLITE_UTF8,0);
|
||||
sqlite3VdbeChangeP3(v, -1, (char *)pFunc, P3_FUNCDEF);
|
||||
|
||||
/* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
|
||||
** statement only). For DETACH, set it to false (expire all existing
|
||||
** statements).
|
||||
*/
|
||||
sqlite3VdbeAddOp(v, OP_Expire, (type==SQLITE_ATTACH), 0);
|
||||
}
|
||||
|
||||
attach_end:
|
||||
sqlite3ExprDelete(pFilename);
|
||||
sqlite3ExprDelete(pDbname);
|
||||
sqlite3ExprDelete(pKey);
|
||||
}
|
||||
|
||||
/*
|
||||
** Called by the parser to compile a DETACH statement.
|
||||
**
|
||||
** DETACH pDbname
|
||||
*/
|
||||
void sqlite3Detach(Parse *pParse, Expr *pDbname){
|
||||
codeAttach(pParse, SQLITE_DETACH, "sqlite_detach", 1, pDbname, 0, 0, pDbname);
|
||||
}
|
||||
|
||||
/*
|
||||
** Called by the parser to compile an ATTACH statement.
|
||||
**
|
||||
** ATTACH p AS pDbname KEY pKey
|
||||
*/
|
||||
void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){
|
||||
codeAttach(pParse, SQLITE_ATTACH, "sqlite_attach", 3, p, p, pDbname, pKey);
|
||||
}
|
||||
|
||||
/*
|
||||
** Register the functions sqlite_attach and sqlite_detach.
|
||||
*/
|
||||
void sqlite3AttachFunctions(sqlite3 *db){
|
||||
static const int enc = SQLITE_UTF8;
|
||||
sqlite3CreateFunc(db, "sqlite_attach", 3, enc, db, attachFunc, 0, 0);
|
||||
sqlite3CreateFunc(db, "sqlite_detach", 1, enc, db, detachFunc, 0, 0);
|
||||
}
|
||||
|
||||
/*
|
||||
** Initialize a DbFixer structure. This routine must be called prior
|
||||
** to passing the structure to one of the sqliteFixAAAA() routines below.
|
||||
**
|
||||
** The return value indicates whether or not fixation is required. TRUE
|
||||
** means we do need to fix the database references, FALSE means we do not.
|
||||
*/
|
||||
int sqlite3FixInit(
|
||||
DbFixer *pFix, /* The fixer to be initialized */
|
||||
Parse *pParse, /* Error messages will be written here */
|
||||
int iDb, /* This is the database that must be used */
|
||||
const char *zType, /* "view", "trigger", or "index" */
|
||||
const Token *pName /* Name of the view, trigger, or index */
|
||||
){
|
||||
sqlite3 *db;
|
||||
|
||||
if( iDb<0 || iDb==1 ) return 0;
|
||||
db = pParse->db;
|
||||
assert( db->nDb>iDb );
|
||||
pFix->pParse = pParse;
|
||||
pFix->zDb = db->aDb[iDb].zName;
|
||||
pFix->zType = zType;
|
||||
pFix->pName = pName;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** The following set of routines walk through the parse tree and assign
|
||||
** a specific database to all table references where the database name
|
||||
** was left unspecified in the original SQL statement. The pFix structure
|
||||
** must have been initialized by a prior call to sqlite3FixInit().
|
||||
**
|
||||
** These routines are used to make sure that an index, trigger, or
|
||||
** view in one database does not refer to objects in a different database.
|
||||
** (Exception: indices, triggers, and views in the TEMP database are
|
||||
** allowed to refer to anything.) If a reference is explicitly made
|
||||
** to an object in a different database, an error message is added to
|
||||
** pParse->zErrMsg and these routines return non-zero. If everything
|
||||
** checks out, these routines return 0.
|
||||
*/
|
||||
int sqlite3FixSrcList(
|
||||
DbFixer *pFix, /* Context of the fixation */
|
||||
SrcList *pList /* The Source list to check and modify */
|
||||
){
|
||||
int i;
|
||||
const char *zDb;
|
||||
struct SrcList_item *pItem;
|
||||
|
||||
if( pList==0 ) return 0;
|
||||
zDb = pFix->zDb;
|
||||
for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
|
||||
if( pItem->zDatabase==0 ){
|
||||
pItem->zDatabase = sqliteStrDup(zDb);
|
||||
}else if( sqlite3StrICmp(pItem->zDatabase,zDb)!=0 ){
|
||||
sqlite3ErrorMsg(pFix->pParse,
|
||||
"%s %T cannot reference objects in database %s",
|
||||
pFix->zType, pFix->pName, pItem->zDatabase);
|
||||
return 1;
|
||||
}
|
||||
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
|
||||
if( sqlite3FixSelect(pFix, pItem->pSelect) ) return 1;
|
||||
if( sqlite3FixExpr(pFix, pItem->pOn) ) return 1;
|
||||
#endif
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
|
||||
int sqlite3FixSelect(
|
||||
DbFixer *pFix, /* Context of the fixation */
|
||||
Select *pSelect /* The SELECT statement to be fixed to one database */
|
||||
){
|
||||
while( pSelect ){
|
||||
if( sqlite3FixExprList(pFix, pSelect->pEList) ){
|
||||
return 1;
|
||||
}
|
||||
if( sqlite3FixSrcList(pFix, pSelect->pSrc) ){
|
||||
return 1;
|
||||
}
|
||||
if( sqlite3FixExpr(pFix, pSelect->pWhere) ){
|
||||
return 1;
|
||||
}
|
||||
if( sqlite3FixExpr(pFix, pSelect->pHaving) ){
|
||||
return 1;
|
||||
}
|
||||
pSelect = pSelect->pPrior;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
int sqlite3FixExpr(
|
||||
DbFixer *pFix, /* Context of the fixation */
|
||||
Expr *pExpr /* The expression to be fixed to one database */
|
||||
){
|
||||
while( pExpr ){
|
||||
if( sqlite3FixSelect(pFix, pExpr->pSelect) ){
|
||||
return 1;
|
||||
}
|
||||
if( sqlite3FixExprList(pFix, pExpr->pList) ){
|
||||
return 1;
|
||||
}
|
||||
if( sqlite3FixExpr(pFix, pExpr->pRight) ){
|
||||
return 1;
|
||||
}
|
||||
pExpr = pExpr->pLeft;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
int sqlite3FixExprList(
|
||||
DbFixer *pFix, /* Context of the fixation */
|
||||
ExprList *pList /* The expression to be fixed to one database */
|
||||
){
|
||||
int i;
|
||||
struct ExprList_item *pItem;
|
||||
if( pList==0 ) return 0;
|
||||
for(i=0, pItem=pList->a; i<pList->nExpr; i++, pItem++){
|
||||
if( sqlite3FixExpr(pFix, pItem->pExpr) ){
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
int sqlite3FixTriggerStep(
|
||||
DbFixer *pFix, /* Context of the fixation */
|
||||
TriggerStep *pStep /* The trigger step be fixed to one database */
|
||||
){
|
||||
while( pStep ){
|
||||
if( sqlite3FixSelect(pFix, pStep->pSelect) ){
|
||||
return 1;
|
||||
}
|
||||
if( sqlite3FixExpr(pFix, pStep->pWhere) ){
|
||||
return 1;
|
||||
}
|
||||
if( sqlite3FixExprList(pFix, pStep->pExprList) ){
|
||||
return 1;
|
||||
}
|
||||
pStep = pStep->pNext;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
#endif
|
|
@ -0,0 +1,232 @@
|
|||
/*
|
||||
** 2003 January 11
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains code used to implement the sqlite3_set_authorizer()
|
||||
** API. This facility is an optional feature of the library. Embedded
|
||||
** systems that do not need this facility may omit it by recompiling
|
||||
** the library with -DSQLITE_OMIT_AUTHORIZATION=1
|
||||
**
|
||||
** $Id: auth.c,v 1.24 2006/01/13 13:55:45 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** All of the code in this file may be omitted by defining a single
|
||||
** macro.
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
|
||||
/*
|
||||
** Set or clear the access authorization function.
|
||||
**
|
||||
** The access authorization function is be called during the compilation
|
||||
** phase to verify that the user has read and/or write access permission on
|
||||
** various fields of the database. The first argument to the auth function
|
||||
** is a copy of the 3rd argument to this routine. The second argument
|
||||
** to the auth function is one of these constants:
|
||||
**
|
||||
** SQLITE_CREATE_INDEX
|
||||
** SQLITE_CREATE_TABLE
|
||||
** SQLITE_CREATE_TEMP_INDEX
|
||||
** SQLITE_CREATE_TEMP_TABLE
|
||||
** SQLITE_CREATE_TEMP_TRIGGER
|
||||
** SQLITE_CREATE_TEMP_VIEW
|
||||
** SQLITE_CREATE_TRIGGER
|
||||
** SQLITE_CREATE_VIEW
|
||||
** SQLITE_DELETE
|
||||
** SQLITE_DROP_INDEX
|
||||
** SQLITE_DROP_TABLE
|
||||
** SQLITE_DROP_TEMP_INDEX
|
||||
** SQLITE_DROP_TEMP_TABLE
|
||||
** SQLITE_DROP_TEMP_TRIGGER
|
||||
** SQLITE_DROP_TEMP_VIEW
|
||||
** SQLITE_DROP_TRIGGER
|
||||
** SQLITE_DROP_VIEW
|
||||
** SQLITE_INSERT
|
||||
** SQLITE_PRAGMA
|
||||
** SQLITE_READ
|
||||
** SQLITE_SELECT
|
||||
** SQLITE_TRANSACTION
|
||||
** SQLITE_UPDATE
|
||||
**
|
||||
** The third and fourth arguments to the auth function are the name of
|
||||
** the table and the column that are being accessed. The auth function
|
||||
** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If
|
||||
** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY
|
||||
** means that the SQL statement will never-run - the sqlite3_exec() call
|
||||
** will return with an error. SQLITE_IGNORE means that the SQL statement
|
||||
** should run but attempts to read the specified column will return NULL
|
||||
** and attempts to write the column will be ignored.
|
||||
**
|
||||
** Setting the auth function to NULL disables this hook. The default
|
||||
** setting of the auth function is NULL.
|
||||
*/
|
||||
int sqlite3_set_authorizer(
|
||||
sqlite3 *db,
|
||||
int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
|
||||
void *pArg
|
||||
){
|
||||
db->xAuth = xAuth;
|
||||
db->pAuthArg = pArg;
|
||||
sqlite3ExpirePreparedStatements(db);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Write an error message into pParse->zErrMsg that explains that the
|
||||
** user-supplied authorization function returned an illegal value.
|
||||
*/
|
||||
static void sqliteAuthBadReturnCode(Parse *pParse, int rc){
|
||||
sqlite3ErrorMsg(pParse, "illegal return value (%d) from the "
|
||||
"authorization function - should be SQLITE_OK, SQLITE_IGNORE, "
|
||||
"or SQLITE_DENY", rc);
|
||||
pParse->rc = SQLITE_ERROR;
|
||||
}
|
||||
|
||||
/*
|
||||
** The pExpr should be a TK_COLUMN expression. The table referred to
|
||||
** is in pTabList or else it is the NEW or OLD table of a trigger.
|
||||
** Check to see if it is OK to read this particular column.
|
||||
**
|
||||
** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN
|
||||
** instruction into a TK_NULL. If the auth function returns SQLITE_DENY,
|
||||
** then generate an error.
|
||||
*/
|
||||
void sqlite3AuthRead(
|
||||
Parse *pParse, /* The parser context */
|
||||
Expr *pExpr, /* The expression to check authorization on */
|
||||
SrcList *pTabList /* All table that pExpr might refer to */
|
||||
){
|
||||
sqlite3 *db = pParse->db;
|
||||
int rc;
|
||||
Table *pTab; /* The table being read */
|
||||
const char *zCol; /* Name of the column of the table */
|
||||
int iSrc; /* Index in pTabList->a[] of table being read */
|
||||
const char *zDBase; /* Name of database being accessed */
|
||||
TriggerStack *pStack; /* The stack of current triggers */
|
||||
int iDb; /* The index of the database the expression refers to */
|
||||
|
||||
if( db->xAuth==0 ) return;
|
||||
if( pExpr->op==TK_AS ) return;
|
||||
assert( pExpr->op==TK_COLUMN );
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pExpr->pSchema);
|
||||
if( iDb<0 ){
|
||||
/* An attempt to read a column out of a subquery or other
|
||||
** temporary table. */
|
||||
return;
|
||||
}
|
||||
for(iSrc=0; pTabList && iSrc<pTabList->nSrc; iSrc++){
|
||||
if( pExpr->iTable==pTabList->a[iSrc].iCursor ) break;
|
||||
}
|
||||
if( iSrc>=0 && pTabList && iSrc<pTabList->nSrc ){
|
||||
pTab = pTabList->a[iSrc].pTab;
|
||||
}else if( (pStack = pParse->trigStack)!=0 ){
|
||||
/* This must be an attempt to read the NEW or OLD pseudo-tables
|
||||
** of a trigger.
|
||||
*/
|
||||
assert( pExpr->iTable==pStack->newIdx || pExpr->iTable==pStack->oldIdx );
|
||||
pTab = pStack->pTab;
|
||||
}else{
|
||||
return;
|
||||
}
|
||||
if( pTab==0 ) return;
|
||||
if( pExpr->iColumn>=0 ){
|
||||
assert( pExpr->iColumn<pTab->nCol );
|
||||
zCol = pTab->aCol[pExpr->iColumn].zName;
|
||||
}else if( pTab->iPKey>=0 ){
|
||||
assert( pTab->iPKey<pTab->nCol );
|
||||
zCol = pTab->aCol[pTab->iPKey].zName;
|
||||
}else{
|
||||
zCol = "ROWID";
|
||||
}
|
||||
assert( iDb>=0 && iDb<db->nDb );
|
||||
zDBase = db->aDb[iDb].zName;
|
||||
rc = db->xAuth(db->pAuthArg, SQLITE_READ, pTab->zName, zCol, zDBase,
|
||||
pParse->zAuthContext);
|
||||
if( rc==SQLITE_IGNORE ){
|
||||
pExpr->op = TK_NULL;
|
||||
}else if( rc==SQLITE_DENY ){
|
||||
if( db->nDb>2 || iDb!=0 ){
|
||||
sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited",
|
||||
zDBase, pTab->zName, zCol);
|
||||
}else{
|
||||
sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited",pTab->zName,zCol);
|
||||
}
|
||||
pParse->rc = SQLITE_AUTH;
|
||||
}else if( rc!=SQLITE_OK ){
|
||||
sqliteAuthBadReturnCode(pParse, rc);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Do an authorization check using the code and arguments given. Return
|
||||
** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY
|
||||
** is returned, then the error count and error message in pParse are
|
||||
** modified appropriately.
|
||||
*/
|
||||
int sqlite3AuthCheck(
|
||||
Parse *pParse,
|
||||
int code,
|
||||
const char *zArg1,
|
||||
const char *zArg2,
|
||||
const char *zArg3
|
||||
){
|
||||
sqlite3 *db = pParse->db;
|
||||
int rc;
|
||||
|
||||
/* Don't do any authorization checks if the database is initialising. */
|
||||
if( db->init.busy ){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
if( db->xAuth==0 ){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext);
|
||||
if( rc==SQLITE_DENY ){
|
||||
sqlite3ErrorMsg(pParse, "not authorized");
|
||||
pParse->rc = SQLITE_AUTH;
|
||||
}else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){
|
||||
rc = SQLITE_DENY;
|
||||
sqliteAuthBadReturnCode(pParse, rc);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Push an authorization context. After this routine is called, the
|
||||
** zArg3 argument to authorization callbacks will be zContext until
|
||||
** popped. Or if pParse==0, this routine is a no-op.
|
||||
*/
|
||||
void sqlite3AuthContextPush(
|
||||
Parse *pParse,
|
||||
AuthContext *pContext,
|
||||
const char *zContext
|
||||
){
|
||||
pContext->pParse = pParse;
|
||||
if( pParse ){
|
||||
pContext->zAuthContext = pParse->zAuthContext;
|
||||
pParse->zAuthContext = zContext;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Pop an authorization context that was previously pushed
|
||||
** by sqlite3AuthContextPush
|
||||
*/
|
||||
void sqlite3AuthContextPop(AuthContext *pContext){
|
||||
if( pContext->pParse ){
|
||||
pContext->pParse->zAuthContext = pContext->zAuthContext;
|
||||
pContext->pParse = 0;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* SQLITE_OMIT_AUTHORIZATION */
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -0,0 +1,148 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This header file defines the interface that the sqlite B-Tree file
|
||||
** subsystem. See comments in the source code for a detailed description
|
||||
** of what each interface routine does.
|
||||
**
|
||||
** @(#) $Id: btree.h,v 1.70 2006/02/11 01:25:51 drh Exp $
|
||||
*/
|
||||
#ifndef _BTREE_H_
|
||||
#define _BTREE_H_
|
||||
|
||||
/* TODO: This definition is just included so other modules compile. It
|
||||
** needs to be revisited.
|
||||
*/
|
||||
#define SQLITE_N_BTREE_META 10
|
||||
|
||||
/*
|
||||
** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
|
||||
** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
|
||||
*/
|
||||
#ifndef SQLITE_DEFAULT_AUTOVACUUM
|
||||
#define SQLITE_DEFAULT_AUTOVACUUM 0
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Forward declarations of structure
|
||||
*/
|
||||
typedef struct Btree Btree;
|
||||
typedef struct BtCursor BtCursor;
|
||||
typedef struct BtShared BtShared;
|
||||
|
||||
|
||||
int sqlite3BtreeOpen(
|
||||
const char *zFilename, /* Name of database file to open */
|
||||
sqlite3 *db, /* Associated database connection */
|
||||
Btree **, /* Return open Btree* here */
|
||||
int flags /* Flags */
|
||||
);
|
||||
|
||||
/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the
|
||||
** following values.
|
||||
**
|
||||
** NOTE: These values must match the corresponding PAGER_ values in
|
||||
** pager.h.
|
||||
*/
|
||||
#define BTREE_OMIT_JOURNAL 1 /* Do not use journal. No argument */
|
||||
#define BTREE_NO_READLOCK 2 /* Omit readlocks on readonly files */
|
||||
#define BTREE_MEMORY 4 /* In-memory DB. No argument */
|
||||
|
||||
int sqlite3BtreeClose(Btree*);
|
||||
int sqlite3BtreeSetBusyHandler(Btree*,BusyHandler*);
|
||||
int sqlite3BtreeSetCacheSize(Btree*,int);
|
||||
int sqlite3BtreeSetSafetyLevel(Btree*,int,int);
|
||||
int sqlite3BtreeSyncDisabled(Btree*);
|
||||
int sqlite3BtreeSetPageSize(Btree*,int,int);
|
||||
int sqlite3BtreeGetPageSize(Btree*);
|
||||
int sqlite3BtreeGetReserve(Btree*);
|
||||
int sqlite3BtreeSetAutoVacuum(Btree *, int);
|
||||
int sqlite3BtreeGetAutoVacuum(Btree *);
|
||||
int sqlite3BtreeBeginTrans(Btree*,int);
|
||||
int sqlite3BtreeCommit(Btree*);
|
||||
int sqlite3BtreeRollback(Btree*);
|
||||
int sqlite3BtreeBeginStmt(Btree*);
|
||||
int sqlite3BtreeCommitStmt(Btree*);
|
||||
int sqlite3BtreeRollbackStmt(Btree*);
|
||||
int sqlite3BtreeCreateTable(Btree*, int*, int flags);
|
||||
int sqlite3BtreeIsInTrans(Btree*);
|
||||
int sqlite3BtreeIsInStmt(Btree*);
|
||||
int sqlite3BtreeSync(Btree*, const char *zMaster);
|
||||
void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
|
||||
int sqlite3BtreeSchemaLocked(Btree *);
|
||||
int sqlite3BtreeLockTable(Btree *, int, u8);
|
||||
|
||||
const char *sqlite3BtreeGetFilename(Btree *);
|
||||
const char *sqlite3BtreeGetDirname(Btree *);
|
||||
const char *sqlite3BtreeGetJournalname(Btree *);
|
||||
int sqlite3BtreeCopyFile(Btree *, Btree *);
|
||||
|
||||
/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR
|
||||
** of the following flags:
|
||||
*/
|
||||
#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */
|
||||
#define BTREE_ZERODATA 2 /* Table has keys only - no data */
|
||||
#define BTREE_LEAFDATA 4 /* Data stored in leaves only. Implies INTKEY */
|
||||
|
||||
int sqlite3BtreeDropTable(Btree*, int, int*);
|
||||
int sqlite3BtreeClearTable(Btree*, int);
|
||||
int sqlite3BtreeGetMeta(Btree*, int idx, u32 *pValue);
|
||||
int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value);
|
||||
|
||||
int sqlite3BtreeCursor(
|
||||
Btree*, /* BTree containing table to open */
|
||||
int iTable, /* Index of root page */
|
||||
int wrFlag, /* 1 for writing. 0 for read-only */
|
||||
int(*)(void*,int,const void*,int,const void*), /* Key comparison function */
|
||||
void*, /* First argument to compare function */
|
||||
BtCursor **ppCursor /* Returned cursor */
|
||||
);
|
||||
|
||||
void sqlite3BtreeSetCompare(
|
||||
BtCursor *,
|
||||
int(*)(void*,int,const void*,int,const void*),
|
||||
void*
|
||||
);
|
||||
|
||||
int sqlite3BtreeCloseCursor(BtCursor*);
|
||||
int sqlite3BtreeMoveto(BtCursor*, const void *pKey, i64 nKey, int *pRes);
|
||||
int sqlite3BtreeDelete(BtCursor*);
|
||||
int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey,
|
||||
const void *pData, int nData);
|
||||
int sqlite3BtreeFirst(BtCursor*, int *pRes);
|
||||
int sqlite3BtreeLast(BtCursor*, int *pRes);
|
||||
int sqlite3BtreeNext(BtCursor*, int *pRes);
|
||||
int sqlite3BtreeEof(BtCursor*);
|
||||
int sqlite3BtreeFlags(BtCursor*);
|
||||
int sqlite3BtreePrevious(BtCursor*, int *pRes);
|
||||
int sqlite3BtreeKeySize(BtCursor*, i64 *pSize);
|
||||
int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*);
|
||||
const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt);
|
||||
const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt);
|
||||
int sqlite3BtreeDataSize(BtCursor*, u32 *pSize);
|
||||
int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*);
|
||||
|
||||
char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot);
|
||||
struct Pager *sqlite3BtreePager(Btree*);
|
||||
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
int sqlite3BtreeCursorInfo(BtCursor*, int*, int);
|
||||
void sqlite3BtreeCursorList(Btree*);
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_DEBUG
|
||||
int sqlite3BtreePageDump(Btree*, int, int recursive);
|
||||
#else
|
||||
#define sqlite3BtreePageDump(X,Y,Z) SQLITE_OK
|
||||
#endif
|
||||
|
||||
#endif /* _BTREE_H_ */
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -0,0 +1,367 @@
|
|||
/*
|
||||
** 2005 May 23
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file contains functions used to access the internal hash tables
|
||||
** of user defined functions and collation sequences.
|
||||
**
|
||||
** $Id: callback.c,v 1.7 2007/06/19 23:47:38 sdwilsh%shawnwilsher.com Exp $
|
||||
*/
|
||||
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** Invoke the 'collation needed' callback to request a collation sequence
|
||||
** in the database text encoding of name zName, length nName.
|
||||
** If the collation sequence
|
||||
*/
|
||||
static void callCollNeeded(sqlite3 *db, const char *zName, int nName){
|
||||
assert( !db->xCollNeeded || !db->xCollNeeded16 );
|
||||
if( nName<0 ) nName = strlen(zName);
|
||||
if( db->xCollNeeded ){
|
||||
char *zExternal = sqliteStrNDup(zName, nName);
|
||||
if( !zExternal ) return;
|
||||
db->xCollNeeded(db->pCollNeededArg, db, (int)ENC(db), zExternal);
|
||||
sqliteFree(zExternal);
|
||||
}
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
if( db->xCollNeeded16 ){
|
||||
char const *zExternal;
|
||||
sqlite3_value *pTmp = sqlite3ValueNew();
|
||||
sqlite3ValueSetStr(pTmp, nName, zName, SQLITE_UTF8, SQLITE_STATIC);
|
||||
zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE);
|
||||
if( zExternal ){
|
||||
db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal);
|
||||
}
|
||||
sqlite3ValueFree(pTmp);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is called if the collation factory fails to deliver a
|
||||
** collation function in the best encoding but there may be other versions
|
||||
** of this collation function (for other text encodings) available. Use one
|
||||
** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if
|
||||
** possible.
|
||||
*/
|
||||
static int synthCollSeq(sqlite3 *db, CollSeq *pColl){
|
||||
CollSeq *pColl2;
|
||||
char *z = pColl->zName;
|
||||
int n = strlen(z);
|
||||
int i;
|
||||
static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 };
|
||||
for(i=0; i<3; i++){
|
||||
pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, n, 0);
|
||||
if( pColl2->xCmp!=0 ){
|
||||
memcpy(pColl, pColl2, sizeof(CollSeq));
|
||||
return SQLITE_OK;
|
||||
}
|
||||
}
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is responsible for invoking the collation factory callback
|
||||
** or substituting a collation sequence of a different encoding when the
|
||||
** requested collation sequence is not available in the database native
|
||||
** encoding.
|
||||
**
|
||||
** If it is not NULL, then pColl must point to the database native encoding
|
||||
** collation sequence with name zName, length nName.
|
||||
**
|
||||
** The return value is either the collation sequence to be used in database
|
||||
** db for collation type name zName, length nName, or NULL, if no collation
|
||||
** sequence can be found.
|
||||
*/
|
||||
CollSeq *sqlite3GetCollSeq(
|
||||
sqlite3* db,
|
||||
CollSeq *pColl,
|
||||
const char *zName,
|
||||
int nName
|
||||
){
|
||||
CollSeq *p;
|
||||
|
||||
p = pColl;
|
||||
if( !p ){
|
||||
p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0);
|
||||
}
|
||||
if( !p || !p->xCmp ){
|
||||
/* No collation sequence of this type for this encoding is registered.
|
||||
** Call the collation factory to see if it can supply us with one.
|
||||
*/
|
||||
callCollNeeded(db, zName, nName);
|
||||
p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0);
|
||||
}
|
||||
if( p && !p->xCmp && synthCollSeq(db, p) ){
|
||||
p = 0;
|
||||
}
|
||||
assert( !p || p->xCmp );
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is called on a collation sequence before it is used to
|
||||
** check that it is defined. An undefined collation sequence exists when
|
||||
** a database is loaded that contains references to collation sequences
|
||||
** that have not been defined by sqlite3_create_collation() etc.
|
||||
**
|
||||
** If required, this routine calls the 'collation needed' callback to
|
||||
** request a definition of the collating sequence. If this doesn't work,
|
||||
** an equivalent collating sequence that uses a text encoding different
|
||||
** from the main database is substituted, if one is available.
|
||||
*/
|
||||
int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
|
||||
if( pColl ){
|
||||
const char *zName = pColl->zName;
|
||||
CollSeq *p = sqlite3GetCollSeq(pParse->db, pColl, zName, -1);
|
||||
if( !p ){
|
||||
if( pParse->nErr==0 ){
|
||||
sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
|
||||
}
|
||||
pParse->nErr++;
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
assert( p==pColl );
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
** Locate and return an entry from the db.aCollSeq hash table. If the entry
|
||||
** specified by zName and nName is not found and parameter 'create' is
|
||||
** true, then create a new entry. Otherwise return NULL.
|
||||
**
|
||||
** Each pointer stored in the sqlite3.aCollSeq hash table contains an
|
||||
** array of three CollSeq structures. The first is the collation sequence
|
||||
** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be.
|
||||
**
|
||||
** Stored immediately after the three collation sequences is a copy of
|
||||
** the collation sequence name. A pointer to this string is stored in
|
||||
** each collation sequence structure.
|
||||
*/
|
||||
static CollSeq *findCollSeqEntry(
|
||||
sqlite3 *db,
|
||||
const char *zName,
|
||||
int nName,
|
||||
int create
|
||||
){
|
||||
CollSeq *pColl;
|
||||
if( nName<0 ) nName = strlen(zName);
|
||||
pColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
|
||||
|
||||
if( 0==pColl && create ){
|
||||
pColl = sqliteMalloc( 3*sizeof(*pColl) + nName + 1 );
|
||||
if( pColl ){
|
||||
CollSeq *pDel = 0;
|
||||
pColl[0].zName = (char*)&pColl[3];
|
||||
pColl[0].enc = SQLITE_UTF8;
|
||||
pColl[1].zName = (char*)&pColl[3];
|
||||
pColl[1].enc = SQLITE_UTF16LE;
|
||||
pColl[2].zName = (char*)&pColl[3];
|
||||
pColl[2].enc = SQLITE_UTF16BE;
|
||||
memcpy(pColl[0].zName, zName, nName);
|
||||
pColl[0].zName[nName] = 0;
|
||||
pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl);
|
||||
|
||||
/* If a malloc() failure occured in sqlite3HashInsert(), it will
|
||||
** return the pColl pointer to be deleted (because it wasn't added
|
||||
** to the hash table).
|
||||
*/
|
||||
assert( !pDel || (sqlite3MallocFailed() && pDel==pColl) );
|
||||
if( pDel ){
|
||||
sqliteFree(pDel);
|
||||
pColl = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
return pColl;
|
||||
}
|
||||
|
||||
/*
|
||||
** Parameter zName points to a UTF-8 encoded string nName bytes long.
|
||||
** Return the CollSeq* pointer for the collation sequence named zName
|
||||
** for the encoding 'enc' from the database 'db'.
|
||||
**
|
||||
** If the entry specified is not found and 'create' is true, then create a
|
||||
** new entry. Otherwise return NULL.
|
||||
*/
|
||||
CollSeq *sqlite3FindCollSeq(
|
||||
sqlite3 *db,
|
||||
u8 enc,
|
||||
const char *zName,
|
||||
int nName,
|
||||
int create
|
||||
){
|
||||
CollSeq *pColl;
|
||||
if( zName ){
|
||||
pColl = findCollSeqEntry(db, zName, nName, create);
|
||||
}else{
|
||||
pColl = db->pDfltColl;
|
||||
}
|
||||
assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
|
||||
assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE );
|
||||
if( pColl ) pColl += enc-1;
|
||||
return pColl;
|
||||
}
|
||||
|
||||
/*
|
||||
** Locate a user function given a name, a number of arguments and a flag
|
||||
** indicating whether the function prefers UTF-16 over UTF-8. Return a
|
||||
** pointer to the FuncDef structure that defines that function, or return
|
||||
** NULL if the function does not exist.
|
||||
**
|
||||
** If the createFlag argument is true, then a new (blank) FuncDef
|
||||
** structure is created and liked into the "db" structure if a
|
||||
** no matching function previously existed. When createFlag is true
|
||||
** and the nArg parameter is -1, then only a function that accepts
|
||||
** any number of arguments will be returned.
|
||||
**
|
||||
** If createFlag is false and nArg is -1, then the first valid
|
||||
** function found is returned. A function is valid if either xFunc
|
||||
** or xStep is non-zero.
|
||||
**
|
||||
** If createFlag is false, then a function with the required name and
|
||||
** number of arguments may be returned even if the eTextRep flag does not
|
||||
** match that requested.
|
||||
*/
|
||||
FuncDef *sqlite3FindFunction(
|
||||
sqlite3 *db, /* An open database */
|
||||
const char *zName, /* Name of the function. Not null-terminated */
|
||||
int nName, /* Number of characters in the name */
|
||||
int nArg, /* Number of arguments. -1 means any number */
|
||||
u8 enc, /* Preferred text encoding */
|
||||
int createFlag /* Create new entry if true and does not otherwise exist */
|
||||
){
|
||||
FuncDef *p; /* Iterator variable */
|
||||
FuncDef *pFirst; /* First function with this name */
|
||||
FuncDef *pBest = 0; /* Best match found so far */
|
||||
int bestmatch = 0;
|
||||
|
||||
|
||||
assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
|
||||
if( nArg<-1 ) nArg = -1;
|
||||
|
||||
pFirst = (FuncDef*)sqlite3HashFind(&db->aFunc, zName, nName);
|
||||
for(p=pFirst; p; p=p->pNext){
|
||||
/* During the search for the best function definition, bestmatch is set
|
||||
** as follows to indicate the quality of the match with the definition
|
||||
** pointed to by pBest:
|
||||
**
|
||||
** 0: pBest is NULL. No match has been found.
|
||||
** 1: A variable arguments function that prefers UTF-8 when a UTF-16
|
||||
** encoding is requested, or vice versa.
|
||||
** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is
|
||||
** requested, or vice versa.
|
||||
** 3: A variable arguments function using the same text encoding.
|
||||
** 4: A function with the exact number of arguments requested that
|
||||
** prefers UTF-8 when a UTF-16 encoding is requested, or vice versa.
|
||||
** 5: A function with the exact number of arguments requested that
|
||||
** prefers UTF-16LE when UTF-16BE is requested, or vice versa.
|
||||
** 6: An exact match.
|
||||
**
|
||||
** A larger value of 'matchqual' indicates a more desirable match.
|
||||
*/
|
||||
if( p->nArg==-1 || p->nArg==nArg || nArg==-1 ){
|
||||
int match = 1; /* Quality of this match */
|
||||
if( p->nArg==nArg || nArg==-1 ){
|
||||
match = 4;
|
||||
}
|
||||
if( enc==p->iPrefEnc ){
|
||||
match += 2;
|
||||
}
|
||||
else if( (enc==SQLITE_UTF16LE && p->iPrefEnc==SQLITE_UTF16BE) ||
|
||||
(enc==SQLITE_UTF16BE && p->iPrefEnc==SQLITE_UTF16LE) ){
|
||||
match += 1;
|
||||
}
|
||||
|
||||
if( match>bestmatch ){
|
||||
pBest = p;
|
||||
bestmatch = match;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* If the createFlag parameter is true, and the seach did not reveal an
|
||||
** exact match for the name, number of arguments and encoding, then add a
|
||||
** new entry to the hash table and return it.
|
||||
*/
|
||||
if( createFlag && bestmatch<6 &&
|
||||
(pBest = sqliteMalloc(sizeof(*pBest)+nName))!=0 ){
|
||||
pBest->nArg = nArg;
|
||||
pBest->pNext = pFirst;
|
||||
pBest->iPrefEnc = enc;
|
||||
memcpy(pBest->zName, zName, nName);
|
||||
pBest->zName[nName] = 0;
|
||||
if( pBest==sqlite3HashInsert(&db->aFunc,pBest->zName,nName,(void*)pBest) ){
|
||||
sqliteFree(pBest);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){
|
||||
return pBest;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free all resources held by the schema structure. The void* argument points
|
||||
** at a Schema struct. This function does not call sqliteFree() on the
|
||||
** pointer itself, it just cleans up subsiduary resources (i.e. the contents
|
||||
** of the schema hash tables).
|
||||
*/
|
||||
void sqlite3SchemaFree(void *p){
|
||||
Hash temp1;
|
||||
Hash temp2;
|
||||
HashElem *pElem;
|
||||
Schema *pSchema = (Schema *)p;
|
||||
|
||||
temp1 = pSchema->tblHash;
|
||||
temp2 = pSchema->trigHash;
|
||||
sqlite3HashInit(&pSchema->trigHash, SQLITE_HASH_STRING, 0);
|
||||
sqlite3HashClear(&pSchema->aFKey);
|
||||
sqlite3HashClear(&pSchema->idxHash);
|
||||
for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
|
||||
sqlite3DeleteTrigger((Trigger*)sqliteHashData(pElem));
|
||||
}
|
||||
sqlite3HashClear(&temp2);
|
||||
sqlite3HashInit(&pSchema->tblHash, SQLITE_HASH_STRING, 0);
|
||||
for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
|
||||
Table *pTab = sqliteHashData(pElem);
|
||||
sqlite3DeleteTable(0, pTab);
|
||||
}
|
||||
sqlite3HashClear(&temp1);
|
||||
pSchema->pSeqTab = 0;
|
||||
pSchema->flags &= ~DB_SchemaLoaded;
|
||||
}
|
||||
|
||||
/*
|
||||
** Find and return the schema associated with a BTree. Create
|
||||
** a new one if necessary.
|
||||
*/
|
||||
Schema *sqlite3SchemaGet(Btree *pBt){
|
||||
Schema * p;
|
||||
if( pBt ){
|
||||
p = (Schema *)sqlite3BtreeSchema(pBt,sizeof(Schema),sqlite3SchemaFree);
|
||||
}else{
|
||||
p = (Schema *)sqliteMalloc(sizeof(Schema));
|
||||
}
|
||||
if( p && 0==p->file_format ){
|
||||
sqlite3HashInit(&p->tblHash, SQLITE_HASH_STRING, 0);
|
||||
sqlite3HashInit(&p->idxHash, SQLITE_HASH_STRING, 0);
|
||||
sqlite3HashInit(&p->trigHash, SQLITE_HASH_STRING, 0);
|
||||
sqlite3HashInit(&p->aFKey, SQLITE_HASH_STRING, 1);
|
||||
}
|
||||
return p;
|
||||
}
|
|
@ -0,0 +1,263 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** An tokenizer for SQL
|
||||
**
|
||||
** This file contains C code that implements the sqlite3_complete() API.
|
||||
** This code used to be part of the tokenizer.c source file. But by
|
||||
** separating it out, the code will be automatically omitted from
|
||||
** static links that do not use it.
|
||||
**
|
||||
** $Id: complete.c,v 1.6 2007/06/19 23:47:38 sdwilsh%shawnwilsher.com Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#ifndef SQLITE_OMIT_COMPLETE
|
||||
|
||||
/*
|
||||
** This is defined in tokenize.c. We just have to import the definition.
|
||||
*/
|
||||
extern const char sqlite3IsIdChar[];
|
||||
#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsIdChar[c-0x20]))
|
||||
|
||||
|
||||
/*
|
||||
** Token types used by the sqlite3_complete() routine. See the header
|
||||
** comments on that procedure for additional information.
|
||||
*/
|
||||
#define tkSEMI 0
|
||||
#define tkWS 1
|
||||
#define tkOTHER 2
|
||||
#define tkEXPLAIN 3
|
||||
#define tkCREATE 4
|
||||
#define tkTEMP 5
|
||||
#define tkTRIGGER 6
|
||||
#define tkEND 7
|
||||
|
||||
/*
|
||||
** Return TRUE if the given SQL string ends in a semicolon.
|
||||
**
|
||||
** Special handling is require for CREATE TRIGGER statements.
|
||||
** Whenever the CREATE TRIGGER keywords are seen, the statement
|
||||
** must end with ";END;".
|
||||
**
|
||||
** This implementation uses a state machine with 7 states:
|
||||
**
|
||||
** (0) START At the beginning or end of an SQL statement. This routine
|
||||
** returns 1 if it ends in the START state and 0 if it ends
|
||||
** in any other state.
|
||||
**
|
||||
** (1) NORMAL We are in the middle of statement which ends with a single
|
||||
** semicolon.
|
||||
**
|
||||
** (2) EXPLAIN The keyword EXPLAIN has been seen at the beginning of
|
||||
** a statement.
|
||||
**
|
||||
** (3) CREATE The keyword CREATE has been seen at the beginning of a
|
||||
** statement, possibly preceeded by EXPLAIN and/or followed by
|
||||
** TEMP or TEMPORARY
|
||||
**
|
||||
** (4) TRIGGER We are in the middle of a trigger definition that must be
|
||||
** ended by a semicolon, the keyword END, and another semicolon.
|
||||
**
|
||||
** (5) SEMI We've seen the first semicolon in the ";END;" that occurs at
|
||||
** the end of a trigger definition.
|
||||
**
|
||||
** (6) END We've seen the ";END" of the ";END;" that occurs at the end
|
||||
** of a trigger difinition.
|
||||
**
|
||||
** Transitions between states above are determined by tokens extracted
|
||||
** from the input. The following tokens are significant:
|
||||
**
|
||||
** (0) tkSEMI A semicolon.
|
||||
** (1) tkWS Whitespace
|
||||
** (2) tkOTHER Any other SQL token.
|
||||
** (3) tkEXPLAIN The "explain" keyword.
|
||||
** (4) tkCREATE The "create" keyword.
|
||||
** (5) tkTEMP The "temp" or "temporary" keyword.
|
||||
** (6) tkTRIGGER The "trigger" keyword.
|
||||
** (7) tkEND The "end" keyword.
|
||||
**
|
||||
** Whitespace never causes a state transition and is always ignored.
|
||||
**
|
||||
** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed
|
||||
** to recognize the end of a trigger can be omitted. All we have to do
|
||||
** is look for a semicolon that is not part of an string or comment.
|
||||
*/
|
||||
int sqlite3_complete(const char *zSql){
|
||||
u8 state = 0; /* Current state, using numbers defined in header comment */
|
||||
u8 token; /* Value of the next token */
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
/* A complex statement machine used to detect the end of a CREATE TRIGGER
|
||||
** statement. This is the normal case.
|
||||
*/
|
||||
static const u8 trans[7][8] = {
|
||||
/* Token: */
|
||||
/* State: ** SEMI WS OTHER EXPLAIN CREATE TEMP TRIGGER END */
|
||||
/* 0 START: */ { 0, 0, 1, 2, 3, 1, 1, 1, },
|
||||
/* 1 NORMAL: */ { 0, 1, 1, 1, 1, 1, 1, 1, },
|
||||
/* 2 EXPLAIN: */ { 0, 2, 1, 1, 3, 1, 1, 1, },
|
||||
/* 3 CREATE: */ { 0, 3, 1, 1, 1, 3, 4, 1, },
|
||||
/* 4 TRIGGER: */ { 5, 4, 4, 4, 4, 4, 4, 4, },
|
||||
/* 5 SEMI: */ { 5, 5, 4, 4, 4, 4, 4, 6, },
|
||||
/* 6 END: */ { 0, 6, 4, 4, 4, 4, 4, 4, },
|
||||
};
|
||||
#else
|
||||
/* If triggers are not suppored by this compile then the statement machine
|
||||
** used to detect the end of a statement is much simplier
|
||||
*/
|
||||
static const u8 trans[2][3] = {
|
||||
/* Token: */
|
||||
/* State: ** SEMI WS OTHER */
|
||||
/* 0 START: */ { 0, 0, 1, },
|
||||
/* 1 NORMAL: */ { 0, 1, 1, },
|
||||
};
|
||||
#endif /* SQLITE_OMIT_TRIGGER */
|
||||
|
||||
while( *zSql ){
|
||||
switch( *zSql ){
|
||||
case ';': { /* A semicolon */
|
||||
token = tkSEMI;
|
||||
break;
|
||||
}
|
||||
case ' ':
|
||||
case '\r':
|
||||
case '\t':
|
||||
case '\n':
|
||||
case '\f': { /* White space is ignored */
|
||||
token = tkWS;
|
||||
break;
|
||||
}
|
||||
case '/': { /* C-style comments */
|
||||
if( zSql[1]!='*' ){
|
||||
token = tkOTHER;
|
||||
break;
|
||||
}
|
||||
zSql += 2;
|
||||
while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; }
|
||||
if( zSql[0]==0 ) return 0;
|
||||
zSql++;
|
||||
token = tkWS;
|
||||
break;
|
||||
}
|
||||
case '-': { /* SQL-style comments from "--" to end of line */
|
||||
if( zSql[1]!='-' ){
|
||||
token = tkOTHER;
|
||||
break;
|
||||
}
|
||||
while( *zSql && *zSql!='\n' ){ zSql++; }
|
||||
if( *zSql==0 ) return state==0;
|
||||
token = tkWS;
|
||||
break;
|
||||
}
|
||||
case '[': { /* Microsoft-style identifiers in [...] */
|
||||
zSql++;
|
||||
while( *zSql && *zSql!=']' ){ zSql++; }
|
||||
if( *zSql==0 ) return 0;
|
||||
token = tkOTHER;
|
||||
break;
|
||||
}
|
||||
case '`': /* Grave-accent quoted symbols used by MySQL */
|
||||
case '"': /* single- and double-quoted strings */
|
||||
case '\'': {
|
||||
int c = *zSql;
|
||||
zSql++;
|
||||
while( *zSql && *zSql!=c ){ zSql++; }
|
||||
if( *zSql==0 ) return 0;
|
||||
token = tkOTHER;
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
int c;
|
||||
if( IdChar((u8)*zSql) ){
|
||||
/* Keywords and unquoted identifiers */
|
||||
int nId;
|
||||
for(nId=1; IdChar(zSql[nId]); nId++){}
|
||||
#ifdef SQLITE_OMIT_TRIGGER
|
||||
token = tkOTHER;
|
||||
#else
|
||||
switch( *zSql ){
|
||||
case 'c': case 'C': {
|
||||
if( nId==6 && sqlite3StrNICmp(zSql, "create", 6)==0 ){
|
||||
token = tkCREATE;
|
||||
}else{
|
||||
token = tkOTHER;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 't': case 'T': {
|
||||
if( nId==7 && sqlite3StrNICmp(zSql, "trigger", 7)==0 ){
|
||||
token = tkTRIGGER;
|
||||
}else if( nId==4 && sqlite3StrNICmp(zSql, "temp", 4)==0 ){
|
||||
token = tkTEMP;
|
||||
}else if( nId==9 && sqlite3StrNICmp(zSql, "temporary", 9)==0 ){
|
||||
token = tkTEMP;
|
||||
}else{
|
||||
token = tkOTHER;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 'e': case 'E': {
|
||||
if( nId==3 && sqlite3StrNICmp(zSql, "end", 3)==0 ){
|
||||
token = tkEND;
|
||||
}else
|
||||
#ifndef SQLITE_OMIT_EXPLAIN
|
||||
if( nId==7 && sqlite3StrNICmp(zSql, "explain", 7)==0 ){
|
||||
token = tkEXPLAIN;
|
||||
}else
|
||||
#endif
|
||||
{
|
||||
token = tkOTHER;
|
||||
}
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
token = tkOTHER;
|
||||
break;
|
||||
}
|
||||
}
|
||||
#endif /* SQLITE_OMIT_TRIGGER */
|
||||
zSql += nId-1;
|
||||
}else{
|
||||
/* Operators and special symbols */
|
||||
token = tkOTHER;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
state = trans[state][token];
|
||||
zSql++;
|
||||
}
|
||||
return state==0;
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
/*
|
||||
** This routine is the same as the sqlite3_complete() routine described
|
||||
** above, except that the parameter is required to be UTF-16 encoded, not
|
||||
** UTF-8.
|
||||
*/
|
||||
int sqlite3_complete16(const void *zSql){
|
||||
sqlite3_value *pVal;
|
||||
char const *zSql8;
|
||||
int rc = 0;
|
||||
|
||||
pVal = sqlite3ValueNew();
|
||||
sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC);
|
||||
zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8);
|
||||
if( zSql8 ){
|
||||
rc = sqlite3_complete(zSql8);
|
||||
}
|
||||
sqlite3ValueFree(pVal);
|
||||
return sqlite3ApiExit(0, rc);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
||||
#endif /* SQLITE_OMIT_COMPLETE */
|
|
@ -0,0 +1,11 @@
|
|||
|
||||
#ifndef _sqlite3_config_h
|
||||
#define _sqlite3_config_h
|
||||
|
||||
#include "prcpucfg.h"
|
||||
|
||||
#define HAVE_USLEEP 1
|
||||
|
||||
#define SQLITE_PTR_SZ PR_BYTES_PER_WORD
|
||||
|
||||
#endif /* _sqlite3_config_h */
|
|
@ -0,0 +1,998 @@
|
|||
/*
|
||||
** 2003 October 31
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the C functions that implement date and time
|
||||
** functions for SQLite.
|
||||
**
|
||||
** There is only one exported symbol in this file - the function
|
||||
** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
|
||||
** All other code has file scope.
|
||||
**
|
||||
** $Id: date.c,v 1.54 2006/01/31 20:49:13 drh Exp $
|
||||
**
|
||||
** NOTES:
|
||||
**
|
||||
** SQLite processes all times and dates as Julian Day numbers. The
|
||||
** dates and times are stored as the number of days since noon
|
||||
** in Greenwich on November 24, 4714 B.C. according to the Gregorian
|
||||
** calendar system.
|
||||
**
|
||||
** 1970-01-01 00:00:00 is JD 2440587.5
|
||||
** 2000-01-01 00:00:00 is JD 2451544.5
|
||||
**
|
||||
** This implemention requires years to be expressed as a 4-digit number
|
||||
** which means that only dates between 0000-01-01 and 9999-12-31 can
|
||||
** be represented, even though julian day numbers allow a much wider
|
||||
** range of dates.
|
||||
**
|
||||
** The Gregorian calendar system is used for all dates and times,
|
||||
** even those that predate the Gregorian calendar. Historians usually
|
||||
** use the Julian calendar for dates prior to 1582-10-15 and for some
|
||||
** dates afterwards, depending on locale. Beware of this difference.
|
||||
**
|
||||
** The conversion algorithms are implemented based on descriptions
|
||||
** in the following text:
|
||||
**
|
||||
** Jean Meeus
|
||||
** Astronomical Algorithms, 2nd Edition, 1998
|
||||
** ISBM 0-943396-61-1
|
||||
** Willmann-Bell, Inc
|
||||
** Richmond, Virginia (USA)
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "os.h"
|
||||
#include <ctype.h>
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include <time.h>
|
||||
|
||||
#ifndef SQLITE_OMIT_DATETIME_FUNCS
|
||||
|
||||
/*
|
||||
** A structure for holding a single date and time.
|
||||
*/
|
||||
typedef struct DateTime DateTime;
|
||||
struct DateTime {
|
||||
double rJD; /* The julian day number */
|
||||
int Y, M, D; /* Year, month, and day */
|
||||
int h, m; /* Hour and minutes */
|
||||
int tz; /* Timezone offset in minutes */
|
||||
double s; /* Seconds */
|
||||
char validYMD; /* True if Y,M,D are valid */
|
||||
char validHMS; /* True if h,m,s are valid */
|
||||
char validJD; /* True if rJD is valid */
|
||||
char validTZ; /* True if tz is valid */
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
** Convert zDate into one or more integers. Additional arguments
|
||||
** come in groups of 5 as follows:
|
||||
**
|
||||
** N number of digits in the integer
|
||||
** min minimum allowed value of the integer
|
||||
** max maximum allowed value of the integer
|
||||
** nextC first character after the integer
|
||||
** pVal where to write the integers value.
|
||||
**
|
||||
** Conversions continue until one with nextC==0 is encountered.
|
||||
** The function returns the number of successful conversions.
|
||||
*/
|
||||
static int getDigits(const char *zDate, ...){
|
||||
va_list ap;
|
||||
int val;
|
||||
int N;
|
||||
int min;
|
||||
int max;
|
||||
int nextC;
|
||||
int *pVal;
|
||||
int cnt = 0;
|
||||
va_start(ap, zDate);
|
||||
do{
|
||||
N = va_arg(ap, int);
|
||||
min = va_arg(ap, int);
|
||||
max = va_arg(ap, int);
|
||||
nextC = va_arg(ap, int);
|
||||
pVal = va_arg(ap, int*);
|
||||
val = 0;
|
||||
while( N-- ){
|
||||
if( !isdigit(*(u8*)zDate) ){
|
||||
goto end_getDigits;
|
||||
}
|
||||
val = val*10 + *zDate - '0';
|
||||
zDate++;
|
||||
}
|
||||
if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
|
||||
goto end_getDigits;
|
||||
}
|
||||
*pVal = val;
|
||||
zDate++;
|
||||
cnt++;
|
||||
}while( nextC );
|
||||
end_getDigits:
|
||||
va_end(ap);
|
||||
return cnt;
|
||||
}
|
||||
|
||||
/*
|
||||
** Read text from z[] and convert into a floating point number. Return
|
||||
** the number of digits converted.
|
||||
*/
|
||||
#define getValue sqlite3AtoF
|
||||
|
||||
/*
|
||||
** Parse a timezone extension on the end of a date-time.
|
||||
** The extension is of the form:
|
||||
**
|
||||
** (+/-)HH:MM
|
||||
**
|
||||
** If the parse is successful, write the number of minutes
|
||||
** of change in *pnMin and return 0. If a parser error occurs,
|
||||
** return 0.
|
||||
**
|
||||
** A missing specifier is not considered an error.
|
||||
*/
|
||||
static int parseTimezone(const char *zDate, DateTime *p){
|
||||
int sgn = 0;
|
||||
int nHr, nMn;
|
||||
while( isspace(*(u8*)zDate) ){ zDate++; }
|
||||
p->tz = 0;
|
||||
if( *zDate=='-' ){
|
||||
sgn = -1;
|
||||
}else if( *zDate=='+' ){
|
||||
sgn = +1;
|
||||
}else{
|
||||
return *zDate!=0;
|
||||
}
|
||||
zDate++;
|
||||
if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
|
||||
return 1;
|
||||
}
|
||||
zDate += 5;
|
||||
p->tz = sgn*(nMn + nHr*60);
|
||||
while( isspace(*(u8*)zDate) ){ zDate++; }
|
||||
return *zDate!=0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
|
||||
** The HH, MM, and SS must each be exactly 2 digits. The
|
||||
** fractional seconds FFFF can be one or more digits.
|
||||
**
|
||||
** Return 1 if there is a parsing error and 0 on success.
|
||||
*/
|
||||
static int parseHhMmSs(const char *zDate, DateTime *p){
|
||||
int h, m, s;
|
||||
double ms = 0.0;
|
||||
if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
|
||||
return 1;
|
||||
}
|
||||
zDate += 5;
|
||||
if( *zDate==':' ){
|
||||
zDate++;
|
||||
if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
|
||||
return 1;
|
||||
}
|
||||
zDate += 2;
|
||||
if( *zDate=='.' && isdigit((u8)zDate[1]) ){
|
||||
double rScale = 1.0;
|
||||
zDate++;
|
||||
while( isdigit(*(u8*)zDate) ){
|
||||
ms = ms*10.0 + *zDate - '0';
|
||||
rScale *= 10.0;
|
||||
zDate++;
|
||||
}
|
||||
ms /= rScale;
|
||||
}
|
||||
}else{
|
||||
s = 0;
|
||||
}
|
||||
p->validJD = 0;
|
||||
p->validHMS = 1;
|
||||
p->h = h;
|
||||
p->m = m;
|
||||
p->s = s + ms;
|
||||
if( parseTimezone(zDate, p) ) return 1;
|
||||
p->validTZ = p->tz!=0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
|
||||
** that the YYYY-MM-DD is according to the Gregorian calendar.
|
||||
**
|
||||
** Reference: Meeus page 61
|
||||
*/
|
||||
static void computeJD(DateTime *p){
|
||||
int Y, M, D, A, B, X1, X2;
|
||||
|
||||
if( p->validJD ) return;
|
||||
if( p->validYMD ){
|
||||
Y = p->Y;
|
||||
M = p->M;
|
||||
D = p->D;
|
||||
}else{
|
||||
Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
|
||||
M = 1;
|
||||
D = 1;
|
||||
}
|
||||
if( M<=2 ){
|
||||
Y--;
|
||||
M += 12;
|
||||
}
|
||||
A = Y/100;
|
||||
B = 2 - A + (A/4);
|
||||
X1 = 365.25*(Y+4716);
|
||||
X2 = 30.6001*(M+1);
|
||||
p->rJD = X1 + X2 + D + B - 1524.5;
|
||||
p->validJD = 1;
|
||||
p->validYMD = 0;
|
||||
if( p->validHMS ){
|
||||
p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
|
||||
if( p->validTZ ){
|
||||
p->rJD -= p->tz*60/86400.0;
|
||||
p->validHMS = 0;
|
||||
p->validTZ = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Parse dates of the form
|
||||
**
|
||||
** YYYY-MM-DD HH:MM:SS.FFF
|
||||
** YYYY-MM-DD HH:MM:SS
|
||||
** YYYY-MM-DD HH:MM
|
||||
** YYYY-MM-DD
|
||||
**
|
||||
** Write the result into the DateTime structure and return 0
|
||||
** on success and 1 if the input string is not a well-formed
|
||||
** date.
|
||||
*/
|
||||
static int parseYyyyMmDd(const char *zDate, DateTime *p){
|
||||
int Y, M, D, neg;
|
||||
|
||||
if( zDate[0]=='-' ){
|
||||
zDate++;
|
||||
neg = 1;
|
||||
}else{
|
||||
neg = 0;
|
||||
}
|
||||
if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
|
||||
return 1;
|
||||
}
|
||||
zDate += 10;
|
||||
while( isspace(*(u8*)zDate) || 'T'==*(u8*)zDate ){ zDate++; }
|
||||
if( parseHhMmSs(zDate, p)==0 ){
|
||||
/* We got the time */
|
||||
}else if( *zDate==0 ){
|
||||
p->validHMS = 0;
|
||||
}else{
|
||||
return 1;
|
||||
}
|
||||
p->validJD = 0;
|
||||
p->validYMD = 1;
|
||||
p->Y = neg ? -Y : Y;
|
||||
p->M = M;
|
||||
p->D = D;
|
||||
if( p->validTZ ){
|
||||
computeJD(p);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Attempt to parse the given string into a Julian Day Number. Return
|
||||
** the number of errors.
|
||||
**
|
||||
** The following are acceptable forms for the input string:
|
||||
**
|
||||
** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
|
||||
** DDDD.DD
|
||||
** now
|
||||
**
|
||||
** In the first form, the +/-HH:MM is always optional. The fractional
|
||||
** seconds extension (the ".FFF") is optional. The seconds portion
|
||||
** (":SS.FFF") is option. The year and date can be omitted as long
|
||||
** as there is a time string. The time string can be omitted as long
|
||||
** as there is a year and date.
|
||||
*/
|
||||
static int parseDateOrTime(const char *zDate, DateTime *p){
|
||||
memset(p, 0, sizeof(*p));
|
||||
if( parseYyyyMmDd(zDate,p)==0 ){
|
||||
return 0;
|
||||
}else if( parseHhMmSs(zDate, p)==0 ){
|
||||
return 0;
|
||||
}else if( sqlite3StrICmp(zDate,"now")==0){
|
||||
double r;
|
||||
sqlite3OsCurrentTime(&r);
|
||||
p->rJD = r;
|
||||
p->validJD = 1;
|
||||
return 0;
|
||||
}else if( sqlite3IsNumber(zDate, 0, SQLITE_UTF8) ){
|
||||
getValue(zDate, &p->rJD);
|
||||
p->validJD = 1;
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** Compute the Year, Month, and Day from the julian day number.
|
||||
*/
|
||||
static void computeYMD(DateTime *p){
|
||||
int Z, A, B, C, D, E, X1;
|
||||
if( p->validYMD ) return;
|
||||
if( !p->validJD ){
|
||||
p->Y = 2000;
|
||||
p->M = 1;
|
||||
p->D = 1;
|
||||
}else{
|
||||
Z = p->rJD + 0.5;
|
||||
A = (Z - 1867216.25)/36524.25;
|
||||
A = Z + 1 + A - (A/4);
|
||||
B = A + 1524;
|
||||
C = (B - 122.1)/365.25;
|
||||
D = 365.25*C;
|
||||
E = (B-D)/30.6001;
|
||||
X1 = 30.6001*E;
|
||||
p->D = B - D - X1;
|
||||
p->M = E<14 ? E-1 : E-13;
|
||||
p->Y = p->M>2 ? C - 4716 : C - 4715;
|
||||
}
|
||||
p->validYMD = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** Compute the Hour, Minute, and Seconds from the julian day number.
|
||||
*/
|
||||
static void computeHMS(DateTime *p){
|
||||
int Z, s;
|
||||
if( p->validHMS ) return;
|
||||
Z = p->rJD + 0.5;
|
||||
s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
|
||||
p->s = 0.001*s;
|
||||
s = p->s;
|
||||
p->s -= s;
|
||||
p->h = s/3600;
|
||||
s -= p->h*3600;
|
||||
p->m = s/60;
|
||||
p->s += s - p->m*60;
|
||||
p->validHMS = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** Compute both YMD and HMS
|
||||
*/
|
||||
static void computeYMD_HMS(DateTime *p){
|
||||
computeYMD(p);
|
||||
computeHMS(p);
|
||||
}
|
||||
|
||||
/*
|
||||
** Clear the YMD and HMS and the TZ
|
||||
*/
|
||||
static void clearYMD_HMS_TZ(DateTime *p){
|
||||
p->validYMD = 0;
|
||||
p->validHMS = 0;
|
||||
p->validTZ = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
|
||||
** for the time value p where p is in UTC.
|
||||
*/
|
||||
static double localtimeOffset(DateTime *p){
|
||||
DateTime x, y;
|
||||
time_t t;
|
||||
struct tm *pTm;
|
||||
x = *p;
|
||||
computeYMD_HMS(&x);
|
||||
if( x.Y<1971 || x.Y>=2038 ){
|
||||
x.Y = 2000;
|
||||
x.M = 1;
|
||||
x.D = 1;
|
||||
x.h = 0;
|
||||
x.m = 0;
|
||||
x.s = 0.0;
|
||||
} else {
|
||||
int s = x.s + 0.5;
|
||||
x.s = s;
|
||||
}
|
||||
x.tz = 0;
|
||||
x.validJD = 0;
|
||||
computeJD(&x);
|
||||
t = (x.rJD-2440587.5)*86400.0 + 0.5;
|
||||
sqlite3OsEnterMutex();
|
||||
pTm = localtime(&t);
|
||||
y.Y = pTm->tm_year + 1900;
|
||||
y.M = pTm->tm_mon + 1;
|
||||
y.D = pTm->tm_mday;
|
||||
y.h = pTm->tm_hour;
|
||||
y.m = pTm->tm_min;
|
||||
y.s = pTm->tm_sec;
|
||||
sqlite3OsLeaveMutex();
|
||||
y.validYMD = 1;
|
||||
y.validHMS = 1;
|
||||
y.validJD = 0;
|
||||
y.validTZ = 0;
|
||||
computeJD(&y);
|
||||
return y.rJD - x.rJD;
|
||||
}
|
||||
|
||||
/*
|
||||
** Process a modifier to a date-time stamp. The modifiers are
|
||||
** as follows:
|
||||
**
|
||||
** NNN days
|
||||
** NNN hours
|
||||
** NNN minutes
|
||||
** NNN.NNNN seconds
|
||||
** NNN months
|
||||
** NNN years
|
||||
** start of month
|
||||
** start of year
|
||||
** start of week
|
||||
** start of day
|
||||
** weekday N
|
||||
** unixepoch
|
||||
** localtime
|
||||
** utc
|
||||
**
|
||||
** Return 0 on success and 1 if there is any kind of error.
|
||||
*/
|
||||
static int parseModifier(const char *zMod, DateTime *p){
|
||||
int rc = 1;
|
||||
int n;
|
||||
double r;
|
||||
char *z, zBuf[30];
|
||||
z = zBuf;
|
||||
for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){
|
||||
z[n] = tolower(zMod[n]);
|
||||
}
|
||||
z[n] = 0;
|
||||
switch( z[0] ){
|
||||
case 'l': {
|
||||
/* localtime
|
||||
**
|
||||
** Assuming the current time value is UTC (a.k.a. GMT), shift it to
|
||||
** show local time.
|
||||
*/
|
||||
if( strcmp(z, "localtime")==0 ){
|
||||
computeJD(p);
|
||||
p->rJD += localtimeOffset(p);
|
||||
clearYMD_HMS_TZ(p);
|
||||
rc = 0;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 'u': {
|
||||
/*
|
||||
** unixepoch
|
||||
**
|
||||
** Treat the current value of p->rJD as the number of
|
||||
** seconds since 1970. Convert to a real julian day number.
|
||||
*/
|
||||
if( strcmp(z, "unixepoch")==0 && p->validJD ){
|
||||
p->rJD = p->rJD/86400.0 + 2440587.5;
|
||||
clearYMD_HMS_TZ(p);
|
||||
rc = 0;
|
||||
}else if( strcmp(z, "utc")==0 ){
|
||||
double c1;
|
||||
computeJD(p);
|
||||
c1 = localtimeOffset(p);
|
||||
p->rJD -= c1;
|
||||
clearYMD_HMS_TZ(p);
|
||||
p->rJD += c1 - localtimeOffset(p);
|
||||
rc = 0;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 'w': {
|
||||
/*
|
||||
** weekday N
|
||||
**
|
||||
** Move the date to the same time on the next occurrence of
|
||||
** weekday N where 0==Sunday, 1==Monday, and so forth. If the
|
||||
** date is already on the appropriate weekday, this is a no-op.
|
||||
*/
|
||||
if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
|
||||
&& (n=r)==r && n>=0 && r<7 ){
|
||||
int Z;
|
||||
computeYMD_HMS(p);
|
||||
p->validTZ = 0;
|
||||
p->validJD = 0;
|
||||
computeJD(p);
|
||||
Z = p->rJD + 1.5;
|
||||
Z %= 7;
|
||||
if( Z>n ) Z -= 7;
|
||||
p->rJD += n - Z;
|
||||
clearYMD_HMS_TZ(p);
|
||||
rc = 0;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 's': {
|
||||
/*
|
||||
** start of TTTTT
|
||||
**
|
||||
** Move the date backwards to the beginning of the current day,
|
||||
** or month or year.
|
||||
*/
|
||||
if( strncmp(z, "start of ", 9)!=0 ) break;
|
||||
z += 9;
|
||||
computeYMD(p);
|
||||
p->validHMS = 1;
|
||||
p->h = p->m = 0;
|
||||
p->s = 0.0;
|
||||
p->validTZ = 0;
|
||||
p->validJD = 0;
|
||||
if( strcmp(z,"month")==0 ){
|
||||
p->D = 1;
|
||||
rc = 0;
|
||||
}else if( strcmp(z,"year")==0 ){
|
||||
computeYMD(p);
|
||||
p->M = 1;
|
||||
p->D = 1;
|
||||
rc = 0;
|
||||
}else if( strcmp(z,"day")==0 ){
|
||||
rc = 0;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case '+':
|
||||
case '-':
|
||||
case '0':
|
||||
case '1':
|
||||
case '2':
|
||||
case '3':
|
||||
case '4':
|
||||
case '5':
|
||||
case '6':
|
||||
case '7':
|
||||
case '8':
|
||||
case '9': {
|
||||
n = getValue(z, &r);
|
||||
if( n<=0 ) break;
|
||||
if( z[n]==':' ){
|
||||
/* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
|
||||
** specified number of hours, minutes, seconds, and fractional seconds
|
||||
** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
|
||||
** omitted.
|
||||
*/
|
||||
const char *z2 = z;
|
||||
DateTime tx;
|
||||
int day;
|
||||
if( !isdigit(*(u8*)z2) ) z2++;
|
||||
memset(&tx, 0, sizeof(tx));
|
||||
if( parseHhMmSs(z2, &tx) ) break;
|
||||
computeJD(&tx);
|
||||
tx.rJD -= 0.5;
|
||||
day = (int)tx.rJD;
|
||||
tx.rJD -= day;
|
||||
if( z[0]=='-' ) tx.rJD = -tx.rJD;
|
||||
computeJD(p);
|
||||
clearYMD_HMS_TZ(p);
|
||||
p->rJD += tx.rJD;
|
||||
rc = 0;
|
||||
break;
|
||||
}
|
||||
z += n;
|
||||
while( isspace(*(u8*)z) ) z++;
|
||||
n = strlen(z);
|
||||
if( n>10 || n<3 ) break;
|
||||
if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
|
||||
computeJD(p);
|
||||
rc = 0;
|
||||
if( n==3 && strcmp(z,"day")==0 ){
|
||||
p->rJD += r;
|
||||
}else if( n==4 && strcmp(z,"hour")==0 ){
|
||||
p->rJD += r/24.0;
|
||||
}else if( n==6 && strcmp(z,"minute")==0 ){
|
||||
p->rJD += r/(24.0*60.0);
|
||||
}else if( n==6 && strcmp(z,"second")==0 ){
|
||||
p->rJD += r/(24.0*60.0*60.0);
|
||||
}else if( n==5 && strcmp(z,"month")==0 ){
|
||||
int x, y;
|
||||
computeYMD_HMS(p);
|
||||
p->M += r;
|
||||
x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
|
||||
p->Y += x;
|
||||
p->M -= x*12;
|
||||
p->validJD = 0;
|
||||
computeJD(p);
|
||||
y = r;
|
||||
if( y!=r ){
|
||||
p->rJD += (r - y)*30.0;
|
||||
}
|
||||
}else if( n==4 && strcmp(z,"year")==0 ){
|
||||
computeYMD_HMS(p);
|
||||
p->Y += r;
|
||||
p->validJD = 0;
|
||||
computeJD(p);
|
||||
}else{
|
||||
rc = 1;
|
||||
}
|
||||
clearYMD_HMS_TZ(p);
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Process time function arguments. argv[0] is a date-time stamp.
|
||||
** argv[1] and following are modifiers. Parse them all and write
|
||||
** the resulting time into the DateTime structure p. Return 0
|
||||
** on success and 1 if there are any errors.
|
||||
*/
|
||||
static int isDate(int argc, sqlite3_value **argv, DateTime *p){
|
||||
int i;
|
||||
if( argc==0 ) return 1;
|
||||
if( SQLITE_NULL==sqlite3_value_type(argv[0]) ||
|
||||
parseDateOrTime((char*)sqlite3_value_text(argv[0]), p) ) return 1;
|
||||
for(i=1; i<argc; i++){
|
||||
if( SQLITE_NULL==sqlite3_value_type(argv[i]) ||
|
||||
parseModifier((char*)sqlite3_value_text(argv[i]), p) ) return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** The following routines implement the various date and time functions
|
||||
** of SQLite.
|
||||
*/
|
||||
|
||||
/*
|
||||
** julianday( TIMESTRING, MOD, MOD, ...)
|
||||
**
|
||||
** Return the julian day number of the date specified in the arguments
|
||||
*/
|
||||
static void juliandayFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
DateTime x;
|
||||
if( isDate(argc, argv, &x)==0 ){
|
||||
computeJD(&x);
|
||||
sqlite3_result_double(context, x.rJD);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** datetime( TIMESTRING, MOD, MOD, ...)
|
||||
**
|
||||
** Return YYYY-MM-DD HH:MM:SS
|
||||
*/
|
||||
static void datetimeFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
DateTime x;
|
||||
if( isDate(argc, argv, &x)==0 ){
|
||||
char zBuf[100];
|
||||
computeYMD_HMS(&x);
|
||||
sprintf(zBuf, "%04d-%02d-%02d %02d:%02d:%02d",x.Y, x.M, x.D, x.h, x.m,
|
||||
(int)(x.s));
|
||||
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** time( TIMESTRING, MOD, MOD, ...)
|
||||
**
|
||||
** Return HH:MM:SS
|
||||
*/
|
||||
static void timeFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
DateTime x;
|
||||
if( isDate(argc, argv, &x)==0 ){
|
||||
char zBuf[100];
|
||||
computeHMS(&x);
|
||||
sprintf(zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
|
||||
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** date( TIMESTRING, MOD, MOD, ...)
|
||||
**
|
||||
** Return YYYY-MM-DD
|
||||
*/
|
||||
static void dateFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
DateTime x;
|
||||
if( isDate(argc, argv, &x)==0 ){
|
||||
char zBuf[100];
|
||||
computeYMD(&x);
|
||||
sprintf(zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
|
||||
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
|
||||
**
|
||||
** Return a string described by FORMAT. Conversions as follows:
|
||||
**
|
||||
** %d day of month
|
||||
** %f ** fractional seconds SS.SSS
|
||||
** %H hour 00-24
|
||||
** %j day of year 000-366
|
||||
** %J ** Julian day number
|
||||
** %m month 01-12
|
||||
** %M minute 00-59
|
||||
** %s seconds since 1970-01-01
|
||||
** %S seconds 00-59
|
||||
** %w day of week 0-6 sunday==0
|
||||
** %W week of year 00-53
|
||||
** %Y year 0000-9999
|
||||
** %% %
|
||||
*/
|
||||
static void strftimeFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
DateTime x;
|
||||
int n, i, j;
|
||||
char *z;
|
||||
const char *zFmt = (const char*)sqlite3_value_text(argv[0]);
|
||||
char zBuf[100];
|
||||
if( zFmt==0 || isDate(argc-1, argv+1, &x) ) return;
|
||||
for(i=0, n=1; zFmt[i]; i++, n++){
|
||||
if( zFmt[i]=='%' ){
|
||||
switch( zFmt[i+1] ){
|
||||
case 'd':
|
||||
case 'H':
|
||||
case 'm':
|
||||
case 'M':
|
||||
case 'S':
|
||||
case 'W':
|
||||
n++;
|
||||
/* fall thru */
|
||||
case 'w':
|
||||
case '%':
|
||||
break;
|
||||
case 'f':
|
||||
n += 8;
|
||||
break;
|
||||
case 'j':
|
||||
n += 3;
|
||||
break;
|
||||
case 'Y':
|
||||
n += 8;
|
||||
break;
|
||||
case 's':
|
||||
case 'J':
|
||||
n += 50;
|
||||
break;
|
||||
default:
|
||||
return; /* ERROR. return a NULL */
|
||||
}
|
||||
i++;
|
||||
}
|
||||
}
|
||||
if( n<sizeof(zBuf) ){
|
||||
z = zBuf;
|
||||
}else{
|
||||
z = sqliteMalloc( n );
|
||||
if( z==0 ) return;
|
||||
}
|
||||
computeJD(&x);
|
||||
computeYMD_HMS(&x);
|
||||
for(i=j=0; zFmt[i]; i++){
|
||||
if( zFmt[i]!='%' ){
|
||||
z[j++] = zFmt[i];
|
||||
}else{
|
||||
i++;
|
||||
switch( zFmt[i] ){
|
||||
case 'd': sprintf(&z[j],"%02d",x.D); j+=2; break;
|
||||
case 'f': {
|
||||
int s = x.s;
|
||||
int ms = (x.s - s)*1000.0;
|
||||
sprintf(&z[j],"%02d.%03d",s,ms);
|
||||
j += strlen(&z[j]);
|
||||
break;
|
||||
}
|
||||
case 'H': sprintf(&z[j],"%02d",x.h); j+=2; break;
|
||||
case 'W': /* Fall thru */
|
||||
case 'j': {
|
||||
int nDay; /* Number of days since 1st day of year */
|
||||
DateTime y = x;
|
||||
y.validJD = 0;
|
||||
y.M = 1;
|
||||
y.D = 1;
|
||||
computeJD(&y);
|
||||
nDay = x.rJD - y.rJD;
|
||||
if( zFmt[i]=='W' ){
|
||||
int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
|
||||
wd = ((int)(x.rJD+0.5)) % 7;
|
||||
sprintf(&z[j],"%02d",(nDay+7-wd)/7);
|
||||
j += 2;
|
||||
}else{
|
||||
sprintf(&z[j],"%03d",nDay+1);
|
||||
j += 3;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 'J': sprintf(&z[j],"%.16g",x.rJD); j+=strlen(&z[j]); break;
|
||||
case 'm': sprintf(&z[j],"%02d",x.M); j+=2; break;
|
||||
case 'M': sprintf(&z[j],"%02d",x.m); j+=2; break;
|
||||
case 's': {
|
||||
sprintf(&z[j],"%d",(int)((x.rJD-2440587.5)*86400.0 + 0.5));
|
||||
j += strlen(&z[j]);
|
||||
break;
|
||||
}
|
||||
case 'S': sprintf(&z[j],"%02d",(int)(x.s+0.5)); j+=2; break;
|
||||
case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
|
||||
case 'Y': sprintf(&z[j],"%04d",x.Y); j+=strlen(&z[j]); break;
|
||||
case '%': z[j++] = '%'; break;
|
||||
}
|
||||
}
|
||||
}
|
||||
z[j] = 0;
|
||||
sqlite3_result_text(context, z, -1, SQLITE_TRANSIENT);
|
||||
if( z!=zBuf ){
|
||||
sqliteFree(z);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** current_time()
|
||||
**
|
||||
** This function returns the same value as time('now').
|
||||
*/
|
||||
static void ctimeFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
sqlite3_value *pVal = sqlite3ValueNew();
|
||||
if( pVal ){
|
||||
sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
|
||||
timeFunc(context, 1, &pVal);
|
||||
sqlite3ValueFree(pVal);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** current_date()
|
||||
**
|
||||
** This function returns the same value as date('now').
|
||||
*/
|
||||
static void cdateFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
sqlite3_value *pVal = sqlite3ValueNew();
|
||||
if( pVal ){
|
||||
sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
|
||||
dateFunc(context, 1, &pVal);
|
||||
sqlite3ValueFree(pVal);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** current_timestamp()
|
||||
**
|
||||
** This function returns the same value as datetime('now').
|
||||
*/
|
||||
static void ctimestampFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
sqlite3_value *pVal = sqlite3ValueNew();
|
||||
if( pVal ){
|
||||
sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
|
||||
datetimeFunc(context, 1, &pVal);
|
||||
sqlite3ValueFree(pVal);
|
||||
}
|
||||
}
|
||||
#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
|
||||
|
||||
#ifdef SQLITE_OMIT_DATETIME_FUNCS
|
||||
/*
|
||||
** If the library is compiled to omit the full-scale date and time
|
||||
** handling (to get a smaller binary), the following minimal version
|
||||
** of the functions current_time(), current_date() and current_timestamp()
|
||||
** are included instead. This is to support column declarations that
|
||||
** include "DEFAULT CURRENT_TIME" etc.
|
||||
**
|
||||
** This function uses the C-library functions time(), gmtime()
|
||||
** and strftime(). The format string to pass to strftime() is supplied
|
||||
** as the user-data for the function.
|
||||
*/
|
||||
static void currentTimeFunc(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
time_t t;
|
||||
char *zFormat = (char *)sqlite3_user_data(context);
|
||||
char zBuf[20];
|
||||
|
||||
time(&t);
|
||||
#ifdef SQLITE_TEST
|
||||
{
|
||||
extern int sqlite3_current_time; /* See os_XXX.c */
|
||||
if( sqlite3_current_time ){
|
||||
t = sqlite3_current_time;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
sqlite3OsEnterMutex();
|
||||
strftime(zBuf, 20, zFormat, gmtime(&t));
|
||||
sqlite3OsLeaveMutex();
|
||||
|
||||
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** This function registered all of the above C functions as SQL
|
||||
** functions. This should be the only routine in this file with
|
||||
** external linkage.
|
||||
*/
|
||||
void sqlite3RegisterDateTimeFunctions(sqlite3 *db){
|
||||
#ifndef SQLITE_OMIT_DATETIME_FUNCS
|
||||
static const struct {
|
||||
char *zName;
|
||||
int nArg;
|
||||
void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
|
||||
} aFuncs[] = {
|
||||
{ "julianday", -1, juliandayFunc },
|
||||
{ "date", -1, dateFunc },
|
||||
{ "time", -1, timeFunc },
|
||||
{ "datetime", -1, datetimeFunc },
|
||||
{ "strftime", -1, strftimeFunc },
|
||||
{ "current_time", 0, ctimeFunc },
|
||||
{ "current_timestamp", 0, ctimestampFunc },
|
||||
{ "current_date", 0, cdateFunc },
|
||||
};
|
||||
int i;
|
||||
|
||||
for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
|
||||
sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
|
||||
SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0);
|
||||
}
|
||||
#else
|
||||
static const struct {
|
||||
char *zName;
|
||||
char *zFormat;
|
||||
} aFuncs[] = {
|
||||
{ "current_time", "%H:%M:%S" },
|
||||
{ "current_date", "%Y-%m-%d" },
|
||||
{ "current_timestamp", "%Y-%m-%d %H:%M:%S" }
|
||||
};
|
||||
int i;
|
||||
|
||||
for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
|
||||
sqlite3CreateFunc(db, aFuncs[i].zName, 0, SQLITE_UTF8,
|
||||
aFuncs[i].zFormat, currentTimeFunc, 0, 0);
|
||||
}
|
||||
#endif
|
||||
}
|
|
@ -0,0 +1,451 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains C code routines that are called by the parser
|
||||
** in order to generate code for DELETE FROM statements.
|
||||
**
|
||||
** $Id: delete.c,v 1.122 2006/02/24 02:53:50 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** Look up every table that is named in pSrc. If any table is not found,
|
||||
** add an error message to pParse->zErrMsg and return NULL. If all tables
|
||||
** are found, return a pointer to the last table.
|
||||
*/
|
||||
Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){
|
||||
Table *pTab = 0;
|
||||
int i;
|
||||
struct SrcList_item *pItem;
|
||||
for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
|
||||
pTab = sqlite3LocateTable(pParse, pItem->zName, pItem->zDatabase);
|
||||
sqlite3DeleteTable(pParse->db, pItem->pTab);
|
||||
pItem->pTab = pTab;
|
||||
if( pTab ){
|
||||
pTab->nRef++;
|
||||
}
|
||||
}
|
||||
return pTab;
|
||||
}
|
||||
|
||||
/*
|
||||
** Check to make sure the given table is writable. If it is not
|
||||
** writable, generate an error message and return 1. If it is
|
||||
** writable return 0;
|
||||
*/
|
||||
int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){
|
||||
if( pTab->readOnly && (pParse->db->flags & SQLITE_WriteSchema)==0
|
||||
&& pParse->nested==0 ){
|
||||
sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName);
|
||||
return 1;
|
||||
}
|
||||
#ifndef SQLITE_OMIT_VIEW
|
||||
if( !viewOk && pTab->pSelect ){
|
||||
sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName);
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code that will open a table for reading.
|
||||
*/
|
||||
void sqlite3OpenTable(
|
||||
Parse *p, /* Generate code into this VDBE */
|
||||
int iCur, /* The cursor number of the table */
|
||||
int iDb, /* The database index in sqlite3.aDb[] */
|
||||
Table *pTab, /* The table to be opened */
|
||||
int opcode /* OP_OpenRead or OP_OpenWrite */
|
||||
){
|
||||
Vdbe *v = sqlite3GetVdbe(p);
|
||||
assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
|
||||
sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite), pTab->zName);
|
||||
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
|
||||
VdbeComment((v, "# %s", pTab->zName));
|
||||
sqlite3VdbeAddOp(v, opcode, iCur, pTab->tnum);
|
||||
sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, pTab->nCol);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Generate code for a DELETE FROM statement.
|
||||
**
|
||||
** DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL;
|
||||
** \________/ \________________/
|
||||
** pTabList pWhere
|
||||
*/
|
||||
void sqlite3DeleteFrom(
|
||||
Parse *pParse, /* The parser context */
|
||||
SrcList *pTabList, /* The table from which we should delete things */
|
||||
Expr *pWhere /* The WHERE clause. May be null */
|
||||
){
|
||||
Vdbe *v; /* The virtual database engine */
|
||||
Table *pTab; /* The table from which records will be deleted */
|
||||
const char *zDb; /* Name of database holding pTab */
|
||||
int end, addr = 0; /* A couple addresses of generated code */
|
||||
int i; /* Loop counter */
|
||||
WhereInfo *pWInfo; /* Information about the WHERE clause */
|
||||
Index *pIdx; /* For looping over indices of the table */
|
||||
int iCur; /* VDBE Cursor number for pTab */
|
||||
sqlite3 *db; /* Main database structure */
|
||||
AuthContext sContext; /* Authorization context */
|
||||
int oldIdx = -1; /* Cursor for the OLD table of AFTER triggers */
|
||||
NameContext sNC; /* Name context to resolve expressions in */
|
||||
int iDb;
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
int isView; /* True if attempting to delete from a view */
|
||||
int triggers_exist = 0; /* True if any triggers exist */
|
||||
#endif
|
||||
|
||||
sContext.pParse = 0;
|
||||
if( pParse->nErr || sqlite3MallocFailed() ){
|
||||
goto delete_from_cleanup;
|
||||
}
|
||||
db = pParse->db;
|
||||
assert( pTabList->nSrc==1 );
|
||||
|
||||
/* Locate the table which we want to delete. This table has to be
|
||||
** put in an SrcList structure because some of the subroutines we
|
||||
** will be calling are designed to work with multiple tables and expect
|
||||
** an SrcList* parameter instead of just a Table* parameter.
|
||||
*/
|
||||
pTab = sqlite3SrcListLookup(pParse, pTabList);
|
||||
if( pTab==0 ) goto delete_from_cleanup;
|
||||
|
||||
/* Figure out if we have any triggers and if the table being
|
||||
** deleted from is a view
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0);
|
||||
isView = pTab->pSelect!=0;
|
||||
#else
|
||||
# define triggers_exist 0
|
||||
# define isView 0
|
||||
#endif
|
||||
#ifdef SQLITE_OMIT_VIEW
|
||||
# undef isView
|
||||
# define isView 0
|
||||
#endif
|
||||
|
||||
if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
|
||||
goto delete_from_cleanup;
|
||||
}
|
||||
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
||||
assert( iDb<db->nDb );
|
||||
zDb = db->aDb[iDb].zName;
|
||||
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
|
||||
goto delete_from_cleanup;
|
||||
}
|
||||
|
||||
/* If pTab is really a view, make sure it has been initialized.
|
||||
*/
|
||||
if( isView && sqlite3ViewGetColumnNames(pParse, pTab) ){
|
||||
goto delete_from_cleanup;
|
||||
}
|
||||
|
||||
/* Allocate a cursor used to store the old.* data for a trigger.
|
||||
*/
|
||||
if( triggers_exist ){
|
||||
oldIdx = pParse->nTab++;
|
||||
}
|
||||
|
||||
/* Resolve the column names in the WHERE clause.
|
||||
*/
|
||||
assert( pTabList->nSrc==1 );
|
||||
iCur = pTabList->a[0].iCursor = pParse->nTab++;
|
||||
memset(&sNC, 0, sizeof(sNC));
|
||||
sNC.pParse = pParse;
|
||||
sNC.pSrcList = pTabList;
|
||||
if( sqlite3ExprResolveNames(&sNC, pWhere) ){
|
||||
goto delete_from_cleanup;
|
||||
}
|
||||
|
||||
/* Start the view context
|
||||
*/
|
||||
if( isView ){
|
||||
sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
|
||||
}
|
||||
|
||||
/* Begin generating code.
|
||||
*/
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
if( v==0 ){
|
||||
goto delete_from_cleanup;
|
||||
}
|
||||
if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
|
||||
sqlite3BeginWriteOperation(pParse, triggers_exist, iDb);
|
||||
|
||||
/* If we are trying to delete from a view, realize that view into
|
||||
** a ephemeral table.
|
||||
*/
|
||||
if( isView ){
|
||||
Select *pView = sqlite3SelectDup(pTab->pSelect);
|
||||
sqlite3Select(pParse, pView, SRT_VirtualTab, iCur, 0, 0, 0, 0);
|
||||
sqlite3SelectDelete(pView);
|
||||
}
|
||||
|
||||
/* Initialize the counter of the number of rows deleted, if
|
||||
** we are counting rows.
|
||||
*/
|
||||
if( db->flags & SQLITE_CountRows ){
|
||||
sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
|
||||
}
|
||||
|
||||
/* Special case: A DELETE without a WHERE clause deletes everything.
|
||||
** It is easier just to erase the whole table. Note, however, that
|
||||
** this means that the row change count will be incorrect.
|
||||
*/
|
||||
if( pWhere==0 && !triggers_exist ){
|
||||
if( db->flags & SQLITE_CountRows ){
|
||||
/* If counting rows deleted, just count the total number of
|
||||
** entries in the table. */
|
||||
int endOfLoop = sqlite3VdbeMakeLabel(v);
|
||||
int addr2;
|
||||
if( !isView ){
|
||||
sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_Rewind, iCur, sqlite3VdbeCurrentAddr(v)+2);
|
||||
addr2 = sqlite3VdbeAddOp(v, OP_AddImm, 1, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Next, iCur, addr2);
|
||||
sqlite3VdbeResolveLabel(v, endOfLoop);
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
|
||||
}
|
||||
if( !isView ){
|
||||
sqlite3VdbeAddOp(v, OP_Clear, pTab->tnum, iDb);
|
||||
if( !pParse->nested ){
|
||||
sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
|
||||
}
|
||||
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
||||
assert( pIdx->pSchema==pTab->pSchema );
|
||||
sqlite3VdbeAddOp(v, OP_Clear, pIdx->tnum, iDb);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* The usual case: There is a WHERE clause so we have to scan through
|
||||
** the table and pick which records to delete.
|
||||
*/
|
||||
else{
|
||||
/* Begin the database scan
|
||||
*/
|
||||
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
|
||||
if( pWInfo==0 ) goto delete_from_cleanup;
|
||||
|
||||
/* Remember the rowid of every item to be deleted.
|
||||
*/
|
||||
sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
|
||||
sqlite3VdbeAddOp(v, OP_FifoWrite, 0, 0);
|
||||
if( db->flags & SQLITE_CountRows ){
|
||||
sqlite3VdbeAddOp(v, OP_AddImm, 1, 0);
|
||||
}
|
||||
|
||||
/* End the database scan loop.
|
||||
*/
|
||||
sqlite3WhereEnd(pWInfo);
|
||||
|
||||
/* Open the pseudo-table used to store OLD if there are triggers.
|
||||
*/
|
||||
if( triggers_exist ){
|
||||
sqlite3VdbeAddOp(v, OP_OpenPseudo, oldIdx, 0);
|
||||
sqlite3VdbeAddOp(v, OP_SetNumColumns, oldIdx, pTab->nCol);
|
||||
}
|
||||
|
||||
/* Delete every item whose key was written to the list during the
|
||||
** database scan. We have to delete items after the scan is complete
|
||||
** because deleting an item can change the scan order.
|
||||
*/
|
||||
end = sqlite3VdbeMakeLabel(v);
|
||||
|
||||
/* This is the beginning of the delete loop when there are
|
||||
** row triggers.
|
||||
*/
|
||||
if( triggers_exist ){
|
||||
addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, end);
|
||||
if( !isView ){
|
||||
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
|
||||
sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
|
||||
sqlite3VdbeAddOp(v, OP_RowData, iCur, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Insert, oldIdx, 0);
|
||||
if( !isView ){
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
|
||||
}
|
||||
|
||||
(void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_BEFORE, pTab,
|
||||
-1, oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
|
||||
addr);
|
||||
}
|
||||
|
||||
if( !isView ){
|
||||
/* Open cursors for the table we are deleting from and all its
|
||||
** indices. If there are row triggers, this happens inside the
|
||||
** OP_FifoRead loop because the cursor have to all be closed
|
||||
** before the trigger fires. If there are no row triggers, the
|
||||
** cursors are opened only once on the outside the loop.
|
||||
*/
|
||||
sqlite3OpenTableAndIndices(pParse, pTab, iCur, OP_OpenWrite);
|
||||
|
||||
/* This is the beginning of the delete loop when there are no
|
||||
** row triggers */
|
||||
if( !triggers_exist ){
|
||||
addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, end);
|
||||
}
|
||||
|
||||
/* Delete the row */
|
||||
sqlite3GenerateRowDelete(db, v, pTab, iCur, pParse->nested==0);
|
||||
}
|
||||
|
||||
/* If there are row triggers, close all cursors then invoke
|
||||
** the AFTER triggers
|
||||
*/
|
||||
if( triggers_exist ){
|
||||
if( !isView ){
|
||||
for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum);
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
|
||||
}
|
||||
(void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_AFTER, pTab, -1,
|
||||
oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
|
||||
addr);
|
||||
}
|
||||
|
||||
/* End of the delete loop */
|
||||
sqlite3VdbeAddOp(v, OP_Goto, 0, addr);
|
||||
sqlite3VdbeResolveLabel(v, end);
|
||||
|
||||
/* Close the cursors after the loop if there are no row triggers */
|
||||
if( !triggers_exist ){
|
||||
for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum);
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of rows that were deleted. If this routine is
|
||||
** generating code because of a call to sqlite3NestedParse(), do not
|
||||
** invoke the callback function.
|
||||
*/
|
||||
if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
|
||||
sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
|
||||
sqlite3VdbeSetNumCols(v, 1);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", P3_STATIC);
|
||||
}
|
||||
|
||||
delete_from_cleanup:
|
||||
sqlite3AuthContextPop(&sContext);
|
||||
sqlite3SrcListDelete(pTabList);
|
||||
sqlite3ExprDelete(pWhere);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine generates VDBE code that causes a single row of a
|
||||
** single table to be deleted.
|
||||
**
|
||||
** The VDBE must be in a particular state when this routine is called.
|
||||
** These are the requirements:
|
||||
**
|
||||
** 1. A read/write cursor pointing to pTab, the table containing the row
|
||||
** to be deleted, must be opened as cursor number "base".
|
||||
**
|
||||
** 2. Read/write cursors for all indices of pTab must be open as
|
||||
** cursor number base+i for the i-th index.
|
||||
**
|
||||
** 3. The record number of the row to be deleted must be on the top
|
||||
** of the stack.
|
||||
**
|
||||
** This routine pops the top of the stack to remove the record number
|
||||
** and then generates code to remove both the table record and all index
|
||||
** entries that point to that record.
|
||||
*/
|
||||
void sqlite3GenerateRowDelete(
|
||||
sqlite3 *db, /* The database containing the index */
|
||||
Vdbe *v, /* Generate code into this VDBE */
|
||||
Table *pTab, /* Table containing the row to be deleted */
|
||||
int iCur, /* Cursor number for the table */
|
||||
int count /* Increment the row change counter */
|
||||
){
|
||||
int addr;
|
||||
addr = sqlite3VdbeAddOp(v, OP_NotExists, iCur, 0);
|
||||
sqlite3GenerateRowIndexDelete(v, pTab, iCur, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0));
|
||||
if( count ){
|
||||
sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
|
||||
}
|
||||
sqlite3VdbeJumpHere(v, addr);
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine generates VDBE code that causes the deletion of all
|
||||
** index entries associated with a single row of a single table.
|
||||
**
|
||||
** The VDBE must be in a particular state when this routine is called.
|
||||
** These are the requirements:
|
||||
**
|
||||
** 1. A read/write cursor pointing to pTab, the table containing the row
|
||||
** to be deleted, must be opened as cursor number "iCur".
|
||||
**
|
||||
** 2. Read/write cursors for all indices of pTab must be open as
|
||||
** cursor number iCur+i for the i-th index.
|
||||
**
|
||||
** 3. The "iCur" cursor must be pointing to the row that is to be
|
||||
** deleted.
|
||||
*/
|
||||
void sqlite3GenerateRowIndexDelete(
|
||||
Vdbe *v, /* Generate code into this VDBE */
|
||||
Table *pTab, /* Table containing the row to be deleted */
|
||||
int iCur, /* Cursor number for the table */
|
||||
char *aIdxUsed /* Only delete if aIdxUsed!=0 && aIdxUsed[i]!=0 */
|
||||
){
|
||||
int i;
|
||||
Index *pIdx;
|
||||
|
||||
for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
|
||||
if( aIdxUsed!=0 && aIdxUsed[i-1]==0 ) continue;
|
||||
sqlite3GenerateIndexKey(v, pIdx, iCur);
|
||||
sqlite3VdbeAddOp(v, OP_IdxDelete, iCur+i, 0);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate code that will assemble an index key and put it on the top
|
||||
** of the tack. The key with be for index pIdx which is an index on pTab.
|
||||
** iCur is the index of a cursor open on the pTab table and pointing to
|
||||
** the entry that needs indexing.
|
||||
*/
|
||||
void sqlite3GenerateIndexKey(
|
||||
Vdbe *v, /* Generate code into this VDBE */
|
||||
Index *pIdx, /* The index for which to generate a key */
|
||||
int iCur /* Cursor number for the pIdx->pTable table */
|
||||
){
|
||||
int j;
|
||||
Table *pTab = pIdx->pTable;
|
||||
|
||||
sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
|
||||
for(j=0; j<pIdx->nColumn; j++){
|
||||
int idx = pIdx->aiColumn[j];
|
||||
if( idx==pTab->iPKey ){
|
||||
sqlite3VdbeAddOp(v, OP_Dup, j, 0);
|
||||
}else{
|
||||
sqlite3VdbeAddOp(v, OP_Column, iCur, idx);
|
||||
sqlite3ColumnDefault(v, pTab, idx);
|
||||
}
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_MakeIdxRec, pIdx->nColumn, 0);
|
||||
sqlite3IndexAffinityStr(v, pIdx);
|
||||
}
|
|
@ -0,0 +1,37 @@
|
|||
/*
|
||||
** 2005 January 20
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains C code routines that are not a part of the official
|
||||
** SQLite API. These routines are unsupported.
|
||||
**
|
||||
** $Id: experimental.c,v 1.6 2007/06/19 23:47:38 sdwilsh%shawnwilsher.com Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "os.h"
|
||||
|
||||
/*
|
||||
** Set all the parameters in the compiled SQL statement to NULL.
|
||||
*/
|
||||
int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
|
||||
int i;
|
||||
int rc = SQLITE_OK;
|
||||
for(i=1; rc==SQLITE_OK && i<=sqlite3_bind_parameter_count(pStmt); i++){
|
||||
rc = sqlite3_bind_null(pStmt, i);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Sleep for a little while. Return the amount of time slept.
|
||||
*/
|
||||
int sqlite3_sleep(int ms){
|
||||
return sqlite3OsSleep(ms);
|
||||
}
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -0,0 +1,394 @@
|
|||
/*
|
||||
** 2001 September 22
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This is the implementation of generic hash-tables
|
||||
** used in SQLite.
|
||||
**
|
||||
** $Id: hash.c,v 1.18 2006/02/14 10:48:39 danielk1977 Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include <assert.h>
|
||||
|
||||
/* Turn bulk memory into a hash table object by initializing the
|
||||
** fields of the Hash structure.
|
||||
**
|
||||
** "pNew" is a pointer to the hash table that is to be initialized.
|
||||
** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER,
|
||||
** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING. The value of keyClass
|
||||
** determines what kind of key the hash table will use. "copyKey" is
|
||||
** true if the hash table should make its own private copy of keys and
|
||||
** false if it should just use the supplied pointer. CopyKey only makes
|
||||
** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored
|
||||
** for other key classes.
|
||||
*/
|
||||
void sqlite3HashInit(Hash *pNew, int keyClass, int copyKey){
|
||||
assert( pNew!=0 );
|
||||
assert( keyClass>=SQLITE_HASH_STRING && keyClass<=SQLITE_HASH_BINARY );
|
||||
pNew->keyClass = keyClass;
|
||||
#if 0
|
||||
if( keyClass==SQLITE_HASH_POINTER || keyClass==SQLITE_HASH_INT ) copyKey = 0;
|
||||
#endif
|
||||
pNew->copyKey = copyKey;
|
||||
pNew->first = 0;
|
||||
pNew->count = 0;
|
||||
pNew->htsize = 0;
|
||||
pNew->ht = 0;
|
||||
pNew->xMalloc = sqlite3MallocX;
|
||||
pNew->xFree = sqlite3FreeX;
|
||||
}
|
||||
|
||||
/* Remove all entries from a hash table. Reclaim all memory.
|
||||
** Call this routine to delete a hash table or to reset a hash table
|
||||
** to the empty state.
|
||||
*/
|
||||
void sqlite3HashClear(Hash *pH){
|
||||
HashElem *elem; /* For looping over all elements of the table */
|
||||
|
||||
assert( pH!=0 );
|
||||
elem = pH->first;
|
||||
pH->first = 0;
|
||||
if( pH->ht ) pH->xFree(pH->ht);
|
||||
pH->ht = 0;
|
||||
pH->htsize = 0;
|
||||
while( elem ){
|
||||
HashElem *next_elem = elem->next;
|
||||
if( pH->copyKey && elem->pKey ){
|
||||
pH->xFree(elem->pKey);
|
||||
}
|
||||
pH->xFree(elem);
|
||||
elem = next_elem;
|
||||
}
|
||||
pH->count = 0;
|
||||
}
|
||||
|
||||
#if 0 /* NOT USED */
|
||||
/*
|
||||
** Hash and comparison functions when the mode is SQLITE_HASH_INT
|
||||
*/
|
||||
static int intHash(const void *pKey, int nKey){
|
||||
return nKey ^ (nKey<<8) ^ (nKey>>8);
|
||||
}
|
||||
static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
||||
return n2 - n1;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if 0 /* NOT USED */
|
||||
/*
|
||||
** Hash and comparison functions when the mode is SQLITE_HASH_POINTER
|
||||
*/
|
||||
static int ptrHash(const void *pKey, int nKey){
|
||||
uptr x = Addr(pKey);
|
||||
return x ^ (x<<8) ^ (x>>8);
|
||||
}
|
||||
static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
||||
if( pKey1==pKey2 ) return 0;
|
||||
if( pKey1<pKey2 ) return -1;
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Hash and comparison functions when the mode is SQLITE_HASH_STRING
|
||||
*/
|
||||
static int strHash(const void *pKey, int nKey){
|
||||
const char *z = (const char *)pKey;
|
||||
int h = 0;
|
||||
if( nKey<=0 ) nKey = strlen(z);
|
||||
while( nKey > 0 ){
|
||||
h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++];
|
||||
nKey--;
|
||||
}
|
||||
return h & 0x7fffffff;
|
||||
}
|
||||
static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
||||
if( n1!=n2 ) return 1;
|
||||
return sqlite3StrNICmp((const char*)pKey1,(const char*)pKey2,n1);
|
||||
}
|
||||
|
||||
/*
|
||||
** Hash and comparison functions when the mode is SQLITE_HASH_BINARY
|
||||
*/
|
||||
static int binHash(const void *pKey, int nKey){
|
||||
int h = 0;
|
||||
const char *z = (const char *)pKey;
|
||||
while( nKey-- > 0 ){
|
||||
h = (h<<3) ^ h ^ *(z++);
|
||||
}
|
||||
return h & 0x7fffffff;
|
||||
}
|
||||
static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
|
||||
if( n1!=n2 ) return 1;
|
||||
return memcmp(pKey1,pKey2,n1);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return a pointer to the appropriate hash function given the key class.
|
||||
**
|
||||
** The C syntax in this function definition may be unfamilar to some
|
||||
** programmers, so we provide the following additional explanation:
|
||||
**
|
||||
** The name of the function is "hashFunction". The function takes a
|
||||
** single parameter "keyClass". The return value of hashFunction()
|
||||
** is a pointer to another function. Specifically, the return value
|
||||
** of hashFunction() is a pointer to a function that takes two parameters
|
||||
** with types "const void*" and "int" and returns an "int".
|
||||
*/
|
||||
static int (*hashFunction(int keyClass))(const void*,int){
|
||||
#if 0 /* HASH_INT and HASH_POINTER are never used */
|
||||
switch( keyClass ){
|
||||
case SQLITE_HASH_INT: return &intHash;
|
||||
case SQLITE_HASH_POINTER: return &ptrHash;
|
||||
case SQLITE_HASH_STRING: return &strHash;
|
||||
case SQLITE_HASH_BINARY: return &binHash;;
|
||||
default: break;
|
||||
}
|
||||
return 0;
|
||||
#else
|
||||
if( keyClass==SQLITE_HASH_STRING ){
|
||||
return &strHash;
|
||||
}else{
|
||||
assert( keyClass==SQLITE_HASH_BINARY );
|
||||
return &binHash;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** Return a pointer to the appropriate hash function given the key class.
|
||||
**
|
||||
** For help in interpreted the obscure C code in the function definition,
|
||||
** see the header comment on the previous function.
|
||||
*/
|
||||
static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
|
||||
#if 0 /* HASH_INT and HASH_POINTER are never used */
|
||||
switch( keyClass ){
|
||||
case SQLITE_HASH_INT: return &intCompare;
|
||||
case SQLITE_HASH_POINTER: return &ptrCompare;
|
||||
case SQLITE_HASH_STRING: return &strCompare;
|
||||
case SQLITE_HASH_BINARY: return &binCompare;
|
||||
default: break;
|
||||
}
|
||||
return 0;
|
||||
#else
|
||||
if( keyClass==SQLITE_HASH_STRING ){
|
||||
return &strCompare;
|
||||
}else{
|
||||
assert( keyClass==SQLITE_HASH_BINARY );
|
||||
return &binCompare;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Link an element into the hash table
|
||||
*/
|
||||
static void insertElement(
|
||||
Hash *pH, /* The complete hash table */
|
||||
struct _ht *pEntry, /* The entry into which pNew is inserted */
|
||||
HashElem *pNew /* The element to be inserted */
|
||||
){
|
||||
HashElem *pHead; /* First element already in pEntry */
|
||||
pHead = pEntry->chain;
|
||||
if( pHead ){
|
||||
pNew->next = pHead;
|
||||
pNew->prev = pHead->prev;
|
||||
if( pHead->prev ){ pHead->prev->next = pNew; }
|
||||
else { pH->first = pNew; }
|
||||
pHead->prev = pNew;
|
||||
}else{
|
||||
pNew->next = pH->first;
|
||||
if( pH->first ){ pH->first->prev = pNew; }
|
||||
pNew->prev = 0;
|
||||
pH->first = pNew;
|
||||
}
|
||||
pEntry->count++;
|
||||
pEntry->chain = pNew;
|
||||
}
|
||||
|
||||
|
||||
/* Resize the hash table so that it cantains "new_size" buckets.
|
||||
** "new_size" must be a power of 2. The hash table might fail
|
||||
** to resize if sqliteMalloc() fails.
|
||||
*/
|
||||
static void rehash(Hash *pH, int new_size){
|
||||
struct _ht *new_ht; /* The new hash table */
|
||||
HashElem *elem, *next_elem; /* For looping over existing elements */
|
||||
int (*xHash)(const void*,int); /* The hash function */
|
||||
|
||||
assert( (new_size & (new_size-1))==0 );
|
||||
new_ht = (struct _ht *)pH->xMalloc( new_size*sizeof(struct _ht) );
|
||||
if( new_ht==0 ) return;
|
||||
if( pH->ht ) pH->xFree(pH->ht);
|
||||
pH->ht = new_ht;
|
||||
pH->htsize = new_size;
|
||||
xHash = hashFunction(pH->keyClass);
|
||||
for(elem=pH->first, pH->first=0; elem; elem = next_elem){
|
||||
int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
|
||||
next_elem = elem->next;
|
||||
insertElement(pH, &new_ht[h], elem);
|
||||
}
|
||||
}
|
||||
|
||||
/* This function (for internal use only) locates an element in an
|
||||
** hash table that matches the given key. The hash for this key has
|
||||
** already been computed and is passed as the 4th parameter.
|
||||
*/
|
||||
static HashElem *findElementGivenHash(
|
||||
const Hash *pH, /* The pH to be searched */
|
||||
const void *pKey, /* The key we are searching for */
|
||||
int nKey,
|
||||
int h /* The hash for this key. */
|
||||
){
|
||||
HashElem *elem; /* Used to loop thru the element list */
|
||||
int count; /* Number of elements left to test */
|
||||
int (*xCompare)(const void*,int,const void*,int); /* comparison function */
|
||||
|
||||
if( pH->ht ){
|
||||
struct _ht *pEntry = &pH->ht[h];
|
||||
elem = pEntry->chain;
|
||||
count = pEntry->count;
|
||||
xCompare = compareFunction(pH->keyClass);
|
||||
while( count-- && elem ){
|
||||
if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
|
||||
return elem;
|
||||
}
|
||||
elem = elem->next;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Remove a single entry from the hash table given a pointer to that
|
||||
** element and a hash on the element's key.
|
||||
*/
|
||||
static void removeElementGivenHash(
|
||||
Hash *pH, /* The pH containing "elem" */
|
||||
HashElem* elem, /* The element to be removed from the pH */
|
||||
int h /* Hash value for the element */
|
||||
){
|
||||
struct _ht *pEntry;
|
||||
if( elem->prev ){
|
||||
elem->prev->next = elem->next;
|
||||
}else{
|
||||
pH->first = elem->next;
|
||||
}
|
||||
if( elem->next ){
|
||||
elem->next->prev = elem->prev;
|
||||
}
|
||||
pEntry = &pH->ht[h];
|
||||
if( pEntry->chain==elem ){
|
||||
pEntry->chain = elem->next;
|
||||
}
|
||||
pEntry->count--;
|
||||
if( pEntry->count<=0 ){
|
||||
pEntry->chain = 0;
|
||||
}
|
||||
if( pH->copyKey && elem->pKey ){
|
||||
pH->xFree(elem->pKey);
|
||||
}
|
||||
pH->xFree( elem );
|
||||
pH->count--;
|
||||
if( pH->count<=0 ){
|
||||
assert( pH->first==0 );
|
||||
assert( pH->count==0 );
|
||||
sqlite3HashClear(pH);
|
||||
}
|
||||
}
|
||||
|
||||
/* Attempt to locate an element of the hash table pH with a key
|
||||
** that matches pKey,nKey. Return the data for this element if it is
|
||||
** found, or NULL if there is no match.
|
||||
*/
|
||||
void *sqlite3HashFind(const Hash *pH, const void *pKey, int nKey){
|
||||
int h; /* A hash on key */
|
||||
HashElem *elem; /* The element that matches key */
|
||||
int (*xHash)(const void*,int); /* The hash function */
|
||||
|
||||
if( pH==0 || pH->ht==0 ) return 0;
|
||||
xHash = hashFunction(pH->keyClass);
|
||||
assert( xHash!=0 );
|
||||
h = (*xHash)(pKey,nKey);
|
||||
assert( (pH->htsize & (pH->htsize-1))==0 );
|
||||
elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
|
||||
return elem ? elem->data : 0;
|
||||
}
|
||||
|
||||
/* Insert an element into the hash table pH. The key is pKey,nKey
|
||||
** and the data is "data".
|
||||
**
|
||||
** If no element exists with a matching key, then a new
|
||||
** element is created. A copy of the key is made if the copyKey
|
||||
** flag is set. NULL is returned.
|
||||
**
|
||||
** If another element already exists with the same key, then the
|
||||
** new data replaces the old data and the old data is returned.
|
||||
** The key is not copied in this instance. If a malloc fails, then
|
||||
** the new data is returned and the hash table is unchanged.
|
||||
**
|
||||
** If the "data" parameter to this function is NULL, then the
|
||||
** element corresponding to "key" is removed from the hash table.
|
||||
*/
|
||||
void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
|
||||
int hraw; /* Raw hash value of the key */
|
||||
int h; /* the hash of the key modulo hash table size */
|
||||
HashElem *elem; /* Used to loop thru the element list */
|
||||
HashElem *new_elem; /* New element added to the pH */
|
||||
int (*xHash)(const void*,int); /* The hash function */
|
||||
|
||||
assert( pH!=0 );
|
||||
xHash = hashFunction(pH->keyClass);
|
||||
assert( xHash!=0 );
|
||||
hraw = (*xHash)(pKey, nKey);
|
||||
assert( (pH->htsize & (pH->htsize-1))==0 );
|
||||
h = hraw & (pH->htsize-1);
|
||||
elem = findElementGivenHash(pH,pKey,nKey,h);
|
||||
if( elem ){
|
||||
void *old_data = elem->data;
|
||||
if( data==0 ){
|
||||
removeElementGivenHash(pH,elem,h);
|
||||
}else{
|
||||
elem->data = data;
|
||||
}
|
||||
return old_data;
|
||||
}
|
||||
if( data==0 ) return 0;
|
||||
new_elem = (HashElem*)pH->xMalloc( sizeof(HashElem) );
|
||||
if( new_elem==0 ) return data;
|
||||
if( pH->copyKey && pKey!=0 ){
|
||||
new_elem->pKey = pH->xMalloc( nKey );
|
||||
if( new_elem->pKey==0 ){
|
||||
pH->xFree(new_elem);
|
||||
return data;
|
||||
}
|
||||
memcpy((void*)new_elem->pKey, pKey, nKey);
|
||||
}else{
|
||||
new_elem->pKey = (void*)pKey;
|
||||
}
|
||||
new_elem->nKey = nKey;
|
||||
pH->count++;
|
||||
if( pH->htsize==0 ){
|
||||
rehash(pH,8);
|
||||
if( pH->htsize==0 ){
|
||||
pH->count = 0;
|
||||
pH->xFree(new_elem);
|
||||
return data;
|
||||
}
|
||||
}
|
||||
if( pH->count > pH->htsize ){
|
||||
rehash(pH,pH->htsize*2);
|
||||
}
|
||||
assert( pH->htsize>0 );
|
||||
assert( (pH->htsize & (pH->htsize-1))==0 );
|
||||
h = hraw & (pH->htsize-1);
|
||||
insertElement(pH, &pH->ht[h], new_elem);
|
||||
new_elem->data = data;
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,111 @@
|
|||
/*
|
||||
** 2001 September 22
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This is the header file for the generic hash-table implemenation
|
||||
** used in SQLite.
|
||||
**
|
||||
** $Id: hash.h,v 1.9 2006/02/14 10:48:39 danielk1977 Exp $
|
||||
*/
|
||||
#ifndef _SQLITE_HASH_H_
|
||||
#define _SQLITE_HASH_H_
|
||||
|
||||
/* Forward declarations of structures. */
|
||||
typedef struct Hash Hash;
|
||||
typedef struct HashElem HashElem;
|
||||
|
||||
/* A complete hash table is an instance of the following structure.
|
||||
** The internals of this structure are intended to be opaque -- client
|
||||
** code should not attempt to access or modify the fields of this structure
|
||||
** directly. Change this structure only by using the routines below.
|
||||
** However, many of the "procedures" and "functions" for modifying and
|
||||
** accessing this structure are really macros, so we can't really make
|
||||
** this structure opaque.
|
||||
*/
|
||||
struct Hash {
|
||||
char keyClass; /* SQLITE_HASH_INT, _POINTER, _STRING, _BINARY */
|
||||
char copyKey; /* True if copy of key made on insert */
|
||||
int count; /* Number of entries in this table */
|
||||
HashElem *first; /* The first element of the array */
|
||||
void *(*xMalloc)(int); /* malloc() function to use */
|
||||
void (*xFree)(void *); /* free() function to use */
|
||||
int htsize; /* Number of buckets in the hash table */
|
||||
struct _ht { /* the hash table */
|
||||
int count; /* Number of entries with this hash */
|
||||
HashElem *chain; /* Pointer to first entry with this hash */
|
||||
} *ht;
|
||||
};
|
||||
|
||||
/* Each element in the hash table is an instance of the following
|
||||
** structure. All elements are stored on a single doubly-linked list.
|
||||
**
|
||||
** Again, this structure is intended to be opaque, but it can't really
|
||||
** be opaque because it is used by macros.
|
||||
*/
|
||||
struct HashElem {
|
||||
HashElem *next, *prev; /* Next and previous elements in the table */
|
||||
void *data; /* Data associated with this element */
|
||||
void *pKey; int nKey; /* Key associated with this element */
|
||||
};
|
||||
|
||||
/*
|
||||
** There are 4 different modes of operation for a hash table:
|
||||
**
|
||||
** SQLITE_HASH_INT nKey is used as the key and pKey is ignored.
|
||||
**
|
||||
** SQLITE_HASH_POINTER pKey is used as the key and nKey is ignored.
|
||||
**
|
||||
** SQLITE_HASH_STRING pKey points to a string that is nKey bytes long
|
||||
** (including the null-terminator, if any). Case
|
||||
** is ignored in comparisons.
|
||||
**
|
||||
** SQLITE_HASH_BINARY pKey points to binary data nKey bytes long.
|
||||
** memcmp() is used to compare keys.
|
||||
**
|
||||
** A copy of the key is made for SQLITE_HASH_STRING and SQLITE_HASH_BINARY
|
||||
** if the copyKey parameter to HashInit is 1.
|
||||
*/
|
||||
/* #define SQLITE_HASH_INT 1 // NOT USED */
|
||||
/* #define SQLITE_HASH_POINTER 2 // NOT USED */
|
||||
#define SQLITE_HASH_STRING 3
|
||||
#define SQLITE_HASH_BINARY 4
|
||||
|
||||
/*
|
||||
** Access routines. To delete, insert a NULL pointer.
|
||||
*/
|
||||
void sqlite3HashInit(Hash*, int keytype, int copyKey);
|
||||
void *sqlite3HashInsert(Hash*, const void *pKey, int nKey, void *pData);
|
||||
void *sqlite3HashFind(const Hash*, const void *pKey, int nKey);
|
||||
void sqlite3HashClear(Hash*);
|
||||
|
||||
/*
|
||||
** Macros for looping over all elements of a hash table. The idiom is
|
||||
** like this:
|
||||
**
|
||||
** Hash h;
|
||||
** HashElem *p;
|
||||
** ...
|
||||
** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){
|
||||
** SomeStructure *pData = sqliteHashData(p);
|
||||
** // do something with pData
|
||||
** }
|
||||
*/
|
||||
#define sqliteHashFirst(H) ((H)->first)
|
||||
#define sqliteHashNext(E) ((E)->next)
|
||||
#define sqliteHashData(E) ((E)->data)
|
||||
#define sqliteHashKey(E) ((E)->pKey)
|
||||
#define sqliteHashKeysize(E) ((E)->nKey)
|
||||
|
||||
/*
|
||||
** Number of entries in a hash table
|
||||
*/
|
||||
#define sqliteHashCount(H) ((H)->count)
|
||||
|
||||
#endif /* _SQLITE_HASH_H_ */
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -0,0 +1,98 @@
|
|||
/* Hash score: 159 */
|
||||
static int keywordCode(const char *z, int n){
|
||||
static const char zText[537] =
|
||||
"ABORTABLEFTEMPORARYADDATABASELECTHENDEFAULTRANSACTIONATURALTER"
|
||||
"AISEACHECKEYAFTEREFERENCESCAPELSEXCEPTRIGGEREGEXPLAINITIALLYANALYZE"
|
||||
"XCLUSIVEXISTSTATEMENTANDEFERRABLEATTACHAVINGLOBEFOREIGNOREINDEX"
|
||||
"AUTOINCREMENTBEGINNERENAMEBETWEENOTNULLIKEBYCASCADEFERREDELETE"
|
||||
"CASECASTCOLLATECOLUMNCOMMITCONFLICTCONSTRAINTERSECTCREATECROSS"
|
||||
"CURRENT_DATECURRENT_TIMESTAMPLANDESCDETACHDISTINCTDROPRAGMATCH"
|
||||
"FAILIMITFROMFULLGROUPDATEIFIMMEDIATEINSERTINSTEADINTOFFSETISNULL"
|
||||
"JOINORDEREPLACEOUTERESTRICTPRIMARYQUERYRIGHTROLLBACKROWHENUNION"
|
||||
"UNIQUEUSINGVACUUMVALUESVIEWHERE";
|
||||
static const unsigned char aHash[127] = {
|
||||
92, 80, 107, 91, 0, 4, 0, 0, 114, 0, 83, 0, 0,
|
||||
95, 44, 76, 93, 0, 106, 109, 97, 90, 0, 10, 0, 0,
|
||||
113, 0, 110, 103, 0, 28, 48, 0, 41, 0, 0, 65, 71,
|
||||
0, 63, 19, 0, 105, 36, 104, 0, 108, 74, 0, 0, 33,
|
||||
0, 61, 37, 0, 8, 0, 115, 38, 12, 0, 77, 40, 25,
|
||||
66, 0, 0, 31, 81, 53, 30, 50, 20, 88, 0, 34, 0,
|
||||
75, 26, 0, 72, 0, 0, 0, 64, 47, 67, 22, 87, 29,
|
||||
69, 86, 0, 1, 0, 9, 101, 58, 18, 0, 112, 82, 99,
|
||||
54, 6, 85, 0, 0, 49, 94, 0, 102, 0, 70, 0, 0,
|
||||
15, 0, 116, 51, 56, 0, 2, 55, 0, 111,
|
||||
};
|
||||
static const unsigned char aNext[116] = {
|
||||
0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 0,
|
||||
0, 11, 0, 0, 0, 0, 5, 13, 0, 7, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 43, 0, 0, 0, 0, 0,
|
||||
0, 0, 16, 0, 23, 52, 0, 0, 0, 0, 45, 0, 59,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 73, 42, 0, 24, 60,
|
||||
21, 0, 79, 0, 0, 68, 0, 0, 84, 46, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 39, 96, 98, 0, 0, 100, 0, 32,
|
||||
0, 14, 27, 78, 0, 57, 89, 0, 35, 0, 62, 0,
|
||||
};
|
||||
static const unsigned char aLen[116] = {
|
||||
5, 5, 4, 4, 9, 2, 3, 8, 2, 6, 4, 3, 7,
|
||||
11, 2, 7, 5, 5, 4, 5, 3, 5, 10, 6, 4, 6,
|
||||
7, 6, 7, 9, 3, 7, 9, 6, 9, 3, 10, 6, 6,
|
||||
4, 6, 3, 7, 6, 7, 5, 13, 2, 2, 5, 5, 6,
|
||||
7, 3, 7, 4, 4, 2, 7, 3, 8, 6, 4, 4, 7,
|
||||
6, 6, 8, 10, 9, 6, 5, 12, 12, 17, 4, 4, 6,
|
||||
8, 2, 4, 6, 5, 4, 5, 4, 4, 5, 6, 2, 9,
|
||||
6, 7, 4, 2, 6, 3, 6, 4, 5, 7, 5, 8, 7,
|
||||
5, 5, 8, 3, 4, 5, 6, 5, 6, 6, 4, 5,
|
||||
};
|
||||
static const unsigned short int aOffset[116] = {
|
||||
0, 4, 7, 10, 10, 14, 19, 21, 26, 27, 32, 34, 36,
|
||||
42, 51, 52, 57, 61, 65, 67, 71, 74, 78, 86, 91, 94,
|
||||
99, 105, 108, 113, 118, 122, 128, 136, 141, 150, 152, 162, 167,
|
||||
172, 175, 177, 177, 181, 185, 187, 192, 194, 196, 205, 208, 212,
|
||||
218, 224, 224, 227, 230, 234, 236, 237, 241, 248, 254, 258, 262,
|
||||
269, 275, 281, 289, 296, 305, 311, 316, 328, 328, 344, 348, 352,
|
||||
358, 359, 366, 369, 373, 378, 381, 386, 390, 394, 397, 403, 405,
|
||||
414, 420, 427, 430, 430, 433, 436, 442, 446, 450, 457, 461, 469,
|
||||
476, 481, 486, 494, 496, 500, 505, 511, 516, 522, 528, 531,
|
||||
};
|
||||
static const unsigned char aCode[116] = {
|
||||
TK_ABORT, TK_TABLE, TK_JOIN_KW, TK_TEMP, TK_TEMP,
|
||||
TK_OR, TK_ADD, TK_DATABASE, TK_AS, TK_SELECT,
|
||||
TK_THEN, TK_END, TK_DEFAULT, TK_TRANSACTION,TK_ON,
|
||||
TK_JOIN_KW, TK_ALTER, TK_RAISE, TK_EACH, TK_CHECK,
|
||||
TK_KEY, TK_AFTER, TK_REFERENCES, TK_ESCAPE, TK_ELSE,
|
||||
TK_EXCEPT, TK_TRIGGER, TK_LIKE_KW, TK_EXPLAIN, TK_INITIALLY,
|
||||
TK_ALL, TK_ANALYZE, TK_EXCLUSIVE, TK_EXISTS, TK_STATEMENT,
|
||||
TK_AND, TK_DEFERRABLE, TK_ATTACH, TK_HAVING, TK_LIKE_KW,
|
||||
TK_BEFORE, TK_FOR, TK_FOREIGN, TK_IGNORE, TK_REINDEX,
|
||||
TK_INDEX, TK_AUTOINCR, TK_TO, TK_IN, TK_BEGIN,
|
||||
TK_JOIN_KW, TK_RENAME, TK_BETWEEN, TK_NOT, TK_NOTNULL,
|
||||
TK_NULL, TK_LIKE_KW, TK_BY, TK_CASCADE, TK_ASC,
|
||||
TK_DEFERRED, TK_DELETE, TK_CASE, TK_CAST, TK_COLLATE,
|
||||
TK_COLUMNKW, TK_COMMIT, TK_CONFLICT, TK_CONSTRAINT, TK_INTERSECT,
|
||||
TK_CREATE, TK_JOIN_KW, TK_CTIME_KW, TK_CTIME_KW, TK_CTIME_KW,
|
||||
TK_PLAN, TK_DESC, TK_DETACH, TK_DISTINCT, TK_IS,
|
||||
TK_DROP, TK_PRAGMA, TK_MATCH, TK_FAIL, TK_LIMIT,
|
||||
TK_FROM, TK_JOIN_KW, TK_GROUP, TK_UPDATE, TK_IF,
|
||||
TK_IMMEDIATE, TK_INSERT, TK_INSTEAD, TK_INTO, TK_OF,
|
||||
TK_OFFSET, TK_SET, TK_ISNULL, TK_JOIN, TK_ORDER,
|
||||
TK_REPLACE, TK_JOIN_KW, TK_RESTRICT, TK_PRIMARY, TK_QUERY,
|
||||
TK_JOIN_KW, TK_ROLLBACK, TK_ROW, TK_WHEN, TK_UNION,
|
||||
TK_UNIQUE, TK_USING, TK_VACUUM, TK_VALUES, TK_VIEW,
|
||||
TK_WHERE,
|
||||
};
|
||||
int h, i;
|
||||
if( n<2 ) return TK_ID;
|
||||
h = ((charMap(z[0])*4) ^
|
||||
(charMap(z[n-1])*3) ^
|
||||
n) % 127;
|
||||
for(i=((int)aHash[h])-1; i>=0; i=((int)aNext[i])-1){
|
||||
if( aLen[i]==n && sqlite3StrNICmp(&zText[aOffset[i]],z,n)==0 ){
|
||||
return aCode[i];
|
||||
}
|
||||
}
|
||||
return TK_ID;
|
||||
}
|
||||
int sqlite3KeywordCode(const unsigned char *z, int n){
|
||||
return keywordCode((char*)z, n);
|
||||
}
|
|
@ -0,0 +1,135 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** Main file for the SQLite library. The routines in this file
|
||||
** implement the programmer interface to the library. Routines in
|
||||
** other files are for internal use by SQLite and should not be
|
||||
** accessed by users of the library.
|
||||
**
|
||||
** $Id: legacy.c,v 1.14 2006/03/06 20:55:46 drh Exp $
|
||||
*/
|
||||
|
||||
#include "sqliteInt.h"
|
||||
#include "os.h"
|
||||
#include <ctype.h>
|
||||
|
||||
/*
|
||||
** Execute SQL code. Return one of the SQLITE_ success/failure
|
||||
** codes. Also write an error message into memory obtained from
|
||||
** malloc() and make *pzErrMsg point to that message.
|
||||
**
|
||||
** If the SQL is a query, then for each row in the query result
|
||||
** the xCallback() function is called. pArg becomes the first
|
||||
** argument to xCallback(). If xCallback=NULL then no callback
|
||||
** is invoked, even for queries.
|
||||
*/
|
||||
int sqlite3_exec(
|
||||
sqlite3 *db, /* The database on which the SQL executes */
|
||||
const char *zSql, /* The SQL to be executed */
|
||||
sqlite3_callback xCallback, /* Invoke this callback routine */
|
||||
void *pArg, /* First argument to xCallback() */
|
||||
char **pzErrMsg /* Write error messages here */
|
||||
){
|
||||
int rc = SQLITE_OK;
|
||||
const char *zLeftover;
|
||||
sqlite3_stmt *pStmt = 0;
|
||||
char **azCols = 0;
|
||||
|
||||
int nRetry = 0;
|
||||
int nChange = 0;
|
||||
int nCallback;
|
||||
|
||||
if( zSql==0 ) return SQLITE_OK;
|
||||
while( (rc==SQLITE_OK || (rc==SQLITE_SCHEMA && (++nRetry)<2)) && zSql[0] ){
|
||||
int nCol;
|
||||
char **azVals = 0;
|
||||
|
||||
pStmt = 0;
|
||||
rc = sqlite3_prepare(db, zSql, -1, &pStmt, &zLeftover);
|
||||
assert( rc==SQLITE_OK || pStmt==0 );
|
||||
if( rc!=SQLITE_OK ){
|
||||
continue;
|
||||
}
|
||||
if( !pStmt ){
|
||||
/* this happens for a comment or white-space */
|
||||
zSql = zLeftover;
|
||||
continue;
|
||||
}
|
||||
|
||||
db->nChange += nChange;
|
||||
nCallback = 0;
|
||||
|
||||
nCol = sqlite3_column_count(pStmt);
|
||||
azCols = sqliteMalloc(2*nCol*sizeof(const char *) + 1);
|
||||
if( azCols==0 ){
|
||||
goto exec_out;
|
||||
}
|
||||
|
||||
while( 1 ){
|
||||
int i;
|
||||
rc = sqlite3_step(pStmt);
|
||||
|
||||
/* Invoke the callback function if required */
|
||||
if( xCallback && (SQLITE_ROW==rc ||
|
||||
(SQLITE_DONE==rc && !nCallback && db->flags&SQLITE_NullCallback)) ){
|
||||
if( 0==nCallback ){
|
||||
for(i=0; i<nCol; i++){
|
||||
azCols[i] = (char *)sqlite3_column_name(pStmt, i);
|
||||
}
|
||||
nCallback++;
|
||||
}
|
||||
if( rc==SQLITE_ROW ){
|
||||
azVals = &azCols[nCol];
|
||||
for(i=0; i<nCol; i++){
|
||||
azVals[i] = (char *)sqlite3_column_text(pStmt, i);
|
||||
}
|
||||
}
|
||||
if( xCallback(pArg, nCol, azVals, azCols) ){
|
||||
rc = SQLITE_ABORT;
|
||||
goto exec_out;
|
||||
}
|
||||
}
|
||||
|
||||
if( rc!=SQLITE_ROW ){
|
||||
rc = sqlite3_finalize(pStmt);
|
||||
pStmt = 0;
|
||||
if( db->pVdbe==0 ){
|
||||
nChange = db->nChange;
|
||||
}
|
||||
if( rc!=SQLITE_SCHEMA ){
|
||||
nRetry = 0;
|
||||
zSql = zLeftover;
|
||||
while( isspace((unsigned char)zSql[0]) ) zSql++;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
sqliteFree(azCols);
|
||||
azCols = 0;
|
||||
}
|
||||
|
||||
exec_out:
|
||||
if( pStmt ) sqlite3_finalize(pStmt);
|
||||
if( azCols ) sqliteFree(azCols);
|
||||
|
||||
rc = sqlite3ApiExit(0, rc);
|
||||
if( rc!=SQLITE_OK && rc==sqlite3_errcode(db) && pzErrMsg ){
|
||||
*pzErrMsg = malloc(1+strlen(sqlite3_errmsg(db)));
|
||||
if( *pzErrMsg ){
|
||||
strcpy(*pzErrMsg, sqlite3_errmsg(db));
|
||||
}
|
||||
}else if( pzErrMsg ){
|
||||
*pzErrMsg = 0;
|
||||
}
|
||||
|
||||
return rc;
|
||||
}
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -0,0 +1,387 @@
|
|||
/*
|
||||
** SQLite uses this code for testing only. It is not a part of
|
||||
** the SQLite library. This file implements two new TCL commands
|
||||
** "md5" and "md5file" that compute md5 checksums on arbitrary text
|
||||
** and on complete files. These commands are used by the "testfixture"
|
||||
** program to help verify the correct operation of the SQLite library.
|
||||
**
|
||||
** The original use of these TCL commands was to test the ROLLBACK
|
||||
** feature of SQLite. First compute the MD5-checksum of the database.
|
||||
** Then make some changes but rollback the changes rather than commit
|
||||
** them. Compute a second MD5-checksum of the file and verify that the
|
||||
** two checksums are the same. Such is the original use of this code.
|
||||
** New uses may have been added since this comment was written.
|
||||
*/
|
||||
/*
|
||||
* This code implements the MD5 message-digest algorithm.
|
||||
* The algorithm is due to Ron Rivest. This code was
|
||||
* written by Colin Plumb in 1993, no copyright is claimed.
|
||||
* This code is in the public domain; do with it what you wish.
|
||||
*
|
||||
* Equivalent code is available from RSA Data Security, Inc.
|
||||
* This code has been tested against that, and is equivalent,
|
||||
* except that you don't need to include two pages of legalese
|
||||
* with every copy.
|
||||
*
|
||||
* To compute the message digest of a chunk of bytes, declare an
|
||||
* MD5Context structure, pass it to MD5Init, call MD5Update as
|
||||
* needed on buffers full of bytes, and then call MD5Final, which
|
||||
* will fill a supplied 16-byte array with the digest.
|
||||
*/
|
||||
#include <tcl.h>
|
||||
#include <string.h>
|
||||
#include "sqlite3.h"
|
||||
|
||||
/*
|
||||
* If compiled on a machine that doesn't have a 32-bit integer,
|
||||
* you just set "uint32" to the appropriate datatype for an
|
||||
* unsigned 32-bit integer. For example:
|
||||
*
|
||||
* cc -Duint32='unsigned long' md5.c
|
||||
*
|
||||
*/
|
||||
#ifndef uint32
|
||||
# define uint32 unsigned int
|
||||
#endif
|
||||
|
||||
struct Context {
|
||||
uint32 buf[4];
|
||||
uint32 bits[2];
|
||||
unsigned char in[64];
|
||||
};
|
||||
typedef char MD5Context[88];
|
||||
|
||||
/*
|
||||
* Note: this code is harmless on little-endian machines.
|
||||
*/
|
||||
static void byteReverse (unsigned char *buf, unsigned longs){
|
||||
uint32 t;
|
||||
do {
|
||||
t = (uint32)((unsigned)buf[3]<<8 | buf[2]) << 16 |
|
||||
((unsigned)buf[1]<<8 | buf[0]);
|
||||
*(uint32 *)buf = t;
|
||||
buf += 4;
|
||||
} while (--longs);
|
||||
}
|
||||
/* The four core functions - F1 is optimized somewhat */
|
||||
|
||||
/* #define F1(x, y, z) (x & y | ~x & z) */
|
||||
#define F1(x, y, z) (z ^ (x & (y ^ z)))
|
||||
#define F2(x, y, z) F1(z, x, y)
|
||||
#define F3(x, y, z) (x ^ y ^ z)
|
||||
#define F4(x, y, z) (y ^ (x | ~z))
|
||||
|
||||
/* This is the central step in the MD5 algorithm. */
|
||||
#define MD5STEP(f, w, x, y, z, data, s) \
|
||||
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
|
||||
|
||||
/*
|
||||
* The core of the MD5 algorithm, this alters an existing MD5 hash to
|
||||
* reflect the addition of 16 longwords of new data. MD5Update blocks
|
||||
* the data and converts bytes into longwords for this routine.
|
||||
*/
|
||||
static void MD5Transform(uint32 buf[4], const uint32 in[16]){
|
||||
register uint32 a, b, c, d;
|
||||
|
||||
a = buf[0];
|
||||
b = buf[1];
|
||||
c = buf[2];
|
||||
d = buf[3];
|
||||
|
||||
MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
|
||||
MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
|
||||
MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
|
||||
MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
|
||||
MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
|
||||
MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
|
||||
MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
|
||||
MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
|
||||
MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
|
||||
MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
|
||||
MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
|
||||
MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
|
||||
MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
|
||||
MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
|
||||
MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
|
||||
MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
|
||||
|
||||
MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
|
||||
MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
|
||||
MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
|
||||
MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
|
||||
MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
|
||||
MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
|
||||
MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
|
||||
MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
|
||||
MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
|
||||
MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
|
||||
MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
|
||||
MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
|
||||
MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
|
||||
MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
|
||||
MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
|
||||
MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
|
||||
|
||||
MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
|
||||
MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
|
||||
MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
|
||||
MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
|
||||
MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
|
||||
MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
|
||||
MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
|
||||
MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
|
||||
MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
|
||||
MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
|
||||
MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
|
||||
MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
|
||||
MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
|
||||
MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
|
||||
MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
|
||||
MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
|
||||
|
||||
MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
|
||||
MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
|
||||
MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
|
||||
MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
|
||||
MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
|
||||
MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
|
||||
MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
|
||||
MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
|
||||
MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
|
||||
MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
|
||||
MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
|
||||
MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
|
||||
MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
|
||||
MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
|
||||
MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
|
||||
MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
|
||||
|
||||
buf[0] += a;
|
||||
buf[1] += b;
|
||||
buf[2] += c;
|
||||
buf[3] += d;
|
||||
}
|
||||
|
||||
/*
|
||||
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
|
||||
* initialization constants.
|
||||
*/
|
||||
static void MD5Init(MD5Context *pCtx){
|
||||
struct Context *ctx = (struct Context *)pCtx;
|
||||
ctx->buf[0] = 0x67452301;
|
||||
ctx->buf[1] = 0xefcdab89;
|
||||
ctx->buf[2] = 0x98badcfe;
|
||||
ctx->buf[3] = 0x10325476;
|
||||
ctx->bits[0] = 0;
|
||||
ctx->bits[1] = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Update context to reflect the concatenation of another buffer full
|
||||
* of bytes.
|
||||
*/
|
||||
static
|
||||
void MD5Update(MD5Context *pCtx, const unsigned char *buf, unsigned int len){
|
||||
struct Context *ctx = (struct Context *)pCtx;
|
||||
uint32 t;
|
||||
|
||||
/* Update bitcount */
|
||||
|
||||
t = ctx->bits[0];
|
||||
if ((ctx->bits[0] = t + ((uint32)len << 3)) < t)
|
||||
ctx->bits[1]++; /* Carry from low to high */
|
||||
ctx->bits[1] += len >> 29;
|
||||
|
||||
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
|
||||
|
||||
/* Handle any leading odd-sized chunks */
|
||||
|
||||
if ( t ) {
|
||||
unsigned char *p = (unsigned char *)ctx->in + t;
|
||||
|
||||
t = 64-t;
|
||||
if (len < t) {
|
||||
memcpy(p, buf, len);
|
||||
return;
|
||||
}
|
||||
memcpy(p, buf, t);
|
||||
byteReverse(ctx->in, 16);
|
||||
MD5Transform(ctx->buf, (uint32 *)ctx->in);
|
||||
buf += t;
|
||||
len -= t;
|
||||
}
|
||||
|
||||
/* Process data in 64-byte chunks */
|
||||
|
||||
while (len >= 64) {
|
||||
memcpy(ctx->in, buf, 64);
|
||||
byteReverse(ctx->in, 16);
|
||||
MD5Transform(ctx->buf, (uint32 *)ctx->in);
|
||||
buf += 64;
|
||||
len -= 64;
|
||||
}
|
||||
|
||||
/* Handle any remaining bytes of data. */
|
||||
|
||||
memcpy(ctx->in, buf, len);
|
||||
}
|
||||
|
||||
/*
|
||||
* Final wrapup - pad to 64-byte boundary with the bit pattern
|
||||
* 1 0* (64-bit count of bits processed, MSB-first)
|
||||
*/
|
||||
static void MD5Final(unsigned char digest[16], MD5Context *pCtx){
|
||||
struct Context *ctx = (struct Context *)pCtx;
|
||||
unsigned count;
|
||||
unsigned char *p;
|
||||
|
||||
/* Compute number of bytes mod 64 */
|
||||
count = (ctx->bits[0] >> 3) & 0x3F;
|
||||
|
||||
/* Set the first char of padding to 0x80. This is safe since there is
|
||||
always at least one byte free */
|
||||
p = ctx->in + count;
|
||||
*p++ = 0x80;
|
||||
|
||||
/* Bytes of padding needed to make 64 bytes */
|
||||
count = 64 - 1 - count;
|
||||
|
||||
/* Pad out to 56 mod 64 */
|
||||
if (count < 8) {
|
||||
/* Two lots of padding: Pad the first block to 64 bytes */
|
||||
memset(p, 0, count);
|
||||
byteReverse(ctx->in, 16);
|
||||
MD5Transform(ctx->buf, (uint32 *)ctx->in);
|
||||
|
||||
/* Now fill the next block with 56 bytes */
|
||||
memset(ctx->in, 0, 56);
|
||||
} else {
|
||||
/* Pad block to 56 bytes */
|
||||
memset(p, 0, count-8);
|
||||
}
|
||||
byteReverse(ctx->in, 14);
|
||||
|
||||
/* Append length in bits and transform */
|
||||
((uint32 *)ctx->in)[ 14 ] = ctx->bits[0];
|
||||
((uint32 *)ctx->in)[ 15 ] = ctx->bits[1];
|
||||
|
||||
MD5Transform(ctx->buf, (uint32 *)ctx->in);
|
||||
byteReverse((unsigned char *)ctx->buf, 4);
|
||||
memcpy(digest, ctx->buf, 16);
|
||||
memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
|
||||
}
|
||||
|
||||
/*
|
||||
** Convert a digest into base-16. digest should be declared as
|
||||
** "unsigned char digest[16]" in the calling function. The MD5
|
||||
** digest is stored in the first 16 bytes. zBuf should
|
||||
** be "char zBuf[33]".
|
||||
*/
|
||||
static void DigestToBase16(unsigned char *digest, char *zBuf){
|
||||
static char const zEncode[] = "0123456789abcdef";
|
||||
int i, j;
|
||||
|
||||
for(j=i=0; i<16; i++){
|
||||
int a = digest[i];
|
||||
zBuf[j++] = zEncode[(a>>4)&0xf];
|
||||
zBuf[j++] = zEncode[a & 0xf];
|
||||
}
|
||||
zBuf[j] = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** A TCL command for md5. The argument is the text to be hashed. The
|
||||
** Result is the hash in base64.
|
||||
*/
|
||||
static int md5_cmd(void*cd, Tcl_Interp *interp, int argc, const char **argv){
|
||||
MD5Context ctx;
|
||||
unsigned char digest[16];
|
||||
|
||||
if( argc!=2 ){
|
||||
Tcl_AppendResult(interp,"wrong # args: should be \"", argv[0],
|
||||
" TEXT\"", 0);
|
||||
return TCL_ERROR;
|
||||
}
|
||||
MD5Init(&ctx);
|
||||
MD5Update(&ctx, (unsigned char*)argv[1], (unsigned)strlen(argv[1]));
|
||||
MD5Final(digest, &ctx);
|
||||
DigestToBase16(digest, interp->result);
|
||||
return TCL_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** A TCL command to take the md5 hash of a file. The argument is the
|
||||
** name of the file.
|
||||
*/
|
||||
static int md5file_cmd(void*cd, Tcl_Interp*interp, int argc, const char **argv){
|
||||
FILE *in;
|
||||
MD5Context ctx;
|
||||
unsigned char digest[16];
|
||||
char zBuf[10240];
|
||||
|
||||
if( argc!=2 ){
|
||||
Tcl_AppendResult(interp,"wrong # args: should be \"", argv[0],
|
||||
" FILENAME\"", 0);
|
||||
return TCL_ERROR;
|
||||
}
|
||||
in = fopen(argv[1],"rb");
|
||||
if( in==0 ){
|
||||
Tcl_AppendResult(interp,"unable to open file \"", argv[1],
|
||||
"\" for reading", 0);
|
||||
return TCL_ERROR;
|
||||
}
|
||||
MD5Init(&ctx);
|
||||
for(;;){
|
||||
int n;
|
||||
n = fread(zBuf, 1, sizeof(zBuf), in);
|
||||
if( n<=0 ) break;
|
||||
MD5Update(&ctx, (unsigned char*)zBuf, (unsigned)n);
|
||||
}
|
||||
fclose(in);
|
||||
MD5Final(digest, &ctx);
|
||||
DigestToBase16(digest, interp->result);
|
||||
return TCL_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Register the two TCL commands above with the TCL interpreter.
|
||||
*/
|
||||
int Md5_Init(Tcl_Interp *interp){
|
||||
Tcl_CreateCommand(interp, "md5", (Tcl_CmdProc*)md5_cmd, 0, 0);
|
||||
Tcl_CreateCommand(interp, "md5file", (Tcl_CmdProc*)md5file_cmd, 0, 0);
|
||||
return TCL_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** During testing, the special md5sum() aggregate function is available.
|
||||
** inside SQLite. The following routines implement that function.
|
||||
*/
|
||||
static void md5step(sqlite3_context *context, int argc, sqlite3_value **argv){
|
||||
MD5Context *p;
|
||||
int i;
|
||||
if( argc<1 ) return;
|
||||
p = sqlite3_aggregate_context(context, sizeof(*p));
|
||||
if( p==0 ) return;
|
||||
if( sqlite3_aggregate_count(context)==1 ){
|
||||
MD5Init(p);
|
||||
}
|
||||
for(i=0; i<argc; i++){
|
||||
const char *zData = sqlite3_value_text(argv[i]);
|
||||
if( zData ){
|
||||
MD5Update(p, zData, strlen(zData));
|
||||
}
|
||||
}
|
||||
}
|
||||
static void md5finalize(sqlite3_context *context){
|
||||
MD5Context *p;
|
||||
unsigned char digest[16];
|
||||
char zBuf[33];
|
||||
p = sqlite3_aggregate_context(context, sizeof(*p));
|
||||
MD5Final(digest,p);
|
||||
DigestToBase16(digest, zBuf);
|
||||
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
||||
}
|
||||
void Md5_Register(sqlite3 *db){
|
||||
sqlite3_create_function(db, "md5sum", -1, SQLITE_UTF8, 0, 0,
|
||||
md5step, md5finalize);
|
||||
}
|
|
@ -0,0 +1,147 @@
|
|||
/* Automatically generated. Do not edit */
|
||||
/* See the mkopcodec.awk script for details. */
|
||||
#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
|
||||
const char *const sqlite3OpcodeNames[] = { "?",
|
||||
/* 1 */ "ContextPop",
|
||||
/* 2 */ "IntegrityCk",
|
||||
/* 3 */ "DropTrigger",
|
||||
/* 4 */ "DropIndex",
|
||||
/* 5 */ "IdxInsert",
|
||||
/* 6 */ "Delete",
|
||||
/* 7 */ "MoveGt",
|
||||
/* 8 */ "VerifyCookie",
|
||||
/* 9 */ "Push",
|
||||
/* 10 */ "Dup",
|
||||
/* 11 */ "Blob",
|
||||
/* 12 */ "FifoWrite",
|
||||
/* 13 */ "IdxGT",
|
||||
/* 14 */ "RowKey",
|
||||
/* 15 */ "IsUnique",
|
||||
/* 16 */ "Not",
|
||||
/* 17 */ "SetNumColumns",
|
||||
/* 18 */ "Expire",
|
||||
/* 19 */ "IdxIsNull",
|
||||
/* 20 */ "NullRow",
|
||||
/* 21 */ "OpenPseudo",
|
||||
/* 22 */ "OpenWrite",
|
||||
/* 23 */ "OpenRead",
|
||||
/* 24 */ "Transaction",
|
||||
/* 25 */ "AutoCommit",
|
||||
/* 26 */ "Pop",
|
||||
/* 27 */ "Halt",
|
||||
/* 28 */ "Vacuum",
|
||||
/* 29 */ "IfMemNeg",
|
||||
/* 30 */ "RowData",
|
||||
/* 31 */ "NotExists",
|
||||
/* 32 */ "MoveLe",
|
||||
/* 33 */ "OpenVirtual",
|
||||
/* 34 */ "SetCookie",
|
||||
/* 35 */ "Variable",
|
||||
/* 36 */ "TableLock",
|
||||
/* 37 */ "MemMove",
|
||||
/* 38 */ "LoadAnalysis",
|
||||
/* 39 */ "IdxDelete",
|
||||
/* 40 */ "Sort",
|
||||
/* 41 */ "ResetCount",
|
||||
/* 42 */ "Integer",
|
||||
/* 43 */ "AggStep",
|
||||
/* 44 */ "CreateIndex",
|
||||
/* 45 */ "NewRowid",
|
||||
/* 46 */ "MoveLt",
|
||||
/* 47 */ "Explain",
|
||||
/* 48 */ "Return",
|
||||
/* 49 */ "MemLoad",
|
||||
/* 50 */ "IdxLT",
|
||||
/* 51 */ "Rewind",
|
||||
/* 52 */ "MakeIdxRec",
|
||||
/* 53 */ "AddImm",
|
||||
/* 54 */ "Null",
|
||||
/* 55 */ "MemNull",
|
||||
/* 56 */ "MemIncr",
|
||||
/* 57 */ "Clear",
|
||||
/* 58 */ "If",
|
||||
/* 59 */ "Or",
|
||||
/* 60 */ "And",
|
||||
/* 61 */ "RealAffinity",
|
||||
/* 62 */ "Callback",
|
||||
/* 63 */ "AggFinal",
|
||||
/* 64 */ "IsNull",
|
||||
/* 65 */ "NotNull",
|
||||
/* 66 */ "Ne",
|
||||
/* 67 */ "Eq",
|
||||
/* 68 */ "Gt",
|
||||
/* 69 */ "Le",
|
||||
/* 70 */ "Lt",
|
||||
/* 71 */ "Ge",
|
||||
/* 72 */ "IfMemZero",
|
||||
/* 73 */ "BitAnd",
|
||||
/* 74 */ "BitOr",
|
||||
/* 75 */ "ShiftLeft",
|
||||
/* 76 */ "ShiftRight",
|
||||
/* 77 */ "Add",
|
||||
/* 78 */ "Subtract",
|
||||
/* 79 */ "Multiply",
|
||||
/* 80 */ "Divide",
|
||||
/* 81 */ "Remainder",
|
||||
/* 82 */ "Concat",
|
||||
/* 83 */ "Negative",
|
||||
/* 84 */ "Last",
|
||||
/* 85 */ "BitNot",
|
||||
/* 86 */ "String8",
|
||||
/* 87 */ "Rowid",
|
||||
/* 88 */ "Sequence",
|
||||
/* 89 */ "NotFound",
|
||||
/* 90 */ "MakeRecord",
|
||||
/* 91 */ "String",
|
||||
/* 92 */ "Goto",
|
||||
/* 93 */ "MemInt",
|
||||
/* 94 */ "IfMemPos",
|
||||
/* 95 */ "DropTable",
|
||||
/* 96 */ "IdxRowid",
|
||||
/* 97 */ "Insert",
|
||||
/* 98 */ "Column",
|
||||
/* 99 */ "Noop",
|
||||
/* 100 */ "CreateTable",
|
||||
/* 101 */ "Found",
|
||||
/* 102 */ "Distinct",
|
||||
/* 103 */ "Close",
|
||||
/* 104 */ "Statement",
|
||||
/* 105 */ "IfNot",
|
||||
/* 106 */ "Pull",
|
||||
/* 107 */ "MemMax",
|
||||
/* 108 */ "MemStore",
|
||||
/* 109 */ "Next",
|
||||
/* 110 */ "Prev",
|
||||
/* 111 */ "MoveGe",
|
||||
/* 112 */ "MustBeInt",
|
||||
/* 113 */ "ForceInt",
|
||||
/* 114 */ "CollSeq",
|
||||
/* 115 */ "Gosub",
|
||||
/* 116 */ "ContextPush",
|
||||
/* 117 */ "FifoRead",
|
||||
/* 118 */ "ParseSchema",
|
||||
/* 119 */ "Destroy",
|
||||
/* 120 */ "IdxGE",
|
||||
/* 121 */ "ReadCookie",
|
||||
/* 122 */ "AbsValue",
|
||||
/* 123 */ "Function",
|
||||
/* 124 */ "Real",
|
||||
/* 125 */ "HexBlob",
|
||||
/* 126 */ "Int64",
|
||||
/* 127 */ "NotUsed_127",
|
||||
/* 128 */ "NotUsed_128",
|
||||
/* 129 */ "NotUsed_129",
|
||||
/* 130 */ "NotUsed_130",
|
||||
/* 131 */ "NotUsed_131",
|
||||
/* 132 */ "NotUsed_132",
|
||||
/* 133 */ "NotUsed_133",
|
||||
/* 134 */ "NotUsed_134",
|
||||
/* 135 */ "NotUsed_135",
|
||||
/* 136 */ "NotUsed_136",
|
||||
/* 137 */ "ToText",
|
||||
/* 138 */ "ToBlob",
|
||||
/* 139 */ "ToNumeric",
|
||||
/* 140 */ "ToInt",
|
||||
/* 141 */ "ToReal",
|
||||
};
|
||||
#endif
|
|
@ -0,0 +1,159 @@
|
|||
/* Automatically generated. Do not edit */
|
||||
/* See the mkopcodeh.awk script for details */
|
||||
#define OP_ContextPop 1
|
||||
#define OP_IntegrityCk 2
|
||||
#define OP_DropTrigger 3
|
||||
#define OP_DropIndex 4
|
||||
#define OP_IdxInsert 5
|
||||
#define OP_Delete 6
|
||||
#define OP_MoveGt 7
|
||||
#define OP_VerifyCookie 8
|
||||
#define OP_Push 9
|
||||
#define OP_Dup 10
|
||||
#define OP_Blob 11
|
||||
#define OP_FifoWrite 12
|
||||
#define OP_IdxGT 13
|
||||
#define OP_RowKey 14
|
||||
#define OP_IsUnique 15
|
||||
#define OP_SetNumColumns 17
|
||||
#define OP_Eq 67 /* same as TK_EQ */
|
||||
#define OP_Expire 18
|
||||
#define OP_IdxIsNull 19
|
||||
#define OP_NullRow 20
|
||||
#define OP_OpenPseudo 21
|
||||
#define OP_OpenWrite 22
|
||||
#define OP_OpenRead 23
|
||||
#define OP_Transaction 24
|
||||
#define OP_AutoCommit 25
|
||||
#define OP_Negative 83 /* same as TK_UMINUS */
|
||||
#define OP_Pop 26
|
||||
#define OP_Halt 27
|
||||
#define OP_Vacuum 28
|
||||
#define OP_IfMemNeg 29
|
||||
#define OP_RowData 30
|
||||
#define OP_NotExists 31
|
||||
#define OP_MoveLe 32
|
||||
#define OP_OpenVirtual 33
|
||||
#define OP_SetCookie 34
|
||||
#define OP_Variable 35
|
||||
#define OP_TableLock 36
|
||||
#define OP_MemMove 37
|
||||
#define OP_LoadAnalysis 38
|
||||
#define OP_IdxDelete 39
|
||||
#define OP_Sort 40
|
||||
#define OP_ResetCount 41
|
||||
#define OP_NotNull 65 /* same as TK_NOTNULL */
|
||||
#define OP_Ge 71 /* same as TK_GE */
|
||||
#define OP_Remainder 81 /* same as TK_REM */
|
||||
#define OP_Divide 80 /* same as TK_SLASH */
|
||||
#define OP_Integer 42
|
||||
#define OP_AggStep 43
|
||||
#define OP_CreateIndex 44
|
||||
#define OP_NewRowid 45
|
||||
#define OP_MoveLt 46
|
||||
#define OP_Explain 47
|
||||
#define OP_And 60 /* same as TK_AND */
|
||||
#define OP_ShiftLeft 75 /* same as TK_LSHIFT */
|
||||
#define OP_Real 124 /* same as TK_FLOAT */
|
||||
#define OP_Return 48
|
||||
#define OP_MemLoad 49
|
||||
#define OP_IdxLT 50
|
||||
#define OP_Rewind 51
|
||||
#define OP_MakeIdxRec 52
|
||||
#define OP_Gt 68 /* same as TK_GT */
|
||||
#define OP_AddImm 53
|
||||
#define OP_Subtract 78 /* same as TK_MINUS */
|
||||
#define OP_Null 54
|
||||
#define OP_MemNull 55
|
||||
#define OP_MemIncr 56
|
||||
#define OP_Clear 57
|
||||
#define OP_IsNull 64 /* same as TK_ISNULL */
|
||||
#define OP_If 58
|
||||
#define OP_ToBlob 138 /* same as TK_TO_BLOB */
|
||||
#define OP_RealAffinity 61
|
||||
#define OP_Callback 62
|
||||
#define OP_AggFinal 63
|
||||
#define OP_IfMemZero 72
|
||||
#define OP_Last 84
|
||||
#define OP_Rowid 87
|
||||
#define OP_Sequence 88
|
||||
#define OP_NotFound 89
|
||||
#define OP_MakeRecord 90
|
||||
#define OP_ToText 137 /* same as TK_TO_TEXT */
|
||||
#define OP_BitAnd 73 /* same as TK_BITAND */
|
||||
#define OP_Add 77 /* same as TK_PLUS */
|
||||
#define OP_HexBlob 125 /* same as TK_BLOB */
|
||||
#define OP_String 91
|
||||
#define OP_Goto 92
|
||||
#define OP_MemInt 93
|
||||
#define OP_IfMemPos 94
|
||||
#define OP_DropTable 95
|
||||
#define OP_IdxRowid 96
|
||||
#define OP_Insert 97
|
||||
#define OP_Column 98
|
||||
#define OP_Noop 99
|
||||
#define OP_Not 16 /* same as TK_NOT */
|
||||
#define OP_Le 69 /* same as TK_LE */
|
||||
#define OP_BitOr 74 /* same as TK_BITOR */
|
||||
#define OP_Multiply 79 /* same as TK_STAR */
|
||||
#define OP_String8 86 /* same as TK_STRING */
|
||||
#define OP_CreateTable 100
|
||||
#define OP_Found 101
|
||||
#define OP_Distinct 102
|
||||
#define OP_Close 103
|
||||
#define OP_Statement 104
|
||||
#define OP_IfNot 105
|
||||
#define OP_ToInt 140 /* same as TK_TO_INT */
|
||||
#define OP_Pull 106
|
||||
#define OP_MemMax 107
|
||||
#define OP_MemStore 108
|
||||
#define OP_Next 109
|
||||
#define OP_Prev 110
|
||||
#define OP_MoveGe 111
|
||||
#define OP_Lt 70 /* same as TK_LT */
|
||||
#define OP_Ne 66 /* same as TK_NE */
|
||||
#define OP_MustBeInt 112
|
||||
#define OP_ForceInt 113
|
||||
#define OP_ShiftRight 76 /* same as TK_RSHIFT */
|
||||
#define OP_CollSeq 114
|
||||
#define OP_Gosub 115
|
||||
#define OP_ContextPush 116
|
||||
#define OP_FifoRead 117
|
||||
#define OP_ParseSchema 118
|
||||
#define OP_Destroy 119
|
||||
#define OP_IdxGE 120
|
||||
#define OP_ReadCookie 121
|
||||
#define OP_BitNot 85 /* same as TK_BITNOT */
|
||||
#define OP_AbsValue 122
|
||||
#define OP_Or 59 /* same as TK_OR */
|
||||
#define OP_ToReal 141 /* same as TK_TO_REAL */
|
||||
#define OP_ToNumeric 139 /* same as TK_TO_NUMERIC*/
|
||||
#define OP_Function 123
|
||||
#define OP_Concat 82 /* same as TK_CONCAT */
|
||||
#define OP_Int64 126
|
||||
|
||||
/* The following opcode values are never used */
|
||||
#define OP_NotUsed_127 127
|
||||
#define OP_NotUsed_128 128
|
||||
#define OP_NotUsed_129 129
|
||||
#define OP_NotUsed_130 130
|
||||
#define OP_NotUsed_131 131
|
||||
#define OP_NotUsed_132 132
|
||||
#define OP_NotUsed_133 133
|
||||
#define OP_NotUsed_134 134
|
||||
#define OP_NotUsed_135 135
|
||||
#define OP_NotUsed_136 136
|
||||
|
||||
/* Opcodes that are guaranteed to never push a value onto the stack
|
||||
** contain a 1 their corresponding position of the following mask
|
||||
** set. See the opcodeNoPush() function in vdbeaux.c */
|
||||
#define NOPUSH_MASK_0 0xb3fa
|
||||
#define NOPUSH_MASK_1 0xbfff
|
||||
#define NOPUSH_MASK_2 0x4bd7
|
||||
#define NOPUSH_MASK_3 0xff2d
|
||||
#define NOPUSH_MASK_4 0xffff
|
||||
#define NOPUSH_MASK_5 0xd23b
|
||||
#define NOPUSH_MASK_6 0xffea
|
||||
#define NOPUSH_MASK_7 0x015f
|
||||
#define NOPUSH_MASK_8 0x3e00
|
||||
#define NOPUSH_MASK_9 0x0000
|
|
@ -0,0 +1,92 @@
|
|||
/*
|
||||
** 2005 November 29
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
** This file contains OS interface code that is common to all
|
||||
** architectures.
|
||||
*/
|
||||
#define _SQLITE_OS_C_ 1
|
||||
#include "sqliteInt.h"
|
||||
#include "os.h"
|
||||
|
||||
/*
|
||||
** The following routines are convenience wrappers around methods
|
||||
** of the OsFile object. This is mostly just syntactic sugar. All
|
||||
** of this would be completely automatic if SQLite were coded using
|
||||
** C++ instead of plain old C.
|
||||
*/
|
||||
int sqlite3OsClose(OsFile **pId){
|
||||
OsFile *id;
|
||||
if( pId!=0 && (id = *pId)!=0 ){
|
||||
return id->pMethod->xClose(pId);
|
||||
}else{
|
||||
return SQLITE_OK;
|
||||
}
|
||||
}
|
||||
int sqlite3OsOpenDirectory(OsFile *id, const char *zName){
|
||||
return id->pMethod->xOpenDirectory(id, zName);
|
||||
}
|
||||
int sqlite3OsRead(OsFile *id, void *pBuf, int amt){
|
||||
return id->pMethod->xRead(id, pBuf, amt);
|
||||
}
|
||||
int sqlite3OsWrite(OsFile *id, const void *pBuf, int amt){
|
||||
return id->pMethod->xWrite(id, pBuf, amt);
|
||||
}
|
||||
int sqlite3OsSeek(OsFile *id, i64 offset){
|
||||
return id->pMethod->xSeek(id, offset);
|
||||
}
|
||||
int sqlite3OsTruncate(OsFile *id, i64 size){
|
||||
return id->pMethod->xTruncate(id, size);
|
||||
}
|
||||
int sqlite3OsSync(OsFile *id, int fullsync){
|
||||
return id->pMethod->xSync(id, fullsync);
|
||||
}
|
||||
void sqlite3OsSetFullSync(OsFile *id, int value){
|
||||
id->pMethod->xSetFullSync(id, value);
|
||||
}
|
||||
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
|
||||
/* This method is currently only used while interactively debugging the
|
||||
** pager. More specificly, it can only be used when sqlite3DebugPrintf() is
|
||||
** included in the build. */
|
||||
int sqlite3OsFileHandle(OsFile *id){
|
||||
return id->pMethod->xFileHandle(id);
|
||||
}
|
||||
#endif
|
||||
int sqlite3OsFileSize(OsFile *id, i64 *pSize){
|
||||
return id->pMethod->xFileSize(id, pSize);
|
||||
}
|
||||
int sqlite3OsLock(OsFile *id, int lockType){
|
||||
return id->pMethod->xLock(id, lockType);
|
||||
}
|
||||
int sqlite3OsUnlock(OsFile *id, int lockType){
|
||||
return id->pMethod->xUnlock(id, lockType);
|
||||
}
|
||||
int sqlite3OsLockState(OsFile *id){
|
||||
return id->pMethod->xLockState(id);
|
||||
}
|
||||
int sqlite3OsCheckReservedLock(OsFile *id){
|
||||
return id->pMethod->xCheckReservedLock(id);
|
||||
}
|
||||
|
||||
#ifdef SQLITE_ENABLE_REDEF_IO
|
||||
/*
|
||||
** A function to return a pointer to the virtual function table.
|
||||
** This routine really does not accomplish very much since the
|
||||
** virtual function table is a global variable and anybody who
|
||||
** can call this function can just as easily access the variable
|
||||
** for themselves. Nevertheless, we include this routine for
|
||||
** backwards compatibility with an earlier redefinable I/O
|
||||
** interface design.
|
||||
*/
|
||||
struct sqlite3OsVtbl *sqlite3_os_switch(void){
|
||||
return &sqlite3Os;
|
||||
}
|
||||
#endif
|
|
@ -0,0 +1,507 @@
|
|||
/*
|
||||
** 2001 September 16
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
** This header file (together with is companion C source-code file
|
||||
** "os.c") attempt to abstract the underlying operating system so that
|
||||
** the SQLite library will work on both POSIX and windows systems.
|
||||
*/
|
||||
#ifndef _SQLITE_OS_H_
|
||||
#define _SQLITE_OS_H_
|
||||
|
||||
/*
|
||||
** Figure out if we are dealing with Unix, Windows, or some other
|
||||
** operating system.
|
||||
*/
|
||||
#if !defined(OS_UNIX) && !defined(OS_BEOS) && !defined(OS_OTHER)
|
||||
# define OS_OTHER 0
|
||||
# ifndef OS_WIN
|
||||
# if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
|
||||
# define OS_WIN 1
|
||||
# define OS_UNIX 0
|
||||
# define OS_OS2 0
|
||||
# define OS_BEOS 0
|
||||
# elif defined(__BEOS__)
|
||||
# define OS_BEOS 1
|
||||
# define OS_WIN 0
|
||||
# define OS_OS2 0
|
||||
# define OS_UNIX 0
|
||||
# elif defined(_EMX_) || defined(_OS2) || defined(OS2) || defined(OS_OS2)
|
||||
# define OS_WIN 0
|
||||
# define OS_UNIX 0
|
||||
# define OS_OS2 1
|
||||
# define OS_BEOS 0
|
||||
# else
|
||||
# define OS_WIN 0
|
||||
# define OS_UNIX 1
|
||||
# define OS_OS2 0
|
||||
# define OS_BEOS 0
|
||||
# endif
|
||||
# else
|
||||
# define OS_UNIX 0
|
||||
# define OS_OS2 0
|
||||
# endif
|
||||
#else
|
||||
# ifndef OS_WIN
|
||||
# define OS_WIN 0
|
||||
# endif
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** Define the maximum size of a temporary filename
|
||||
*/
|
||||
#if OS_WIN
|
||||
# include <windows.h>
|
||||
# define SQLITE_TEMPNAME_SIZE (MAX_PATH+50)
|
||||
#elif OS_OS2
|
||||
# define INCL_DOSDATETIME
|
||||
# define INCL_DOSFILEMGR
|
||||
# define INCL_DOSERRORS
|
||||
# define INCL_DOSMISC
|
||||
# define INCL_DOSPROCESS
|
||||
# include <os2.h>
|
||||
# define SQLITE_TEMPNAME_SIZE (CCHMAXPATHCOMP)
|
||||
#else
|
||||
# define SQLITE_TEMPNAME_SIZE 200
|
||||
#endif
|
||||
|
||||
/* If the SET_FULLSYNC macro is not defined above, then make it
|
||||
** a no-op
|
||||
*/
|
||||
#ifndef SET_FULLSYNC
|
||||
# define SET_FULLSYNC(x,y)
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Temporary files are named starting with this prefix followed by 16 random
|
||||
** alphanumeric characters, and no file extension. They are stored in the
|
||||
** OS's standard temporary file directory, and are deleted prior to exit.
|
||||
** If sqlite is being embedded in another program, you may wish to change the
|
||||
** prefix to reflect your program's name, so that if your program exits
|
||||
** prematurely, old temporary files can be easily identified. This can be done
|
||||
** using -DTEMP_FILE_PREFIX=myprefix_ on the compiler command line.
|
||||
*/
|
||||
#ifndef TEMP_FILE_PREFIX
|
||||
# define TEMP_FILE_PREFIX "sqlite_"
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Define the interfaces for Unix, Windows, and OS/2.
|
||||
*/
|
||||
#if OS_UNIX
|
||||
#define sqlite3OsOpenReadWrite sqlite3UnixOpenReadWrite
|
||||
#define sqlite3OsOpenExclusive sqlite3UnixOpenExclusive
|
||||
#define sqlite3OsOpenReadOnly sqlite3UnixOpenReadOnly
|
||||
#define sqlite3OsDelete sqlite3UnixDelete
|
||||
#define sqlite3OsFileExists sqlite3UnixFileExists
|
||||
#define sqlite3OsFullPathname sqlite3UnixFullPathname
|
||||
#define sqlite3OsIsDirWritable sqlite3UnixIsDirWritable
|
||||
#define sqlite3OsSyncDirectory sqlite3UnixSyncDirectory
|
||||
#define sqlite3OsTempFileName sqlite3UnixTempFileName
|
||||
#define sqlite3OsRandomSeed sqlite3UnixRandomSeed
|
||||
#define sqlite3OsSleep sqlite3UnixSleep
|
||||
#define sqlite3OsCurrentTime sqlite3UnixCurrentTime
|
||||
#define sqlite3OsEnterMutex sqlite3UnixEnterMutex
|
||||
#define sqlite3OsLeaveMutex sqlite3UnixLeaveMutex
|
||||
#define sqlite3OsInMutex sqlite3UnixInMutex
|
||||
#define sqlite3OsThreadSpecificData sqlite3UnixThreadSpecificData
|
||||
#define sqlite3OsMalloc sqlite3GenericMalloc
|
||||
#define sqlite3OsRealloc sqlite3GenericRealloc
|
||||
#define sqlite3OsFree sqlite3GenericFree
|
||||
#define sqlite3OsAllocationSize sqlite3GenericAllocationSize
|
||||
#endif
|
||||
#if OS_WIN
|
||||
#define sqlite3OsOpenReadWrite sqlite3WinOpenReadWrite
|
||||
#define sqlite3OsOpenExclusive sqlite3WinOpenExclusive
|
||||
#define sqlite3OsOpenReadOnly sqlite3WinOpenReadOnly
|
||||
#define sqlite3OsDelete sqlite3WinDelete
|
||||
#define sqlite3OsFileExists sqlite3WinFileExists
|
||||
#define sqlite3OsFullPathname sqlite3WinFullPathname
|
||||
#define sqlite3OsIsDirWritable sqlite3WinIsDirWritable
|
||||
#define sqlite3OsSyncDirectory sqlite3WinSyncDirectory
|
||||
#define sqlite3OsTempFileName sqlite3WinTempFileName
|
||||
#define sqlite3OsRandomSeed sqlite3WinRandomSeed
|
||||
#define sqlite3OsSleep sqlite3WinSleep
|
||||
#define sqlite3OsCurrentTime sqlite3WinCurrentTime
|
||||
#define sqlite3OsEnterMutex sqlite3WinEnterMutex
|
||||
#define sqlite3OsLeaveMutex sqlite3WinLeaveMutex
|
||||
#define sqlite3OsInMutex sqlite3WinInMutex
|
||||
#define sqlite3OsThreadSpecificData sqlite3WinThreadSpecificData
|
||||
#define sqlite3OsMalloc sqlite3GenericMalloc
|
||||
#define sqlite3OsRealloc sqlite3GenericRealloc
|
||||
#define sqlite3OsFree sqlite3GenericFree
|
||||
#define sqlite3OsAllocationSize sqlite3GenericAllocationSize
|
||||
#endif
|
||||
#if OS_OS2
|
||||
#define sqlite3OsOpenReadWrite sqlite3Os2OpenReadWrite
|
||||
#define sqlite3OsOpenExclusive sqlite3Os2OpenExclusive
|
||||
#define sqlite3OsOpenReadOnly sqlite3Os2OpenReadOnly
|
||||
#define sqlite3OsDelete sqlite3Os2Delete
|
||||
#define sqlite3OsFileExists sqlite3Os2FileExists
|
||||
#define sqlite3OsFullPathname sqlite3Os2FullPathname
|
||||
#define sqlite3OsIsDirWritable sqlite3Os2IsDirWritable
|
||||
#define sqlite3OsSyncDirectory sqlite3Os2SyncDirectory
|
||||
#define sqlite3OsTempFileName sqlite3Os2TempFileName
|
||||
#define sqlite3OsRandomSeed sqlite3Os2RandomSeed
|
||||
#define sqlite3OsSleep sqlite3Os2Sleep
|
||||
#define sqlite3OsCurrentTime sqlite3Os2CurrentTime
|
||||
#define sqlite3OsEnterMutex sqlite3Os2EnterMutex
|
||||
#define sqlite3OsLeaveMutex sqlite3Os2LeaveMutex
|
||||
#define sqlite3OsInMutex sqlite3Os2InMutex
|
||||
#define sqlite3OsThreadSpecificData sqlite3Os2ThreadSpecificData
|
||||
#define sqlite3OsMalloc sqlite3GenericMalloc
|
||||
#define sqlite3OsRealloc sqlite3GenericRealloc
|
||||
#define sqlite3OsFree sqlite3GenericFree
|
||||
#define sqlite3OsAllocationSize sqlite3GenericAllocationSize
|
||||
#endif
|
||||
#if OS_BEOS
|
||||
#define sqlite3OsOpenReadWrite sqlite3BeOpenReadWrite
|
||||
#define sqlite3OsOpenExclusive sqlite3BeOpenExclusive
|
||||
#define sqlite3OsOpenReadOnly sqlite3BeOpenReadOnly
|
||||
#define sqlite3OsDelete sqlite3BeDelete
|
||||
#define sqlite3OsFileExists sqlite3BeFileExists
|
||||
#define sqlite3OsFullPathname sqlite3BeFullPathname
|
||||
#define sqlite3OsIsDirWritable sqlite3BeIsDirWritable
|
||||
#define sqlite3OsSyncDirectory sqlite3BeSyncDirectory
|
||||
#define sqlite3OsTempFileName sqlite3BeTempFileName
|
||||
#define sqlite3OsRandomSeed sqlite3BeRandomSeed
|
||||
#define sqlite3OsSleep sqlite3BeSleep
|
||||
#define sqlite3OsCurrentTime sqlite3BeCurrentTime
|
||||
#define sqlite3OsEnterMutex sqlite3BeEnterMutex
|
||||
#define sqlite3OsLeaveMutex sqlite3BeLeaveMutex
|
||||
#define sqlite3OsInMutex sqlite3BeInMutex
|
||||
#define sqlite3OsThreadSpecificData sqlite3BeThreadSpecificData
|
||||
#define sqlite3OsMalloc sqlite3GenericMalloc
|
||||
#define sqlite3OsRealloc sqlite3GenericRealloc
|
||||
#define sqlite3OsFree sqlite3GenericFree
|
||||
#define sqlite3OsAllocationSize sqlite3GenericAllocationSize
|
||||
#endif
|
||||
|
||||
/*
|
||||
** If using an alternative OS interface, then we must have an "os_other.h"
|
||||
** header file available for that interface. Presumably the "os_other.h"
|
||||
** header file contains #defines similar to those above.
|
||||
*/
|
||||
#if OS_OTHER
|
||||
# include "os_other.h"
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
/*
|
||||
** Forward declarations
|
||||
*/
|
||||
typedef struct OsFile OsFile;
|
||||
typedef struct IoMethod IoMethod;
|
||||
|
||||
/*
|
||||
** An instance of the following structure contains pointers to all
|
||||
** methods on an OsFile object.
|
||||
*/
|
||||
struct IoMethod {
|
||||
int (*xClose)(OsFile**);
|
||||
int (*xOpenDirectory)(OsFile*, const char*);
|
||||
int (*xRead)(OsFile*, void*, int amt);
|
||||
int (*xWrite)(OsFile*, const void*, int amt);
|
||||
int (*xSeek)(OsFile*, i64 offset);
|
||||
int (*xTruncate)(OsFile*, i64 size);
|
||||
int (*xSync)(OsFile*, int);
|
||||
void (*xSetFullSync)(OsFile *id, int setting);
|
||||
int (*xFileHandle)(OsFile *id);
|
||||
int (*xFileSize)(OsFile*, i64 *pSize);
|
||||
int (*xLock)(OsFile*, int);
|
||||
int (*xUnlock)(OsFile*, int);
|
||||
int (*xLockState)(OsFile *id);
|
||||
int (*xCheckReservedLock)(OsFile *id);
|
||||
};
|
||||
|
||||
/*
|
||||
** The OsFile object describes an open disk file in an OS-dependent way.
|
||||
** The version of OsFile defined here is a generic version. Each OS
|
||||
** implementation defines its own subclass of this structure that contains
|
||||
** additional information needed to handle file I/O. But the pMethod
|
||||
** entry (pointing to the virtual function table) always occurs first
|
||||
** so that we can always find the appropriate methods.
|
||||
*/
|
||||
struct OsFile {
|
||||
IoMethod const *pMethod;
|
||||
};
|
||||
|
||||
/*
|
||||
** The following values may be passed as the second argument to
|
||||
** sqlite3OsLock(). The various locks exhibit the following semantics:
|
||||
**
|
||||
** SHARED: Any number of processes may hold a SHARED lock simultaneously.
|
||||
** RESERVED: A single process may hold a RESERVED lock on a file at
|
||||
** any time. Other processes may hold and obtain new SHARED locks.
|
||||
** PENDING: A single process may hold a PENDING lock on a file at
|
||||
** any one time. Existing SHARED locks may persist, but no new
|
||||
** SHARED locks may be obtained by other processes.
|
||||
** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks.
|
||||
**
|
||||
** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a
|
||||
** process that requests an EXCLUSIVE lock may actually obtain a PENDING
|
||||
** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to
|
||||
** sqlite3OsLock().
|
||||
*/
|
||||
#define NO_LOCK 0
|
||||
#define SHARED_LOCK 1
|
||||
#define RESERVED_LOCK 2
|
||||
#define PENDING_LOCK 3
|
||||
#define EXCLUSIVE_LOCK 4
|
||||
|
||||
/*
|
||||
** File Locking Notes: (Mostly about windows but also some info for Unix)
|
||||
**
|
||||
** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because
|
||||
** those functions are not available. So we use only LockFile() and
|
||||
** UnlockFile().
|
||||
**
|
||||
** LockFile() prevents not just writing but also reading by other processes.
|
||||
** A SHARED_LOCK is obtained by locking a single randomly-chosen
|
||||
** byte out of a specific range of bytes. The lock byte is obtained at
|
||||
** random so two separate readers can probably access the file at the
|
||||
** same time, unless they are unlucky and choose the same lock byte.
|
||||
** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range.
|
||||
** There can only be one writer. A RESERVED_LOCK is obtained by locking
|
||||
** a single byte of the file that is designated as the reserved lock byte.
|
||||
** A PENDING_LOCK is obtained by locking a designated byte different from
|
||||
** the RESERVED_LOCK byte.
|
||||
**
|
||||
** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available,
|
||||
** which means we can use reader/writer locks. When reader/writer locks
|
||||
** are used, the lock is placed on the same range of bytes that is used
|
||||
** for probabilistic locking in Win95/98/ME. Hence, the locking scheme
|
||||
** will support two or more Win95 readers or two or more WinNT readers.
|
||||
** But a single Win95 reader will lock out all WinNT readers and a single
|
||||
** WinNT reader will lock out all other Win95 readers.
|
||||
**
|
||||
** The following #defines specify the range of bytes used for locking.
|
||||
** SHARED_SIZE is the number of bytes available in the pool from which
|
||||
** a random byte is selected for a shared lock. The pool of bytes for
|
||||
** shared locks begins at SHARED_FIRST.
|
||||
**
|
||||
** These #defines are available in sqlite_aux.h so that adaptors for
|
||||
** connecting SQLite to other operating systems can use the same byte
|
||||
** ranges for locking. In particular, the same locking strategy and
|
||||
** byte ranges are used for Unix. This leaves open the possiblity of having
|
||||
** clients on win95, winNT, and unix all talking to the same shared file
|
||||
** and all locking correctly. To do so would require that samba (or whatever
|
||||
** tool is being used for file sharing) implements locks correctly between
|
||||
** windows and unix. I'm guessing that isn't likely to happen, but by
|
||||
** using the same locking range we are at least open to the possibility.
|
||||
**
|
||||
** Locking in windows is manditory. For this reason, we cannot store
|
||||
** actual data in the bytes used for locking. The pager never allocates
|
||||
** the pages involved in locking therefore. SHARED_SIZE is selected so
|
||||
** that all locks will fit on a single page even at the minimum page size.
|
||||
** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE
|
||||
** is set high so that we don't have to allocate an unused page except
|
||||
** for very large databases. But one should test the page skipping logic
|
||||
** by setting PENDING_BYTE low and running the entire regression suite.
|
||||
**
|
||||
** Changing the value of PENDING_BYTE results in a subtly incompatible
|
||||
** file format. Depending on how it is changed, you might not notice
|
||||
** the incompatibility right away, even running a full regression test.
|
||||
** The default location of PENDING_BYTE is the first byte past the
|
||||
** 1GB boundary.
|
||||
**
|
||||
*/
|
||||
#ifndef SQLITE_TEST
|
||||
#define PENDING_BYTE 0x40000000 /* First byte past the 1GB boundary */
|
||||
#else
|
||||
extern unsigned int sqlite3_pending_byte;
|
||||
#define PENDING_BYTE sqlite3_pending_byte
|
||||
#endif
|
||||
|
||||
#define RESERVED_BYTE (PENDING_BYTE+1)
|
||||
#define SHARED_FIRST (PENDING_BYTE+2)
|
||||
#define SHARED_SIZE 510
|
||||
|
||||
/*
|
||||
** Prototypes for operating system interface routines.
|
||||
*/
|
||||
int sqlite3OsClose(OsFile**);
|
||||
int sqlite3OsOpenDirectory(OsFile*, const char*);
|
||||
int sqlite3OsRead(OsFile*, void*, int amt);
|
||||
int sqlite3OsWrite(OsFile*, const void*, int amt);
|
||||
int sqlite3OsSeek(OsFile*, i64 offset);
|
||||
int sqlite3OsTruncate(OsFile*, i64 size);
|
||||
int sqlite3OsSync(OsFile*, int);
|
||||
void sqlite3OsSetFullSync(OsFile *id, int setting);
|
||||
int sqlite3OsFileHandle(OsFile *id);
|
||||
int sqlite3OsFileSize(OsFile*, i64 *pSize);
|
||||
int sqlite3OsLock(OsFile*, int);
|
||||
int sqlite3OsUnlock(OsFile*, int);
|
||||
int sqlite3OsLockState(OsFile *id);
|
||||
int sqlite3OsCheckReservedLock(OsFile *id);
|
||||
int sqlite3OsOpenReadWrite(const char*, OsFile**, int*);
|
||||
int sqlite3OsOpenExclusive(const char*, OsFile**, int);
|
||||
int sqlite3OsOpenReadOnly(const char*, OsFile**);
|
||||
int sqlite3OsDelete(const char*);
|
||||
int sqlite3OsFileExists(const char*);
|
||||
char *sqlite3OsFullPathname(const char*);
|
||||
int sqlite3OsIsDirWritable(char*);
|
||||
int sqlite3OsSyncDirectory(const char*);
|
||||
int sqlite3OsTempFileName(char*);
|
||||
int sqlite3OsRandomSeed(char*);
|
||||
int sqlite3OsSleep(int ms);
|
||||
int sqlite3OsCurrentTime(double*);
|
||||
void sqlite3OsEnterMutex(void);
|
||||
void sqlite3OsLeaveMutex(void);
|
||||
int sqlite3OsInMutex(int);
|
||||
ThreadData *sqlite3OsThreadSpecificData(int);
|
||||
void *sqlite3OsMalloc(int);
|
||||
void *sqlite3OsRealloc(void *, int);
|
||||
void sqlite3OsFree(void *);
|
||||
int sqlite3OsAllocationSize(void *);
|
||||
|
||||
/*
|
||||
** If the SQLITE_ENABLE_REDEF_IO macro is defined, then the OS-layer
|
||||
** interface routines are not called directly but are invoked using
|
||||
** pointers to functions. This allows the implementation of various
|
||||
** OS-layer interface routines to be modified at run-time. There are
|
||||
** obscure but legitimate reasons for wanting to do this. But for
|
||||
** most users, a direct call to the underlying interface is preferable
|
||||
** so the the redefinable I/O interface is turned off by default.
|
||||
*/
|
||||
#ifdef SQLITE_ENABLE_REDEF_IO
|
||||
|
||||
/*
|
||||
** When redefinable I/O is enabled, a single global instance of the
|
||||
** following structure holds pointers to the routines that SQLite
|
||||
** uses to talk with the underlying operating system. Modify this
|
||||
** structure (before using any SQLite API!) to accomodate perculiar
|
||||
** operating system interfaces or behaviors.
|
||||
*/
|
||||
struct sqlite3OsVtbl {
|
||||
int (*xOpenReadWrite)(const char*, OsFile**, int*);
|
||||
int (*xOpenExclusive)(const char*, OsFile**, int);
|
||||
int (*xOpenReadOnly)(const char*, OsFile**);
|
||||
|
||||
int (*xDelete)(const char*);
|
||||
int (*xFileExists)(const char*);
|
||||
char *(*xFullPathname)(const char*);
|
||||
int (*xIsDirWritable)(char*);
|
||||
int (*xSyncDirectory)(const char*);
|
||||
int (*xTempFileName)(char*);
|
||||
|
||||
int (*xRandomSeed)(char*);
|
||||
int (*xSleep)(int ms);
|
||||
int (*xCurrentTime)(double*);
|
||||
|
||||
void (*xEnterMutex)(void);
|
||||
void (*xLeaveMutex)(void);
|
||||
int (*xInMutex)(int);
|
||||
ThreadData *(*xThreadSpecificData)(int);
|
||||
|
||||
void *(*xMalloc)(int);
|
||||
void *(*xRealloc)(void *, int);
|
||||
void (*xFree)(void *);
|
||||
int (*xAllocationSize)(void *);
|
||||
};
|
||||
|
||||
/* Macro used to comment out routines that do not exists when there is
|
||||
** no disk I/O
|
||||
*/
|
||||
#ifdef SQLITE_OMIT_DISKIO
|
||||
# define IF_DISKIO(X) 0
|
||||
#else
|
||||
# define IF_DISKIO(X) X
|
||||
#endif
|
||||
|
||||
#ifdef _SQLITE_OS_C_
|
||||
/*
|
||||
** The os.c file implements the global virtual function table.
|
||||
*/
|
||||
struct sqlite3OsVtbl sqlite3Os = {
|
||||
IF_DISKIO( sqlite3OsOpenReadWrite ),
|
||||
IF_DISKIO( sqlite3OsOpenExclusive ),
|
||||
IF_DISKIO( sqlite3OsOpenReadOnly ),
|
||||
IF_DISKIO( sqlite3OsDelete ),
|
||||
IF_DISKIO( sqlite3OsFileExists ),
|
||||
IF_DISKIO( sqlite3OsFullPathname ),
|
||||
IF_DISKIO( sqlite3OsIsDirWritable ),
|
||||
IF_DISKIO( sqlite3OsSyncDirectory ),
|
||||
IF_DISKIO( sqlite3OsTempFileName ),
|
||||
sqlite3OsRandomSeed,
|
||||
sqlite3OsSleep,
|
||||
sqlite3OsCurrentTime,
|
||||
sqlite3OsEnterMutex,
|
||||
sqlite3OsLeaveMutex,
|
||||
sqlite3OsInMutex,
|
||||
sqlite3OsThreadSpecificData,
|
||||
sqlite3OsMalloc,
|
||||
sqlite3OsRealloc,
|
||||
sqlite3OsFree,
|
||||
sqlite3OsAllocationSize
|
||||
};
|
||||
#else
|
||||
/*
|
||||
** Files other than os.c just reference the global virtual function table.
|
||||
*/
|
||||
extern struct sqlite3OsVtbl sqlite3Os;
|
||||
#endif /* _SQLITE_OS_C_ */
|
||||
|
||||
|
||||
/* This additional API routine is available with redefinable I/O */
|
||||
struct sqlite3OsVtbl *sqlite3_os_switch(void);
|
||||
|
||||
|
||||
/*
|
||||
** Redefine the OS interface to go through the virtual function table
|
||||
** rather than calling routines directly.
|
||||
*/
|
||||
#undef sqlite3OsOpenReadWrite
|
||||
#undef sqlite3OsOpenExclusive
|
||||
#undef sqlite3OsOpenReadOnly
|
||||
#undef sqlite3OsDelete
|
||||
#undef sqlite3OsFileExists
|
||||
#undef sqlite3OsFullPathname
|
||||
#undef sqlite3OsIsDirWritable
|
||||
#undef sqlite3OsSyncDirectory
|
||||
#undef sqlite3OsTempFileName
|
||||
#undef sqlite3OsRandomSeed
|
||||
#undef sqlite3OsSleep
|
||||
#undef sqlite3OsCurrentTime
|
||||
#undef sqlite3OsEnterMutex
|
||||
#undef sqlite3OsLeaveMutex
|
||||
#undef sqlite3OsInMutex
|
||||
#undef sqlite3OsThreadSpecificData
|
||||
#undef sqlite3OsMalloc
|
||||
#undef sqlite3OsRealloc
|
||||
#undef sqlite3OsFree
|
||||
#undef sqlite3OsAllocationSize
|
||||
#define sqlite3OsOpenReadWrite sqlite3Os.xOpenReadWrite
|
||||
#define sqlite3OsOpenExclusive sqlite3Os.xOpenExclusive
|
||||
#define sqlite3OsOpenReadOnly sqlite3Os.xOpenReadOnly
|
||||
#define sqlite3OsDelete sqlite3Os.xDelete
|
||||
#define sqlite3OsFileExists sqlite3Os.xFileExists
|
||||
#define sqlite3OsFullPathname sqlite3Os.xFullPathname
|
||||
#define sqlite3OsIsDirWritable sqlite3Os.xIsDirWritable
|
||||
#define sqlite3OsSyncDirectory sqlite3Os.xSyncDirectory
|
||||
#define sqlite3OsTempFileName sqlite3Os.xTempFileName
|
||||
#define sqlite3OsRandomSeed sqlite3Os.xRandomSeed
|
||||
#define sqlite3OsSleep sqlite3Os.xSleep
|
||||
#define sqlite3OsCurrentTime sqlite3Os.xCurrentTime
|
||||
#define sqlite3OsEnterMutex sqlite3Os.xEnterMutex
|
||||
#define sqlite3OsLeaveMutex sqlite3Os.xLeaveMutex
|
||||
#define sqlite3OsInMutex sqlite3Os.xInMutex
|
||||
#define sqlite3OsThreadSpecificData sqlite3Os.xThreadSpecificData
|
||||
#define sqlite3OsMalloc sqlite3Os.xMalloc
|
||||
#define sqlite3OsRealloc sqlite3Os.xRealloc
|
||||
#define sqlite3OsFree sqlite3Os.xFree
|
||||
#define sqlite3OsAllocationSize sqlite3Os.xAllocationSize
|
||||
|
||||
#endif /* SQLITE_ENABLE_REDEF_IO */
|
||||
|
||||
#endif /* _SQLITE_OS_H_ */
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -0,0 +1,188 @@
|
|||
/*
|
||||
** 2004 May 22
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
** This file contains macros and a little bit of code that is common to
|
||||
** all of the platform-specific files (os_*.c) and is #included into those
|
||||
** files.
|
||||
**
|
||||
** This file should be #included by the os_*.c files only. It is not a
|
||||
** general purpose header file.
|
||||
*/
|
||||
|
||||
/*
|
||||
** At least two bugs have slipped in because we changed the MEMORY_DEBUG
|
||||
** macro to SQLITE_DEBUG and some older makefiles have not yet made the
|
||||
** switch. The following code should catch this problem at compile-time.
|
||||
*/
|
||||
#ifdef MEMORY_DEBUG
|
||||
# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead."
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
* When testing, this global variable stores the location of the
|
||||
* pending-byte in the database file.
|
||||
*/
|
||||
#ifdef SQLITE_TEST
|
||||
unsigned int sqlite3_pending_byte = 0x40000000;
|
||||
#endif
|
||||
|
||||
int sqlite3_os_trace = 0;
|
||||
#ifdef SQLITE_DEBUG
|
||||
static int last_page = 0;
|
||||
#define SEEK(X) last_page=(X)
|
||||
#define TRACE1(X) if( sqlite3_os_trace ) sqlite3DebugPrintf(X)
|
||||
#define TRACE2(X,Y) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y)
|
||||
#define TRACE3(X,Y,Z) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z)
|
||||
#define TRACE4(X,Y,Z,A) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A)
|
||||
#define TRACE5(X,Y,Z,A,B) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A,B)
|
||||
#define TRACE6(X,Y,Z,A,B,C) if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
|
||||
#define TRACE7(X,Y,Z,A,B,C,D) \
|
||||
if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
|
||||
#else
|
||||
#define SEEK(X)
|
||||
#define TRACE1(X)
|
||||
#define TRACE2(X,Y)
|
||||
#define TRACE3(X,Y,Z)
|
||||
#define TRACE4(X,Y,Z,A)
|
||||
#define TRACE5(X,Y,Z,A,B)
|
||||
#define TRACE6(X,Y,Z,A,B,C)
|
||||
#define TRACE7(X,Y,Z,A,B,C,D)
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Macros for performance tracing. Normally turned off. Only works
|
||||
** on i486 hardware.
|
||||
*/
|
||||
#ifdef SQLITE_PERFORMANCE_TRACE
|
||||
__inline__ unsigned long long int hwtime(void){
|
||||
unsigned long long int x;
|
||||
__asm__("rdtsc\n\t"
|
||||
"mov %%edx, %%ecx\n\t"
|
||||
:"=A" (x));
|
||||
return x;
|
||||
}
|
||||
static unsigned long long int g_start;
|
||||
static unsigned int elapse;
|
||||
#define TIMER_START g_start=hwtime()
|
||||
#define TIMER_END elapse=hwtime()-g_start
|
||||
#define TIMER_ELAPSED elapse
|
||||
#else
|
||||
#define TIMER_START
|
||||
#define TIMER_END
|
||||
#define TIMER_ELAPSED 0
|
||||
#endif
|
||||
|
||||
/*
|
||||
** If we compile with the SQLITE_TEST macro set, then the following block
|
||||
** of code will give us the ability to simulate a disk I/O error. This
|
||||
** is used for testing the I/O recovery logic.
|
||||
*/
|
||||
#ifdef SQLITE_TEST
|
||||
int sqlite3_io_error_hit = 0;
|
||||
int sqlite3_io_error_pending = 0;
|
||||
int sqlite3_diskfull_pending = 0;
|
||||
int sqlite3_diskfull = 0;
|
||||
#define SimulateIOError(A) \
|
||||
if( sqlite3_io_error_pending ) \
|
||||
if( sqlite3_io_error_pending-- == 1 ){ local_ioerr(); return A; }
|
||||
static void local_ioerr(){
|
||||
sqlite3_io_error_hit = 1; /* Really just a place to set a breakpoint */
|
||||
}
|
||||
#define SimulateDiskfullError \
|
||||
if( sqlite3_diskfull_pending ){ \
|
||||
if( sqlite3_diskfull_pending == 1 ){ \
|
||||
local_ioerr(); \
|
||||
sqlite3_diskfull = 1; \
|
||||
return SQLITE_FULL; \
|
||||
}else{ \
|
||||
sqlite3_diskfull_pending--; \
|
||||
} \
|
||||
}
|
||||
#else
|
||||
#define SimulateIOError(A)
|
||||
#define SimulateDiskfullError
|
||||
#endif
|
||||
|
||||
/*
|
||||
** When testing, keep a count of the number of open files.
|
||||
*/
|
||||
#ifdef SQLITE_TEST
|
||||
int sqlite3_open_file_count = 0;
|
||||
#define OpenCounter(X) sqlite3_open_file_count+=(X)
|
||||
#else
|
||||
#define OpenCounter(X)
|
||||
#endif
|
||||
|
||||
/*
|
||||
** sqlite3GenericMalloc
|
||||
** sqlite3GenericRealloc
|
||||
** sqlite3GenericOsFree
|
||||
** sqlite3GenericAllocationSize
|
||||
**
|
||||
** Implementation of the os level dynamic memory allocation interface in terms
|
||||
** of the standard malloc(), realloc() and free() found in many operating
|
||||
** systems. No rocket science here.
|
||||
**
|
||||
** There are two versions of these four functions here. The version
|
||||
** implemented here is only used if memory-management or memory-debugging is
|
||||
** enabled. This version allocates an extra 8-bytes at the beginning of each
|
||||
** block and stores the size of the allocation there.
|
||||
**
|
||||
** If neither memory-management or debugging is enabled, the second
|
||||
** set of implementations is used instead.
|
||||
*/
|
||||
#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || defined (SQLITE_MEMDEBUG)
|
||||
void *sqlite3GenericMalloc(int n){
|
||||
char *p = (char *)malloc(n+8);
|
||||
assert(n>0);
|
||||
assert(sizeof(int)<=8);
|
||||
if( p ){
|
||||
*(int *)p = n;
|
||||
p += 8;
|
||||
}
|
||||
return (void *)p;
|
||||
}
|
||||
void *sqlite3GenericRealloc(void *p, int n){
|
||||
char *p2 = ((char *)p - 8);
|
||||
assert(n>0);
|
||||
p2 = (char*)realloc(p2, n+8);
|
||||
if( p2 ){
|
||||
*(int *)p2 = n;
|
||||
p2 += 8;
|
||||
}
|
||||
return (void *)p2;
|
||||
}
|
||||
void sqlite3GenericFree(void *p){
|
||||
assert(p);
|
||||
free((void *)((char *)p - 8));
|
||||
}
|
||||
int sqlite3GenericAllocationSize(void *p){
|
||||
return p ? *(int *)((char *)p - 8) : 0;
|
||||
}
|
||||
#else
|
||||
void *sqlite3GenericMalloc(int n){
|
||||
char *p = (char *)malloc(n);
|
||||
return (void *)p;
|
||||
}
|
||||
void *sqlite3GenericRealloc(void *p, int n){
|
||||
assert(n>0);
|
||||
p = realloc(p, n);
|
||||
return p;
|
||||
}
|
||||
void sqlite3GenericFree(void *p){
|
||||
assert(p);
|
||||
free(p);
|
||||
}
|
||||
/* Never actually used, but needed for the linker */
|
||||
int sqlite3GenericAllocationSize(void *p){ return 0; }
|
||||
#endif
|
|
@ -0,0 +1,971 @@
|
|||
/*
|
||||
** 2006 Feb 14
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
** This file contains code that is specific to OS/2.
|
||||
*/
|
||||
|
||||
#if (__GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR__ >= 3) && defined(OS2_HIGH_MEMORY)
|
||||
/* os2safe.h has to be included before os2.h, needed for high mem */
|
||||
#include <os2safe.h>
|
||||
#endif
|
||||
|
||||
#include "sqliteInt.h"
|
||||
#include "os.h"
|
||||
|
||||
#if OS_OS2
|
||||
|
||||
/*
|
||||
** Macros used to determine whether or not to use threads.
|
||||
*/
|
||||
#if defined(THREADSAFE) && THREADSAFE
|
||||
# define SQLITE_OS2_THREADS 1
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Include code that is common to all os_*.c files
|
||||
*/
|
||||
#include "os_common.h"
|
||||
|
||||
/*
|
||||
** The os2File structure is subclass of OsFile specific for the OS/2
|
||||
** protability layer.
|
||||
*/
|
||||
typedef struct os2File os2File;
|
||||
struct os2File {
|
||||
IoMethod const *pMethod; /* Always the first entry */
|
||||
HFILE h; /* Handle for accessing the file */
|
||||
int delOnClose; /* True if file is to be deleted on close */
|
||||
char* pathToDel; /* Name of file to delete on close */
|
||||
unsigned char locktype; /* Type of lock currently held on this file */
|
||||
};
|
||||
|
||||
/*
|
||||
** Do not include any of the File I/O interface procedures if the
|
||||
** SQLITE_OMIT_DISKIO macro is defined (indicating that there database
|
||||
** will be in-memory only)
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_DISKIO
|
||||
|
||||
/*
|
||||
** Delete the named file
|
||||
*/
|
||||
int sqlite3Os2Delete( const char *zFilename ){
|
||||
DosDelete( (PSZ)zFilename );
|
||||
TRACE2( "DELETE \"%s\"\n", zFilename );
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return TRUE if the named file exists.
|
||||
*/
|
||||
int sqlite3Os2FileExists( const char *zFilename ){
|
||||
FILESTATUS3 fsts3ConfigInfo;
|
||||
memset(&fsts3ConfigInfo, 0, sizeof(fsts3ConfigInfo));
|
||||
return DosQueryPathInfo( (PSZ)zFilename, FIL_STANDARD,
|
||||
&fsts3ConfigInfo, sizeof(FILESTATUS3) ) == NO_ERROR;
|
||||
}
|
||||
|
||||
/* Forward declaration */
|
||||
int allocateOs2File( os2File *pInit, OsFile **pld );
|
||||
|
||||
/*
|
||||
** Attempt to open a file for both reading and writing. If that
|
||||
** fails, try opening it read-only. If the file does not exist,
|
||||
** try to create it.
|
||||
**
|
||||
** On success, a handle for the open file is written to *id
|
||||
** and *pReadonly is set to 0 if the file was opened for reading and
|
||||
** writing or 1 if the file was opened read-only. The function returns
|
||||
** SQLITE_OK.
|
||||
**
|
||||
** On failure, the function returns SQLITE_CANTOPEN and leaves
|
||||
** *id and *pReadonly unchanged.
|
||||
*/
|
||||
int sqlite3Os2OpenReadWrite(
|
||||
const char *zFilename,
|
||||
OsFile **pld,
|
||||
int *pReadonly
|
||||
){
|
||||
os2File f;
|
||||
HFILE hf;
|
||||
ULONG ulAction;
|
||||
APIRET rc;
|
||||
|
||||
assert( *pld == 0 );
|
||||
rc = DosOpen( (PSZ)zFilename, &hf, &ulAction, 0L,
|
||||
FILE_ARCHIVED | FILE_NORMAL,
|
||||
OPEN_ACTION_CREATE_IF_NEW | OPEN_ACTION_OPEN_IF_EXISTS,
|
||||
OPEN_FLAGS_FAIL_ON_ERROR | OPEN_FLAGS_RANDOM |
|
||||
OPEN_SHARE_DENYNONE | OPEN_ACCESS_READWRITE, (PEAOP2)NULL );
|
||||
if( rc != NO_ERROR ){
|
||||
rc = DosOpen( (PSZ)zFilename, &hf, &ulAction, 0L,
|
||||
FILE_ARCHIVED | FILE_NORMAL,
|
||||
OPEN_ACTION_CREATE_IF_NEW | OPEN_ACTION_OPEN_IF_EXISTS,
|
||||
OPEN_FLAGS_FAIL_ON_ERROR | OPEN_FLAGS_RANDOM |
|
||||
OPEN_SHARE_DENYWRITE | OPEN_ACCESS_READONLY, (PEAOP2)NULL );
|
||||
if( rc != NO_ERROR ){
|
||||
return SQLITE_CANTOPEN;
|
||||
}
|
||||
*pReadonly = 1;
|
||||
}
|
||||
else{
|
||||
*pReadonly = 0;
|
||||
}
|
||||
f.h = hf;
|
||||
f.locktype = NO_LOCK;
|
||||
f.delOnClose = 0;
|
||||
f.pathToDel = NULL;
|
||||
OpenCounter(+1);
|
||||
TRACE3( "OPEN R/W %d \"%s\"\n", hf, zFilename );
|
||||
return allocateOs2File( &f, pld );
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Attempt to open a new file for exclusive access by this process.
|
||||
** The file will be opened for both reading and writing. To avoid
|
||||
** a potential security problem, we do not allow the file to have
|
||||
** previously existed. Nor do we allow the file to be a symbolic
|
||||
** link.
|
||||
**
|
||||
** If delFlag is true, then make arrangements to automatically delete
|
||||
** the file when it is closed.
|
||||
**
|
||||
** On success, write the file handle into *id and return SQLITE_OK.
|
||||
**
|
||||
** On failure, return SQLITE_CANTOPEN.
|
||||
*/
|
||||
int sqlite3Os2OpenExclusive( const char *zFilename, OsFile **pld, int delFlag ){
|
||||
os2File f;
|
||||
HFILE hf;
|
||||
ULONG ulAction;
|
||||
APIRET rc;
|
||||
|
||||
assert( *pld == 0 );
|
||||
rc = DosOpen( (PSZ)zFilename, &hf, &ulAction, 0L, FILE_NORMAL,
|
||||
OPEN_ACTION_CREATE_IF_NEW | OPEN_ACTION_REPLACE_IF_EXISTS,
|
||||
OPEN_FLAGS_FAIL_ON_ERROR | OPEN_FLAGS_RANDOM |
|
||||
OPEN_SHARE_DENYREADWRITE | OPEN_ACCESS_READWRITE, (PEAOP2)NULL );
|
||||
if( rc != NO_ERROR ){
|
||||
return SQLITE_CANTOPEN;
|
||||
}
|
||||
|
||||
f.h = hf;
|
||||
f.locktype = NO_LOCK;
|
||||
f.delOnClose = delFlag ? 1 : 0;
|
||||
f.pathToDel = delFlag ? sqlite3OsFullPathname( zFilename ) : NULL;
|
||||
OpenCounter( +1 );
|
||||
if( delFlag ) DosForceDelete( sqlite3OsFullPathname( zFilename ) );
|
||||
TRACE3( "OPEN EX %d \"%s\"\n", hf, sqlite3OsFullPathname ( zFilename ) );
|
||||
return allocateOs2File( &f, pld );
|
||||
}
|
||||
|
||||
/*
|
||||
** Attempt to open a new file for read-only access.
|
||||
**
|
||||
** On success, write the file handle into *id and return SQLITE_OK.
|
||||
**
|
||||
** On failure, return SQLITE_CANTOPEN.
|
||||
*/
|
||||
int sqlite3Os2OpenReadOnly( const char *zFilename, OsFile **pld ){
|
||||
os2File f;
|
||||
HFILE hf;
|
||||
ULONG ulAction;
|
||||
APIRET rc;
|
||||
|
||||
assert( *pld == 0 );
|
||||
rc = DosOpen( (PSZ)zFilename, &hf, &ulAction, 0L,
|
||||
FILE_NORMAL, OPEN_ACTION_OPEN_IF_EXISTS,
|
||||
OPEN_FLAGS_FAIL_ON_ERROR | OPEN_FLAGS_RANDOM |
|
||||
OPEN_SHARE_DENYWRITE | OPEN_ACCESS_READONLY, (PEAOP2)NULL );
|
||||
if( rc != NO_ERROR ){
|
||||
return SQLITE_CANTOPEN;
|
||||
}
|
||||
f.h = hf;
|
||||
f.locktype = NO_LOCK;
|
||||
f.delOnClose = 0;
|
||||
f.pathToDel = NULL;
|
||||
OpenCounter( +1 );
|
||||
TRACE3( "OPEN RO %d \"%s\"\n", hf, zFilename );
|
||||
return allocateOs2File( &f, pld );
|
||||
}
|
||||
|
||||
/*
|
||||
** Attempt to open a file descriptor for the directory that contains a
|
||||
** file. This file descriptor can be used to fsync() the directory
|
||||
** in order to make sure the creation of a new file is actually written
|
||||
** to disk.
|
||||
**
|
||||
** This routine is only meaningful for Unix. It is a no-op under
|
||||
** OS/2 since OS/2 does not support hard links.
|
||||
**
|
||||
** On success, a handle for a previously open file is at *id is
|
||||
** updated with the new directory file descriptor and SQLITE_OK is
|
||||
** returned.
|
||||
**
|
||||
** On failure, the function returns SQLITE_CANTOPEN and leaves
|
||||
** *id unchanged.
|
||||
*/
|
||||
int os2OpenDirectory(
|
||||
OsFile *id,
|
||||
const char *zDirname
|
||||
){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** If the following global variable points to a string which is the
|
||||
** name of a directory, then that directory will be used to store
|
||||
** temporary files.
|
||||
*/
|
||||
char *sqlite3_temp_directory = 0;
|
||||
|
||||
/*
|
||||
** Create a temporary file name in zBuf. zBuf must be big enough to
|
||||
** hold at least SQLITE_TEMPNAME_SIZE characters.
|
||||
*/
|
||||
int sqlite3Os2TempFileName( char *zBuf ){
|
||||
static const unsigned char zChars[] =
|
||||
"abcdefghijklmnopqrstuvwxyz"
|
||||
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
||||
"0123456789";
|
||||
int i, j;
|
||||
PSZ zTempPath = 0;
|
||||
if( DosScanEnv( "TEMP", &zTempPath ) ){
|
||||
if( DosScanEnv( "TMP", &zTempPath ) ){
|
||||
if( DosScanEnv( "TMPDIR", &zTempPath ) ){
|
||||
ULONG ulDriveNum = 0, ulDriveMap = 0;
|
||||
DosQueryCurrentDisk( &ulDriveNum, &ulDriveMap );
|
||||
sprintf( zTempPath, "%c:", (char)( 'A' + ulDriveNum - 1 ) );
|
||||
}
|
||||
}
|
||||
}
|
||||
for(;;){
|
||||
sprintf( zBuf, "%s\\"TEMP_FILE_PREFIX, zTempPath );
|
||||
j = strlen( zBuf );
|
||||
sqlite3Randomness( 15, &zBuf[j] );
|
||||
for( i = 0; i < 15; i++, j++ ){
|
||||
zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
|
||||
}
|
||||
zBuf[j] = 0;
|
||||
if( !sqlite3OsFileExists( zBuf ) ) break;
|
||||
}
|
||||
TRACE2( "TEMP FILENAME: %s\n", zBuf );
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Close a file.
|
||||
*/
|
||||
int os2Close( OsFile **pld ){
|
||||
os2File *pFile;
|
||||
if( pld && (pFile = (os2File*)*pld)!=0 ){
|
||||
TRACE2( "CLOSE %d\n", pFile->h );
|
||||
DosClose( pFile->h );
|
||||
pFile->locktype = NO_LOCK;
|
||||
if( pFile->delOnClose != 0 ){
|
||||
DosForceDelete( pFile->pathToDel );
|
||||
}
|
||||
*pld = 0;
|
||||
OpenCounter( -1 );
|
||||
}
|
||||
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Read data from a file into a buffer. Return SQLITE_OK if all
|
||||
** bytes were read successfully and SQLITE_IOERR if anything goes
|
||||
** wrong.
|
||||
*/
|
||||
int os2Read( OsFile *id, void *pBuf, int amt ){
|
||||
ULONG got;
|
||||
assert( id!=0 );
|
||||
SimulateIOError( SQLITE_IOERR );
|
||||
TRACE3( "READ %d lock=%d\n", ((os2File*)id)->h, ((os2File*)id)->locktype );
|
||||
DosRead( ((os2File*)id)->h, pBuf, amt, &got );
|
||||
return (got == (ULONG)amt) ? SQLITE_OK : SQLITE_IOERR;
|
||||
}
|
||||
|
||||
/*
|
||||
** Write data from a buffer into a file. Return SQLITE_OK on success
|
||||
** or some other error code on failure.
|
||||
*/
|
||||
int os2Write( OsFile *id, const void *pBuf, int amt ){
|
||||
APIRET rc=NO_ERROR;
|
||||
ULONG wrote;
|
||||
assert( id!=0 );
|
||||
SimulateIOError( SQLITE_IOERR );
|
||||
SimulateDiskfullError;
|
||||
TRACE3( "WRITE %d lock=%d\n", ((os2File*)id)->h, ((os2File*)id)->locktype );
|
||||
while( amt > 0 &&
|
||||
(rc = DosWrite( ((os2File*)id)->h, (PVOID)pBuf, amt, &wrote )) && wrote > 0 ){
|
||||
amt -= wrote;
|
||||
pBuf = &((char*)pBuf)[wrote];
|
||||
}
|
||||
|
||||
return ( rc != NO_ERROR || amt > (int)wrote ) ? SQLITE_FULL : SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Move the read/write pointer in a file.
|
||||
*/
|
||||
int os2Seek( OsFile *id, i64 offset ){
|
||||
APIRET rc;
|
||||
ULONG filePointer = 0L;
|
||||
assert( id!=0 );
|
||||
rc = DosSetFilePtr( ((os2File*)id)->h, offset, FILE_BEGIN, &filePointer );
|
||||
TRACE3( "SEEK %d %lld\n", ((os2File*)id)->h, offset );
|
||||
return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
|
||||
}
|
||||
|
||||
/*
|
||||
** Make sure all writes to a particular file are committed to disk.
|
||||
*/
|
||||
int os2Sync( OsFile *id, int dataOnly ){
|
||||
assert( id!=0 );
|
||||
TRACE3( "SYNC %d lock=%d\n", ((os2File*)id)->h, ((os2File*)id)->locktype );
|
||||
return DosResetBuffer( ((os2File*)id)->h ) ? SQLITE_IOERR : SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Sync the directory zDirname. This is a no-op on operating systems other
|
||||
** than UNIX.
|
||||
*/
|
||||
int sqlite3Os2SyncDirectory( const char *zDirname ){
|
||||
SimulateIOError( SQLITE_IOERR );
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Truncate an open file to a specified size
|
||||
*/
|
||||
int os2Truncate( OsFile *id, i64 nByte ){
|
||||
APIRET rc;
|
||||
ULONG upperBits = nByte>>32;
|
||||
assert( id!=0 );
|
||||
TRACE3( "TRUNCATE %d %lld\n", ((os2File*)id)->h, nByte );
|
||||
SimulateIOError( SQLITE_IOERR );
|
||||
rc = DosSetFilePtr( ((os2File*)id)->h, nByte, FILE_BEGIN, &upperBits );
|
||||
if( rc != NO_ERROR ){
|
||||
return SQLITE_IOERR;
|
||||
}
|
||||
rc = DosSetFilePtr( ((os2File*)id)->h, 0L, FILE_END, &upperBits );
|
||||
return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
|
||||
}
|
||||
|
||||
/*
|
||||
** Determine the current size of a file in bytes
|
||||
*/
|
||||
int os2FileSize( OsFile *id, i64 *pSize ){
|
||||
APIRET rc;
|
||||
FILESTATUS3 fsts3FileInfo;
|
||||
memset(&fsts3FileInfo, 0, sizeof(fsts3FileInfo));
|
||||
assert( id!=0 );
|
||||
SimulateIOError( SQLITE_IOERR );
|
||||
rc = DosQueryFileInfo( ((os2File*)id)->h, FIL_STANDARD, &fsts3FileInfo, sizeof(FILESTATUS3) );
|
||||
if( rc == NO_ERROR ){
|
||||
*pSize = fsts3FileInfo.cbFile;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
else{
|
||||
return SQLITE_IOERR;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Acquire a reader lock.
|
||||
*/
|
||||
static int getReadLock( os2File *id ){
|
||||
FILELOCK LockArea,
|
||||
UnlockArea;
|
||||
memset(&LockArea, 0, sizeof(LockArea));
|
||||
memset(&UnlockArea, 0, sizeof(UnlockArea));
|
||||
LockArea.lOffset = SHARED_FIRST;
|
||||
LockArea.lRange = SHARED_SIZE;
|
||||
UnlockArea.lOffset = 0L;
|
||||
UnlockArea.lRange = 0L;
|
||||
return DosSetFileLocks( id->h, &UnlockArea, &LockArea, 2000L, 1L );
|
||||
}
|
||||
|
||||
/*
|
||||
** Undo a readlock
|
||||
*/
|
||||
static int unlockReadLock( os2File *id ){
|
||||
FILELOCK LockArea,
|
||||
UnlockArea;
|
||||
memset(&LockArea, 0, sizeof(LockArea));
|
||||
memset(&UnlockArea, 0, sizeof(UnlockArea));
|
||||
LockArea.lOffset = 0L;
|
||||
LockArea.lRange = 0L;
|
||||
UnlockArea.lOffset = SHARED_FIRST;
|
||||
UnlockArea.lRange = SHARED_SIZE;
|
||||
return DosSetFileLocks( id->h, &UnlockArea, &LockArea, 2000L, 1L );
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
||||
/*
|
||||
** Check that a given pathname is a directory and is writable
|
||||
**
|
||||
*/
|
||||
int sqlite3Os2IsDirWritable( char *zDirname ){
|
||||
FILESTATUS3 fsts3ConfigInfo;
|
||||
APIRET rc = NO_ERROR;
|
||||
memset(&fsts3ConfigInfo, 0, sizeof(fsts3ConfigInfo));
|
||||
if( zDirname==0 ) return 0;
|
||||
if( strlen(zDirname)>CCHMAXPATH ) return 0;
|
||||
rc = DosQueryPathInfo( (PSZ)zDirname, FIL_STANDARD, &fsts3ConfigInfo, sizeof(FILESTATUS3) );
|
||||
if( rc != NO_ERROR ) return 0;
|
||||
if( (fsts3ConfigInfo.attrFile & FILE_DIRECTORY) != FILE_DIRECTORY ) return 0;
|
||||
|
||||
return 1;
|
||||
}
|
||||
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
|
||||
|
||||
/*
|
||||
** Lock the file with the lock specified by parameter locktype - one
|
||||
** of the following:
|
||||
**
|
||||
** (1) SHARED_LOCK
|
||||
** (2) RESERVED_LOCK
|
||||
** (3) PENDING_LOCK
|
||||
** (4) EXCLUSIVE_LOCK
|
||||
**
|
||||
** Sometimes when requesting one lock state, additional lock states
|
||||
** are inserted in between. The locking might fail on one of the later
|
||||
** transitions leaving the lock state different from what it started but
|
||||
** still short of its goal. The following chart shows the allowed
|
||||
** transitions and the inserted intermediate states:
|
||||
**
|
||||
** UNLOCKED -> SHARED
|
||||
** SHARED -> RESERVED
|
||||
** SHARED -> (PENDING) -> EXCLUSIVE
|
||||
** RESERVED -> (PENDING) -> EXCLUSIVE
|
||||
** PENDING -> EXCLUSIVE
|
||||
**
|
||||
** This routine will only increase a lock. The os2Unlock() routine
|
||||
** erases all locks at once and returns us immediately to locking level 0.
|
||||
** It is not possible to lower the locking level one step at a time. You
|
||||
** must go straight to locking level 0.
|
||||
*/
|
||||
int os2Lock( OsFile *id, int locktype ){
|
||||
APIRET rc = SQLITE_OK; /* Return code from subroutines */
|
||||
APIRET res = 1; /* Result of a windows lock call */
|
||||
int newLocktype; /* Set id->locktype to this value before exiting */
|
||||
int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
|
||||
FILELOCK LockArea,
|
||||
UnlockArea;
|
||||
os2File *pFile = (os2File*)id;
|
||||
memset(&LockArea, 0, sizeof(LockArea));
|
||||
memset(&UnlockArea, 0, sizeof(UnlockArea));
|
||||
assert( pFile!=0 );
|
||||
TRACE4( "LOCK %d %d was %d\n", pFile->h, locktype, pFile->locktype );
|
||||
|
||||
/* If there is already a lock of this type or more restrictive on the
|
||||
** OsFile, do nothing. Don't use the end_lock: exit path, as
|
||||
** sqlite3OsEnterMutex() hasn't been called yet.
|
||||
*/
|
||||
if( pFile->locktype>=locktype ){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/* Make sure the locking sequence is correct
|
||||
*/
|
||||
assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
|
||||
assert( locktype!=PENDING_LOCK );
|
||||
assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
|
||||
|
||||
/* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
|
||||
** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of
|
||||
** the PENDING_LOCK byte is temporary.
|
||||
*/
|
||||
newLocktype = pFile->locktype;
|
||||
if( pFile->locktype==NO_LOCK
|
||||
|| (locktype==EXCLUSIVE_LOCK && pFile->locktype==RESERVED_LOCK)
|
||||
){
|
||||
int cnt = 3;
|
||||
|
||||
LockArea.lOffset = PENDING_BYTE;
|
||||
LockArea.lRange = 1L;
|
||||
UnlockArea.lOffset = 0L;
|
||||
UnlockArea.lRange = 0L;
|
||||
|
||||
while( cnt-->0 && (res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L) )!=NO_ERROR ){
|
||||
/* Try 3 times to get the pending lock. The pending lock might be
|
||||
** held by another reader process who will release it momentarily.
|
||||
*/
|
||||
TRACE2( "could not get a PENDING lock. cnt=%d\n", cnt );
|
||||
DosSleep(1);
|
||||
}
|
||||
gotPendingLock = res;
|
||||
}
|
||||
|
||||
/* Acquire a shared lock
|
||||
*/
|
||||
if( locktype==SHARED_LOCK && res ){
|
||||
assert( pFile->locktype==NO_LOCK );
|
||||
res = getReadLock(pFile);
|
||||
if( res == NO_ERROR ){
|
||||
newLocktype = SHARED_LOCK;
|
||||
}
|
||||
}
|
||||
|
||||
/* Acquire a RESERVED lock
|
||||
*/
|
||||
if( locktype==RESERVED_LOCK && res ){
|
||||
assert( pFile->locktype==SHARED_LOCK );
|
||||
LockArea.lOffset = RESERVED_BYTE;
|
||||
LockArea.lRange = 1L;
|
||||
UnlockArea.lOffset = 0L;
|
||||
UnlockArea.lRange = 0L;
|
||||
res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
|
||||
if( res == NO_ERROR ){
|
||||
newLocktype = RESERVED_LOCK;
|
||||
}
|
||||
}
|
||||
|
||||
/* Acquire a PENDING lock
|
||||
*/
|
||||
if( locktype==EXCLUSIVE_LOCK && res ){
|
||||
newLocktype = PENDING_LOCK;
|
||||
gotPendingLock = 0;
|
||||
}
|
||||
|
||||
/* Acquire an EXCLUSIVE lock
|
||||
*/
|
||||
if( locktype==EXCLUSIVE_LOCK && res ){
|
||||
assert( pFile->locktype>=SHARED_LOCK );
|
||||
res = unlockReadLock(pFile);
|
||||
TRACE2( "unreadlock = %d\n", res );
|
||||
LockArea.lOffset = SHARED_FIRST;
|
||||
LockArea.lRange = SHARED_SIZE;
|
||||
UnlockArea.lOffset = 0L;
|
||||
UnlockArea.lRange = 0L;
|
||||
res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
|
||||
if( res == NO_ERROR ){
|
||||
newLocktype = EXCLUSIVE_LOCK;
|
||||
}else{
|
||||
TRACE2( "error-code = %d\n", res );
|
||||
}
|
||||
}
|
||||
|
||||
/* If we are holding a PENDING lock that ought to be released, then
|
||||
** release it now.
|
||||
*/
|
||||
if( gotPendingLock && locktype==SHARED_LOCK ){
|
||||
LockArea.lOffset = 0L;
|
||||
LockArea.lRange = 0L;
|
||||
UnlockArea.lOffset = PENDING_BYTE;
|
||||
UnlockArea.lRange = 1L;
|
||||
DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
|
||||
}
|
||||
|
||||
/* Update the state of the lock has held in the file descriptor then
|
||||
** return the appropriate result code.
|
||||
*/
|
||||
if( res == NO_ERROR ){
|
||||
rc = SQLITE_OK;
|
||||
}else{
|
||||
TRACE4( "LOCK FAILED %d trying for %d but got %d\n", pFile->h,
|
||||
locktype, newLocktype );
|
||||
rc = SQLITE_BUSY;
|
||||
}
|
||||
pFile->locktype = newLocktype;
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine checks if there is a RESERVED lock held on the specified
|
||||
** file by this or any other process. If such a lock is held, return
|
||||
** non-zero, otherwise zero.
|
||||
*/
|
||||
int os2CheckReservedLock( OsFile *id ){
|
||||
APIRET rc;
|
||||
os2File *pFile = (os2File*)id;
|
||||
assert( pFile!=0 );
|
||||
if( pFile->locktype>=RESERVED_LOCK ){
|
||||
rc = 1;
|
||||
TRACE3( "TEST WR-LOCK %d %d (local)\n", pFile->h, rc );
|
||||
}else{
|
||||
FILELOCK LockArea,
|
||||
UnlockArea;
|
||||
memset(&LockArea, 0, sizeof(LockArea));
|
||||
memset(&UnlockArea, 0, sizeof(UnlockArea));
|
||||
LockArea.lOffset = RESERVED_BYTE;
|
||||
LockArea.lRange = 1L;
|
||||
UnlockArea.lOffset = 0L;
|
||||
UnlockArea.lRange = 0L;
|
||||
rc = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
|
||||
if( rc == NO_ERROR ){
|
||||
LockArea.lOffset = 0L;
|
||||
LockArea.lRange = 0L;
|
||||
UnlockArea.lOffset = RESERVED_BYTE;
|
||||
UnlockArea.lRange = 1L;
|
||||
rc = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
|
||||
}
|
||||
TRACE3( "TEST WR-LOCK %d %d (remote)\n", pFile->h, rc );
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Lower the locking level on file descriptor id to locktype. locktype
|
||||
** must be either NO_LOCK or SHARED_LOCK.
|
||||
**
|
||||
** If the locking level of the file descriptor is already at or below
|
||||
** the requested locking level, this routine is a no-op.
|
||||
**
|
||||
** It is not possible for this routine to fail if the second argument
|
||||
** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
|
||||
** might return SQLITE_IOERR;
|
||||
*/
|
||||
int os2Unlock( OsFile *id, int locktype ){
|
||||
int type;
|
||||
APIRET rc = SQLITE_OK;
|
||||
os2File *pFile = (os2File*)id;
|
||||
FILELOCK LockArea,
|
||||
UnlockArea;
|
||||
memset(&LockArea, 0, sizeof(LockArea));
|
||||
memset(&UnlockArea, 0, sizeof(UnlockArea));
|
||||
assert( pFile!=0 );
|
||||
assert( locktype<=SHARED_LOCK );
|
||||
TRACE4( "UNLOCK %d to %d was %d\n", pFile->h, locktype, pFile->locktype );
|
||||
type = pFile->locktype;
|
||||
if( type>=EXCLUSIVE_LOCK ){
|
||||
LockArea.lOffset = 0L;
|
||||
LockArea.lRange = 0L;
|
||||
UnlockArea.lOffset = SHARED_FIRST;
|
||||
UnlockArea.lRange = SHARED_SIZE;
|
||||
DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
|
||||
if( locktype==SHARED_LOCK && getReadLock(pFile) != NO_ERROR ){
|
||||
/* This should never happen. We should always be able to
|
||||
** reacquire the read lock */
|
||||
rc = SQLITE_IOERR;
|
||||
}
|
||||
}
|
||||
if( type>=RESERVED_LOCK ){
|
||||
LockArea.lOffset = 0L;
|
||||
LockArea.lRange = 0L;
|
||||
UnlockArea.lOffset = RESERVED_BYTE;
|
||||
UnlockArea.lRange = 1L;
|
||||
DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
|
||||
}
|
||||
if( locktype==NO_LOCK && type>=SHARED_LOCK ){
|
||||
unlockReadLock(pFile);
|
||||
}
|
||||
if( type>=PENDING_LOCK ){
|
||||
LockArea.lOffset = 0L;
|
||||
LockArea.lRange = 0L;
|
||||
UnlockArea.lOffset = PENDING_BYTE;
|
||||
UnlockArea.lRange = 1L;
|
||||
DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
|
||||
}
|
||||
pFile->locktype = locktype;
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Turn a relative pathname into a full pathname. Return a pointer
|
||||
** to the full pathname stored in space obtained from sqliteMalloc().
|
||||
** The calling function is responsible for freeing this space once it
|
||||
** is no longer needed.
|
||||
*/
|
||||
char *sqlite3Os2FullPathname( const char *zRelative ){
|
||||
char *zFull = 0;
|
||||
if( strchr(zRelative, ':') ){
|
||||
sqlite3SetString( &zFull, zRelative, (char*)0 );
|
||||
}else{
|
||||
char zBuff[SQLITE_TEMPNAME_SIZE - 2] = {0};
|
||||
char zDrive[1] = {0};
|
||||
ULONG cbzFullLen = SQLITE_TEMPNAME_SIZE;
|
||||
ULONG ulDriveNum = 0;
|
||||
ULONG ulDriveMap = 0;
|
||||
DosQueryCurrentDisk( &ulDriveNum, &ulDriveMap );
|
||||
DosQueryCurrentDir( 0L, zBuff, &cbzFullLen );
|
||||
zFull = sqliteMalloc( cbzFullLen );
|
||||
sprintf( zDrive, "%c", (char)('A' + ulDriveNum - 1) );
|
||||
sqlite3SetString( &zFull, zDrive, ":\\", zBuff, "\\", zRelative, (char*)0 );
|
||||
}
|
||||
return zFull;
|
||||
}
|
||||
|
||||
/*
|
||||
** The fullSync option is meaningless on os2, or correct me if I'm wrong. This is a no-op.
|
||||
** From os_unix.c: Change the value of the fullsync flag in the given file descriptor.
|
||||
** From os_unix.c: ((unixFile*)id)->fullSync = v;
|
||||
*/
|
||||
static void os2SetFullSync( OsFile *id, int v ){
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the underlying file handle for an OsFile
|
||||
*/
|
||||
static int os2FileHandle( OsFile *id ){
|
||||
return (int)((os2File*)id)->h;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return an integer that indices the type of lock currently held
|
||||
** by this handle. (Used for testing and analysis only.)
|
||||
*/
|
||||
static int os2LockState( OsFile *id ){
|
||||
return ((os2File*)id)->locktype;
|
||||
}
|
||||
|
||||
/*
|
||||
** This vector defines all the methods that can operate on an OsFile
|
||||
** for os2.
|
||||
*/
|
||||
static const IoMethod sqlite3Os2IoMethod = {
|
||||
os2Close,
|
||||
os2OpenDirectory,
|
||||
os2Read,
|
||||
os2Write,
|
||||
os2Seek,
|
||||
os2Truncate,
|
||||
os2Sync,
|
||||
os2SetFullSync,
|
||||
os2FileHandle,
|
||||
os2FileSize,
|
||||
os2Lock,
|
||||
os2Unlock,
|
||||
os2LockState,
|
||||
os2CheckReservedLock,
|
||||
};
|
||||
|
||||
/*
|
||||
** Allocate memory for an OsFile. Initialize the new OsFile
|
||||
** to the value given in pInit and return a pointer to the new
|
||||
** OsFile. If we run out of memory, close the file and return NULL.
|
||||
*/
|
||||
int allocateOs2File( os2File *pInit, OsFile **pld ){
|
||||
os2File *pNew;
|
||||
pNew = sqliteMalloc( sizeof(*pNew) );
|
||||
if( pNew==0 ){
|
||||
DosClose( pInit->h );
|
||||
*pld = 0;
|
||||
return SQLITE_NOMEM;
|
||||
}else{
|
||||
*pNew = *pInit;
|
||||
pNew->pMethod = &sqlite3Os2IoMethod;
|
||||
pNew->locktype = NO_LOCK;
|
||||
*pld = (OsFile*)pNew;
|
||||
OpenCounter(+1);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* SQLITE_OMIT_DISKIO */
|
||||
/***************************************************************************
|
||||
** Everything above deals with file I/O. Everything that follows deals
|
||||
** with other miscellanous aspects of the operating system interface
|
||||
****************************************************************************/
|
||||
|
||||
/*
|
||||
** Get information to seed the random number generator. The seed
|
||||
** is written into the buffer zBuf[256]. The calling function must
|
||||
** supply a sufficiently large buffer.
|
||||
*/
|
||||
int sqlite3Os2RandomSeed( char *zBuf ){
|
||||
/* We have to initialize zBuf to prevent valgrind from reporting
|
||||
** errors. The reports issued by valgrind are incorrect - we would
|
||||
** prefer that the randomness be increased by making use of the
|
||||
** uninitialized space in zBuf - but valgrind errors tend to worry
|
||||
** some users. Rather than argue, it seems easier just to initialize
|
||||
** the whole array and silence valgrind, even if that means less randomness
|
||||
** in the random seed.
|
||||
**
|
||||
** When testing, initializing zBuf[] to zero is all we do. That means
|
||||
** that we always use the same random number sequence.* This makes the
|
||||
** tests repeatable.
|
||||
*/
|
||||
memset( zBuf, 0, 256 );
|
||||
DosGetDateTime( (PDATETIME)zBuf );
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Sleep for a little while. Return the amount of time slept.
|
||||
*/
|
||||
int sqlite3Os2Sleep( int ms ){
|
||||
DosSleep( ms );
|
||||
return ms;
|
||||
}
|
||||
|
||||
/*
|
||||
** Static variables used for thread synchronization
|
||||
*/
|
||||
static int inMutex = 0;
|
||||
#ifdef SQLITE_OS2_THREADS
|
||||
static ULONG mutexOwner;
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The following pair of routines implement mutual exclusion for
|
||||
** multi-threaded processes. Only a single thread is allowed to
|
||||
** executed code that is surrounded by EnterMutex() and LeaveMutex().
|
||||
**
|
||||
** SQLite uses only a single Mutex. There is not much critical
|
||||
** code and what little there is executes quickly and without blocking.
|
||||
*/
|
||||
void sqlite3Os2EnterMutex(){
|
||||
PTIB ptib;
|
||||
#ifdef SQLITE_OS2_THREADS
|
||||
DosEnterCritSec();
|
||||
DosGetInfoBlocks( &ptib, NULL );
|
||||
mutexOwner = ptib->tib_ptib2->tib2_ultid;
|
||||
#endif
|
||||
assert( !inMutex );
|
||||
inMutex = 1;
|
||||
}
|
||||
void sqlite3Os2LeaveMutex(){
|
||||
PTIB ptib;
|
||||
assert( inMutex );
|
||||
inMutex = 0;
|
||||
#ifdef SQLITE_OS2_THREADS
|
||||
DosGetInfoBlocks( &ptib, NULL );
|
||||
assert( mutexOwner == ptib->tib_ptib2->tib2_ultid );
|
||||
DosExitCritSec();
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** Return TRUE if the mutex is currently held.
|
||||
**
|
||||
** If the thisThreadOnly parameter is true, return true if and only if the
|
||||
** calling thread holds the mutex. If the parameter is false, return
|
||||
** true if any thread holds the mutex.
|
||||
*/
|
||||
int sqlite3Os2InMutex( int thisThreadOnly ){
|
||||
#ifdef SQLITE_OS2_THREADS
|
||||
PTIB ptib;
|
||||
DosGetInfoBlocks( &ptib, NULL );
|
||||
return inMutex>0 && (thisThreadOnly==0 || mutexOwner==ptib->tib_ptib2->tib2_ultid);
|
||||
#else
|
||||
return inMutex>0;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** The following variable, if set to a non-zero value, becomes the result
|
||||
** returned from sqlite3OsCurrentTime(). This is used for testing.
|
||||
*/
|
||||
#ifdef SQLITE_TEST
|
||||
int sqlite3_current_time = 0;
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Find the current time (in Universal Coordinated Time). Write the
|
||||
** current time and date as a Julian Day number into *prNow and
|
||||
** return 0. Return 1 if the time and date cannot be found.
|
||||
*/
|
||||
int sqlite3Os2CurrentTime( double *prNow ){
|
||||
double now;
|
||||
USHORT second, minute, hour,
|
||||
day, month, year;
|
||||
DATETIME dt;
|
||||
DosGetDateTime( &dt );
|
||||
second = (USHORT)dt.seconds;
|
||||
minute = (USHORT)dt.minutes + dt.timezone;
|
||||
hour = (USHORT)dt.hours;
|
||||
day = (USHORT)dt.day;
|
||||
month = (USHORT)dt.month;
|
||||
year = (USHORT)dt.year;
|
||||
|
||||
/* Calculations from http://www.astro.keele.ac.uk/~rno/Astronomy/hjd.html
|
||||
http://www.astro.keele.ac.uk/~rno/Astronomy/hjd-0.1.c */
|
||||
/* Calculate the Julian days */
|
||||
now = day - 32076 +
|
||||
1461*(year + 4800 + (month - 14)/12)/4 +
|
||||
367*(month - 2 - (month - 14)/12*12)/12 -
|
||||
3*((year + 4900 + (month - 14)/12)/100)/4;
|
||||
|
||||
/* Add the fractional hours, mins and seconds */
|
||||
now += (hour + 12.0)/24.0;
|
||||
now += minute/1440.0;
|
||||
now += second/86400.0;
|
||||
*prNow = now;
|
||||
#ifdef SQLITE_TEST
|
||||
if( sqlite3_current_time ){
|
||||
*prNow = sqlite3_current_time/86400.0 + 2440587.5;
|
||||
}
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Remember the number of thread-specific-data blocks allocated.
|
||||
** Use this to verify that we are not leaking thread-specific-data.
|
||||
** Ticket #1601
|
||||
*/
|
||||
#ifdef SQLITE_TEST
|
||||
int sqlite3_tsd_count = 0;
|
||||
# define TSD_COUNTER_INCR InterlockedIncrement( &sqlite3_tsd_count )
|
||||
# define TSD_COUNTER_DECR InterlockedDecrement( &sqlite3_tsd_count )
|
||||
#else
|
||||
# define TSD_COUNTER_INCR /* no-op */
|
||||
# define TSD_COUNTER_DECR /* no-op */
|
||||
#endif
|
||||
|
||||
/*
|
||||
** If called with allocateFlag>1, then return a pointer to thread
|
||||
** specific data for the current thread. Allocate and zero the
|
||||
** thread-specific data if it does not already exist necessary.
|
||||
**
|
||||
** If called with allocateFlag==0, then check the current thread
|
||||
** specific data. Return it if it exists. If it does not exist,
|
||||
** then return NULL.
|
||||
**
|
||||
** If called with allocateFlag<0, check to see if the thread specific
|
||||
** data is allocated and is all zero. If it is then deallocate it.
|
||||
** Return a pointer to the thread specific data or NULL if it is
|
||||
** unallocated or gets deallocated.
|
||||
*/
|
||||
ThreadData *sqlite3Os2ThreadSpecificData( int allocateFlag ){
|
||||
static ThreadData **s_ppTsd = NULL;
|
||||
static const ThreadData zeroData = {0, 0, 0};
|
||||
ThreadData *pTsd;
|
||||
|
||||
if( !s_ppTsd ){
|
||||
sqlite3OsEnterMutex();
|
||||
if( !s_ppTsd ){
|
||||
PULONG pul;
|
||||
APIRET rc = DosAllocThreadLocalMemory(1, &pul);
|
||||
if( rc != NO_ERROR ){
|
||||
sqlite3OsLeaveMutex();
|
||||
return 0;
|
||||
}
|
||||
s_ppTsd = (ThreadData **)pul;
|
||||
}
|
||||
sqlite3OsLeaveMutex();
|
||||
}
|
||||
pTsd = *s_ppTsd;
|
||||
if( allocateFlag>0 ){
|
||||
if( !pTsd ){
|
||||
pTsd = sqlite3OsMalloc( sizeof(zeroData) );
|
||||
if( pTsd ){
|
||||
*pTsd = zeroData;
|
||||
*s_ppTsd = pTsd;
|
||||
TSD_COUNTER_INCR;
|
||||
}
|
||||
}
|
||||
}else if( pTsd!=0 && allocateFlag<0
|
||||
&& memcmp( pTsd, &zeroData, sizeof(ThreadData) )==0 ){
|
||||
sqlite3OsFree(pTsd);
|
||||
*s_ppTsd = NULL;
|
||||
TSD_COUNTER_DECR;
|
||||
pTsd = 0;
|
||||
}
|
||||
return pTsd;
|
||||
}
|
||||
#endif /* OS_OS2 */
|
|
@ -0,0 +1,73 @@
|
|||
/*
|
||||
** 2004 May 22
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
** This header file defined OS-specific features for OS/2.
|
||||
*/
|
||||
#ifndef _SQLITE_OS_OS2_H_
|
||||
#define _SQLITE_OS_OS2_H_
|
||||
|
||||
/*
|
||||
** standard include files.
|
||||
*/
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h>
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
|
||||
/*
|
||||
** Macros used to determine whether or not to use threads. The
|
||||
** SQLITE_UNIX_THREADS macro is defined if we are synchronizing for
|
||||
** Posix threads and SQLITE_W32_THREADS is defined if we are
|
||||
** synchronizing using Win32 threads.
|
||||
*/
|
||||
/* this mutex implementation only available with EMX */
|
||||
#if defined(THREADSAFE) && THREADSAFE
|
||||
# include <sys/builtin.h>
|
||||
# include <sys/smutex.h>
|
||||
# define SQLITE_OS2_THREADS 1
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The OsFile structure is a operating-system independing representation
|
||||
** of an open file handle. It is defined differently for each architecture.
|
||||
**
|
||||
** This is the definition for Unix.
|
||||
**
|
||||
** OsFile.locktype takes one of the values SHARED_LOCK, RESERVED_LOCK,
|
||||
** PENDING_LOCK or EXCLUSIVE_LOCK.
|
||||
*/
|
||||
typedef struct OsFile OsFile;
|
||||
struct OsFile {
|
||||
int h; /* The file descriptor (LHANDLE) */
|
||||
int locked; /* True if this user holds the lock */
|
||||
int delOnClose; /* True if file is to be deleted on close */
|
||||
char *pathToDel; /* Name of file to delete on close */
|
||||
unsigned char locktype; /* The type of lock held on this fd */
|
||||
unsigned char isOpen; /* True if needs to be closed */
|
||||
unsigned char fullSync;
|
||||
};
|
||||
|
||||
/*
|
||||
** Maximum number of characters in a temporary file name
|
||||
*/
|
||||
#define SQLITE_TEMPNAME_SIZE 200
|
||||
|
||||
/*
|
||||
** Minimum interval supported by sqlite3OsSleep().
|
||||
*/
|
||||
#define SQLITE_MIN_SLEEP_MS 1
|
||||
|
||||
#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
|
||||
# define SQLITE_DEFAULT_FILE_PERMISSIONS 0600
|
||||
#endif
|
||||
|
||||
#endif /* _SQLITE_OS_OS2_H_ */
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -0,0 +1,116 @@
|
|||
/*
|
||||
** 2004 May 22
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
** This header file defined OS-specific features for Unix.
|
||||
*/
|
||||
#ifndef _SQLITE_OS_UNIX_H_
|
||||
#define _SQLITE_OS_UNIX_H_
|
||||
|
||||
/*
|
||||
** Helpful hint: To get this to compile on HP/UX, add -D_INCLUDE_POSIX_SOURCE
|
||||
** to the compiler command line.
|
||||
*/
|
||||
|
||||
/*
|
||||
** These #defines should enable >2GB file support on Posix if the
|
||||
** underlying operating system supports it. If the OS lacks
|
||||
** large file support, or if the OS is windows, these should be no-ops.
|
||||
**
|
||||
** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
|
||||
** on the compiler command line. This is necessary if you are compiling
|
||||
** on a recent machine (ex: RedHat 7.2) but you want your code to work
|
||||
** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
|
||||
** without this option, LFS is enable. But LFS does not exist in the kernel
|
||||
** in RedHat 6.0, so the code won't work. Hence, for maximum binary
|
||||
** portability you should omit LFS.
|
||||
**
|
||||
** Similar is true for MacOS. LFS is only supported on MacOS 9 and later.
|
||||
*/
|
||||
#ifndef SQLITE_DISABLE_LFS
|
||||
# define _LARGE_FILE 1
|
||||
# ifndef _FILE_OFFSET_BITS
|
||||
# define _FILE_OFFSET_BITS 64
|
||||
# endif
|
||||
# define _LARGEFILE_SOURCE 1
|
||||
#endif
|
||||
|
||||
/*
|
||||
** standard include files.
|
||||
*/
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h>
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
|
||||
/*
|
||||
** Macros used to determine whether or not to use threads. The
|
||||
** SQLITE_UNIX_THREADS macro is defined if we are synchronizing for
|
||||
** Posix threads and SQLITE_W32_THREADS is defined if we are
|
||||
** synchronizing using Win32 threads.
|
||||
*/
|
||||
#if defined(THREADSAFE) && THREADSAFE
|
||||
# include <pthread.h>
|
||||
# define SQLITE_UNIX_THREADS 1
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The OsFile structure is a operating-system independing representation
|
||||
** of an open file handle. It is defined differently for each architecture.
|
||||
**
|
||||
** This is the definition for Unix.
|
||||
**
|
||||
** OsFile.locktype takes one of the values SHARED_LOCK, RESERVED_LOCK,
|
||||
** PENDING_LOCK or EXCLUSIVE_LOCK.
|
||||
*/
|
||||
typedef struct OsFile OsFile;
|
||||
struct OsFile {
|
||||
struct Pager *pPager; /* The pager that owns this OsFile. Might be 0 */
|
||||
struct openCnt *pOpen; /* Info about all open fd's on this inode */
|
||||
struct lockInfo *pLock; /* Info about locks on this inode */
|
||||
int h; /* The file descriptor */
|
||||
unsigned char locktype; /* The type of lock held on this fd */
|
||||
unsigned char isOpen; /* True if needs to be closed */
|
||||
unsigned char fullSync; /* Use F_FULLSYNC if available */
|
||||
int dirfd; /* File descriptor for the directory */
|
||||
#ifdef SQLITE_UNIX_THREADS
|
||||
pthread_t tid; /* The thread authorized to use this OsFile */
|
||||
#endif
|
||||
};
|
||||
|
||||
/*
|
||||
** A macro to set the OsFile.fullSync flag, if it exists.
|
||||
*/
|
||||
#define SET_FULLSYNC(x,y) ((x).fullSync = (y))
|
||||
|
||||
/*
|
||||
** Maximum number of characters in a temporary file name
|
||||
*/
|
||||
#define SQLITE_TEMPNAME_SIZE 200
|
||||
|
||||
/*
|
||||
** Minimum interval supported by sqlite3OsSleep().
|
||||
*/
|
||||
#if defined(HAVE_USLEEP) && HAVE_USLEEP
|
||||
# define SQLITE_MIN_SLEEP_MS 1
|
||||
#else
|
||||
# define SQLITE_MIN_SLEEP_MS 1000
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Default permissions when creating a new file
|
||||
*/
|
||||
#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
|
||||
# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
|
||||
#endif
|
||||
|
||||
|
||||
#endif /* _SQLITE_OS_UNIX_H_ */
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -0,0 +1,40 @@
|
|||
/*
|
||||
** 2004 May 22
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
** This header file defines OS-specific features for Win32
|
||||
*/
|
||||
#ifndef _SQLITE_OS_WIN_H_
|
||||
#define _SQLITE_OS_WIN_H_
|
||||
|
||||
#include <windows.h>
|
||||
#include <winbase.h>
|
||||
|
||||
/*
|
||||
** The OsFile structure is a operating-system independing representation
|
||||
** of an open file handle. It is defined differently for each architecture.
|
||||
**
|
||||
** This is the definition for Win32.
|
||||
*/
|
||||
typedef struct OsFile OsFile;
|
||||
struct OsFile {
|
||||
HANDLE h; /* Handle for accessing the file */
|
||||
unsigned char locktype; /* Type of lock currently held on this file */
|
||||
unsigned char isOpen; /* True if needs to be closed */
|
||||
short sharedLockByte; /* Randomly chosen byte used as a shared lock */
|
||||
};
|
||||
|
||||
|
||||
#define SQLITE_TEMPNAME_SIZE (MAX_PATH+50)
|
||||
#define SQLITE_MIN_SLEEP_MS 1
|
||||
|
||||
|
||||
#endif /* _SQLITE_OS_WIN_H_ */
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -0,0 +1,123 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This header file defines the interface that the sqlite page cache
|
||||
** subsystem. The page cache subsystem reads and writes a file a page
|
||||
** at a time and provides a journal for rollback.
|
||||
**
|
||||
** @(#) $Id: pager.h,v 1.50 2006/03/06 18:23:17 drh Exp $
|
||||
*/
|
||||
|
||||
#ifndef _PAGER_H_
|
||||
#define _PAGER_H_
|
||||
|
||||
/*
|
||||
** The default size of a database page.
|
||||
*/
|
||||
#ifndef SQLITE_DEFAULT_PAGE_SIZE
|
||||
# define SQLITE_DEFAULT_PAGE_SIZE 1024
|
||||
#endif
|
||||
|
||||
/* Maximum page size. The upper bound on this value is 32768. This a limit
|
||||
** imposed by necessity of storing the value in a 2-byte unsigned integer
|
||||
** and the fact that the page size must be a power of 2.
|
||||
**
|
||||
** This value is used to initialize certain arrays on the stack at
|
||||
** various places in the code. On embedded machines where stack space
|
||||
** is limited and the flexibility of having large pages is not needed,
|
||||
** it makes good sense to reduce the maximum page size to something more
|
||||
** reasonable, like 1024.
|
||||
*/
|
||||
#ifndef SQLITE_MAX_PAGE_SIZE
|
||||
# define SQLITE_MAX_PAGE_SIZE 32768
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Maximum number of pages in one database.
|
||||
*/
|
||||
#define SQLITE_MAX_PAGE 1073741823
|
||||
|
||||
/*
|
||||
** The type used to represent a page number. The first page in a file
|
||||
** is called page 1. 0 is used to represent "not a page".
|
||||
*/
|
||||
typedef unsigned int Pgno;
|
||||
|
||||
/*
|
||||
** Each open file is managed by a separate instance of the "Pager" structure.
|
||||
*/
|
||||
typedef struct Pager Pager;
|
||||
|
||||
/*
|
||||
** Allowed values for the flags parameter to sqlite3pager_open().
|
||||
**
|
||||
** NOTE: This values must match the corresponding BTREE_ values in btree.h.
|
||||
*/
|
||||
#define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */
|
||||
#define PAGER_NO_READLOCK 0x0002 /* Omit readlocks on readonly files */
|
||||
|
||||
|
||||
/*
|
||||
** See source code comments for a detailed description of the following
|
||||
** routines:
|
||||
*/
|
||||
int sqlite3pager_open(Pager **ppPager, const char *zFilename,
|
||||
int nExtra, int flags);
|
||||
void sqlite3pager_set_busyhandler(Pager*, BusyHandler *pBusyHandler);
|
||||
void sqlite3pager_set_destructor(Pager*, void(*)(void*,int));
|
||||
void sqlite3pager_set_reiniter(Pager*, void(*)(void*,int));
|
||||
int sqlite3pager_set_pagesize(Pager*, int);
|
||||
void sqlite3pager_read_fileheader(Pager*, int, unsigned char*);
|
||||
void sqlite3pager_set_cachesize(Pager*, int);
|
||||
int sqlite3pager_close(Pager *pPager);
|
||||
int sqlite3pager_get(Pager *pPager, Pgno pgno, void **ppPage);
|
||||
void *sqlite3pager_lookup(Pager *pPager, Pgno pgno);
|
||||
int sqlite3pager_ref(void*);
|
||||
int sqlite3pager_unref(void*);
|
||||
Pgno sqlite3pager_pagenumber(void*);
|
||||
int sqlite3pager_write(void*);
|
||||
int sqlite3pager_iswriteable(void*);
|
||||
int sqlite3pager_overwrite(Pager *pPager, Pgno pgno, void*);
|
||||
int sqlite3pager_pagecount(Pager*);
|
||||
int sqlite3pager_truncate(Pager*,Pgno);
|
||||
int sqlite3pager_begin(void*, int exFlag);
|
||||
int sqlite3pager_commit(Pager*);
|
||||
int sqlite3pager_sync(Pager*,const char *zMaster, Pgno);
|
||||
int sqlite3pager_rollback(Pager*);
|
||||
int sqlite3pager_isreadonly(Pager*);
|
||||
int sqlite3pager_stmt_begin(Pager*);
|
||||
int sqlite3pager_stmt_commit(Pager*);
|
||||
int sqlite3pager_stmt_rollback(Pager*);
|
||||
void sqlite3pager_dont_rollback(void*);
|
||||
void sqlite3pager_dont_write(Pager*, Pgno);
|
||||
int *sqlite3pager_stats(Pager*);
|
||||
void sqlite3pager_set_safety_level(Pager*,int,int);
|
||||
const char *sqlite3pager_filename(Pager*);
|
||||
const char *sqlite3pager_dirname(Pager*);
|
||||
const char *sqlite3pager_journalname(Pager*);
|
||||
int sqlite3pager_nosync(Pager*);
|
||||
int sqlite3pager_rename(Pager*, const char *zNewName);
|
||||
void sqlite3pager_set_codec(Pager*,void*(*)(void*,void*,Pgno,int),void*);
|
||||
int sqlite3pager_movepage(Pager*,void*,Pgno);
|
||||
int sqlite3pager_reset(Pager*);
|
||||
int sqlite3pager_release_memory(int);
|
||||
int sqlite3pager_loadall(Pager*);
|
||||
|
||||
#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
|
||||
int sqlite3pager_lockstate(Pager*);
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
void sqlite3pager_refdump(Pager*);
|
||||
int pager3_refinfo_enable;
|
||||
#endif
|
||||
|
||||
#endif /* _PAGER_H_ */
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -0,0 +1,151 @@
|
|||
#define TK_SEMI 1
|
||||
#define TK_EXPLAIN 2
|
||||
#define TK_QUERY 3
|
||||
#define TK_PLAN 4
|
||||
#define TK_BEGIN 5
|
||||
#define TK_TRANSACTION 6
|
||||
#define TK_DEFERRED 7
|
||||
#define TK_IMMEDIATE 8
|
||||
#define TK_EXCLUSIVE 9
|
||||
#define TK_COMMIT 10
|
||||
#define TK_END 11
|
||||
#define TK_ROLLBACK 12
|
||||
#define TK_CREATE 13
|
||||
#define TK_TABLE 14
|
||||
#define TK_IF 15
|
||||
#define TK_NOT 16
|
||||
#define TK_EXISTS 17
|
||||
#define TK_TEMP 18
|
||||
#define TK_LP 19
|
||||
#define TK_RP 20
|
||||
#define TK_AS 21
|
||||
#define TK_COMMA 22
|
||||
#define TK_ID 23
|
||||
#define TK_ABORT 24
|
||||
#define TK_AFTER 25
|
||||
#define TK_ANALYZE 26
|
||||
#define TK_ASC 27
|
||||
#define TK_ATTACH 28
|
||||
#define TK_BEFORE 29
|
||||
#define TK_CASCADE 30
|
||||
#define TK_CAST 31
|
||||
#define TK_CONFLICT 32
|
||||
#define TK_DATABASE 33
|
||||
#define TK_DESC 34
|
||||
#define TK_DETACH 35
|
||||
#define TK_EACH 36
|
||||
#define TK_FAIL 37
|
||||
#define TK_FOR 38
|
||||
#define TK_IGNORE 39
|
||||
#define TK_INITIALLY 40
|
||||
#define TK_INSTEAD 41
|
||||
#define TK_LIKE_KW 42
|
||||
#define TK_MATCH 43
|
||||
#define TK_KEY 44
|
||||
#define TK_OF 45
|
||||
#define TK_OFFSET 46
|
||||
#define TK_PRAGMA 47
|
||||
#define TK_RAISE 48
|
||||
#define TK_REPLACE 49
|
||||
#define TK_RESTRICT 50
|
||||
#define TK_ROW 51
|
||||
#define TK_STATEMENT 52
|
||||
#define TK_TRIGGER 53
|
||||
#define TK_VACUUM 54
|
||||
#define TK_VIEW 55
|
||||
#define TK_REINDEX 56
|
||||
#define TK_RENAME 57
|
||||
#define TK_CTIME_KW 58
|
||||
#define TK_OR 59
|
||||
#define TK_AND 60
|
||||
#define TK_IS 61
|
||||
#define TK_BETWEEN 62
|
||||
#define TK_IN 63
|
||||
#define TK_ISNULL 64
|
||||
#define TK_NOTNULL 65
|
||||
#define TK_NE 66
|
||||
#define TK_EQ 67
|
||||
#define TK_GT 68
|
||||
#define TK_LE 69
|
||||
#define TK_LT 70
|
||||
#define TK_GE 71
|
||||
#define TK_ESCAPE 72
|
||||
#define TK_BITAND 73
|
||||
#define TK_BITOR 74
|
||||
#define TK_LSHIFT 75
|
||||
#define TK_RSHIFT 76
|
||||
#define TK_PLUS 77
|
||||
#define TK_MINUS 78
|
||||
#define TK_STAR 79
|
||||
#define TK_SLASH 80
|
||||
#define TK_REM 81
|
||||
#define TK_CONCAT 82
|
||||
#define TK_UMINUS 83
|
||||
#define TK_UPLUS 84
|
||||
#define TK_BITNOT 85
|
||||
#define TK_STRING 86
|
||||
#define TK_JOIN_KW 87
|
||||
#define TK_CONSTRAINT 88
|
||||
#define TK_DEFAULT 89
|
||||
#define TK_NULL 90
|
||||
#define TK_PRIMARY 91
|
||||
#define TK_UNIQUE 92
|
||||
#define TK_CHECK 93
|
||||
#define TK_REFERENCES 94
|
||||
#define TK_COLLATE 95
|
||||
#define TK_AUTOINCR 96
|
||||
#define TK_ON 97
|
||||
#define TK_DELETE 98
|
||||
#define TK_UPDATE 99
|
||||
#define TK_INSERT 100
|
||||
#define TK_SET 101
|
||||
#define TK_DEFERRABLE 102
|
||||
#define TK_FOREIGN 103
|
||||
#define TK_DROP 104
|
||||
#define TK_UNION 105
|
||||
#define TK_ALL 106
|
||||
#define TK_EXCEPT 107
|
||||
#define TK_INTERSECT 108
|
||||
#define TK_SELECT 109
|
||||
#define TK_DISTINCT 110
|
||||
#define TK_DOT 111
|
||||
#define TK_FROM 112
|
||||
#define TK_JOIN 113
|
||||
#define TK_USING 114
|
||||
#define TK_ORDER 115
|
||||
#define TK_BY 116
|
||||
#define TK_GROUP 117
|
||||
#define TK_HAVING 118
|
||||
#define TK_LIMIT 119
|
||||
#define TK_WHERE 120
|
||||
#define TK_INTO 121
|
||||
#define TK_VALUES 122
|
||||
#define TK_INTEGER 123
|
||||
#define TK_FLOAT 124
|
||||
#define TK_BLOB 125
|
||||
#define TK_REGISTER 126
|
||||
#define TK_VARIABLE 127
|
||||
#define TK_CASE 128
|
||||
#define TK_WHEN 129
|
||||
#define TK_THEN 130
|
||||
#define TK_ELSE 131
|
||||
#define TK_INDEX 132
|
||||
#define TK_ALTER 133
|
||||
#define TK_TO 134
|
||||
#define TK_ADD 135
|
||||
#define TK_COLUMNKW 136
|
||||
#define TK_TO_TEXT 137
|
||||
#define TK_TO_BLOB 138
|
||||
#define TK_TO_NUMERIC 139
|
||||
#define TK_TO_INT 140
|
||||
#define TK_TO_REAL 141
|
||||
#define TK_END_OF_FILE 142
|
||||
#define TK_ILLEGAL 143
|
||||
#define TK_SPACE 144
|
||||
#define TK_UNCLOSED_STRING 145
|
||||
#define TK_COMMENT 146
|
||||
#define TK_FUNCTION 147
|
||||
#define TK_COLUMN 148
|
||||
#define TK_AGG_FUNCTION 149
|
||||
#define TK_AGG_COLUMN 150
|
||||
#define TK_CONST_FUNC 151
|
|
@ -0,0 +1,970 @@
|
|||
/*
|
||||
** 2003 April 6
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains code used to implement the PRAGMA command.
|
||||
**
|
||||
** $Id: pragma.c,v 1.120 2006/03/03 21:20:17 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "os.h"
|
||||
#include <ctype.h>
|
||||
|
||||
/* Ignore this whole file if pragmas are disabled
|
||||
*/
|
||||
#if !defined(SQLITE_OMIT_PRAGMA) && !defined(SQLITE_OMIT_PARSER)
|
||||
|
||||
#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
|
||||
# include "pager.h"
|
||||
# include "btree.h"
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Interpret the given string as a safety level. Return 0 for OFF,
|
||||
** 1 for ON or NORMAL and 2 for FULL. Return 1 for an empty or
|
||||
** unrecognized string argument.
|
||||
**
|
||||
** Note that the values returned are one less that the values that
|
||||
** should be passed into sqlite3BtreeSetSafetyLevel(). The is done
|
||||
** to support legacy SQL code. The safety level used to be boolean
|
||||
** and older scripts may have used numbers 0 for OFF and 1 for ON.
|
||||
*/
|
||||
static int getSafetyLevel(const char *z){
|
||||
/* 123456789 123456789 */
|
||||
static const char zText[] = "onoffalseyestruefull";
|
||||
static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 16};
|
||||
static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 4};
|
||||
static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 2};
|
||||
int i, n;
|
||||
if( isdigit(*z) ){
|
||||
return atoi(z);
|
||||
}
|
||||
n = strlen(z);
|
||||
for(i=0; i<sizeof(iLength); i++){
|
||||
if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0 ){
|
||||
return iValue[i];
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** Interpret the given string as a boolean value.
|
||||
*/
|
||||
static int getBoolean(const char *z){
|
||||
return getSafetyLevel(z)&1;
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
||||
/*
|
||||
** Interpret the given string as a temp db location. Return 1 for file
|
||||
** backed temporary databases, 2 for the Red-Black tree in memory database
|
||||
** and 0 to use the compile-time default.
|
||||
*/
|
||||
static int getTempStore(const char *z){
|
||||
if( z[0]>='0' && z[0]<='2' ){
|
||||
return z[0] - '0';
|
||||
}else if( sqlite3StrICmp(z, "file")==0 ){
|
||||
return 1;
|
||||
}else if( sqlite3StrICmp(z, "memory")==0 ){
|
||||
return 2;
|
||||
}else{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
#endif /* SQLITE_PAGER_PRAGMAS */
|
||||
|
||||
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
||||
/*
|
||||
** Invalidate temp storage, either when the temp storage is changed
|
||||
** from default, or when 'file' and the temp_store_directory has changed
|
||||
*/
|
||||
static int invalidateTempStorage(Parse *pParse){
|
||||
sqlite3 *db = pParse->db;
|
||||
if( db->aDb[1].pBt!=0 ){
|
||||
if( db->flags & SQLITE_InTrans ){
|
||||
sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
|
||||
"from within a transaction");
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
sqlite3BtreeClose(db->aDb[1].pBt);
|
||||
db->aDb[1].pBt = 0;
|
||||
sqlite3ResetInternalSchema(db, 0);
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
#endif /* SQLITE_PAGER_PRAGMAS */
|
||||
|
||||
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
||||
/*
|
||||
** If the TEMP database is open, close it and mark the database schema
|
||||
** as needing reloading. This must be done when using the TEMP_STORE
|
||||
** or DEFAULT_TEMP_STORE pragmas.
|
||||
*/
|
||||
static int changeTempStorage(Parse *pParse, const char *zStorageType){
|
||||
int ts = getTempStore(zStorageType);
|
||||
sqlite3 *db = pParse->db;
|
||||
if( db->temp_store==ts ) return SQLITE_OK;
|
||||
if( invalidateTempStorage( pParse ) != SQLITE_OK ){
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
db->temp_store = ts;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
#endif /* SQLITE_PAGER_PRAGMAS */
|
||||
|
||||
/*
|
||||
** Generate code to return a single integer value.
|
||||
*/
|
||||
static void returnSingleInt(Parse *pParse, const char *zLabel, int value){
|
||||
Vdbe *v = sqlite3GetVdbe(pParse);
|
||||
sqlite3VdbeAddOp(v, OP_Integer, value, 0);
|
||||
if( pParse->explain==0 ){
|
||||
sqlite3VdbeSetNumCols(v, 1);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, P3_STATIC);
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_FLAG_PRAGMAS
|
||||
/*
|
||||
** Check to see if zRight and zLeft refer to a pragma that queries
|
||||
** or changes one of the flags in db->flags. Return 1 if so and 0 if not.
|
||||
** Also, implement the pragma.
|
||||
*/
|
||||
static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){
|
||||
static const struct sPragmaType {
|
||||
const char *zName; /* Name of the pragma */
|
||||
int mask; /* Mask for the db->flags value */
|
||||
} aPragma[] = {
|
||||
{ "vdbe_trace", SQLITE_VdbeTrace },
|
||||
{ "sql_trace", SQLITE_SqlTrace },
|
||||
{ "vdbe_listing", SQLITE_VdbeListing },
|
||||
{ "full_column_names", SQLITE_FullColNames },
|
||||
{ "short_column_names", SQLITE_ShortColNames },
|
||||
{ "count_changes", SQLITE_CountRows },
|
||||
{ "empty_result_callbacks", SQLITE_NullCallback },
|
||||
{ "legacy_file_format", SQLITE_LegacyFileFmt },
|
||||
{ "fullfsync", SQLITE_FullFSync },
|
||||
#ifndef SQLITE_OMIT_CHECK
|
||||
{ "ignore_check_constraints", SQLITE_IgnoreChecks },
|
||||
#endif
|
||||
/* The following is VERY experimental */
|
||||
{ "writable_schema", SQLITE_WriteSchema },
|
||||
{ "omit_readlock", SQLITE_NoReadlock },
|
||||
|
||||
/* TODO: Maybe it shouldn't be possible to change the ReadUncommitted
|
||||
** flag if there are any active statements. */
|
||||
{ "read_uncommitted", SQLITE_ReadUncommitted },
|
||||
};
|
||||
int i;
|
||||
const struct sPragmaType *p;
|
||||
for(i=0, p=aPragma; i<sizeof(aPragma)/sizeof(aPragma[0]); i++, p++){
|
||||
if( sqlite3StrICmp(zLeft, p->zName)==0 ){
|
||||
sqlite3 *db = pParse->db;
|
||||
Vdbe *v;
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
if( v ){
|
||||
if( zRight==0 ){
|
||||
returnSingleInt(pParse, p->zName, (db->flags & p->mask)!=0 );
|
||||
}else{
|
||||
if( getBoolean(zRight) ){
|
||||
db->flags |= p->mask;
|
||||
}else{
|
||||
db->flags &= ~p->mask;
|
||||
}
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
#endif /* SQLITE_OMIT_FLAG_PRAGMAS */
|
||||
|
||||
/*
|
||||
** Process a pragma statement.
|
||||
**
|
||||
** Pragmas are of this form:
|
||||
**
|
||||
** PRAGMA [database.]id [= value]
|
||||
**
|
||||
** The identifier might also be a string. The value is a string, and
|
||||
** identifier, or a number. If minusFlag is true, then the value is
|
||||
** a number that was preceded by a minus sign.
|
||||
**
|
||||
** If the left side is "database.id" then pId1 is the database name
|
||||
** and pId2 is the id. If the left side is just "id" then pId1 is the
|
||||
** id and pId2 is any empty string.
|
||||
*/
|
||||
void sqlite3Pragma(
|
||||
Parse *pParse,
|
||||
Token *pId1, /* First part of [database.]id field */
|
||||
Token *pId2, /* Second part of [database.]id field, or NULL */
|
||||
Token *pValue, /* Token for <value>, or NULL */
|
||||
int minusFlag /* True if a '-' sign preceded <value> */
|
||||
){
|
||||
char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */
|
||||
char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */
|
||||
const char *zDb = 0; /* The database name */
|
||||
Token *pId; /* Pointer to <id> token */
|
||||
int iDb; /* Database index for <database> */
|
||||
sqlite3 *db = pParse->db;
|
||||
Db *pDb;
|
||||
Vdbe *v = sqlite3GetVdbe(pParse);
|
||||
if( v==0 ) return;
|
||||
|
||||
/* Interpret the [database.] part of the pragma statement. iDb is the
|
||||
** index of the database this pragma is being applied to in db.aDb[]. */
|
||||
iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
|
||||
if( iDb<0 ) return;
|
||||
pDb = &db->aDb[iDb];
|
||||
|
||||
/* If the temp database has been explicitly named as part of the
|
||||
** pragma, make sure it is open.
|
||||
*/
|
||||
if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
|
||||
return;
|
||||
}
|
||||
|
||||
zLeft = sqlite3NameFromToken(pId);
|
||||
if( !zLeft ) return;
|
||||
if( minusFlag ){
|
||||
zRight = sqlite3MPrintf("-%T", pValue);
|
||||
}else{
|
||||
zRight = sqlite3NameFromToken(pValue);
|
||||
}
|
||||
|
||||
zDb = ((iDb>0)?pDb->zName:0);
|
||||
if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
|
||||
goto pragma_out;
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
||||
/*
|
||||
** PRAGMA [database.]default_cache_size
|
||||
** PRAGMA [database.]default_cache_size=N
|
||||
**
|
||||
** The first form reports the current persistent setting for the
|
||||
** page cache size. The value returned is the maximum number of
|
||||
** pages in the page cache. The second form sets both the current
|
||||
** page cache size value and the persistent page cache size value
|
||||
** stored in the database file.
|
||||
**
|
||||
** The default cache size is stored in meta-value 2 of page 1 of the
|
||||
** database file. The cache size is actually the absolute value of
|
||||
** this memory location. The sign of meta-value 2 determines the
|
||||
** synchronous setting. A negative value means synchronous is off
|
||||
** and a positive value means synchronous is on.
|
||||
*/
|
||||
if( sqlite3StrICmp(zLeft,"default_cache_size")==0 ){
|
||||
static const VdbeOpList getCacheSize[] = {
|
||||
{ OP_ReadCookie, 0, 2, 0}, /* 0 */
|
||||
{ OP_AbsValue, 0, 0, 0},
|
||||
{ OP_Dup, 0, 0, 0},
|
||||
{ OP_Integer, 0, 0, 0},
|
||||
{ OP_Ne, 0, 6, 0},
|
||||
{ OP_Integer, 0, 0, 0}, /* 5 */
|
||||
{ OP_Callback, 1, 0, 0},
|
||||
};
|
||||
int addr;
|
||||
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
||||
if( !zRight ){
|
||||
sqlite3VdbeSetNumCols(v, 1);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", P3_STATIC);
|
||||
addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
|
||||
sqlite3VdbeChangeP1(v, addr, iDb);
|
||||
sqlite3VdbeChangeP1(v, addr+5, MAX_PAGES);
|
||||
}else{
|
||||
int size = atoi(zRight);
|
||||
if( size<0 ) size = -size;
|
||||
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
||||
sqlite3VdbeAddOp(v, OP_Integer, size, 0);
|
||||
sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 2);
|
||||
addr = sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Ge, 0, addr+3);
|
||||
sqlite3VdbeAddOp(v, OP_Negative, 0, 0);
|
||||
sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 2);
|
||||
pDb->pSchema->cache_size = size;
|
||||
sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
|
||||
}
|
||||
}else
|
||||
|
||||
/*
|
||||
** PRAGMA [database.]page_size
|
||||
** PRAGMA [database.]page_size=N
|
||||
**
|
||||
** The first form reports the current setting for the
|
||||
** database page size in bytes. The second form sets the
|
||||
** database page size value. The value can only be set if
|
||||
** the database has not yet been created.
|
||||
*/
|
||||
if( sqlite3StrICmp(zLeft,"page_size")==0 ){
|
||||
Btree *pBt = pDb->pBt;
|
||||
if( !zRight ){
|
||||
int size = pBt ? sqlite3BtreeGetPageSize(pBt) : 0;
|
||||
returnSingleInt(pParse, "page_size", size);
|
||||
}else{
|
||||
sqlite3BtreeSetPageSize(pBt, atoi(zRight), -1);
|
||||
}
|
||||
}else
|
||||
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
|
||||
|
||||
/*
|
||||
** PRAGMA [database.]auto_vacuum
|
||||
** PRAGMA [database.]auto_vacuum=N
|
||||
**
|
||||
** Get or set the (boolean) value of the database 'auto-vacuum' parameter.
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_AUTOVACUUM
|
||||
if( sqlite3StrICmp(zLeft,"auto_vacuum")==0 ){
|
||||
Btree *pBt = pDb->pBt;
|
||||
if( !zRight ){
|
||||
int auto_vacuum =
|
||||
pBt ? sqlite3BtreeGetAutoVacuum(pBt) : SQLITE_DEFAULT_AUTOVACUUM;
|
||||
returnSingleInt(pParse, "auto_vacuum", auto_vacuum);
|
||||
}else{
|
||||
sqlite3BtreeSetAutoVacuum(pBt, getBoolean(zRight));
|
||||
}
|
||||
}else
|
||||
#endif
|
||||
|
||||
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
||||
/*
|
||||
** PRAGMA [database.]cache_size
|
||||
** PRAGMA [database.]cache_size=N
|
||||
**
|
||||
** The first form reports the current local setting for the
|
||||
** page cache size. The local setting can be different from
|
||||
** the persistent cache size value that is stored in the database
|
||||
** file itself. The value returned is the maximum number of
|
||||
** pages in the page cache. The second form sets the local
|
||||
** page cache size value. It does not change the persistent
|
||||
** cache size stored on the disk so the cache size will revert
|
||||
** to its default value when the database is closed and reopened.
|
||||
** N should be a positive integer.
|
||||
*/
|
||||
if( sqlite3StrICmp(zLeft,"cache_size")==0 ){
|
||||
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
||||
if( !zRight ){
|
||||
returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size);
|
||||
}else{
|
||||
int size = atoi(zRight);
|
||||
if( size<0 ) size = -size;
|
||||
pDb->pSchema->cache_size = size;
|
||||
sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
|
||||
}
|
||||
}else
|
||||
|
||||
/*
|
||||
** PRAGMA temp_store
|
||||
** PRAGMA temp_store = "default"|"memory"|"file"
|
||||
**
|
||||
** Return or set the local value of the temp_store flag. Changing
|
||||
** the local value does not make changes to the disk file and the default
|
||||
** value will be restored the next time the database is opened.
|
||||
**
|
||||
** Note that it is possible for the library compile-time options to
|
||||
** override this setting
|
||||
*/
|
||||
if( sqlite3StrICmp(zLeft, "temp_store")==0 ){
|
||||
if( !zRight ){
|
||||
returnSingleInt(pParse, "temp_store", db->temp_store);
|
||||
}else{
|
||||
changeTempStorage(pParse, zRight);
|
||||
}
|
||||
}else
|
||||
|
||||
/*
|
||||
** PRAGMA temp_store_directory
|
||||
** PRAGMA temp_store_directory = ""|"directory_name"
|
||||
**
|
||||
** Return or set the local value of the temp_store_directory flag. Changing
|
||||
** the value sets a specific directory to be used for temporary files.
|
||||
** Setting to a null string reverts to the default temporary directory search.
|
||||
** If temporary directory is changed, then invalidateTempStorage.
|
||||
**
|
||||
*/
|
||||
if( sqlite3StrICmp(zLeft, "temp_store_directory")==0 ){
|
||||
if( !zRight ){
|
||||
if( sqlite3_temp_directory ){
|
||||
sqlite3VdbeSetNumCols(v, 1);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME,
|
||||
"temp_store_directory", P3_STATIC);
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0, sqlite3_temp_directory, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
|
||||
}
|
||||
}else{
|
||||
if( zRight[0] && !sqlite3OsIsDirWritable(zRight) ){
|
||||
sqlite3ErrorMsg(pParse, "not a writable directory");
|
||||
goto pragma_out;
|
||||
}
|
||||
if( TEMP_STORE==0
|
||||
|| (TEMP_STORE==1 && db->temp_store<=1)
|
||||
|| (TEMP_STORE==2 && db->temp_store==1)
|
||||
){
|
||||
invalidateTempStorage(pParse);
|
||||
}
|
||||
sqliteFree(sqlite3_temp_directory);
|
||||
if( zRight[0] ){
|
||||
sqlite3_temp_directory = zRight;
|
||||
zRight = 0;
|
||||
}else{
|
||||
sqlite3_temp_directory = 0;
|
||||
}
|
||||
}
|
||||
}else
|
||||
|
||||
/*
|
||||
** PRAGMA [database.]synchronous
|
||||
** PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL
|
||||
**
|
||||
** Return or set the local value of the synchronous flag. Changing
|
||||
** the local value does not make changes to the disk file and the
|
||||
** default value will be restored the next time the database is
|
||||
** opened.
|
||||
*/
|
||||
if( sqlite3StrICmp(zLeft,"synchronous")==0 ){
|
||||
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
||||
if( !zRight ){
|
||||
returnSingleInt(pParse, "synchronous", pDb->safety_level-1);
|
||||
}else{
|
||||
if( !db->autoCommit ){
|
||||
sqlite3ErrorMsg(pParse,
|
||||
"Safety level may not be changed inside a transaction");
|
||||
}else{
|
||||
pDb->safety_level = getSafetyLevel(zRight)+1;
|
||||
}
|
||||
}
|
||||
}else
|
||||
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */
|
||||
|
||||
#ifndef SQLITE_OMIT_FLAG_PRAGMAS
|
||||
if( flagPragma(pParse, zLeft, zRight) ){
|
||||
/* The flagPragma() subroutine also generates any necessary code
|
||||
** there is nothing more to do here */
|
||||
}else
|
||||
#endif /* SQLITE_OMIT_FLAG_PRAGMAS */
|
||||
|
||||
#ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
|
||||
/*
|
||||
** PRAGMA table_info(<table>)
|
||||
**
|
||||
** Return a single row for each column of the named table. The columns of
|
||||
** the returned data set are:
|
||||
**
|
||||
** cid: Column id (numbered from left to right, starting at 0)
|
||||
** name: Column name
|
||||
** type: Column declaration type.
|
||||
** notnull: True if 'NOT NULL' is part of column declaration
|
||||
** dflt_value: The default value for the column, if any.
|
||||
*/
|
||||
if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){
|
||||
Table *pTab;
|
||||
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
||||
pTab = sqlite3FindTable(db, zRight, zDb);
|
||||
if( pTab ){
|
||||
int i;
|
||||
Column *pCol;
|
||||
sqlite3VdbeSetNumCols(v, 6);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", P3_STATIC);
|
||||
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC);
|
||||
sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", P3_STATIC);
|
||||
sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", P3_STATIC);
|
||||
sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", P3_STATIC);
|
||||
sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", P3_STATIC);
|
||||
sqlite3ViewGetColumnNames(pParse, pTab);
|
||||
for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
|
||||
sqlite3VdbeAddOp(v, OP_Integer, i, 0);
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0, pCol->zName, 0);
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0,
|
||||
pCol->zType ? pCol->zType : "", 0);
|
||||
sqlite3VdbeAddOp(v, OP_Integer, pCol->notNull, 0);
|
||||
sqlite3ExprCode(pParse, pCol->pDflt);
|
||||
sqlite3VdbeAddOp(v, OP_Integer, pCol->isPrimKey, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Callback, 6, 0);
|
||||
}
|
||||
}
|
||||
}else
|
||||
|
||||
if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){
|
||||
Index *pIdx;
|
||||
Table *pTab;
|
||||
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
||||
pIdx = sqlite3FindIndex(db, zRight, zDb);
|
||||
if( pIdx ){
|
||||
int i;
|
||||
pTab = pIdx->pTable;
|
||||
sqlite3VdbeSetNumCols(v, 3);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", P3_STATIC);
|
||||
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", P3_STATIC);
|
||||
sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", P3_STATIC);
|
||||
for(i=0; i<pIdx->nColumn; i++){
|
||||
int cnum = pIdx->aiColumn[i];
|
||||
sqlite3VdbeAddOp(v, OP_Integer, i, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Integer, cnum, 0);
|
||||
assert( pTab->nCol>cnum );
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->aCol[cnum].zName, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Callback, 3, 0);
|
||||
}
|
||||
}
|
||||
}else
|
||||
|
||||
if( sqlite3StrICmp(zLeft, "index_list")==0 && zRight ){
|
||||
Index *pIdx;
|
||||
Table *pTab;
|
||||
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
||||
pTab = sqlite3FindTable(db, zRight, zDb);
|
||||
if( pTab ){
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
pIdx = pTab->pIndex;
|
||||
if( pIdx ){
|
||||
int i = 0;
|
||||
sqlite3VdbeSetNumCols(v, 3);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P3_STATIC);
|
||||
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC);
|
||||
sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", P3_STATIC);
|
||||
while(pIdx){
|
||||
sqlite3VdbeAddOp(v, OP_Integer, i, 0);
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0, pIdx->zName, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Integer, pIdx->onError!=OE_None, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Callback, 3, 0);
|
||||
++i;
|
||||
pIdx = pIdx->pNext;
|
||||
}
|
||||
}
|
||||
}
|
||||
}else
|
||||
|
||||
if( sqlite3StrICmp(zLeft, "database_list")==0 ){
|
||||
int i;
|
||||
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
||||
sqlite3VdbeSetNumCols(v, 3);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P3_STATIC);
|
||||
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC);
|
||||
sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "file", P3_STATIC);
|
||||
for(i=0; i<db->nDb; i++){
|
||||
if( db->aDb[i].pBt==0 ) continue;
|
||||
assert( db->aDb[i].zName!=0 );
|
||||
sqlite3VdbeAddOp(v, OP_Integer, i, 0);
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0, db->aDb[i].zName, 0);
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0,
|
||||
sqlite3BtreeGetFilename(db->aDb[i].pBt), 0);
|
||||
sqlite3VdbeAddOp(v, OP_Callback, 3, 0);
|
||||
}
|
||||
}else
|
||||
|
||||
if( sqlite3StrICmp(zLeft, "collation_list")==0 ){
|
||||
int i = 0;
|
||||
HashElem *p;
|
||||
sqlite3VdbeSetNumCols(v, 2);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P3_STATIC);
|
||||
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P3_STATIC);
|
||||
for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
|
||||
CollSeq *pColl = (CollSeq *)sqliteHashData(p);
|
||||
sqlite3VdbeAddOp(v, OP_Integer, i++, 0);
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0, pColl->zName, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Callback, 2, 0);
|
||||
}
|
||||
}else
|
||||
#endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
|
||||
|
||||
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
||||
if( sqlite3StrICmp(zLeft, "foreign_key_list")==0 && zRight ){
|
||||
FKey *pFK;
|
||||
Table *pTab;
|
||||
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
||||
pTab = sqlite3FindTable(db, zRight, zDb);
|
||||
if( pTab ){
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
pFK = pTab->pFKey;
|
||||
if( pFK ){
|
||||
int i = 0;
|
||||
sqlite3VdbeSetNumCols(v, 5);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", P3_STATIC);
|
||||
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", P3_STATIC);
|
||||
sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", P3_STATIC);
|
||||
sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", P3_STATIC);
|
||||
sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", P3_STATIC);
|
||||
while(pFK){
|
||||
int j;
|
||||
for(j=0; j<pFK->nCol; j++){
|
||||
char *zCol = pFK->aCol[j].zCol;
|
||||
sqlite3VdbeAddOp(v, OP_Integer, i, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Integer, j, 0);
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0, pFK->zTo, 0);
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0,
|
||||
pTab->aCol[pFK->aCol[j].iFrom].zName, 0);
|
||||
sqlite3VdbeOp3(v, zCol ? OP_String8 : OP_Null, 0, 0, zCol, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Callback, 5, 0);
|
||||
}
|
||||
++i;
|
||||
pFK = pFK->pNextFrom;
|
||||
}
|
||||
}
|
||||
}
|
||||
}else
|
||||
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
|
||||
|
||||
#ifndef NDEBUG
|
||||
if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){
|
||||
extern void sqlite3ParserTrace(FILE*, char *);
|
||||
if( zRight ){
|
||||
if( getBoolean(zRight) ){
|
||||
sqlite3ParserTrace(stderr, "parser: ");
|
||||
}else{
|
||||
sqlite3ParserTrace(0, 0);
|
||||
}
|
||||
}
|
||||
}else
|
||||
#endif
|
||||
|
||||
/* Reinstall the LIKE and GLOB functions. The variant of LIKE
|
||||
** used will be case sensitive or not depending on the RHS.
|
||||
*/
|
||||
if( sqlite3StrICmp(zLeft, "case_sensitive_like")==0 ){
|
||||
if( zRight ){
|
||||
sqlite3RegisterLikeFunctions(db, getBoolean(zRight));
|
||||
}
|
||||
}else
|
||||
|
||||
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
|
||||
if( sqlite3StrICmp(zLeft, "integrity_check")==0 ){
|
||||
int i, j, addr;
|
||||
|
||||
/* Code that appears at the end of the integrity check. If no error
|
||||
** messages have been generated, output OK. Otherwise output the
|
||||
** error message
|
||||
*/
|
||||
static const VdbeOpList endCode[] = {
|
||||
{ OP_MemLoad, 0, 0, 0},
|
||||
{ OP_Integer, 0, 0, 0},
|
||||
{ OP_Ne, 0, 0, 0}, /* 2 */
|
||||
{ OP_String8, 0, 0, "ok"},
|
||||
{ OP_Callback, 1, 0, 0},
|
||||
};
|
||||
|
||||
/* Initialize the VDBE program */
|
||||
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
||||
sqlite3VdbeSetNumCols(v, 1);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", P3_STATIC);
|
||||
sqlite3VdbeAddOp(v, OP_MemInt, 0, 0); /* Initialize error count to 0 */
|
||||
|
||||
/* Do an integrity check on each database file */
|
||||
for(i=0; i<db->nDb; i++){
|
||||
HashElem *x;
|
||||
Hash *pTbls;
|
||||
int cnt = 0;
|
||||
|
||||
if( OMIT_TEMPDB && i==1 ) continue;
|
||||
|
||||
sqlite3CodeVerifySchema(pParse, i);
|
||||
|
||||
/* Do an integrity check of the B-Tree
|
||||
*/
|
||||
pTbls = &db->aDb[i].pSchema->tblHash;
|
||||
for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
|
||||
Table *pTab = sqliteHashData(x);
|
||||
Index *pIdx;
|
||||
sqlite3VdbeAddOp(v, OP_Integer, pTab->tnum, 0);
|
||||
cnt++;
|
||||
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
||||
sqlite3VdbeAddOp(v, OP_Integer, pIdx->tnum, 0);
|
||||
cnt++;
|
||||
}
|
||||
}
|
||||
assert( cnt>0 );
|
||||
sqlite3VdbeAddOp(v, OP_IntegrityCk, cnt, i);
|
||||
sqlite3VdbeAddOp(v, OP_Dup, 0, 1);
|
||||
addr = sqlite3VdbeOp3(v, OP_String8, 0, 0, "ok", P3_STATIC);
|
||||
sqlite3VdbeAddOp(v, OP_Eq, 0, addr+7);
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0,
|
||||
sqlite3MPrintf("*** in database %s ***\n", db->aDb[i].zName),
|
||||
P3_DYNAMIC);
|
||||
sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Concat, 0, 1);
|
||||
sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
|
||||
sqlite3VdbeAddOp(v, OP_MemIncr, 1, 0);
|
||||
|
||||
/* Make sure all the indices are constructed correctly.
|
||||
*/
|
||||
sqlite3CodeVerifySchema(pParse, i);
|
||||
for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
|
||||
Table *pTab = sqliteHashData(x);
|
||||
Index *pIdx;
|
||||
int loopTop;
|
||||
|
||||
if( pTab->pIndex==0 ) continue;
|
||||
sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead);
|
||||
sqlite3VdbeAddOp(v, OP_MemInt, 0, 1);
|
||||
loopTop = sqlite3VdbeAddOp(v, OP_Rewind, 1, 0);
|
||||
sqlite3VdbeAddOp(v, OP_MemIncr, 1, 1);
|
||||
for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
|
||||
int jmp2;
|
||||
static const VdbeOpList idxErr[] = {
|
||||
{ OP_MemIncr, 1, 0, 0},
|
||||
{ OP_String8, 0, 0, "rowid "},
|
||||
{ OP_Rowid, 1, 0, 0},
|
||||
{ OP_String8, 0, 0, " missing from index "},
|
||||
{ OP_String8, 0, 0, 0}, /* 4 */
|
||||
{ OP_Concat, 2, 0, 0},
|
||||
{ OP_Callback, 1, 0, 0},
|
||||
};
|
||||
sqlite3GenerateIndexKey(v, pIdx, 1);
|
||||
jmp2 = sqlite3VdbeAddOp(v, OP_Found, j+2, 0);
|
||||
addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr);
|
||||
sqlite3VdbeChangeP3(v, addr+4, pIdx->zName, P3_STATIC);
|
||||
sqlite3VdbeJumpHere(v, jmp2);
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_Next, 1, loopTop+1);
|
||||
sqlite3VdbeJumpHere(v, loopTop);
|
||||
for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
|
||||
static const VdbeOpList cntIdx[] = {
|
||||
{ OP_MemInt, 0, 2, 0},
|
||||
{ OP_Rewind, 0, 0, 0}, /* 1 */
|
||||
{ OP_MemIncr, 1, 2, 0},
|
||||
{ OP_Next, 0, 0, 0}, /* 3 */
|
||||
{ OP_MemLoad, 1, 0, 0},
|
||||
{ OP_MemLoad, 2, 0, 0},
|
||||
{ OP_Eq, 0, 0, 0}, /* 6 */
|
||||
{ OP_MemIncr, 1, 0, 0},
|
||||
{ OP_String8, 0, 0, "wrong # of entries in index "},
|
||||
{ OP_String8, 0, 0, 0}, /* 9 */
|
||||
{ OP_Concat, 0, 0, 0},
|
||||
{ OP_Callback, 1, 0, 0},
|
||||
};
|
||||
if( pIdx->tnum==0 ) continue;
|
||||
addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
|
||||
sqlite3VdbeChangeP1(v, addr+1, j+2);
|
||||
sqlite3VdbeChangeP2(v, addr+1, addr+4);
|
||||
sqlite3VdbeChangeP1(v, addr+3, j+2);
|
||||
sqlite3VdbeChangeP2(v, addr+3, addr+2);
|
||||
sqlite3VdbeJumpHere(v, addr+6);
|
||||
sqlite3VdbeChangeP3(v, addr+9, pIdx->zName, P3_STATIC);
|
||||
}
|
||||
}
|
||||
}
|
||||
addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode);
|
||||
sqlite3VdbeJumpHere(v, addr+2);
|
||||
}else
|
||||
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
|
||||
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
/*
|
||||
** PRAGMA encoding
|
||||
** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
|
||||
**
|
||||
** In it's first form, this pragma returns the encoding of the main
|
||||
** database. If the database is not initialized, it is initialized now.
|
||||
**
|
||||
** The second form of this pragma is a no-op if the main database file
|
||||
** has not already been initialized. In this case it sets the default
|
||||
** encoding that will be used for the main database file if a new file
|
||||
** is created. If an existing main database file is opened, then the
|
||||
** default text encoding for the existing database is used.
|
||||
**
|
||||
** In all cases new databases created using the ATTACH command are
|
||||
** created to use the same default text encoding as the main database. If
|
||||
** the main database has not been initialized and/or created when ATTACH
|
||||
** is executed, this is done before the ATTACH operation.
|
||||
**
|
||||
** In the second form this pragma sets the text encoding to be used in
|
||||
** new database files created using this database handle. It is only
|
||||
** useful if invoked immediately after the main database i
|
||||
*/
|
||||
if( sqlite3StrICmp(zLeft, "encoding")==0 ){
|
||||
static struct EncName {
|
||||
char *zName;
|
||||
u8 enc;
|
||||
} encnames[] = {
|
||||
{ "UTF-8", SQLITE_UTF8 },
|
||||
{ "UTF8", SQLITE_UTF8 },
|
||||
{ "UTF-16le", SQLITE_UTF16LE },
|
||||
{ "UTF16le", SQLITE_UTF16LE },
|
||||
{ "UTF-16be", SQLITE_UTF16BE },
|
||||
{ "UTF16be", SQLITE_UTF16BE },
|
||||
{ "UTF-16", 0 /* Filled in at run-time */ },
|
||||
{ "UTF16", 0 /* Filled in at run-time */ },
|
||||
{ 0, 0 }
|
||||
};
|
||||
struct EncName *pEnc;
|
||||
encnames[6].enc = encnames[7].enc = SQLITE_UTF16NATIVE;
|
||||
if( !zRight ){ /* "PRAGMA encoding" */
|
||||
if( sqlite3ReadSchema(pParse) ) goto pragma_out;
|
||||
sqlite3VdbeSetNumCols(v, 1);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "encoding", P3_STATIC);
|
||||
sqlite3VdbeAddOp(v, OP_String8, 0, 0);
|
||||
for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
|
||||
if( pEnc->enc==ENC(pParse->db) ){
|
||||
sqlite3VdbeChangeP3(v, -1, pEnc->zName, P3_STATIC);
|
||||
break;
|
||||
}
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
|
||||
}else{ /* "PRAGMA encoding = XXX" */
|
||||
/* Only change the value of sqlite.enc if the database handle is not
|
||||
** initialized. If the main database exists, the new sqlite.enc value
|
||||
** will be overwritten when the schema is next loaded. If it does not
|
||||
** already exists, it will be created to use the new encoding value.
|
||||
*/
|
||||
if(
|
||||
!(DbHasProperty(db, 0, DB_SchemaLoaded)) ||
|
||||
DbHasProperty(db, 0, DB_Empty)
|
||||
){
|
||||
for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
|
||||
if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
|
||||
ENC(pParse->db) = pEnc->enc;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if( !pEnc->zName ){
|
||||
sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
|
||||
}
|
||||
}
|
||||
}
|
||||
}else
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
||||
|
||||
#ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
|
||||
/*
|
||||
** PRAGMA [database.]schema_version
|
||||
** PRAGMA [database.]schema_version = <integer>
|
||||
**
|
||||
** PRAGMA [database.]user_version
|
||||
** PRAGMA [database.]user_version = <integer>
|
||||
**
|
||||
** The pragma's schema_version and user_version are used to set or get
|
||||
** the value of the schema-version and user-version, respectively. Both
|
||||
** the schema-version and the user-version are 32-bit signed integers
|
||||
** stored in the database header.
|
||||
**
|
||||
** The schema-cookie is usually only manipulated internally by SQLite. It
|
||||
** is incremented by SQLite whenever the database schema is modified (by
|
||||
** creating or dropping a table or index). The schema version is used by
|
||||
** SQLite each time a query is executed to ensure that the internal cache
|
||||
** of the schema used when compiling the SQL query matches the schema of
|
||||
** the database against which the compiled query is actually executed.
|
||||
** Subverting this mechanism by using "PRAGMA schema_version" to modify
|
||||
** the schema-version is potentially dangerous and may lead to program
|
||||
** crashes or database corruption. Use with caution!
|
||||
**
|
||||
** The user-version is not used internally by SQLite. It may be used by
|
||||
** applications for any purpose.
|
||||
*/
|
||||
if( sqlite3StrICmp(zLeft, "schema_version")==0 ||
|
||||
sqlite3StrICmp(zLeft, "user_version")==0 ){
|
||||
|
||||
int iCookie; /* Cookie index. 0 for schema-cookie, 6 for user-cookie. */
|
||||
if( zLeft[0]=='s' || zLeft[0]=='S' ){
|
||||
iCookie = 0;
|
||||
}else{
|
||||
iCookie = 5;
|
||||
}
|
||||
|
||||
if( zRight ){
|
||||
/* Write the specified cookie value */
|
||||
static const VdbeOpList setCookie[] = {
|
||||
{ OP_Transaction, 0, 1, 0}, /* 0 */
|
||||
{ OP_Integer, 0, 0, 0}, /* 1 */
|
||||
{ OP_SetCookie, 0, 0, 0}, /* 2 */
|
||||
};
|
||||
int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie);
|
||||
sqlite3VdbeChangeP1(v, addr, iDb);
|
||||
sqlite3VdbeChangeP1(v, addr+1, atoi(zRight));
|
||||
sqlite3VdbeChangeP1(v, addr+2, iDb);
|
||||
sqlite3VdbeChangeP2(v, addr+2, iCookie);
|
||||
}else{
|
||||
/* Read the specified cookie value */
|
||||
static const VdbeOpList readCookie[] = {
|
||||
{ OP_ReadCookie, 0, 0, 0}, /* 0 */
|
||||
{ OP_Callback, 1, 0, 0}
|
||||
};
|
||||
int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie);
|
||||
sqlite3VdbeChangeP1(v, addr, iDb);
|
||||
sqlite3VdbeChangeP2(v, addr, iCookie);
|
||||
sqlite3VdbeSetNumCols(v, 1);
|
||||
}
|
||||
}
|
||||
#endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
|
||||
|
||||
#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
|
||||
/*
|
||||
** Report the current state of file logs for all databases
|
||||
*/
|
||||
if( sqlite3StrICmp(zLeft, "lock_status")==0 ){
|
||||
static const char *const azLockName[] = {
|
||||
"unlocked", "shared", "reserved", "pending", "exclusive"
|
||||
};
|
||||
int i;
|
||||
Vdbe *v = sqlite3GetVdbe(pParse);
|
||||
sqlite3VdbeSetNumCols(v, 2);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "database", P3_STATIC);
|
||||
sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "status", P3_STATIC);
|
||||
for(i=0; i<db->nDb; i++){
|
||||
Btree *pBt;
|
||||
Pager *pPager;
|
||||
if( db->aDb[i].zName==0 ) continue;
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0, db->aDb[i].zName, P3_STATIC);
|
||||
pBt = db->aDb[i].pBt;
|
||||
if( pBt==0 || (pPager = sqlite3BtreePager(pBt))==0 ){
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0, "closed", P3_STATIC);
|
||||
}else{
|
||||
int j = sqlite3pager_lockstate(pPager);
|
||||
sqlite3VdbeOp3(v, OP_String8, 0, 0,
|
||||
(j>=0 && j<=4) ? azLockName[j] : "unknown", P3_STATIC);
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_Callback, 2, 0);
|
||||
}
|
||||
}else
|
||||
#endif
|
||||
|
||||
#ifdef SQLITE_SSE
|
||||
/*
|
||||
** Check to see if the sqlite_statements table exists. Create it
|
||||
** if it does not.
|
||||
*/
|
||||
if( sqlite3StrICmp(zLeft, "create_sqlite_statement_table")==0 ){
|
||||
extern int sqlite3CreateStatementsTable(Parse*);
|
||||
sqlite3CreateStatementsTable(pParse);
|
||||
}else
|
||||
#endif
|
||||
|
||||
#if SQLITE_HAS_CODEC
|
||||
if( sqlite3StrICmp(zLeft, "key")==0 ){
|
||||
sqlite3_key(db, zRight, strlen(zRight));
|
||||
}else
|
||||
#endif
|
||||
|
||||
{}
|
||||
|
||||
if( v ){
|
||||
/* Code an OP_Expire at the end of each PRAGMA program to cause
|
||||
** the VDBE implementing the pragma to expire. Most (all?) pragmas
|
||||
** are only valid for a single execution.
|
||||
*/
|
||||
sqlite3VdbeAddOp(v, OP_Expire, 1, 0);
|
||||
|
||||
/*
|
||||
** Reset the safety level, in case the fullfsync flag or synchronous
|
||||
** setting changed.
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
|
||||
if( db->autoCommit ){
|
||||
sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level,
|
||||
(db->flags&SQLITE_FullFSync)!=0);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
pragma_out:
|
||||
sqliteFree(zLeft);
|
||||
sqliteFree(zRight);
|
||||
}
|
||||
|
||||
#endif /* SQLITE_OMIT_PRAGMA || SQLITE_OMIT_PARSER */
|
|
@ -0,0 +1,583 @@
|
|||
/*
|
||||
** 2005 May 25
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the implementation of the sqlite3_prepare()
|
||||
** interface, and routines that contribute to loading the database schema
|
||||
** from disk.
|
||||
**
|
||||
** $Id: prepare.c,v 1.7 2007/06/19 23:47:38 sdwilsh%shawnwilsher.com Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "os.h"
|
||||
#include <ctype.h>
|
||||
|
||||
/*
|
||||
** Fill the InitData structure with an error message that indicates
|
||||
** that the database is corrupt.
|
||||
*/
|
||||
static void corruptSchema(InitData *pData, const char *zExtra){
|
||||
if( !sqlite3MallocFailed() ){
|
||||
sqlite3SetString(pData->pzErrMsg, "malformed database schema",
|
||||
zExtra!=0 && zExtra[0]!=0 ? " - " : (char*)0, zExtra, (char*)0);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** This is the callback routine for the code that initializes the
|
||||
** database. See sqlite3Init() below for additional information.
|
||||
** This routine is also called from the OP_ParseSchema opcode of the VDBE.
|
||||
**
|
||||
** Each callback contains the following information:
|
||||
**
|
||||
** argv[0] = name of thing being created
|
||||
** argv[1] = root page number for table or index. NULL for trigger or view.
|
||||
** argv[2] = SQL text for the CREATE statement.
|
||||
** argv[3] = "1" for temporary files, "0" for main database, "2" or more
|
||||
** for auxiliary database files.
|
||||
**
|
||||
*/
|
||||
int sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName){
|
||||
InitData *pData = (InitData*)pInit;
|
||||
sqlite3 *db = pData->db;
|
||||
int iDb;
|
||||
|
||||
if( sqlite3MallocFailed() ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
|
||||
assert( argc==4 );
|
||||
if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */
|
||||
if( argv[1]==0 || argv[3]==0 ){
|
||||
corruptSchema(pData, 0);
|
||||
return 1;
|
||||
}
|
||||
iDb = atoi(argv[3]);
|
||||
assert( iDb>=0 && iDb<db->nDb );
|
||||
if( argv[2] && argv[2][0] ){
|
||||
/* Call the parser to process a CREATE TABLE, INDEX or VIEW.
|
||||
** But because db->init.busy is set to 1, no VDBE code is generated
|
||||
** or executed. All the parser does is build the internal data
|
||||
** structures that describe the table, index, or view.
|
||||
*/
|
||||
char *zErr;
|
||||
int rc;
|
||||
assert( db->init.busy );
|
||||
db->init.iDb = iDb;
|
||||
db->init.newTnum = atoi(argv[1]);
|
||||
rc = sqlite3_exec(db, argv[2], 0, 0, &zErr);
|
||||
db->init.iDb = 0;
|
||||
assert( rc!=SQLITE_OK || zErr==0 );
|
||||
if( SQLITE_OK!=rc ){
|
||||
if( rc==SQLITE_NOMEM ){
|
||||
sqlite3FailedMalloc();
|
||||
}else{
|
||||
corruptSchema(pData, zErr);
|
||||
}
|
||||
sqlite3_free(zErr);
|
||||
return rc;
|
||||
}
|
||||
}else{
|
||||
/* If the SQL column is blank it means this is an index that
|
||||
** was created to be the PRIMARY KEY or to fulfill a UNIQUE
|
||||
** constraint for a CREATE TABLE. The index should have already
|
||||
** been created when we processed the CREATE TABLE. All we have
|
||||
** to do here is record the root page number for that index.
|
||||
*/
|
||||
Index *pIndex;
|
||||
pIndex = sqlite3FindIndex(db, argv[0], db->aDb[iDb].zName);
|
||||
if( pIndex==0 || pIndex->tnum!=0 ){
|
||||
/* This can occur if there exists an index on a TEMP table which
|
||||
** has the same name as another index on a permanent index. Since
|
||||
** the permanent table is hidden by the TEMP table, we can also
|
||||
** safely ignore the index on the permanent table.
|
||||
*/
|
||||
/* Do Nothing */;
|
||||
}else{
|
||||
pIndex->tnum = atoi(argv[1]);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Attempt to read the database schema and initialize internal
|
||||
** data structures for a single database file. The index of the
|
||||
** database file is given by iDb. iDb==0 is used for the main
|
||||
** database. iDb==1 should never be used. iDb>=2 is used for
|
||||
** auxiliary databases. Return one of the SQLITE_ error codes to
|
||||
** indicate success or failure.
|
||||
*/
|
||||
static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
|
||||
int rc;
|
||||
BtCursor *curMain;
|
||||
int size;
|
||||
Table *pTab;
|
||||
Db *pDb;
|
||||
char const *azArg[5];
|
||||
char zDbNum[30];
|
||||
int meta[10];
|
||||
InitData initData;
|
||||
char const *zMasterSchema;
|
||||
char const *zMasterName = SCHEMA_TABLE(iDb);
|
||||
|
||||
/*
|
||||
** The master database table has a structure like this
|
||||
*/
|
||||
static const char master_schema[] =
|
||||
"CREATE TABLE sqlite_master(\n"
|
||||
" type text,\n"
|
||||
" name text,\n"
|
||||
" tbl_name text,\n"
|
||||
" rootpage integer,\n"
|
||||
" sql text\n"
|
||||
")"
|
||||
;
|
||||
#ifndef SQLITE_OMIT_TEMPDB
|
||||
static const char temp_master_schema[] =
|
||||
"CREATE TEMP TABLE sqlite_temp_master(\n"
|
||||
" type text,\n"
|
||||
" name text,\n"
|
||||
" tbl_name text,\n"
|
||||
" rootpage integer,\n"
|
||||
" sql text\n"
|
||||
")"
|
||||
;
|
||||
#else
|
||||
#define temp_master_schema 0
|
||||
#endif
|
||||
|
||||
assert( iDb>=0 && iDb<db->nDb );
|
||||
assert( db->aDb[iDb].pSchema );
|
||||
|
||||
/* zMasterSchema and zInitScript are set to point at the master schema
|
||||
** and initialisation script appropriate for the database being
|
||||
** initialised. zMasterName is the name of the master table.
|
||||
*/
|
||||
if( !OMIT_TEMPDB && iDb==1 ){
|
||||
zMasterSchema = temp_master_schema;
|
||||
}else{
|
||||
zMasterSchema = master_schema;
|
||||
}
|
||||
zMasterName = SCHEMA_TABLE(iDb);
|
||||
|
||||
/* Construct the schema tables. */
|
||||
sqlite3SafetyOff(db);
|
||||
azArg[0] = zMasterName;
|
||||
azArg[1] = "1";
|
||||
azArg[2] = zMasterSchema;
|
||||
sprintf(zDbNum, "%d", iDb);
|
||||
azArg[3] = zDbNum;
|
||||
azArg[4] = 0;
|
||||
initData.db = db;
|
||||
initData.pzErrMsg = pzErrMsg;
|
||||
rc = sqlite3InitCallback(&initData, 4, (char **)azArg, 0);
|
||||
if( rc!=SQLITE_OK ){
|
||||
sqlite3SafetyOn(db);
|
||||
return rc;
|
||||
}
|
||||
pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName);
|
||||
if( pTab ){
|
||||
pTab->readOnly = 1;
|
||||
}
|
||||
sqlite3SafetyOn(db);
|
||||
|
||||
/* Create a cursor to hold the database open
|
||||
*/
|
||||
pDb = &db->aDb[iDb];
|
||||
if( pDb->pBt==0 ){
|
||||
if( !OMIT_TEMPDB && iDb==1 ){
|
||||
DbSetProperty(db, 1, DB_SchemaLoaded);
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
rc = sqlite3BtreeCursor(pDb->pBt, MASTER_ROOT, 0, 0, 0, &curMain);
|
||||
if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){
|
||||
sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/* Get the database meta information.
|
||||
**
|
||||
** Meta values are as follows:
|
||||
** meta[0] Schema cookie. Changes with each schema change.
|
||||
** meta[1] File format of schema layer.
|
||||
** meta[2] Size of the page cache.
|
||||
** meta[3] Use freelist if 0. Autovacuum if greater than zero.
|
||||
** meta[4] Db text encoding. 1:UTF-8 3:UTF-16 LE 4:UTF-16 BE
|
||||
** meta[5] The user cookie. Used by the application.
|
||||
** meta[6]
|
||||
** meta[7]
|
||||
** meta[8]
|
||||
** meta[9]
|
||||
**
|
||||
** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
|
||||
** the possible values of meta[4].
|
||||
*/
|
||||
if( rc==SQLITE_OK ){
|
||||
int i;
|
||||
for(i=0; rc==SQLITE_OK && i<sizeof(meta)/sizeof(meta[0]); i++){
|
||||
rc = sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
|
||||
}
|
||||
if( rc ){
|
||||
sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
|
||||
sqlite3BtreeCloseCursor(curMain);
|
||||
return rc;
|
||||
}
|
||||
}else{
|
||||
memset(meta, 0, sizeof(meta));
|
||||
}
|
||||
pDb->pSchema->schema_cookie = meta[0];
|
||||
|
||||
/* If opening a non-empty database, check the text encoding. For the
|
||||
** main database, set sqlite3.enc to the encoding of the main database.
|
||||
** For an attached db, it is an error if the encoding is not the same
|
||||
** as sqlite3.enc.
|
||||
*/
|
||||
if( meta[4] ){ /* text encoding */
|
||||
if( iDb==0 ){
|
||||
/* If opening the main database, set ENC(db). */
|
||||
ENC(db) = (u8)meta[4];
|
||||
db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0);
|
||||
}else{
|
||||
/* If opening an attached database, the encoding much match ENC(db) */
|
||||
if( meta[4]!=ENC(db) ){
|
||||
sqlite3BtreeCloseCursor(curMain);
|
||||
sqlite3SetString(pzErrMsg, "attached databases must use the same"
|
||||
" text encoding as main database", (char*)0);
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
}
|
||||
}else{
|
||||
DbSetProperty(db, iDb, DB_Empty);
|
||||
}
|
||||
pDb->pSchema->enc = ENC(db);
|
||||
|
||||
size = meta[2];
|
||||
if( size==0 ){ size = MAX_PAGES; }
|
||||
pDb->pSchema->cache_size = size;
|
||||
sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
|
||||
|
||||
/*
|
||||
** file_format==1 Version 3.0.0.
|
||||
** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN
|
||||
** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults
|
||||
** file_format==4 Version 3.3.0. // DESC indices. Boolean constants
|
||||
*/
|
||||
pDb->pSchema->file_format = meta[1];
|
||||
if( pDb->pSchema->file_format==0 ){
|
||||
pDb->pSchema->file_format = 1;
|
||||
}
|
||||
if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
|
||||
sqlite3BtreeCloseCursor(curMain);
|
||||
sqlite3SetString(pzErrMsg, "unsupported file format", (char*)0);
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
|
||||
|
||||
/* Read the schema information out of the schema tables
|
||||
*/
|
||||
assert( db->init.busy );
|
||||
if( rc==SQLITE_EMPTY ){
|
||||
/* For an empty database, there is nothing to read */
|
||||
rc = SQLITE_OK;
|
||||
}else{
|
||||
char *zSql;
|
||||
zSql = sqlite3MPrintf(
|
||||
"SELECT name, rootpage, sql, '%s' FROM '%q'.%s",
|
||||
zDbNum, db->aDb[iDb].zName, zMasterName);
|
||||
sqlite3SafetyOff(db);
|
||||
rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
|
||||
sqlite3SafetyOn(db);
|
||||
sqliteFree(zSql);
|
||||
#ifndef SQLITE_OMIT_ANALYZE
|
||||
if( rc==SQLITE_OK ){
|
||||
sqlite3AnalysisLoad(db, iDb);
|
||||
}
|
||||
#endif
|
||||
sqlite3BtreeCloseCursor(curMain);
|
||||
}
|
||||
if( sqlite3MallocFailed() ){
|
||||
/* sqlite3SetString(pzErrMsg, "out of memory", (char*)0); */
|
||||
rc = SQLITE_NOMEM;
|
||||
sqlite3ResetInternalSchema(db, 0);
|
||||
}
|
||||
if( rc==SQLITE_OK ){
|
||||
DbSetProperty(db, iDb, DB_SchemaLoaded);
|
||||
}else{
|
||||
sqlite3ResetInternalSchema(db, iDb);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Initialize all database files - the main database file, the file
|
||||
** used to store temporary tables, and any additional database files
|
||||
** created using ATTACH statements. Return a success code. If an
|
||||
** error occurs, write an error message into *pzErrMsg.
|
||||
**
|
||||
** After a database is initialized, the DB_SchemaLoaded bit is set
|
||||
** bit is set in the flags field of the Db structure. If the database
|
||||
** file was of zero-length, then the DB_Empty flag is also set.
|
||||
*/
|
||||
int sqlite3Init(sqlite3 *db, char **pzErrMsg){
|
||||
int i, rc;
|
||||
int called_initone = 0;
|
||||
|
||||
if( db->init.busy ) return SQLITE_OK;
|
||||
rc = SQLITE_OK;
|
||||
db->init.busy = 1;
|
||||
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
|
||||
if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue;
|
||||
rc = sqlite3InitOne(db, i, pzErrMsg);
|
||||
if( rc ){
|
||||
sqlite3ResetInternalSchema(db, i);
|
||||
}
|
||||
called_initone = 1;
|
||||
}
|
||||
|
||||
/* Once all the other databases have been initialised, load the schema
|
||||
** for the TEMP database. This is loaded last, as the TEMP database
|
||||
** schema may contain references to objects in other databases.
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_TEMPDB
|
||||
if( rc==SQLITE_OK && db->nDb>1 && !DbHasProperty(db, 1, DB_SchemaLoaded) ){
|
||||
rc = sqlite3InitOne(db, 1, pzErrMsg);
|
||||
if( rc ){
|
||||
sqlite3ResetInternalSchema(db, 1);
|
||||
}
|
||||
called_initone = 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
db->init.busy = 0;
|
||||
if( rc==SQLITE_OK && called_initone ){
|
||||
sqlite3CommitInternalChanges(db);
|
||||
}
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is a no-op if the database schema is already initialised.
|
||||
** Otherwise, the schema is loaded. An error code is returned.
|
||||
*/
|
||||
int sqlite3ReadSchema(Parse *pParse){
|
||||
int rc = SQLITE_OK;
|
||||
sqlite3 *db = pParse->db;
|
||||
if( !db->init.busy ){
|
||||
rc = sqlite3Init(db, &pParse->zErrMsg);
|
||||
}
|
||||
if( rc!=SQLITE_OK ){
|
||||
pParse->rc = rc;
|
||||
pParse->nErr++;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Check schema cookies in all databases. If any cookie is out
|
||||
** of date, return 0. If all schema cookies are current, return 1.
|
||||
*/
|
||||
static int schemaIsValid(sqlite3 *db){
|
||||
int iDb;
|
||||
int rc;
|
||||
BtCursor *curTemp;
|
||||
int cookie;
|
||||
int allOk = 1;
|
||||
|
||||
for(iDb=0; allOk && iDb<db->nDb; iDb++){
|
||||
Btree *pBt;
|
||||
pBt = db->aDb[iDb].pBt;
|
||||
if( pBt==0 ) continue;
|
||||
rc = sqlite3BtreeCursor(pBt, MASTER_ROOT, 0, 0, 0, &curTemp);
|
||||
if( rc==SQLITE_OK ){
|
||||
rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&cookie);
|
||||
if( rc==SQLITE_OK && cookie!=db->aDb[iDb].pSchema->schema_cookie ){
|
||||
allOk = 0;
|
||||
}
|
||||
sqlite3BtreeCloseCursor(curTemp);
|
||||
}
|
||||
}
|
||||
return allOk;
|
||||
}
|
||||
|
||||
/*
|
||||
** Convert a schema pointer into the iDb index that indicates
|
||||
** which database file in db->aDb[] the schema refers to.
|
||||
**
|
||||
** If the same database is attached more than once, the first
|
||||
** attached database is returned.
|
||||
*/
|
||||
int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){
|
||||
int i = -1000000;
|
||||
|
||||
/* If pSchema is NULL, then return -1000000. This happens when code in
|
||||
** expr.c is trying to resolve a reference to a transient table (i.e. one
|
||||
** created by a sub-select). In this case the return value of this
|
||||
** function should never be used.
|
||||
**
|
||||
** We return -1000000 instead of the more usual -1 simply because using
|
||||
** -1000000 as incorrectly using -1000000 index into db->aDb[] is much
|
||||
** more likely to cause a segfault than -1 (of course there are assert()
|
||||
** statements too, but it never hurts to play the odds).
|
||||
*/
|
||||
if( pSchema ){
|
||||
for(i=0; i<db->nDb; i++){
|
||||
if( db->aDb[i].pSchema==pSchema ){
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert( i>=0 &&i>=0 && i<db->nDb );
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
/*
|
||||
** Compile the UTF-8 encoded SQL statement zSql into a statement handle.
|
||||
*/
|
||||
int sqlite3_prepare(
|
||||
sqlite3 *db, /* Database handle. */
|
||||
const char *zSql, /* UTF-8 encoded SQL statement. */
|
||||
int nBytes, /* Length of zSql in bytes. */
|
||||
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
||||
const char** pzTail /* OUT: End of parsed string */
|
||||
){
|
||||
Parse sParse;
|
||||
char *zErrMsg = 0;
|
||||
int rc = SQLITE_OK;
|
||||
int i;
|
||||
|
||||
/* Assert that malloc() has not failed */
|
||||
assert( !sqlite3MallocFailed() );
|
||||
|
||||
assert( ppStmt );
|
||||
*ppStmt = 0;
|
||||
if( sqlite3SafetyOn(db) ){
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
|
||||
/* If any attached database schemas are locked, do not proceed with
|
||||
** compilation. Instead return SQLITE_LOCKED immediately.
|
||||
*/
|
||||
for(i=0; i<db->nDb; i++) {
|
||||
Btree *pBt = db->aDb[i].pBt;
|
||||
if( pBt && sqlite3BtreeSchemaLocked(pBt) ){
|
||||
const char *zDb = db->aDb[i].zName;
|
||||
sqlite3Error(db, SQLITE_LOCKED, "database schema is locked: %s", zDb);
|
||||
sqlite3SafetyOff(db);
|
||||
return SQLITE_LOCKED;
|
||||
}
|
||||
}
|
||||
|
||||
memset(&sParse, 0, sizeof(sParse));
|
||||
sParse.db = db;
|
||||
if( nBytes>=0 && zSql[nBytes]!=0 ){
|
||||
char *zSqlCopy = sqlite3StrNDup(zSql, nBytes);
|
||||
sqlite3RunParser(&sParse, zSqlCopy, &zErrMsg);
|
||||
sParse.zTail += zSql - zSqlCopy;
|
||||
sqliteFree(zSqlCopy);
|
||||
}else{
|
||||
sqlite3RunParser(&sParse, zSql, &zErrMsg);
|
||||
}
|
||||
|
||||
if( sqlite3MallocFailed() ){
|
||||
sParse.rc = SQLITE_NOMEM;
|
||||
}
|
||||
if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK;
|
||||
if( sParse.checkSchema && !schemaIsValid(db) ){
|
||||
sParse.rc = SQLITE_SCHEMA;
|
||||
}
|
||||
if( sParse.rc==SQLITE_SCHEMA ){
|
||||
sqlite3ResetInternalSchema(db, 0);
|
||||
}
|
||||
if( pzTail ) *pzTail = sParse.zTail;
|
||||
rc = sParse.rc;
|
||||
|
||||
#ifndef SQLITE_OMIT_EXPLAIN
|
||||
if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){
|
||||
if( sParse.explain==2 ){
|
||||
sqlite3VdbeSetNumCols(sParse.pVdbe, 3);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "order", P3_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "from", P3_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "detail", P3_STATIC);
|
||||
}else{
|
||||
sqlite3VdbeSetNumCols(sParse.pVdbe, 5);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "addr", P3_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "opcode", P3_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "p1", P3_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 3, COLNAME_NAME, "p2", P3_STATIC);
|
||||
sqlite3VdbeSetColName(sParse.pVdbe, 4, COLNAME_NAME, "p3", P3_STATIC);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
if( sqlite3SafetyOff(db) ){
|
||||
rc = SQLITE_MISUSE;
|
||||
}
|
||||
if( rc==SQLITE_OK ){
|
||||
*ppStmt = (sqlite3_stmt*)sParse.pVdbe;
|
||||
}else if( sParse.pVdbe ){
|
||||
sqlite3_finalize((sqlite3_stmt*)sParse.pVdbe);
|
||||
}
|
||||
|
||||
if( zErrMsg ){
|
||||
sqlite3Error(db, rc, "%s", zErrMsg);
|
||||
sqliteFree(zErrMsg);
|
||||
}else{
|
||||
sqlite3Error(db, rc, 0);
|
||||
}
|
||||
|
||||
rc = sqlite3ApiExit(db, rc);
|
||||
sqlite3ReleaseThreadData();
|
||||
return rc;
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
/*
|
||||
** Compile the UTF-16 encoded SQL statement zSql into a statement handle.
|
||||
*/
|
||||
int sqlite3_prepare16(
|
||||
sqlite3 *db, /* Database handle. */
|
||||
const void *zSql, /* UTF-8 encoded SQL statement. */
|
||||
int nBytes, /* Length of zSql in bytes. */
|
||||
sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */
|
||||
const void **pzTail /* OUT: End of parsed string */
|
||||
){
|
||||
/* This function currently works by first transforming the UTF-16
|
||||
** encoded string to UTF-8, then invoking sqlite3_prepare(). The
|
||||
** tricky bit is figuring out the pointer to return in *pzTail.
|
||||
*/
|
||||
char *zSql8;
|
||||
const char *zTail8 = 0;
|
||||
int rc = SQLITE_OK;
|
||||
|
||||
if( sqlite3SafetyCheck(db) ){
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
zSql8 = sqlite3utf16to8(zSql, nBytes);
|
||||
if( zSql8 ){
|
||||
rc = sqlite3_prepare(db, zSql8, -1, ppStmt, &zTail8);
|
||||
}
|
||||
|
||||
if( zTail8 && pzTail ){
|
||||
/* If sqlite3_prepare returns a tail pointer, we calculate the
|
||||
** equivalent pointer into the UTF-16 string by counting the unicode
|
||||
** characters between zSql8 and zTail8, and then returning a pointer
|
||||
** the same number of characters into the UTF-16 string.
|
||||
*/
|
||||
int chars_parsed = sqlite3utf8CharLen(zSql8, zTail8-zSql8);
|
||||
*pzTail = (u8 *)zSql + sqlite3utf16ByteLen(zSql, chars_parsed);
|
||||
}
|
||||
sqliteFree(zSql8);
|
||||
return sqlite3ApiExit(db, rc);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
|
@ -0,0 +1,862 @@
|
|||
/*
|
||||
** The "printf" code that follows dates from the 1980's. It is in
|
||||
** the public domain. The original comments are included here for
|
||||
** completeness. They are very out-of-date but might be useful as
|
||||
** an historical reference. Most of the "enhancements" have been backed
|
||||
** out so that the functionality is now the same as standard printf().
|
||||
**
|
||||
**************************************************************************
|
||||
**
|
||||
** The following modules is an enhanced replacement for the "printf" subroutines
|
||||
** found in the standard C library. The following enhancements are
|
||||
** supported:
|
||||
**
|
||||
** + Additional functions. The standard set of "printf" functions
|
||||
** includes printf, fprintf, sprintf, vprintf, vfprintf, and
|
||||
** vsprintf. This module adds the following:
|
||||
**
|
||||
** * snprintf -- Works like sprintf, but has an extra argument
|
||||
** which is the size of the buffer written to.
|
||||
**
|
||||
** * mprintf -- Similar to sprintf. Writes output to memory
|
||||
** obtained from malloc.
|
||||
**
|
||||
** * xprintf -- Calls a function to dispose of output.
|
||||
**
|
||||
** * nprintf -- No output, but returns the number of characters
|
||||
** that would have been output by printf.
|
||||
**
|
||||
** * A v- version (ex: vsnprintf) of every function is also
|
||||
** supplied.
|
||||
**
|
||||
** + A few extensions to the formatting notation are supported:
|
||||
**
|
||||
** * The "=" flag (similar to "-") causes the output to be
|
||||
** be centered in the appropriately sized field.
|
||||
**
|
||||
** * The %b field outputs an integer in binary notation.
|
||||
**
|
||||
** * The %c field now accepts a precision. The character output
|
||||
** is repeated by the number of times the precision specifies.
|
||||
**
|
||||
** * The %' field works like %c, but takes as its character the
|
||||
** next character of the format string, instead of the next
|
||||
** argument. For example, printf("%.78'-") prints 78 minus
|
||||
** signs, the same as printf("%.78c",'-').
|
||||
**
|
||||
** + When compiled using GCC on a SPARC, this version of printf is
|
||||
** faster than the library printf for SUN OS 4.1.
|
||||
**
|
||||
** + All functions are fully reentrant.
|
||||
**
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** Conversion types fall into various categories as defined by the
|
||||
** following enumeration.
|
||||
*/
|
||||
#define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */
|
||||
#define etFLOAT 2 /* Floating point. %f */
|
||||
#define etEXP 3 /* Exponentional notation. %e and %E */
|
||||
#define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */
|
||||
#define etSIZE 5 /* Return number of characters processed so far. %n */
|
||||
#define etSTRING 6 /* Strings. %s */
|
||||
#define etDYNSTRING 7 /* Dynamically allocated strings. %z */
|
||||
#define etPERCENT 8 /* Percent symbol. %% */
|
||||
#define etCHARX 9 /* Characters. %c */
|
||||
/* The rest are extensions, not normally found in printf() */
|
||||
#define etCHARLIT 10 /* Literal characters. %' */
|
||||
#define etSQLESCAPE 11 /* Strings with '\'' doubled. %q */
|
||||
#define etSQLESCAPE2 12 /* Strings with '\'' doubled and enclosed in '',
|
||||
NULL pointers replaced by SQL NULL. %Q */
|
||||
#define etTOKEN 13 /* a pointer to a Token structure */
|
||||
#define etSRCLIST 14 /* a pointer to a SrcList */
|
||||
#define etPOINTER 15 /* The %p conversion */
|
||||
|
||||
|
||||
/*
|
||||
** An "etByte" is an 8-bit unsigned value.
|
||||
*/
|
||||
typedef unsigned char etByte;
|
||||
|
||||
/*
|
||||
** Each builtin conversion character (ex: the 'd' in "%d") is described
|
||||
** by an instance of the following structure
|
||||
*/
|
||||
typedef struct et_info { /* Information about each format field */
|
||||
char fmttype; /* The format field code letter */
|
||||
etByte base; /* The base for radix conversion */
|
||||
etByte flags; /* One or more of FLAG_ constants below */
|
||||
etByte type; /* Conversion paradigm */
|
||||
etByte charset; /* Offset into aDigits[] of the digits string */
|
||||
etByte prefix; /* Offset into aPrefix[] of the prefix string */
|
||||
} et_info;
|
||||
|
||||
/*
|
||||
** Allowed values for et_info.flags
|
||||
*/
|
||||
#define FLAG_SIGNED 1 /* True if the value to convert is signed */
|
||||
#define FLAG_INTERN 2 /* True if for internal use only */
|
||||
#define FLAG_STRING 4 /* Allow infinity precision */
|
||||
|
||||
|
||||
/*
|
||||
** The following table is searched linearly, so it is good to put the
|
||||
** most frequently used conversion types first.
|
||||
*/
|
||||
static const char aDigits[] = "0123456789ABCDEF0123456789abcdef";
|
||||
static const char aPrefix[] = "-x0\000X0";
|
||||
static const et_info fmtinfo[] = {
|
||||
{ 'd', 10, 1, etRADIX, 0, 0 },
|
||||
{ 's', 0, 4, etSTRING, 0, 0 },
|
||||
{ 'g', 0, 1, etGENERIC, 30, 0 },
|
||||
{ 'z', 0, 6, etDYNSTRING, 0, 0 },
|
||||
{ 'q', 0, 4, etSQLESCAPE, 0, 0 },
|
||||
{ 'Q', 0, 4, etSQLESCAPE2, 0, 0 },
|
||||
{ 'c', 0, 0, etCHARX, 0, 0 },
|
||||
{ 'o', 8, 0, etRADIX, 0, 2 },
|
||||
{ 'u', 10, 0, etRADIX, 0, 0 },
|
||||
{ 'x', 16, 0, etRADIX, 16, 1 },
|
||||
{ 'X', 16, 0, etRADIX, 0, 4 },
|
||||
#ifndef SQLITE_OMIT_FLOATING_POINT
|
||||
{ 'f', 0, 1, etFLOAT, 0, 0 },
|
||||
{ 'e', 0, 1, etEXP, 30, 0 },
|
||||
{ 'E', 0, 1, etEXP, 14, 0 },
|
||||
{ 'G', 0, 1, etGENERIC, 14, 0 },
|
||||
#endif
|
||||
{ 'i', 10, 1, etRADIX, 0, 0 },
|
||||
{ 'n', 0, 0, etSIZE, 0, 0 },
|
||||
{ '%', 0, 0, etPERCENT, 0, 0 },
|
||||
{ 'p', 16, 0, etPOINTER, 0, 1 },
|
||||
{ 'T', 0, 2, etTOKEN, 0, 0 },
|
||||
{ 'S', 0, 2, etSRCLIST, 0, 0 },
|
||||
};
|
||||
#define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0]))
|
||||
|
||||
/*
|
||||
** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point
|
||||
** conversions will work.
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_FLOATING_POINT
|
||||
/*
|
||||
** "*val" is a double such that 0.1 <= *val < 10.0
|
||||
** Return the ascii code for the leading digit of *val, then
|
||||
** multiply "*val" by 10.0 to renormalize.
|
||||
**
|
||||
** Example:
|
||||
** input: *val = 3.14159
|
||||
** output: *val = 1.4159 function return = '3'
|
||||
**
|
||||
** The counter *cnt is incremented each time. After counter exceeds
|
||||
** 16 (the number of significant digits in a 64-bit float) '0' is
|
||||
** always returned.
|
||||
*/
|
||||
static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
|
||||
int digit;
|
||||
LONGDOUBLE_TYPE d;
|
||||
if( (*cnt)++ >= 16 ) return '0';
|
||||
digit = (int)*val;
|
||||
d = digit;
|
||||
digit += '0';
|
||||
*val = (*val - d)*10.0;
|
||||
return digit;
|
||||
}
|
||||
#endif /* SQLITE_OMIT_FLOATING_POINT */
|
||||
|
||||
/*
|
||||
** On machines with a small stack size, you can redefine the
|
||||
** SQLITE_PRINT_BUF_SIZE to be less than 350. But beware - for
|
||||
** smaller values some %f conversions may go into an infinite loop.
|
||||
*/
|
||||
#ifndef SQLITE_PRINT_BUF_SIZE
|
||||
# define SQLITE_PRINT_BUF_SIZE 350
|
||||
#endif
|
||||
#define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */
|
||||
|
||||
/*
|
||||
** The root program. All variations call this core.
|
||||
**
|
||||
** INPUTS:
|
||||
** func This is a pointer to a function taking three arguments
|
||||
** 1. A pointer to anything. Same as the "arg" parameter.
|
||||
** 2. A pointer to the list of characters to be output
|
||||
** (Note, this list is NOT null terminated.)
|
||||
** 3. An integer number of characters to be output.
|
||||
** (Note: This number might be zero.)
|
||||
**
|
||||
** arg This is the pointer to anything which will be passed as the
|
||||
** first argument to "func". Use it for whatever you like.
|
||||
**
|
||||
** fmt This is the format string, as in the usual print.
|
||||
**
|
||||
** ap This is a pointer to a list of arguments. Same as in
|
||||
** vfprint.
|
||||
**
|
||||
** OUTPUTS:
|
||||
** The return value is the total number of characters sent to
|
||||
** the function "func". Returns -1 on a error.
|
||||
**
|
||||
** Note that the order in which automatic variables are declared below
|
||||
** seems to make a big difference in determining how fast this beast
|
||||
** will run.
|
||||
*/
|
||||
static int vxprintf(
|
||||
void (*func)(void*,const char*,int), /* Consumer of text */
|
||||
void *arg, /* First argument to the consumer */
|
||||
int useExtended, /* Allow extended %-conversions */
|
||||
const char *fmt, /* Format string */
|
||||
va_list ap /* arguments */
|
||||
){
|
||||
int c; /* Next character in the format string */
|
||||
char *bufpt; /* Pointer to the conversion buffer */
|
||||
int precision; /* Precision of the current field */
|
||||
int length; /* Length of the field */
|
||||
int idx; /* A general purpose loop counter */
|
||||
int count; /* Total number of characters output */
|
||||
int width; /* Width of the current field */
|
||||
etByte flag_leftjustify; /* True if "-" flag is present */
|
||||
etByte flag_plussign; /* True if "+" flag is present */
|
||||
etByte flag_blanksign; /* True if " " flag is present */
|
||||
etByte flag_alternateform; /* True if "#" flag is present */
|
||||
etByte flag_altform2; /* True if "!" flag is present */
|
||||
etByte flag_zeropad; /* True if field width constant starts with zero */
|
||||
etByte flag_long; /* True if "l" flag is present */
|
||||
etByte flag_longlong; /* True if the "ll" flag is present */
|
||||
etByte done; /* Loop termination flag */
|
||||
sqlite_uint64 longvalue; /* Value for integer types */
|
||||
LONGDOUBLE_TYPE realvalue; /* Value for real types */
|
||||
const et_info *infop; /* Pointer to the appropriate info structure */
|
||||
char buf[etBUFSIZE]; /* Conversion buffer */
|
||||
char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
|
||||
etByte errorflag = 0; /* True if an error is encountered */
|
||||
etByte xtype; /* Conversion paradigm */
|
||||
char *zExtra; /* Extra memory used for etTCLESCAPE conversions */
|
||||
static const char spaces[] =
|
||||
" ";
|
||||
#define etSPACESIZE (sizeof(spaces)-1)
|
||||
#ifndef SQLITE_OMIT_FLOATING_POINT
|
||||
int exp, e2; /* exponent of real numbers */
|
||||
double rounder; /* Used for rounding floating point values */
|
||||
etByte flag_dp; /* True if decimal point should be shown */
|
||||
etByte flag_rtz; /* True if trailing zeros should be removed */
|
||||
etByte flag_exp; /* True to force display of the exponent */
|
||||
int nsd; /* Number of significant digits returned */
|
||||
#endif
|
||||
|
||||
func(arg,"",0);
|
||||
count = length = 0;
|
||||
bufpt = 0;
|
||||
for(; (c=(*fmt))!=0; ++fmt){
|
||||
if( c!='%' ){
|
||||
int amt;
|
||||
bufpt = (char *)fmt;
|
||||
amt = 1;
|
||||
while( (c=(*++fmt))!='%' && c!=0 ) amt++;
|
||||
(*func)(arg,bufpt,amt);
|
||||
count += amt;
|
||||
if( c==0 ) break;
|
||||
}
|
||||
if( (c=(*++fmt))==0 ){
|
||||
errorflag = 1;
|
||||
(*func)(arg,"%",1);
|
||||
count++;
|
||||
break;
|
||||
}
|
||||
/* Find out what flags are present */
|
||||
flag_leftjustify = flag_plussign = flag_blanksign =
|
||||
flag_alternateform = flag_altform2 = flag_zeropad = 0;
|
||||
done = 0;
|
||||
do{
|
||||
switch( c ){
|
||||
case '-': flag_leftjustify = 1; break;
|
||||
case '+': flag_plussign = 1; break;
|
||||
case ' ': flag_blanksign = 1; break;
|
||||
case '#': flag_alternateform = 1; break;
|
||||
case '!': flag_altform2 = 1; break;
|
||||
case '0': flag_zeropad = 1; break;
|
||||
default: done = 1; break;
|
||||
}
|
||||
}while( !done && (c=(*++fmt))!=0 );
|
||||
/* Get the field width */
|
||||
width = 0;
|
||||
if( c=='*' ){
|
||||
width = va_arg(ap,int);
|
||||
if( width<0 ){
|
||||
flag_leftjustify = 1;
|
||||
width = -width;
|
||||
}
|
||||
c = *++fmt;
|
||||
}else{
|
||||
while( c>='0' && c<='9' ){
|
||||
width = width*10 + c - '0';
|
||||
c = *++fmt;
|
||||
}
|
||||
}
|
||||
if( width > etBUFSIZE-10 ){
|
||||
width = etBUFSIZE-10;
|
||||
}
|
||||
/* Get the precision */
|
||||
if( c=='.' ){
|
||||
precision = 0;
|
||||
c = *++fmt;
|
||||
if( c=='*' ){
|
||||
precision = va_arg(ap,int);
|
||||
if( precision<0 ) precision = -precision;
|
||||
c = *++fmt;
|
||||
}else{
|
||||
while( c>='0' && c<='9' ){
|
||||
precision = precision*10 + c - '0';
|
||||
c = *++fmt;
|
||||
}
|
||||
}
|
||||
}else{
|
||||
precision = -1;
|
||||
}
|
||||
/* Get the conversion type modifier */
|
||||
if( c=='l' ){
|
||||
flag_long = 1;
|
||||
c = *++fmt;
|
||||
if( c=='l' ){
|
||||
flag_longlong = 1;
|
||||
c = *++fmt;
|
||||
}else{
|
||||
flag_longlong = 0;
|
||||
}
|
||||
}else{
|
||||
flag_long = flag_longlong = 0;
|
||||
}
|
||||
/* Fetch the info entry for the field */
|
||||
infop = 0;
|
||||
for(idx=0; idx<etNINFO; idx++){
|
||||
if( c==fmtinfo[idx].fmttype ){
|
||||
infop = &fmtinfo[idx];
|
||||
if( useExtended || (infop->flags & FLAG_INTERN)==0 ){
|
||||
xtype = infop->type;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
zExtra = 0;
|
||||
if( infop==0 ){
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
/* Limit the precision to prevent overflowing buf[] during conversion */
|
||||
if( precision>etBUFSIZE-40 && (infop->flags & FLAG_STRING)==0 ){
|
||||
precision = etBUFSIZE-40;
|
||||
}
|
||||
|
||||
/*
|
||||
** At this point, variables are initialized as follows:
|
||||
**
|
||||
** flag_alternateform TRUE if a '#' is present.
|
||||
** flag_altform2 TRUE if a '!' is present.
|
||||
** flag_plussign TRUE if a '+' is present.
|
||||
** flag_leftjustify TRUE if a '-' is present or if the
|
||||
** field width was negative.
|
||||
** flag_zeropad TRUE if the width began with 0.
|
||||
** flag_long TRUE if the letter 'l' (ell) prefixed
|
||||
** the conversion character.
|
||||
** flag_longlong TRUE if the letter 'll' (ell ell) prefixed
|
||||
** the conversion character.
|
||||
** flag_blanksign TRUE if a ' ' is present.
|
||||
** width The specified field width. This is
|
||||
** always non-negative. Zero is the default.
|
||||
** precision The specified precision. The default
|
||||
** is -1.
|
||||
** xtype The class of the conversion.
|
||||
** infop Pointer to the appropriate info struct.
|
||||
*/
|
||||
switch( xtype ){
|
||||
case etPOINTER:
|
||||
flag_longlong = sizeof(char*)==sizeof(i64);
|
||||
flag_long = sizeof(char*)==sizeof(long int);
|
||||
/* Fall through into the next case */
|
||||
case etRADIX:
|
||||
if( infop->flags & FLAG_SIGNED ){
|
||||
i64 v;
|
||||
if( flag_longlong ) v = va_arg(ap,i64);
|
||||
else if( flag_long ) v = va_arg(ap,long int);
|
||||
else v = va_arg(ap,int);
|
||||
if( v<0 ){
|
||||
longvalue = -v;
|
||||
prefix = '-';
|
||||
}else{
|
||||
longvalue = v;
|
||||
if( flag_plussign ) prefix = '+';
|
||||
else if( flag_blanksign ) prefix = ' ';
|
||||
else prefix = 0;
|
||||
}
|
||||
}else{
|
||||
if( flag_longlong ) longvalue = va_arg(ap,u64);
|
||||
else if( flag_long ) longvalue = va_arg(ap,unsigned long int);
|
||||
else longvalue = va_arg(ap,unsigned int);
|
||||
prefix = 0;
|
||||
}
|
||||
if( longvalue==0 ) flag_alternateform = 0;
|
||||
if( flag_zeropad && precision<width-(prefix!=0) ){
|
||||
precision = width-(prefix!=0);
|
||||
}
|
||||
bufpt = &buf[etBUFSIZE-1];
|
||||
{
|
||||
register const char *cset; /* Use registers for speed */
|
||||
register int base;
|
||||
cset = &aDigits[infop->charset];
|
||||
base = infop->base;
|
||||
do{ /* Convert to ascii */
|
||||
*(--bufpt) = cset[longvalue%base];
|
||||
longvalue = longvalue/base;
|
||||
}while( longvalue>0 );
|
||||
}
|
||||
length = &buf[etBUFSIZE-1]-bufpt;
|
||||
for(idx=precision-length; idx>0; idx--){
|
||||
*(--bufpt) = '0'; /* Zero pad */
|
||||
}
|
||||
if( prefix ) *(--bufpt) = prefix; /* Add sign */
|
||||
if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */
|
||||
const char *pre;
|
||||
char x;
|
||||
pre = &aPrefix[infop->prefix];
|
||||
if( *bufpt!=pre[0] ){
|
||||
for(; (x=(*pre))!=0; pre++) *(--bufpt) = x;
|
||||
}
|
||||
}
|
||||
length = &buf[etBUFSIZE-1]-bufpt;
|
||||
break;
|
||||
case etFLOAT:
|
||||
case etEXP:
|
||||
case etGENERIC:
|
||||
realvalue = va_arg(ap,double);
|
||||
#ifndef SQLITE_OMIT_FLOATING_POINT
|
||||
if( precision<0 ) precision = 6; /* Set default precision */
|
||||
if( precision>etBUFSIZE/2-10 ) precision = etBUFSIZE/2-10;
|
||||
if( realvalue<0.0 ){
|
||||
realvalue = -realvalue;
|
||||
prefix = '-';
|
||||
}else{
|
||||
if( flag_plussign ) prefix = '+';
|
||||
else if( flag_blanksign ) prefix = ' ';
|
||||
else prefix = 0;
|
||||
}
|
||||
if( xtype==etGENERIC && precision>0 ) precision--;
|
||||
#if 0
|
||||
/* Rounding works like BSD when the constant 0.4999 is used. Wierd! */
|
||||
for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1);
|
||||
#else
|
||||
/* It makes more sense to use 0.5 */
|
||||
for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){}
|
||||
#endif
|
||||
if( xtype==etFLOAT ) realvalue += rounder;
|
||||
/* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
|
||||
exp = 0;
|
||||
if( realvalue>0.0 ){
|
||||
while( realvalue>=1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; }
|
||||
while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; }
|
||||
while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; }
|
||||
while( realvalue<1e-8 && exp>=-350 ){ realvalue *= 1e8; exp-=8; }
|
||||
while( realvalue<1.0 && exp>=-350 ){ realvalue *= 10.0; exp--; }
|
||||
if( exp>350 || exp<-350 ){
|
||||
bufpt = "NaN";
|
||||
length = 3;
|
||||
break;
|
||||
}
|
||||
}
|
||||
bufpt = buf;
|
||||
/*
|
||||
** If the field type is etGENERIC, then convert to either etEXP
|
||||
** or etFLOAT, as appropriate.
|
||||
*/
|
||||
flag_exp = xtype==etEXP;
|
||||
if( xtype!=etFLOAT ){
|
||||
realvalue += rounder;
|
||||
if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; }
|
||||
}
|
||||
if( xtype==etGENERIC ){
|
||||
flag_rtz = !flag_alternateform;
|
||||
if( exp<-4 || exp>precision ){
|
||||
xtype = etEXP;
|
||||
}else{
|
||||
precision = precision - exp;
|
||||
xtype = etFLOAT;
|
||||
}
|
||||
}else{
|
||||
flag_rtz = 0;
|
||||
}
|
||||
if( xtype==etEXP ){
|
||||
e2 = 0;
|
||||
}else{
|
||||
e2 = exp;
|
||||
}
|
||||
nsd = 0;
|
||||
flag_dp = (precision>0) | flag_alternateform | flag_altform2;
|
||||
/* The sign in front of the number */
|
||||
if( prefix ){
|
||||
*(bufpt++) = prefix;
|
||||
}
|
||||
/* Digits prior to the decimal point */
|
||||
if( e2<0 ){
|
||||
*(bufpt++) = '0';
|
||||
}else{
|
||||
for(; e2>=0; e2--){
|
||||
*(bufpt++) = et_getdigit(&realvalue,&nsd);
|
||||
}
|
||||
}
|
||||
/* The decimal point */
|
||||
if( flag_dp ){
|
||||
*(bufpt++) = '.';
|
||||
}
|
||||
/* "0" digits after the decimal point but before the first
|
||||
** significant digit of the number */
|
||||
for(e2++; e2<0 && precision>0; precision--, e2++){
|
||||
*(bufpt++) = '0';
|
||||
}
|
||||
/* Significant digits after the decimal point */
|
||||
while( (precision--)>0 ){
|
||||
*(bufpt++) = et_getdigit(&realvalue,&nsd);
|
||||
}
|
||||
/* Remove trailing zeros and the "." if no digits follow the "." */
|
||||
if( flag_rtz && flag_dp ){
|
||||
while( bufpt[-1]=='0' ) *(--bufpt) = 0;
|
||||
assert( bufpt>buf );
|
||||
if( bufpt[-1]=='.' ){
|
||||
if( flag_altform2 ){
|
||||
*(bufpt++) = '0';
|
||||
}else{
|
||||
*(--bufpt) = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Add the "eNNN" suffix */
|
||||
if( flag_exp || (xtype==etEXP && exp) ){
|
||||
*(bufpt++) = aDigits[infop->charset];
|
||||
if( exp<0 ){
|
||||
*(bufpt++) = '-'; exp = -exp;
|
||||
}else{
|
||||
*(bufpt++) = '+';
|
||||
}
|
||||
if( exp>=100 ){
|
||||
*(bufpt++) = (exp/100)+'0'; /* 100's digit */
|
||||
exp %= 100;
|
||||
}
|
||||
*(bufpt++) = exp/10+'0'; /* 10's digit */
|
||||
*(bufpt++) = exp%10+'0'; /* 1's digit */
|
||||
}
|
||||
*bufpt = 0;
|
||||
|
||||
/* The converted number is in buf[] and zero terminated. Output it.
|
||||
** Note that the number is in the usual order, not reversed as with
|
||||
** integer conversions. */
|
||||
length = bufpt-buf;
|
||||
bufpt = buf;
|
||||
|
||||
/* Special case: Add leading zeros if the flag_zeropad flag is
|
||||
** set and we are not left justified */
|
||||
if( flag_zeropad && !flag_leftjustify && length < width){
|
||||
int i;
|
||||
int nPad = width - length;
|
||||
for(i=width; i>=nPad; i--){
|
||||
bufpt[i] = bufpt[i-nPad];
|
||||
}
|
||||
i = prefix!=0;
|
||||
while( nPad-- ) bufpt[i++] = '0';
|
||||
length = width;
|
||||
}
|
||||
#endif
|
||||
break;
|
||||
case etSIZE:
|
||||
*(va_arg(ap,int*)) = count;
|
||||
length = width = 0;
|
||||
break;
|
||||
case etPERCENT:
|
||||
buf[0] = '%';
|
||||
bufpt = buf;
|
||||
length = 1;
|
||||
break;
|
||||
case etCHARLIT:
|
||||
case etCHARX:
|
||||
c = buf[0] = (xtype==etCHARX ? va_arg(ap,int) : *++fmt);
|
||||
if( precision>=0 ){
|
||||
for(idx=1; idx<precision; idx++) buf[idx] = c;
|
||||
length = precision;
|
||||
}else{
|
||||
length =1;
|
||||
}
|
||||
bufpt = buf;
|
||||
break;
|
||||
case etSTRING:
|
||||
case etDYNSTRING:
|
||||
bufpt = va_arg(ap,char*);
|
||||
if( bufpt==0 ){
|
||||
bufpt = "";
|
||||
}else if( xtype==etDYNSTRING ){
|
||||
zExtra = bufpt;
|
||||
}
|
||||
length = strlen(bufpt);
|
||||
if( precision>=0 && precision<length ) length = precision;
|
||||
break;
|
||||
case etSQLESCAPE:
|
||||
case etSQLESCAPE2: {
|
||||
int i, j, n, ch, isnull;
|
||||
int needQuote;
|
||||
char *escarg = va_arg(ap,char*);
|
||||
isnull = escarg==0;
|
||||
if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)");
|
||||
for(i=n=0; (ch=escarg[i])!=0; i++){
|
||||
if( ch=='\'' ) n++;
|
||||
}
|
||||
needQuote = !isnull && xtype==etSQLESCAPE2;
|
||||
n += i + 1 + needQuote*2;
|
||||
if( n>etBUFSIZE ){
|
||||
bufpt = zExtra = sqliteMalloc( n );
|
||||
if( bufpt==0 ) return -1;
|
||||
}else{
|
||||
bufpt = buf;
|
||||
}
|
||||
j = 0;
|
||||
if( needQuote ) bufpt[j++] = '\'';
|
||||
for(i=0; (ch=escarg[i])!=0; i++){
|
||||
bufpt[j++] = ch;
|
||||
if( ch=='\'' ) bufpt[j++] = ch;
|
||||
}
|
||||
if( needQuote ) bufpt[j++] = '\'';
|
||||
bufpt[j] = 0;
|
||||
length = j;
|
||||
/* The precision is ignored on %q and %Q */
|
||||
/* if( precision>=0 && precision<length ) length = precision; */
|
||||
break;
|
||||
}
|
||||
case etTOKEN: {
|
||||
Token *pToken = va_arg(ap, Token*);
|
||||
if( pToken && pToken->z ){
|
||||
(*func)(arg, (char*)pToken->z, pToken->n);
|
||||
}
|
||||
length = width = 0;
|
||||
break;
|
||||
}
|
||||
case etSRCLIST: {
|
||||
SrcList *pSrc = va_arg(ap, SrcList*);
|
||||
int k = va_arg(ap, int);
|
||||
struct SrcList_item *pItem = &pSrc->a[k];
|
||||
assert( k>=0 && k<pSrc->nSrc );
|
||||
if( pItem->zDatabase && pItem->zDatabase[0] ){
|
||||
(*func)(arg, pItem->zDatabase, strlen(pItem->zDatabase));
|
||||
(*func)(arg, ".", 1);
|
||||
}
|
||||
(*func)(arg, pItem->zName, strlen(pItem->zName));
|
||||
length = width = 0;
|
||||
break;
|
||||
}
|
||||
}/* End switch over the format type */
|
||||
/*
|
||||
** The text of the conversion is pointed to by "bufpt" and is
|
||||
** "length" characters long. The field width is "width". Do
|
||||
** the output.
|
||||
*/
|
||||
if( !flag_leftjustify ){
|
||||
register int nspace;
|
||||
nspace = width-length;
|
||||
if( nspace>0 ){
|
||||
count += nspace;
|
||||
while( nspace>=etSPACESIZE ){
|
||||
(*func)(arg,spaces,etSPACESIZE);
|
||||
nspace -= etSPACESIZE;
|
||||
}
|
||||
if( nspace>0 ) (*func)(arg,spaces,nspace);
|
||||
}
|
||||
}
|
||||
if( length>0 ){
|
||||
(*func)(arg,bufpt,length);
|
||||
count += length;
|
||||
}
|
||||
if( flag_leftjustify ){
|
||||
register int nspace;
|
||||
nspace = width-length;
|
||||
if( nspace>0 ){
|
||||
count += nspace;
|
||||
while( nspace>=etSPACESIZE ){
|
||||
(*func)(arg,spaces,etSPACESIZE);
|
||||
nspace -= etSPACESIZE;
|
||||
}
|
||||
if( nspace>0 ) (*func)(arg,spaces,nspace);
|
||||
}
|
||||
}
|
||||
if( zExtra ){
|
||||
sqliteFree(zExtra);
|
||||
}
|
||||
}/* End for loop over the format string */
|
||||
return errorflag ? -1 : count;
|
||||
} /* End of function */
|
||||
|
||||
|
||||
/* This structure is used to store state information about the
|
||||
** write to memory that is currently in progress.
|
||||
*/
|
||||
struct sgMprintf {
|
||||
char *zBase; /* A base allocation */
|
||||
char *zText; /* The string collected so far */
|
||||
int nChar; /* Length of the string so far */
|
||||
int nTotal; /* Output size if unconstrained */
|
||||
int nAlloc; /* Amount of space allocated in zText */
|
||||
void *(*xRealloc)(void*,int); /* Function used to realloc memory */
|
||||
};
|
||||
|
||||
/*
|
||||
** This function implements the callback from vxprintf.
|
||||
**
|
||||
** This routine add nNewChar characters of text in zNewText to
|
||||
** the sgMprintf structure pointed to by "arg".
|
||||
*/
|
||||
static void mout(void *arg, const char *zNewText, int nNewChar){
|
||||
struct sgMprintf *pM = (struct sgMprintf*)arg;
|
||||
pM->nTotal += nNewChar;
|
||||
if( pM->nChar + nNewChar + 1 > pM->nAlloc ){
|
||||
if( pM->xRealloc==0 ){
|
||||
nNewChar = pM->nAlloc - pM->nChar - 1;
|
||||
}else{
|
||||
pM->nAlloc = pM->nChar + nNewChar*2 + 1;
|
||||
if( pM->zText==pM->zBase ){
|
||||
pM->zText = pM->xRealloc(0, pM->nAlloc);
|
||||
if( pM->zText && pM->nChar ){
|
||||
memcpy(pM->zText, pM->zBase, pM->nChar);
|
||||
}
|
||||
}else{
|
||||
char *zNew;
|
||||
zNew = pM->xRealloc(pM->zText, pM->nAlloc);
|
||||
if( zNew ){
|
||||
pM->zText = zNew;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if( pM->zText ){
|
||||
if( nNewChar>0 ){
|
||||
memcpy(&pM->zText[pM->nChar], zNewText, nNewChar);
|
||||
pM->nChar += nNewChar;
|
||||
}
|
||||
pM->zText[pM->nChar] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is a wrapper around xprintf() that invokes mout() as
|
||||
** the consumer.
|
||||
*/
|
||||
static char *base_vprintf(
|
||||
void *(*xRealloc)(void*,int), /* Routine to realloc memory. May be NULL */
|
||||
int useInternal, /* Use internal %-conversions if true */
|
||||
char *zInitBuf, /* Initially write here, before mallocing */
|
||||
int nInitBuf, /* Size of zInitBuf[] */
|
||||
const char *zFormat, /* format string */
|
||||
va_list ap /* arguments */
|
||||
){
|
||||
struct sgMprintf sM;
|
||||
sM.zBase = sM.zText = zInitBuf;
|
||||
sM.nChar = sM.nTotal = 0;
|
||||
sM.nAlloc = nInitBuf;
|
||||
sM.xRealloc = xRealloc;
|
||||
vxprintf(mout, &sM, useInternal, zFormat, ap);
|
||||
if( xRealloc ){
|
||||
if( sM.zText==sM.zBase ){
|
||||
sM.zText = xRealloc(0, sM.nChar+1);
|
||||
if( sM.zText ){
|
||||
memcpy(sM.zText, sM.zBase, sM.nChar+1);
|
||||
}
|
||||
}else if( sM.nAlloc>sM.nChar+10 ){
|
||||
char *zNew = xRealloc(sM.zText, sM.nChar+1);
|
||||
if( zNew ){
|
||||
sM.zText = zNew;
|
||||
}
|
||||
}
|
||||
}
|
||||
return sM.zText;
|
||||
}
|
||||
|
||||
/*
|
||||
** Realloc that is a real function, not a macro.
|
||||
*/
|
||||
static void *printf_realloc(void *old, int size){
|
||||
return sqliteRealloc(old,size);
|
||||
}
|
||||
|
||||
/*
|
||||
** Print into memory obtained from sqliteMalloc(). Use the internal
|
||||
** %-conversion extensions.
|
||||
*/
|
||||
char *sqlite3VMPrintf(const char *zFormat, va_list ap){
|
||||
char zBase[SQLITE_PRINT_BUF_SIZE];
|
||||
return base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap);
|
||||
}
|
||||
|
||||
/*
|
||||
** Print into memory obtained from sqliteMalloc(). Use the internal
|
||||
** %-conversion extensions.
|
||||
*/
|
||||
char *sqlite3MPrintf(const char *zFormat, ...){
|
||||
va_list ap;
|
||||
char *z;
|
||||
char zBase[SQLITE_PRINT_BUF_SIZE];
|
||||
va_start(ap, zFormat);
|
||||
z = base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap);
|
||||
va_end(ap);
|
||||
return z;
|
||||
}
|
||||
|
||||
/*
|
||||
** Print into memory obtained from malloc(). Do not use the internal
|
||||
** %-conversion extensions. This routine is for use by external users.
|
||||
*/
|
||||
char *sqlite3_mprintf(const char *zFormat, ...){
|
||||
va_list ap;
|
||||
char *z;
|
||||
char zBuf[200];
|
||||
|
||||
va_start(ap,zFormat);
|
||||
z = base_vprintf((void*(*)(void*,int))realloc, 0,
|
||||
zBuf, sizeof(zBuf), zFormat, ap);
|
||||
va_end(ap);
|
||||
return z;
|
||||
}
|
||||
|
||||
/* This is the varargs version of sqlite3_mprintf.
|
||||
*/
|
||||
char *sqlite3_vmprintf(const char *zFormat, va_list ap){
|
||||
char zBuf[200];
|
||||
return base_vprintf((void*(*)(void*,int))realloc, 0,
|
||||
zBuf, sizeof(zBuf), zFormat, ap);
|
||||
}
|
||||
|
||||
/*
|
||||
** sqlite3_snprintf() works like snprintf() except that it ignores the
|
||||
** current locale settings. This is important for SQLite because we
|
||||
** are not able to use a "," as the decimal point in place of "." as
|
||||
** specified by some locales.
|
||||
*/
|
||||
char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
|
||||
char *z;
|
||||
va_list ap;
|
||||
|
||||
va_start(ap,zFormat);
|
||||
z = base_vprintf(0, 0, zBuf, n, zFormat, ap);
|
||||
va_end(ap);
|
||||
return z;
|
||||
}
|
||||
|
||||
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
|
||||
/*
|
||||
** A version of printf() that understands %lld. Used for debugging.
|
||||
** The printf() built into some versions of windows does not understand %lld
|
||||
** and segfaults if you give it a long long int.
|
||||
*/
|
||||
void sqlite3DebugPrintf(const char *zFormat, ...){
|
||||
extern int getpid(void);
|
||||
va_list ap;
|
||||
char zBuf[500];
|
||||
va_start(ap, zFormat);
|
||||
base_vprintf(0, 0, zBuf, sizeof(zBuf), zFormat, ap);
|
||||
va_end(ap);
|
||||
fprintf(stdout,"%d: %s", getpid(), zBuf);
|
||||
fflush(stdout);
|
||||
}
|
||||
#endif
|
|
@ -0,0 +1,100 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains code to implement a pseudo-random number
|
||||
** generator (PRNG) for SQLite.
|
||||
**
|
||||
** Random numbers are used by some of the database backends in order
|
||||
** to generate random integer keys for tables or random filenames.
|
||||
**
|
||||
** $Id: random.c,v 1.15 2006/01/06 14:32:20 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "os.h"
|
||||
|
||||
|
||||
/*
|
||||
** Get a single 8-bit random value from the RC4 PRNG. The Mutex
|
||||
** must be held while executing this routine.
|
||||
**
|
||||
** Why not just use a library random generator like lrand48() for this?
|
||||
** Because the OP_NewRowid opcode in the VDBE depends on having a very
|
||||
** good source of random numbers. The lrand48() library function may
|
||||
** well be good enough. But maybe not. Or maybe lrand48() has some
|
||||
** subtle problems on some systems that could cause problems. It is hard
|
||||
** to know. To minimize the risk of problems due to bad lrand48()
|
||||
** implementations, SQLite uses this random number generator based
|
||||
** on RC4, which we know works very well.
|
||||
**
|
||||
** (Later): Actually, OP_NewRowid does not depend on a good source of
|
||||
** randomness any more. But we will leave this code in all the same.
|
||||
*/
|
||||
static int randomByte(){
|
||||
unsigned char t;
|
||||
|
||||
/* All threads share a single random number generator.
|
||||
** This structure is the current state of the generator.
|
||||
*/
|
||||
static struct {
|
||||
unsigned char isInit; /* True if initialized */
|
||||
unsigned char i, j; /* State variables */
|
||||
unsigned char s[256]; /* State variables */
|
||||
} prng;
|
||||
|
||||
/* Initialize the state of the random number generator once,
|
||||
** the first time this routine is called. The seed value does
|
||||
** not need to contain a lot of randomness since we are not
|
||||
** trying to do secure encryption or anything like that...
|
||||
**
|
||||
** Nothing in this file or anywhere else in SQLite does any kind of
|
||||
** encryption. The RC4 algorithm is being used as a PRNG (pseudo-random
|
||||
** number generator) not as an encryption device.
|
||||
*/
|
||||
if( !prng.isInit ){
|
||||
int i;
|
||||
char k[256];
|
||||
prng.j = 0;
|
||||
prng.i = 0;
|
||||
sqlite3OsRandomSeed(k);
|
||||
for(i=0; i<256; i++){
|
||||
prng.s[i] = i;
|
||||
}
|
||||
for(i=0; i<256; i++){
|
||||
prng.j += prng.s[i] + k[i];
|
||||
t = prng.s[prng.j];
|
||||
prng.s[prng.j] = prng.s[i];
|
||||
prng.s[i] = t;
|
||||
}
|
||||
prng.isInit = 1;
|
||||
}
|
||||
|
||||
/* Generate and return single random byte
|
||||
*/
|
||||
prng.i++;
|
||||
t = prng.s[prng.i];
|
||||
prng.j += t;
|
||||
prng.s[prng.i] = prng.s[prng.j];
|
||||
prng.s[prng.j] = t;
|
||||
t += prng.s[prng.i];
|
||||
return prng.s[t];
|
||||
}
|
||||
|
||||
/*
|
||||
** Return N random bytes.
|
||||
*/
|
||||
void sqlite3Randomness(int N, void *pBuf){
|
||||
unsigned char *zBuf = pBuf;
|
||||
sqlite3OsEnterMutex();
|
||||
while( N-- ){
|
||||
*(zBuf++) = randomByte();
|
||||
}
|
||||
sqlite3OsLeaveMutex();
|
||||
}
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
64892
db/sqlite3/src/sqlite3.c
64892
db/sqlite3/src/sqlite3.c
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -12,7 +12,7 @@
|
|||
** This header file defines the interface that the SQLite library
|
||||
** presents to client programs.
|
||||
**
|
||||
** @(#) $Id: sqlite3.h,v 1.8 2007/06/19 19:54:01 sdwilsh%shawnwilsher.com Exp $
|
||||
** @(#) $Id: sqlite3.h,v 1.9 2007/06/19 23:47:38 sdwilsh%shawnwilsher.com Exp $
|
||||
*/
|
||||
#ifndef _SQLITE3_H_
|
||||
#define _SQLITE3_H_
|
||||
|
@ -31,7 +31,7 @@ extern "C" {
|
|||
#ifdef SQLITE_VERSION
|
||||
# undef SQLITE_VERSION
|
||||
#endif
|
||||
#define SQLITE_VERSION "3.3.17"
|
||||
#define SQLITE_VERSION "3.3.5"
|
||||
|
||||
/*
|
||||
** The format of the version string is "X.Y.Z<trailing string>", where
|
||||
|
@ -48,7 +48,7 @@ extern "C" {
|
|||
#ifdef SQLITE_VERSION_NUMBER
|
||||
# undef SQLITE_VERSION_NUMBER
|
||||
#endif
|
||||
#define SQLITE_VERSION_NUMBER 3003017
|
||||
#define SQLITE_VERSION_NUMBER 3003005
|
||||
|
||||
/*
|
||||
** The version string is also compiled into the library so that a program
|
||||
|
@ -125,7 +125,7 @@ typedef int (*sqlite3_callback)(void*,int,char**, char**);
|
|||
** value then the query is aborted, all subsequent SQL statements
|
||||
** are skipped and the sqlite3_exec() function returns the SQLITE_ABORT.
|
||||
**
|
||||
** The 1st parameter is an arbitrary pointer that is passed
|
||||
** The 4th parameter is an arbitrary pointer that is passed
|
||||
** to the callback function as its first parameter.
|
||||
**
|
||||
** The 2nd parameter to the callback function is the number of
|
||||
|
@ -182,7 +182,7 @@ int sqlite3_exec(
|
|||
#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */
|
||||
#define SQLITE_FULL 13 /* Insertion failed because database is full */
|
||||
#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
|
||||
#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */
|
||||
#define SQLITE_PROTOCOL 15 /* Database lock protocol error */
|
||||
#define SQLITE_EMPTY 16 /* Database is empty */
|
||||
#define SQLITE_SCHEMA 17 /* The database schema changed */
|
||||
#define SQLITE_TOOBIG 18 /* NOT USED. Too much data for one row */
|
||||
|
@ -198,71 +198,28 @@ int sqlite3_exec(
|
|||
#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */
|
||||
/* end-of-error-codes */
|
||||
|
||||
/*
|
||||
** Using the sqlite3_extended_result_codes() API, you can cause
|
||||
** SQLite to return result codes with additional information in
|
||||
** their upper bits. The lower 8 bits will be the same as the
|
||||
** primary result codes above. But the upper bits might contain
|
||||
** more specific error information.
|
||||
**
|
||||
** To extract the primary result code from an extended result code,
|
||||
** simply mask off the lower 8 bits.
|
||||
**
|
||||
** primary = extended & 0xff;
|
||||
**
|
||||
** New result error codes may be added from time to time. Software
|
||||
** that uses the extended result codes should plan accordingly and be
|
||||
** sure to always handle new unknown codes gracefully.
|
||||
**
|
||||
** The SQLITE_OK result code will never be extended. It will always
|
||||
** be exactly zero.
|
||||
**
|
||||
** The extended result codes always have the primary result code
|
||||
** as a prefix. Primary result codes only contain a single "_"
|
||||
** character. Extended result codes contain two or more "_" characters.
|
||||
*/
|
||||
#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
|
||||
#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
|
||||
#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
|
||||
#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
|
||||
#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
|
||||
#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
|
||||
#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
|
||||
#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
|
||||
#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
|
||||
#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
|
||||
|
||||
/*
|
||||
** Enable or disable the extended result codes.
|
||||
*/
|
||||
int sqlite3_extended_result_codes(sqlite3*, int onoff);
|
||||
|
||||
/*
|
||||
** Each entry in an SQLite table has a unique integer key. (The key is
|
||||
** the value of the INTEGER PRIMARY KEY column if there is such a column,
|
||||
** otherwise the key is generated automatically. The unique key is always
|
||||
** otherwise the key is generated at random. The unique key is always
|
||||
** available as the ROWID, OID, or _ROWID_ column.) The following routine
|
||||
** returns the integer key of the most recent insert in the database.
|
||||
**
|
||||
** This function is similar to the mysql_insert_id() function from MySQL.
|
||||
*/
|
||||
sqlite_int64 sqlite3_last_insert_rowid(sqlite3*);
|
||||
|
||||
/*
|
||||
** This function returns the number of database rows that were changed
|
||||
** (or inserted or deleted) by the most recent SQL statement. Only
|
||||
** changes that are directly specified by the INSERT, UPDATE, or
|
||||
** DELETE statement are counted. Auxiliary changes caused by
|
||||
** triggers are not counted. Within the body of a trigger, however,
|
||||
** the sqlite3_changes() API can be called to find the number of
|
||||
** changes in the most recently completed INSERT, UPDATE, or DELETE
|
||||
** statement within the body of the trigger.
|
||||
** (or inserted or deleted) by the most recent called sqlite3_exec().
|
||||
**
|
||||
** All changes are counted, even if they were later undone by a
|
||||
** ROLLBACK or ABORT. Except, changes associated with creating and
|
||||
** dropping tables are not counted.
|
||||
**
|
||||
** If a callback invokes sqlite3_exec() or sqlite3_step() recursively,
|
||||
** then the changes in the inner, recursive call are counted together
|
||||
** with the changes in the outer call.
|
||||
** If a callback invokes sqlite3_exec() recursively, then the changes
|
||||
** in the inner, recursive call are counted together with the changes
|
||||
** in the outer call.
|
||||
**
|
||||
** SQLite implements the command "DELETE FROM table" without a WHERE clause
|
||||
** by dropping and recreating the table. (This is much faster than going
|
||||
|
@ -297,9 +254,6 @@ int sqlite3_total_changes(sqlite3*);
|
|||
** called in response to a user action such as pressing "Cancel"
|
||||
** or Ctrl-C where the user wants a long query operation to halt
|
||||
** immediately.
|
||||
**
|
||||
** It is safe to call this routine from a different thread that the
|
||||
** thread that is currently running the database operation.
|
||||
*/
|
||||
void sqlite3_interrupt(sqlite3*);
|
||||
|
||||
|
@ -310,13 +264,9 @@ void sqlite3_interrupt(sqlite3*);
|
|||
** sqlite3_complete16(), a nul-terminated machine byte order UTF-16 string
|
||||
** is required.
|
||||
**
|
||||
** This routine is useful for command-line input to see of the user has
|
||||
** entered a complete statement of SQL or if the current statement needs
|
||||
** to be continued on the next line. The algorithm is simple. If the
|
||||
** last token other than spaces and comments is a semicolon, then return
|
||||
** true. Actually, the algorithm is a little more complicated than that
|
||||
** in order to deal with triggers, but the basic idea is the same: the
|
||||
** statement is not complete unless it ends in a semicolon.
|
||||
** The algorithm is simple. If the last token other than spaces
|
||||
** and comments is a semicolon, then return true. otherwise return
|
||||
** false.
|
||||
*/
|
||||
int sqlite3_complete(const char *sql);
|
||||
int sqlite3_complete16(const void *sql);
|
||||
|
@ -327,30 +277,13 @@ int sqlite3_complete16(const void *sql);
|
|||
** currently locked by another process or thread. If the busy callback
|
||||
** is NULL, then sqlite3_exec() returns SQLITE_BUSY immediately if
|
||||
** it finds a locked table. If the busy callback is not NULL, then
|
||||
** sqlite3_exec() invokes the callback with two arguments. The
|
||||
** first argument to the handler is a copy of the void* pointer which
|
||||
** is the third argument to this routine. The second argument to
|
||||
** the handler is the number of times that the busy handler has
|
||||
** been invoked for this locking event. If the
|
||||
** sqlite3_exec() invokes the callback with three arguments. The
|
||||
** second argument is the name of the locked table and the third
|
||||
** argument is the number of times the table has been busy. If the
|
||||
** busy callback returns 0, then sqlite3_exec() immediately returns
|
||||
** SQLITE_BUSY. If the callback returns non-zero, then sqlite3_exec()
|
||||
** tries to open the table again and the cycle repeats.
|
||||
**
|
||||
** The presence of a busy handler does not guarantee that
|
||||
** it will be invoked when there is lock contention.
|
||||
** If SQLite determines that invoking the busy handler could result in
|
||||
** a deadlock, it will return SQLITE_BUSY instead.
|
||||
** Consider a scenario where one process is holding a read lock that
|
||||
** it is trying to promote to a reserved lock and
|
||||
** a second process is holding a reserved lock that it is trying
|
||||
** to promote to an exclusive lock. The first process cannot proceed
|
||||
** because it is blocked by the second and the second process cannot
|
||||
** proceed because it is blocked by the first. If both processes
|
||||
** invoke the busy handlers, neither will make any progress. Therefore,
|
||||
** SQLite returns SQLITE_BUSY for the first process, hoping that this
|
||||
** will induce the first process to release its read lock and allow
|
||||
** the second process to proceed.
|
||||
**
|
||||
** The default busy callback is NULL.
|
||||
**
|
||||
** Sqlite is re-entrant, so the busy handler may start a new query.
|
||||
|
@ -472,19 +405,9 @@ void sqlite3_free_table(char **result);
|
|||
*/
|
||||
char *sqlite3_mprintf(const char*,...);
|
||||
char *sqlite3_vmprintf(const char*, va_list);
|
||||
void sqlite3_free(char *z);
|
||||
char *sqlite3_snprintf(int,char*,const char*, ...);
|
||||
|
||||
/*
|
||||
** SQLite uses its own memory allocator. On many installations, this
|
||||
** memory allocator is identical to the standard malloc()/realloc()/free()
|
||||
** and can be used interchangable. On others, the implementations are
|
||||
** different. For maximum portability, it is best not to mix calls
|
||||
** to the standard malloc/realloc/free with the sqlite versions.
|
||||
*/
|
||||
void *sqlite3_malloc(int);
|
||||
void *sqlite3_realloc(void*, int);
|
||||
void sqlite3_free(void*);
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
/*
|
||||
** This routine registers a callback with the SQLite library. The
|
||||
|
@ -543,9 +466,7 @@ int sqlite3_set_authorizer(
|
|||
#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */
|
||||
#define SQLITE_REINDEX 27 /* Index Name NULL */
|
||||
#define SQLITE_ANALYZE 28 /* Table Name NULL */
|
||||
#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */
|
||||
#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */
|
||||
#define SQLITE_FUNCTION 31 /* Function Name NULL */
|
||||
|
||||
|
||||
/*
|
||||
** The return value of the authorization function should be one of the
|
||||
|
@ -721,31 +642,6 @@ int sqlite3_prepare16(
|
|||
const void **pzTail /* OUT: Pointer to unused portion of zSql */
|
||||
);
|
||||
|
||||
/*
|
||||
** Newer versions of the prepare API work just like the legacy versions
|
||||
** but with one exception: The a copy of the SQL text is saved in the
|
||||
** sqlite3_stmt structure that is returned. If this copy exists, it
|
||||
** modifieds the behavior of sqlite3_step() slightly. First, sqlite3_step()
|
||||
** will no longer return an SQLITE_SCHEMA error but will instead automatically
|
||||
** rerun the compiler to rebuild the prepared statement. Secondly,
|
||||
** sqlite3_step() now turns a full result code - the result code that
|
||||
** use used to have to call sqlite3_reset() to get.
|
||||
*/
|
||||
int sqlite3_prepare_v2(
|
||||
sqlite3 *db, /* Database handle */
|
||||
const char *zSql, /* SQL statement, UTF-8 encoded */
|
||||
int nBytes, /* Length of zSql in bytes. */
|
||||
sqlite3_stmt **ppStmt, /* OUT: Statement handle */
|
||||
const char **pzTail /* OUT: Pointer to unused portion of zSql */
|
||||
);
|
||||
int sqlite3_prepare16_v2(
|
||||
sqlite3 *db, /* Database handle */
|
||||
const void *zSql, /* SQL statement, UTF-16 encoded */
|
||||
int nBytes, /* Length of zSql in bytes. */
|
||||
sqlite3_stmt **ppStmt, /* OUT: Statement handle */
|
||||
const void **pzTail /* OUT: Pointer to unused portion of zSql */
|
||||
);
|
||||
|
||||
/*
|
||||
** Pointers to the following two opaque structures are used to communicate
|
||||
** with the implementations of user-defined functions.
|
||||
|
@ -755,32 +651,31 @@ typedef struct Mem sqlite3_value;
|
|||
|
||||
/*
|
||||
** In the SQL strings input to sqlite3_prepare() and sqlite3_prepare16(),
|
||||
** one or more literals can be replace by parameters "?" or "?NNN" or
|
||||
** ":AAA" or "@AAA" or "$VVV" where NNN is a integer, AAA is an identifer,
|
||||
** and VVV is a variable name according to the syntax rules of the
|
||||
** TCL programming language. The value of these parameters (also called
|
||||
** "host parameter names") can be set using the routines listed below.
|
||||
** one or more literals can be replace by parameters "?" or ":AAA" or
|
||||
** "$VVV" where AAA is an identifer and VVV is a variable name according
|
||||
** to the syntax rules of the TCL programming language.
|
||||
** The value of these parameters (also called "host parameter names") can
|
||||
** be set using the routines listed below.
|
||||
**
|
||||
** In every case, the first argument is a pointer to the sqlite3_stmt
|
||||
** structure returned from sqlite3_prepare(). The second argument is the
|
||||
** index of the host parameter name. The first host parameter as an index
|
||||
** of 1. For named host parameters (":AAA" or "$VVV") you can use
|
||||
** In every case, the first parameter is a pointer to the sqlite3_stmt
|
||||
** structure returned from sqlite3_prepare(). The second parameter is the
|
||||
** index of the parameter. The first parameter as an index of 1. For
|
||||
** named parameters (":AAA" or "$VVV") you can use
|
||||
** sqlite3_bind_parameter_index() to get the correct index value given
|
||||
** the parameter name. If the same named parameter occurs more than
|
||||
** the parameters name. If the same named parameter occurs more than
|
||||
** once, it is assigned the same index each time.
|
||||
**
|
||||
** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
|
||||
** The fifth parameter to sqlite3_bind_blob(), sqlite3_bind_text(), and
|
||||
** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
|
||||
** text after SQLite has finished with it. If the fifth argument is the
|
||||
** special value SQLITE_STATIC, then the library assumes that the information
|
||||
** is in static, unmanaged space and does not need to be freed. If the
|
||||
** fifth argument has the value SQLITE_TRANSIENT, then SQLite makes its
|
||||
** own private copy of the data before the sqlite3_bind_* routine returns.
|
||||
** own private copy of the data.
|
||||
**
|
||||
** The sqlite3_bind_* routine must be called before sqlite3_step() and after
|
||||
** an sqlite3_prepare() or sqlite3_reset(). Bindings persist across
|
||||
** multiple calls to sqlite3_reset() and sqlite3_step(). Unbound parameters
|
||||
** are interpreted as NULL.
|
||||
** The sqlite3_bind_* routine must be called before sqlite3_step() after
|
||||
** an sqlite3_prepare() or sqlite3_reset(). Unbound parameterss are
|
||||
** interpreted as NULL.
|
||||
*/
|
||||
int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
|
||||
int sqlite3_bind_double(sqlite3_stmt*, int, double);
|
||||
|
@ -792,13 +687,13 @@ int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
|
|||
int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
|
||||
|
||||
/*
|
||||
** Return the number of host parameters in a compiled SQL statement. This
|
||||
** Return the number of parameters in a compiled SQL statement. This
|
||||
** routine was added to support DBD::SQLite.
|
||||
*/
|
||||
int sqlite3_bind_parameter_count(sqlite3_stmt*);
|
||||
|
||||
/*
|
||||
** Return the name of the i-th name parameter. Ordinary parameters "?" are
|
||||
** Return the name of the i-th parameter. Ordinary parameters "?" are
|
||||
** nameless and a NULL is returned. For parameters of the form :AAA or
|
||||
** $VVV the complete text of the parameter name is returned, including
|
||||
** the initial ":" or "$". NULL is returned if the index is out of range.
|
||||
|
@ -834,7 +729,7 @@ const char *sqlite3_column_name(sqlite3_stmt*,int);
|
|||
const void *sqlite3_column_name16(sqlite3_stmt*,int);
|
||||
|
||||
/*
|
||||
** The first argument to the following calls is a compiled SQL statement.
|
||||
** The first parameter to the following calls is a compiled SQL statement.
|
||||
** These functions return information about the Nth column returned by
|
||||
** the statement, where N is the second function argument.
|
||||
**
|
||||
|
@ -1031,7 +926,6 @@ const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
|
|||
const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
|
||||
int sqlite3_column_type(sqlite3_stmt*, int iCol);
|
||||
int sqlite3_column_numeric_type(sqlite3_stmt*, int iCol);
|
||||
sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
|
||||
|
||||
/*
|
||||
** The sqlite3_finalize() function is called to delete a compiled
|
||||
|
@ -1198,13 +1092,9 @@ void sqlite3_set_auxdata(sqlite3_context*, int, void*, void (*)(void*));
|
|||
** SQLITE_TRANSIENT value means that the content will likely change in
|
||||
** the near future and that SQLite should make its own private copy of
|
||||
** the content before returning.
|
||||
**
|
||||
** The typedef is necessary to work around problems in certain
|
||||
** C++ compilers. See ticket #2191.
|
||||
*/
|
||||
typedef void (*sqlite3_destructor_type)(void*);
|
||||
#define SQLITE_STATIC ((sqlite3_destructor_type)0)
|
||||
#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1)
|
||||
#define SQLITE_STATIC ((void(*)(void *))0)
|
||||
#define SQLITE_TRANSIENT ((void(*)(void *))-1)
|
||||
|
||||
/*
|
||||
** User-defined functions invoke the following routines in order to
|
||||
|
@ -1578,299 +1468,6 @@ int sqlite3_table_column_metadata(
|
|||
int *pAutoinc /* OUTPUT: True if colums is auto-increment */
|
||||
);
|
||||
|
||||
/*
|
||||
****** EXPERIMENTAL - subject to change without notice **************
|
||||
**
|
||||
** Attempt to load an SQLite extension library contained in the file
|
||||
** zFile. The entry point is zProc. zProc may be 0 in which case the
|
||||
** name of the entry point defaults to "sqlite3_extension_init".
|
||||
**
|
||||
** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong.
|
||||
**
|
||||
** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with
|
||||
** error message text. The calling function should free this memory
|
||||
** by calling sqlite3_free().
|
||||
**
|
||||
** Extension loading must be enabled using sqlite3_enable_load_extension()
|
||||
** prior to calling this API or an error will be returned.
|
||||
**
|
||||
****** EXPERIMENTAL - subject to change without notice **************
|
||||
*/
|
||||
int sqlite3_load_extension(
|
||||
sqlite3 *db, /* Load the extension into this database connection */
|
||||
const char *zFile, /* Name of the shared library containing extension */
|
||||
const char *zProc, /* Entry point. Derived from zFile if 0 */
|
||||
char **pzErrMsg /* Put error message here if not 0 */
|
||||
);
|
||||
|
||||
/*
|
||||
** So as not to open security holes in older applications that are
|
||||
** unprepared to deal with extension load, and as a means of disabling
|
||||
** extension loading while executing user-entered SQL, the following
|
||||
** API is provided to turn the extension loading mechanism on and
|
||||
** off. It is off by default. See ticket #1863.
|
||||
**
|
||||
** Call this routine with onoff==1 to turn extension loading on
|
||||
** and call it with onoff==0 to turn it back off again.
|
||||
*/
|
||||
int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
|
||||
|
||||
/*
|
||||
****** EXPERIMENTAL - subject to change without notice **************
|
||||
**
|
||||
** Register an extension entry point that is automatically invoked
|
||||
** whenever a new database connection is opened.
|
||||
**
|
||||
** This API can be invoked at program startup in order to register
|
||||
** one or more statically linked extensions that will be available
|
||||
** to all new database connections.
|
||||
**
|
||||
** Duplicate extensions are detected so calling this routine multiple
|
||||
** times with the same extension is harmless.
|
||||
**
|
||||
** This routine stores a pointer to the extension in an array
|
||||
** that is obtained from malloc(). If you run a memory leak
|
||||
** checker on your program and it reports a leak because of this
|
||||
** array, then invoke sqlite3_automatic_extension_reset() prior
|
||||
** to shutdown to free the memory.
|
||||
**
|
||||
** Automatic extensions apply across all threads.
|
||||
*/
|
||||
int sqlite3_auto_extension(void *xEntryPoint);
|
||||
|
||||
|
||||
/*
|
||||
****** EXPERIMENTAL - subject to change without notice **************
|
||||
**
|
||||
** Disable all previously registered automatic extensions. This
|
||||
** routine undoes the effect of all prior sqlite3_automatic_extension()
|
||||
** calls.
|
||||
**
|
||||
** This call disabled automatic extensions in all threads.
|
||||
*/
|
||||
void sqlite3_reset_auto_extension(void);
|
||||
|
||||
|
||||
/*
|
||||
****** EXPERIMENTAL - subject to change without notice **************
|
||||
**
|
||||
** The interface to the virtual-table mechanism is currently considered
|
||||
** to be experimental. The interface might change in incompatible ways.
|
||||
** If this is a problem for you, do not use the interface at this time.
|
||||
**
|
||||
** When the virtual-table mechanism stablizes, we will declare the
|
||||
** interface fixed, support it indefinitely, and remove this comment.
|
||||
*/
|
||||
|
||||
/*
|
||||
** Structures used by the virtual table interface
|
||||
*/
|
||||
typedef struct sqlite3_vtab sqlite3_vtab;
|
||||
typedef struct sqlite3_index_info sqlite3_index_info;
|
||||
typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
|
||||
typedef struct sqlite3_module sqlite3_module;
|
||||
|
||||
/*
|
||||
** A module is a class of virtual tables. Each module is defined
|
||||
** by an instance of the following structure. This structure consists
|
||||
** mostly of methods for the module.
|
||||
*/
|
||||
struct sqlite3_module {
|
||||
int iVersion;
|
||||
int (*xCreate)(sqlite3*, void *pAux,
|
||||
int argc, const char *const*argv,
|
||||
sqlite3_vtab **ppVTab, char**);
|
||||
int (*xConnect)(sqlite3*, void *pAux,
|
||||
int argc, const char *const*argv,
|
||||
sqlite3_vtab **ppVTab, char**);
|
||||
int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
|
||||
int (*xDisconnect)(sqlite3_vtab *pVTab);
|
||||
int (*xDestroy)(sqlite3_vtab *pVTab);
|
||||
int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
|
||||
int (*xClose)(sqlite3_vtab_cursor*);
|
||||
int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
|
||||
int argc, sqlite3_value **argv);
|
||||
int (*xNext)(sqlite3_vtab_cursor*);
|
||||
int (*xEof)(sqlite3_vtab_cursor*);
|
||||
int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
|
||||
int (*xRowid)(sqlite3_vtab_cursor*, sqlite_int64 *pRowid);
|
||||
int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite_int64 *);
|
||||
int (*xBegin)(sqlite3_vtab *pVTab);
|
||||
int (*xSync)(sqlite3_vtab *pVTab);
|
||||
int (*xCommit)(sqlite3_vtab *pVTab);
|
||||
int (*xRollback)(sqlite3_vtab *pVTab);
|
||||
int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
|
||||
void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
|
||||
void **ppArg);
|
||||
};
|
||||
|
||||
/*
|
||||
** The sqlite3_index_info structure and its substructures is used to
|
||||
** pass information into and receive the reply from the xBestIndex
|
||||
** method of an sqlite3_module. The fields under **Inputs** are the
|
||||
** inputs to xBestIndex and are read-only. xBestIndex inserts its
|
||||
** results into the **Outputs** fields.
|
||||
**
|
||||
** The aConstraint[] array records WHERE clause constraints of the
|
||||
** form:
|
||||
**
|
||||
** column OP expr
|
||||
**
|
||||
** Where OP is =, <, <=, >, or >=. The particular operator is stored
|
||||
** in aConstraint[].op. The index of the column is stored in
|
||||
** aConstraint[].iColumn. aConstraint[].usable is TRUE if the
|
||||
** expr on the right-hand side can be evaluated (and thus the constraint
|
||||
** is usable) and false if it cannot.
|
||||
**
|
||||
** The optimizer automatically inverts terms of the form "expr OP column"
|
||||
** and makes other simplificatinos to the WHERE clause in an attempt to
|
||||
** get as many WHERE clause terms into the form shown above as possible.
|
||||
** The aConstraint[] array only reports WHERE clause terms in the correct
|
||||
** form that refer to the particular virtual table being queried.
|
||||
**
|
||||
** Information about the ORDER BY clause is stored in aOrderBy[].
|
||||
** Each term of aOrderBy records a column of the ORDER BY clause.
|
||||
**
|
||||
** The xBestIndex method must fill aConstraintUsage[] with information
|
||||
** about what parameters to pass to xFilter. If argvIndex>0 then
|
||||
** the right-hand side of the corresponding aConstraint[] is evaluated
|
||||
** and becomes the argvIndex-th entry in argv. If aConstraintUsage[].omit
|
||||
** is true, then the constraint is assumed to be fully handled by the
|
||||
** virtual table and is not checked again by SQLite.
|
||||
**
|
||||
** The idxNum and idxPtr values are recorded and passed into xFilter.
|
||||
** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true.
|
||||
**
|
||||
** The orderByConsumed means that output from xFilter will occur in
|
||||
** the correct order to satisfy the ORDER BY clause so that no separate
|
||||
** sorting step is required.
|
||||
**
|
||||
** The estimatedCost value is an estimate of the cost of doing the
|
||||
** particular lookup. A full scan of a table with N entries should have
|
||||
** a cost of N. A binary search of a table of N entries should have a
|
||||
** cost of approximately log(N).
|
||||
*/
|
||||
struct sqlite3_index_info {
|
||||
/* Inputs */
|
||||
const int nConstraint; /* Number of entries in aConstraint */
|
||||
const struct sqlite3_index_constraint {
|
||||
int iColumn; /* Column on left-hand side of constraint */
|
||||
unsigned char op; /* Constraint operator */
|
||||
unsigned char usable; /* True if this constraint is usable */
|
||||
int iTermOffset; /* Used internally - xBestIndex should ignore */
|
||||
} *const aConstraint; /* Table of WHERE clause constraints */
|
||||
const int nOrderBy; /* Number of terms in the ORDER BY clause */
|
||||
const struct sqlite3_index_orderby {
|
||||
int iColumn; /* Column number */
|
||||
unsigned char desc; /* True for DESC. False for ASC. */
|
||||
} *const aOrderBy; /* The ORDER BY clause */
|
||||
|
||||
/* Outputs */
|
||||
struct sqlite3_index_constraint_usage {
|
||||
int argvIndex; /* if >0, constraint is part of argv to xFilter */
|
||||
unsigned char omit; /* Do not code a test for this constraint */
|
||||
} *const aConstraintUsage;
|
||||
int idxNum; /* Number used to identify the index */
|
||||
char *idxStr; /* String, possibly obtained from sqlite3_malloc */
|
||||
int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */
|
||||
int orderByConsumed; /* True if output is already ordered */
|
||||
double estimatedCost; /* Estimated cost of using this index */
|
||||
};
|
||||
#define SQLITE_INDEX_CONSTRAINT_EQ 2
|
||||
#define SQLITE_INDEX_CONSTRAINT_GT 4
|
||||
#define SQLITE_INDEX_CONSTRAINT_LE 8
|
||||
#define SQLITE_INDEX_CONSTRAINT_LT 16
|
||||
#define SQLITE_INDEX_CONSTRAINT_GE 32
|
||||
#define SQLITE_INDEX_CONSTRAINT_MATCH 64
|
||||
|
||||
/*
|
||||
** This routine is used to register a new module name with an SQLite
|
||||
** connection. Module names must be registered before creating new
|
||||
** virtual tables on the module, or before using preexisting virtual
|
||||
** tables of the module.
|
||||
*/
|
||||
int sqlite3_create_module(
|
||||
sqlite3 *db, /* SQLite connection to register module with */
|
||||
const char *zName, /* Name of the module */
|
||||
const sqlite3_module *, /* Methods for the module */
|
||||
void * /* Client data for xCreate/xConnect */
|
||||
);
|
||||
|
||||
/*
|
||||
** Every module implementation uses a subclass of the following structure
|
||||
** to describe a particular instance of the module. Each subclass will
|
||||
** be taylored to the specific needs of the module implementation. The
|
||||
** purpose of this superclass is to define certain fields that are common
|
||||
** to all module implementations.
|
||||
**
|
||||
** Virtual tables methods can set an error message by assigning a
|
||||
** string obtained from sqlite3_mprintf() to zErrMsg. The method should
|
||||
** take care that any prior string is freed by a call to sqlite3_free()
|
||||
** prior to assigning a new string to zErrMsg. After the error message
|
||||
** is delivered up to the client application, the string will be automatically
|
||||
** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note
|
||||
** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field
|
||||
** since virtual tables are commonly implemented in loadable extensions which
|
||||
** do not have access to sqlite3MPrintf() or sqlite3Free().
|
||||
*/
|
||||
struct sqlite3_vtab {
|
||||
const sqlite3_module *pModule; /* The module for this virtual table */
|
||||
int nRef; /* Used internally */
|
||||
char *zErrMsg; /* Error message from sqlite3_mprintf() */
|
||||
/* Virtual table implementations will typically add additional fields */
|
||||
};
|
||||
|
||||
/* Every module implementation uses a subclass of the following structure
|
||||
** to describe cursors that point into the virtual table and are used
|
||||
** to loop through the virtual table. Cursors are created using the
|
||||
** xOpen method of the module. Each module implementation will define
|
||||
** the content of a cursor structure to suit its own needs.
|
||||
**
|
||||
** This superclass exists in order to define fields of the cursor that
|
||||
** are common to all implementations.
|
||||
*/
|
||||
struct sqlite3_vtab_cursor {
|
||||
sqlite3_vtab *pVtab; /* Virtual table of this cursor */
|
||||
/* Virtual table implementations will typically add additional fields */
|
||||
};
|
||||
|
||||
/*
|
||||
** The xCreate and xConnect methods of a module use the following API
|
||||
** to declare the format (the names and datatypes of the columns) of
|
||||
** the virtual tables they implement.
|
||||
*/
|
||||
int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable);
|
||||
|
||||
/*
|
||||
** Virtual tables can provide alternative implementations of functions
|
||||
** using the xFindFunction method. But global versions of those functions
|
||||
** must exist in order to be overloaded.
|
||||
**
|
||||
** This API makes sure a global version of a function with a particular
|
||||
** name and number of parameters exists. If no such function exists
|
||||
** before this API is called, a new function is created. The implementation
|
||||
** of the new function always causes an exception to be thrown. So
|
||||
** the new function is not good for anything by itself. Its only
|
||||
** purpose is to be a place-holder function that can be overloaded
|
||||
** by virtual tables.
|
||||
**
|
||||
** This API should be considered part of the virtual table interface,
|
||||
** which is experimental and subject to change.
|
||||
*/
|
||||
int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
|
||||
|
||||
/*
|
||||
** The interface to the virtual-table mechanism defined above (back up
|
||||
** to a comment remarkably similar to this one) is currently considered
|
||||
** to be experimental. The interface might change in incompatible ways.
|
||||
** If this is a problem for you, do not use the interface at this time.
|
||||
**
|
||||
** When the virtual-table mechanism stablizes, we will declare the
|
||||
** interface fixed, support it indefinitely, and remove this comment.
|
||||
**
|
||||
****** EXPERIMENTAL - subject to change without notice **************
|
||||
*/
|
||||
|
||||
/*
|
||||
** Undo the hack that converts floating point types to integer for
|
||||
** builds on processors without floating point support.
|
||||
|
@ -1879,6 +1476,19 @@ int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
|
|||
# undef double
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Preload the databases into the pager cache, up to the maximum size of the
|
||||
** pager cache.
|
||||
**
|
||||
** For a database to be loaded successfully, the pager must be active. That is,
|
||||
** there must be an open statement on that database. See sqlite3pager_loadall
|
||||
**
|
||||
** There might be many databases attached to the given connection. We iterate
|
||||
** them all and try to load them. If none are loadable successfully, we return
|
||||
** an error. Otherwise, we return OK.
|
||||
*/
|
||||
int sqlite3Preload(sqlite3* db);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} /* End of the 'extern "C"' block */
|
||||
#endif
|
||||
|
|
|
@ -21,7 +21,6 @@
|
|||
*
|
||||
* Contributor(s):
|
||||
* Brett Wilson <brettw@gmail.com> (original author)
|
||||
* Shawn Wilsher <me@shawnwilsher.com>
|
||||
*
|
||||
* Alternatively, the contents of this file may be used under the terms of
|
||||
* either the GNU General Public License Version 2 or later (the "GPL"), or
|
||||
|
@ -101,7 +100,6 @@ struct IoMethod {
|
|||
int (*xUnlock)(OsFile*, int);
|
||||
int (*xLockState)(OsFile *id);
|
||||
int (*xCheckReservedLock)(OsFile *id);
|
||||
int (*xSectorSize)(OsFile *id);
|
||||
};
|
||||
|
||||
/* FROM os.h
|
||||
|
@ -150,10 +148,6 @@ struct sqlite3OsVtbl {
|
|||
void *(*xRealloc)(void *, int);
|
||||
void (*xFree)(void *);
|
||||
int (*xAllocationSize)(void *);
|
||||
|
||||
void *(*xDlopen)(const char*);
|
||||
void *(*xDlsym)(void*, const char*);
|
||||
int (*xDlclose)(void*);
|
||||
};
|
||||
|
||||
/* FROM os.h
|
||||
|
@ -191,10 +185,7 @@ struct sqlite3OsVtbl {
|
|||
sqlite3OsMalloc,
|
||||
sqlite3OsRealloc,
|
||||
sqlite3OsFree,
|
||||
sqlite3OsAllocationSize,
|
||||
IF_DLOPEN( sqlite3OsDlopen ),
|
||||
IF_DLOPEN( sqlite3OsDlsym ),
|
||||
IF_DLOPEN( sqlite3OsDlclose ),
|
||||
sqlite3OsAllocationSize
|
||||
};
|
||||
#else
|
||||
/*
|
||||
|
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -0,0 +1,200 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the sqlite3_get_table() and sqlite3_free_table()
|
||||
** interface routines. These are just wrappers around the main
|
||||
** interface routine of sqlite3_exec().
|
||||
**
|
||||
** These routines are in a separate files so that they will not be linked
|
||||
** if they are not used.
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#ifndef SQLITE_OMIT_GET_TABLE
|
||||
|
||||
/*
|
||||
** This structure is used to pass data from sqlite3_get_table() through
|
||||
** to the callback function is uses to build the result.
|
||||
*/
|
||||
typedef struct TabResult {
|
||||
char **azResult;
|
||||
char *zErrMsg;
|
||||
int nResult;
|
||||
int nAlloc;
|
||||
int nRow;
|
||||
int nColumn;
|
||||
int nData;
|
||||
int rc;
|
||||
} TabResult;
|
||||
|
||||
/*
|
||||
** This routine is called once for each row in the result table. Its job
|
||||
** is to fill in the TabResult structure appropriately, allocating new
|
||||
** memory as necessary.
|
||||
*/
|
||||
static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
|
||||
TabResult *p = (TabResult*)pArg;
|
||||
int need;
|
||||
int i;
|
||||
char *z;
|
||||
|
||||
/* Make sure there is enough space in p->azResult to hold everything
|
||||
** we need to remember from this invocation of the callback.
|
||||
*/
|
||||
if( p->nRow==0 && argv!=0 ){
|
||||
need = nCol*2;
|
||||
}else{
|
||||
need = nCol;
|
||||
}
|
||||
if( p->nData + need >= p->nAlloc ){
|
||||
char **azNew;
|
||||
p->nAlloc = p->nAlloc*2 + need + 1;
|
||||
azNew = realloc( p->azResult, sizeof(char*)*p->nAlloc );
|
||||
if( azNew==0 ) goto malloc_failed;
|
||||
p->azResult = azNew;
|
||||
}
|
||||
|
||||
/* If this is the first row, then generate an extra row containing
|
||||
** the names of all columns.
|
||||
*/
|
||||
if( p->nRow==0 ){
|
||||
p->nColumn = nCol;
|
||||
for(i=0; i<nCol; i++){
|
||||
if( colv[i]==0 ){
|
||||
z = 0;
|
||||
}else{
|
||||
z = malloc( strlen(colv[i])+1 );
|
||||
if( z==0 ) goto malloc_failed;
|
||||
strcpy(z, colv[i]);
|
||||
}
|
||||
p->azResult[p->nData++] = z;
|
||||
}
|
||||
}else if( p->nColumn!=nCol ){
|
||||
sqlite3SetString(&p->zErrMsg,
|
||||
"sqlite3_get_table() called with two or more incompatible queries",
|
||||
(char*)0);
|
||||
p->rc = SQLITE_ERROR;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Copy over the row data
|
||||
*/
|
||||
if( argv!=0 ){
|
||||
for(i=0; i<nCol; i++){
|
||||
if( argv[i]==0 ){
|
||||
z = 0;
|
||||
}else{
|
||||
z = malloc( strlen(argv[i])+1 );
|
||||
if( z==0 ) goto malloc_failed;
|
||||
strcpy(z, argv[i]);
|
||||
}
|
||||
p->azResult[p->nData++] = z;
|
||||
}
|
||||
p->nRow++;
|
||||
}
|
||||
return 0;
|
||||
|
||||
malloc_failed:
|
||||
p->rc = SQLITE_NOMEM;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
** Query the database. But instead of invoking a callback for each row,
|
||||
** malloc() for space to hold the result and return the entire results
|
||||
** at the conclusion of the call.
|
||||
**
|
||||
** The result that is written to ***pazResult is held in memory obtained
|
||||
** from malloc(). But the caller cannot free this memory directly.
|
||||
** Instead, the entire table should be passed to sqlite3_free_table() when
|
||||
** the calling procedure is finished using it.
|
||||
*/
|
||||
int sqlite3_get_table(
|
||||
sqlite3 *db, /* The database on which the SQL executes */
|
||||
const char *zSql, /* The SQL to be executed */
|
||||
char ***pazResult, /* Write the result table here */
|
||||
int *pnRow, /* Write the number of rows in the result here */
|
||||
int *pnColumn, /* Write the number of columns of result here */
|
||||
char **pzErrMsg /* Write error messages here */
|
||||
){
|
||||
int rc;
|
||||
TabResult res;
|
||||
if( pazResult==0 ){ return SQLITE_ERROR; }
|
||||
*pazResult = 0;
|
||||
if( pnColumn ) *pnColumn = 0;
|
||||
if( pnRow ) *pnRow = 0;
|
||||
res.zErrMsg = 0;
|
||||
res.nResult = 0;
|
||||
res.nRow = 0;
|
||||
res.nColumn = 0;
|
||||
res.nData = 1;
|
||||
res.nAlloc = 20;
|
||||
res.rc = SQLITE_OK;
|
||||
res.azResult = malloc( sizeof(char*)*res.nAlloc );
|
||||
if( res.azResult==0 ) return SQLITE_NOMEM;
|
||||
res.azResult[0] = 0;
|
||||
rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg);
|
||||
if( res.azResult ){
|
||||
assert( sizeof(res.azResult[0])>= sizeof(res.nData) );
|
||||
res.azResult[0] = (char*)res.nData;
|
||||
}
|
||||
if( rc==SQLITE_ABORT ){
|
||||
sqlite3_free_table(&res.azResult[1]);
|
||||
if( res.zErrMsg ){
|
||||
if( pzErrMsg ){
|
||||
free(*pzErrMsg);
|
||||
*pzErrMsg = sqlite3_mprintf("%s",res.zErrMsg);
|
||||
}
|
||||
sqliteFree(res.zErrMsg);
|
||||
}
|
||||
db->errCode = res.rc;
|
||||
return res.rc;
|
||||
}
|
||||
sqliteFree(res.zErrMsg);
|
||||
if( rc!=SQLITE_OK ){
|
||||
sqlite3_free_table(&res.azResult[1]);
|
||||
return rc;
|
||||
}
|
||||
if( res.nAlloc>res.nData ){
|
||||
char **azNew;
|
||||
azNew = realloc( res.azResult, sizeof(char*)*(res.nData+1) );
|
||||
if( azNew==0 ){
|
||||
sqlite3_free_table(&res.azResult[1]);
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
res.nAlloc = res.nData+1;
|
||||
res.azResult = azNew;
|
||||
}
|
||||
*pazResult = &res.azResult[1];
|
||||
if( pnColumn ) *pnColumn = res.nColumn;
|
||||
if( pnRow ) *pnRow = res.nRow;
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine frees the space the sqlite3_get_table() malloced.
|
||||
*/
|
||||
void sqlite3_free_table(
|
||||
char **azResult /* Result returned from from sqlite3_get_table() */
|
||||
){
|
||||
if( azResult ){
|
||||
int i, n;
|
||||
azResult--;
|
||||
if( azResult==0 ) return;
|
||||
n = (int)azResult[0];
|
||||
for(i=1; i<n; i++){ if( azResult[i] ) free(azResult[i]); }
|
||||
free(azResult);
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* SQLITE_OMIT_GET_TABLE */
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -0,0 +1,485 @@
|
|||
/*
|
||||
** 2006 January 07
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
** This file contains demonstration code. Nothing in this file gets compiled
|
||||
** or linked into the SQLite library unless you use a non-standard option:
|
||||
**
|
||||
** -DSQLITE_SERVER=1
|
||||
**
|
||||
** The configure script will never generate a Makefile with the option
|
||||
** above. You will need to manually modify the Makefile if you want to
|
||||
** include any of the code from this file in your project. Or, at your
|
||||
** option, you may copy and paste the code from this file and
|
||||
** thereby avoiding a recompile of SQLite.
|
||||
**
|
||||
**
|
||||
** This source file demonstrates how to use SQLite to create an SQL database
|
||||
** server thread in a multiple-threaded program. One or more client threads
|
||||
** send messages to the server thread and the server thread processes those
|
||||
** messages in the order received and returns the results to the client.
|
||||
**
|
||||
** One might ask: "Why bother? Why not just let each thread connect
|
||||
** to the database directly?" There are a several of reasons to
|
||||
** prefer the client/server approach.
|
||||
**
|
||||
** (1) Some systems (ex: Redhat9) have broken threading implementations
|
||||
** that prevent SQLite database connections from being used in
|
||||
** a thread different from the one where they were created. With
|
||||
** the client/server approach, all database connections are created
|
||||
** and used within the server thread. Client calls to the database
|
||||
** can be made from multiple threads (though not at the same time!)
|
||||
**
|
||||
** (2) Beginning with SQLite version 3.3.0, when two or more
|
||||
** connections to the same database occur within the same thread,
|
||||
** they can optionally share their database cache. This reduces
|
||||
** I/O and memory requirements. Cache shared is controlled using
|
||||
** the sqlite3_enable_shared_cache() API.
|
||||
**
|
||||
** (3) Database connections on a shared cache use table-level locking
|
||||
** instead of file-level locking for improved concurrency.
|
||||
**
|
||||
** (4) Database connections on a shared cache can by optionally
|
||||
** set to READ UNCOMMITTED isolation. (The default isolation for
|
||||
** SQLite is SERIALIZABLE.) When this occurs, readers will
|
||||
** never be blocked by a writer and writers will not be
|
||||
** blocked by readers. There can still only be a single writer
|
||||
** at a time, but multiple readers can simultaneously exist with
|
||||
** that writer. This is a huge increase in concurrency.
|
||||
**
|
||||
** To summarize the rational for using a client/server approach: prior
|
||||
** to SQLite version 3.3.0 it probably was not worth the trouble. But
|
||||
** with SQLite version 3.3.0 and beyond you can get significant performance
|
||||
** and concurrency improvements and memory usage reductions by going
|
||||
** client/server.
|
||||
**
|
||||
** Note: The extra features of version 3.3.0 described by points (2)
|
||||
** through (4) above are only available if you compile without the
|
||||
** option -DSQLITE_OMIT_SHARED_CACHE.
|
||||
**
|
||||
** Here is how the client/server approach works: The database server
|
||||
** thread is started on this procedure:
|
||||
**
|
||||
** void *sqlite3_server(void *NotUsed);
|
||||
**
|
||||
** The sqlite_server procedure runs as long as the g.serverHalt variable
|
||||
** is false. A mutex is used to make sure no more than one server runs
|
||||
** at a time. The server waits for messages to arrive on a message
|
||||
** queue and processes the messages in order.
|
||||
**
|
||||
** Two convenience routines are provided for starting and stopping the
|
||||
** server thread:
|
||||
**
|
||||
** void sqlite3_server_start(void);
|
||||
** void sqlite3_server_stop(void);
|
||||
**
|
||||
** Both of the convenience routines return immediately. Neither will
|
||||
** ever give an error. If a server is already started or already halted,
|
||||
** then the routines are effectively no-ops.
|
||||
**
|
||||
** Clients use the following interfaces:
|
||||
**
|
||||
** sqlite3_client_open
|
||||
** sqlite3_client_prepare
|
||||
** sqlite3_client_step
|
||||
** sqlite3_client_reset
|
||||
** sqlite3_client_finalize
|
||||
** sqlite3_client_close
|
||||
**
|
||||
** These interfaces work exactly like the standard core SQLite interfaces
|
||||
** having the same names without the "_client_" infix. Many other SQLite
|
||||
** interfaces can be used directly without having to send messages to the
|
||||
** server as long as SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined.
|
||||
** The following interfaces fall into this second category:
|
||||
**
|
||||
** sqlite3_bind_*
|
||||
** sqlite3_changes
|
||||
** sqlite3_clear_bindings
|
||||
** sqlite3_column_*
|
||||
** sqlite3_complete
|
||||
** sqlite3_create_collation
|
||||
** sqlite3_create_function
|
||||
** sqlite3_data_count
|
||||
** sqlite3_db_handle
|
||||
** sqlite3_errcode
|
||||
** sqlite3_errmsg
|
||||
** sqlite3_last_insert_rowid
|
||||
** sqlite3_total_changes
|
||||
** sqlite3_transfer_bindings
|
||||
**
|
||||
** A single SQLite connection (an sqlite3* object) or an SQLite statement
|
||||
** (an sqlite3_stmt* object) should only be passed to a single interface
|
||||
** function at a time. The connections and statements can be passed from
|
||||
** any thread to any of the functions listed in the second group above as
|
||||
** long as the same connection is not in use by two threads at once and
|
||||
** as long as SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined. Additional
|
||||
** information about the SQLITE_ENABLE_MEMORY_MANAGEMENT constraint is
|
||||
** below.
|
||||
**
|
||||
** The busy handler for all database connections should remain turned
|
||||
** off. That means that any lock contention will cause the associated
|
||||
** sqlite3_client_step() call to return immediately with an SQLITE_BUSY
|
||||
** error code. If a busy handler is enabled and lock contention occurs,
|
||||
** then the entire server thread will block. This will cause not only
|
||||
** the requesting client to block but every other database client as
|
||||
** well. It is possible to enhance the code below so that lock
|
||||
** contention will cause the message to be placed back on the top of
|
||||
** the queue to be tried again later. But such enhanced processing is
|
||||
** not included here, in order to keep the example simple.
|
||||
**
|
||||
** This example code assumes the use of pthreads. Pthreads
|
||||
** implementations are available for windows. (See, for example
|
||||
** http://sourceware.org/pthreads-win32/announcement.html.) Or, you
|
||||
** can translate the locking and thread synchronization code to use
|
||||
** windows primitives easily enough. The details are left as an
|
||||
** exercise to the reader.
|
||||
**
|
||||
**** Restrictions Associated With SQLITE_ENABLE_MEMORY_MANAGEMENT ****
|
||||
**
|
||||
** If you compile with SQLITE_ENABLE_MEMORY_MANAGEMENT defined, then
|
||||
** SQLite includes code that tracks how much memory is being used by
|
||||
** each thread. These memory counts can become confused if memory
|
||||
** is allocated by one thread and then freed by another. For that
|
||||
** reason, when SQLITE_ENABLE_MEMORY_MANAGEMENT is used, all operations
|
||||
** that might allocate or free memory should be performanced in the same
|
||||
** thread that originally created the database connection. In that case,
|
||||
** many of the operations that are listed above as safe to be performed
|
||||
** in separate threads would need to be sent over to the server to be
|
||||
** done there. If SQLITE_ENABLE_MEMORY_MANAGEMENT is defined, then
|
||||
** the following functions can be used safely from different threads
|
||||
** without messing up the allocation counts:
|
||||
**
|
||||
** sqlite3_bind_parameter_name
|
||||
** sqlite3_bind_parameter_index
|
||||
** sqlite3_changes
|
||||
** sqlite3_column_blob
|
||||
** sqlite3_column_count
|
||||
** sqlite3_complete
|
||||
** sqlite3_data_count
|
||||
** sqlite3_db_handle
|
||||
** sqlite3_errcode
|
||||
** sqlite3_errmsg
|
||||
** sqlite3_last_insert_rowid
|
||||
** sqlite3_total_changes
|
||||
**
|
||||
** The remaining functions are not thread-safe when memory management
|
||||
** is enabled. So one would have to define some new interface routines
|
||||
** along the following lines:
|
||||
**
|
||||
** sqlite3_client_bind_*
|
||||
** sqlite3_client_clear_bindings
|
||||
** sqlite3_client_column_*
|
||||
** sqlite3_client_create_collation
|
||||
** sqlite3_client_create_function
|
||||
** sqlite3_client_transfer_bindings
|
||||
**
|
||||
** The example code in this file is intended for use with memory
|
||||
** management turned off. So the implementation of these additional
|
||||
** client interfaces is left as an exercise to the reader.
|
||||
**
|
||||
** It may seem surprising to the reader that the list of safe functions
|
||||
** above does not include things like sqlite3_bind_int() or
|
||||
** sqlite3_column_int(). But those routines might, in fact, allocate
|
||||
** or deallocate memory. In the case of sqlite3_bind_int(), if the
|
||||
** parameter was previously bound to a string that string might need
|
||||
** to be deallocated before the new integer value is inserted. In
|
||||
** the case of sqlite3_column_int(), the value of the column might be
|
||||
** a UTF-16 string which will need to be converted to UTF-8 then into
|
||||
** an integer.
|
||||
*/
|
||||
|
||||
/*
|
||||
** Only compile the code in this file on UNIX with a THREADSAFE build
|
||||
** and only if the SQLITE_SERVER macro is defined.
|
||||
*/
|
||||
#if defined(SQLITE_SERVER) && !defined(SQLITE_OMIT_SHARED_CACHE)
|
||||
#if defined(OS_UNIX) && OS_UNIX && defined(THREADSAFE) && THREADSAFE
|
||||
|
||||
/*
|
||||
** We require only pthreads and the public interface of SQLite.
|
||||
*/
|
||||
#include <pthread.h>
|
||||
#include "sqlite3.h"
|
||||
|
||||
/*
|
||||
** Messages are passed from client to server and back again as
|
||||
** instances of the following structure.
|
||||
*/
|
||||
typedef struct SqlMessage SqlMessage;
|
||||
struct SqlMessage {
|
||||
int op; /* Opcode for the message */
|
||||
sqlite3 *pDb; /* The SQLite connection */
|
||||
sqlite3_stmt *pStmt; /* A specific statement */
|
||||
int errCode; /* Error code returned */
|
||||
const char *zIn; /* Input filename or SQL statement */
|
||||
int nByte; /* Size of the zIn parameter for prepare() */
|
||||
const char *zOut; /* Tail of the SQL statement */
|
||||
SqlMessage *pNext; /* Next message in the queue */
|
||||
SqlMessage *pPrev; /* Previous message in the queue */
|
||||
pthread_mutex_t clientMutex; /* Hold this mutex to access the message */
|
||||
pthread_cond_t clientWakeup; /* Signal to wake up the client */
|
||||
};
|
||||
|
||||
/*
|
||||
** Legal values for SqlMessage.op
|
||||
*/
|
||||
#define MSG_Open 1 /* sqlite3_open(zIn, &pDb) */
|
||||
#define MSG_Prepare 2 /* sqlite3_prepare(pDb, zIn, nByte, &pStmt, &zOut) */
|
||||
#define MSG_Step 3 /* sqlite3_step(pStmt) */
|
||||
#define MSG_Reset 4 /* sqlite3_reset(pStmt) */
|
||||
#define MSG_Finalize 5 /* sqlite3_finalize(pStmt) */
|
||||
#define MSG_Close 6 /* sqlite3_close(pDb) */
|
||||
#define MSG_Done 7 /* Server has finished with this message */
|
||||
|
||||
|
||||
/*
|
||||
** State information about the server is stored in a static variable
|
||||
** named "g" as follows:
|
||||
*/
|
||||
static struct ServerState {
|
||||
pthread_mutex_t queueMutex; /* Hold this mutex to access the msg queue */
|
||||
pthread_mutex_t serverMutex; /* Held by the server while it is running */
|
||||
pthread_cond_t serverWakeup; /* Signal this condvar to wake up the server */
|
||||
volatile int serverHalt; /* Server halts itself when true */
|
||||
SqlMessage *pQueueHead; /* Head of the message queue */
|
||||
SqlMessage *pQueueTail; /* Tail of the message queue */
|
||||
} g = {
|
||||
PTHREAD_MUTEX_INITIALIZER,
|
||||
PTHREAD_MUTEX_INITIALIZER,
|
||||
PTHREAD_COND_INITIALIZER,
|
||||
};
|
||||
|
||||
/*
|
||||
** Send a message to the server. Block until we get a reply.
|
||||
**
|
||||
** The mutex and condition variable in the message are uninitialized
|
||||
** when this routine is called. This routine takes care of
|
||||
** initializing them and destroying them when it has finished.
|
||||
*/
|
||||
static void sendToServer(SqlMessage *pMsg){
|
||||
/* Initialize the mutex and condition variable on the message
|
||||
*/
|
||||
pthread_mutex_init(&pMsg->clientMutex, 0);
|
||||
pthread_cond_init(&pMsg->clientWakeup, 0);
|
||||
|
||||
/* Add the message to the head of the server's message queue.
|
||||
*/
|
||||
pthread_mutex_lock(&g.queueMutex);
|
||||
pMsg->pNext = g.pQueueHead;
|
||||
if( g.pQueueHead==0 ){
|
||||
g.pQueueTail = pMsg;
|
||||
}else{
|
||||
g.pQueueHead->pPrev = pMsg;
|
||||
}
|
||||
pMsg->pPrev = 0;
|
||||
g.pQueueHead = pMsg;
|
||||
pthread_mutex_unlock(&g.queueMutex);
|
||||
|
||||
/* Signal the server that the new message has be queued, then
|
||||
** block waiting for the server to process the message.
|
||||
*/
|
||||
pthread_mutex_lock(&pMsg->clientMutex);
|
||||
pthread_cond_signal(&g.serverWakeup);
|
||||
while( pMsg->op!=MSG_Done ){
|
||||
pthread_cond_wait(&pMsg->clientWakeup, &pMsg->clientMutex);
|
||||
}
|
||||
pthread_mutex_unlock(&pMsg->clientMutex);
|
||||
|
||||
/* Destroy the mutex and condition variable of the message.
|
||||
*/
|
||||
pthread_mutex_destroy(&pMsg->clientMutex);
|
||||
pthread_cond_destroy(&pMsg->clientWakeup);
|
||||
}
|
||||
|
||||
/*
|
||||
** The following 6 routines are client-side implementations of the
|
||||
** core SQLite interfaces:
|
||||
**
|
||||
** sqlite3_open
|
||||
** sqlite3_prepare
|
||||
** sqlite3_step
|
||||
** sqlite3_reset
|
||||
** sqlite3_finalize
|
||||
** sqlite3_close
|
||||
**
|
||||
** Clients should use the following client-side routines instead of
|
||||
** the core routines above.
|
||||
**
|
||||
** sqlite3_client_open
|
||||
** sqlite3_client_prepare
|
||||
** sqlite3_client_step
|
||||
** sqlite3_client_reset
|
||||
** sqlite3_client_finalize
|
||||
** sqlite3_client_close
|
||||
**
|
||||
** Each of these routines creates a message for the desired operation,
|
||||
** sends that message to the server, waits for the server to process
|
||||
** then message and return a response.
|
||||
*/
|
||||
int sqlite3_client_open(const char *zDatabaseName, sqlite3 **ppDb){
|
||||
SqlMessage msg;
|
||||
msg.op = MSG_Open;
|
||||
msg.zIn = zDatabaseName;
|
||||
sendToServer(&msg);
|
||||
*ppDb = msg.pDb;
|
||||
return msg.errCode;
|
||||
}
|
||||
int sqlite3_client_prepare(
|
||||
sqlite3 *pDb,
|
||||
const char *zSql,
|
||||
int nByte,
|
||||
sqlite3_stmt **ppStmt,
|
||||
const char **pzTail
|
||||
){
|
||||
SqlMessage msg;
|
||||
msg.op = MSG_Prepare;
|
||||
msg.pDb = pDb;
|
||||
msg.zIn = zSql;
|
||||
msg.nByte = nByte;
|
||||
sendToServer(&msg);
|
||||
*ppStmt = msg.pStmt;
|
||||
if( pzTail ) *pzTail = msg.zOut;
|
||||
return msg.errCode;
|
||||
}
|
||||
int sqlite3_client_step(sqlite3_stmt *pStmt){
|
||||
SqlMessage msg;
|
||||
msg.op = MSG_Step;
|
||||
msg.pStmt = pStmt;
|
||||
sendToServer(&msg);
|
||||
return msg.errCode;
|
||||
}
|
||||
int sqlite3_client_reset(sqlite3_stmt *pStmt){
|
||||
SqlMessage msg;
|
||||
msg.op = MSG_Reset;
|
||||
msg.pStmt = pStmt;
|
||||
sendToServer(&msg);
|
||||
return msg.errCode;
|
||||
}
|
||||
int sqlite3_client_finalize(sqlite3_stmt *pStmt){
|
||||
SqlMessage msg;
|
||||
msg.op = MSG_Finalize;
|
||||
msg.pStmt = pStmt;
|
||||
sendToServer(&msg);
|
||||
return msg.errCode;
|
||||
}
|
||||
int sqlite3_client_close(sqlite3 *pDb){
|
||||
SqlMessage msg;
|
||||
msg.op = MSG_Close;
|
||||
msg.pDb = pDb;
|
||||
sendToServer(&msg);
|
||||
return msg.errCode;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine implements the server. To start the server, first
|
||||
** make sure g.serverHalt is false, then create a new detached thread
|
||||
** on this procedure. See the sqlite3_server_start() routine below
|
||||
** for an example. This procedure loops until g.serverHalt becomes
|
||||
** true.
|
||||
*/
|
||||
void *sqlite3_server(void *NotUsed){
|
||||
sqlite3_enable_shared_cache(1);
|
||||
if( pthread_mutex_trylock(&g.serverMutex) ){
|
||||
sqlite3_enable_shared_cache(0);
|
||||
return 0; /* Another server is already running */
|
||||
}
|
||||
while( !g.serverHalt ){
|
||||
SqlMessage *pMsg;
|
||||
|
||||
/* Remove the last message from the message queue.
|
||||
*/
|
||||
pthread_mutex_lock(&g.queueMutex);
|
||||
while( g.pQueueTail==0 && g.serverHalt==0 ){
|
||||
pthread_cond_wait(&g.serverWakeup, &g.queueMutex);
|
||||
}
|
||||
pMsg = g.pQueueTail;
|
||||
if( pMsg ){
|
||||
if( pMsg->pPrev ){
|
||||
pMsg->pPrev->pNext = 0;
|
||||
}else{
|
||||
g.pQueueHead = 0;
|
||||
}
|
||||
g.pQueueTail = pMsg->pPrev;
|
||||
}
|
||||
pthread_mutex_unlock(&g.queueMutex);
|
||||
if( pMsg==0 ) break;
|
||||
|
||||
/* Process the message just removed
|
||||
*/
|
||||
pthread_mutex_lock(&pMsg->clientMutex);
|
||||
switch( pMsg->op ){
|
||||
case MSG_Open: {
|
||||
pMsg->errCode = sqlite3_open(pMsg->zIn, &pMsg->pDb);
|
||||
break;
|
||||
}
|
||||
case MSG_Prepare: {
|
||||
pMsg->errCode = sqlite3_prepare(pMsg->pDb, pMsg->zIn, pMsg->nByte,
|
||||
&pMsg->pStmt, &pMsg->zOut);
|
||||
break;
|
||||
}
|
||||
case MSG_Step: {
|
||||
pMsg->errCode = sqlite3_step(pMsg->pStmt);
|
||||
break;
|
||||
}
|
||||
case MSG_Reset: {
|
||||
pMsg->errCode = sqlite3_reset(pMsg->pStmt);
|
||||
break;
|
||||
}
|
||||
case MSG_Finalize: {
|
||||
pMsg->errCode = sqlite3_finalize(pMsg->pStmt);
|
||||
break;
|
||||
}
|
||||
case MSG_Close: {
|
||||
pMsg->errCode = sqlite3_close(pMsg->pDb);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Signal the client that the message has been processed.
|
||||
*/
|
||||
pMsg->op = MSG_Done;
|
||||
pthread_mutex_unlock(&pMsg->clientMutex);
|
||||
pthread_cond_signal(&pMsg->clientWakeup);
|
||||
}
|
||||
pthread_mutex_unlock(&g.serverMutex);
|
||||
sqlite3_thread_cleanup();
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Start a server thread if one is not already running. If there
|
||||
** is aleady a server thread running, the new thread will quickly
|
||||
** die and this routine is effectively a no-op.
|
||||
*/
|
||||
void sqlite3_server_start(void){
|
||||
pthread_t x;
|
||||
int rc;
|
||||
g.serverHalt = 0;
|
||||
rc = pthread_create(&x, 0, sqlite3_server, 0);
|
||||
if( rc==0 ){
|
||||
pthread_detach(x);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** If a server thread is running, then stop it. If no server is
|
||||
** running, this routine is effectively a no-op.
|
||||
**
|
||||
** This routine returns immediately without waiting for the server
|
||||
** thread to stop. But be assured that the server will eventually stop.
|
||||
*/
|
||||
void sqlite3_server_stop(void){
|
||||
g.serverHalt = 1;
|
||||
pthread_cond_broadcast(&g.serverWakeup);
|
||||
}
|
||||
|
||||
#endif /* defined(OS_UNIX) && OS_UNIX && defined(THREADSAFE) && THREADSAFE */
|
||||
#endif /* defined(SQLITE_SERVER) */
|
|
@ -0,0 +1,493 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** An tokenizer for SQL
|
||||
**
|
||||
** This file contains C code that splits an SQL input string up into
|
||||
** individual tokens and sends those tokens one-by-one over to the
|
||||
** parser for analysis.
|
||||
**
|
||||
** $Id: tokenize.c,v 1.118 2006/04/04 01:54:55 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "os.h"
|
||||
#include <ctype.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/*
|
||||
** The charMap() macro maps alphabetic characters into their
|
||||
** lower-case ASCII equivalent. On ASCII machines, this is just
|
||||
** an upper-to-lower case map. On EBCDIC machines we also need
|
||||
** to adjust the encoding. Only alphabetic characters and underscores
|
||||
** need to be translated.
|
||||
*/
|
||||
#ifdef SQLITE_ASCII
|
||||
# define charMap(X) sqlite3UpperToLower[(unsigned char)X]
|
||||
#endif
|
||||
#ifdef SQLITE_EBCDIC
|
||||
# define charMap(X) ebcdicToAscii[(unsigned char)X]
|
||||
const unsigned char ebcdicToAscii[] = {
|
||||
/* 0 1 2 3 4 5 6 7 8 9 A B C D E F */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 3x */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4x */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 5x */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 95, 0, 0, /* 6x */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 7x */
|
||||
0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* 8x */
|
||||
0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* 9x */
|
||||
0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ax */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
|
||||
0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* Cx */
|
||||
0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* Dx */
|
||||
0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ex */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Fx */
|
||||
};
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The sqlite3KeywordCode function looks up an identifier to determine if
|
||||
** it is a keyword. If it is a keyword, the token code of that keyword is
|
||||
** returned. If the input is not a keyword, TK_ID is returned.
|
||||
**
|
||||
** The implementation of this routine was generated by a program,
|
||||
** mkkeywordhash.h, located in the tool subdirectory of the distribution.
|
||||
** The output of the mkkeywordhash.c program is written into a file
|
||||
** named keywordhash.h and then included into this source file by
|
||||
** the #include below.
|
||||
*/
|
||||
#include "keywordhash.h"
|
||||
|
||||
|
||||
/*
|
||||
** If X is a character that can be used in an identifier then
|
||||
** IdChar(X) will be true. Otherwise it is false.
|
||||
**
|
||||
** For ASCII, any character with the high-order bit set is
|
||||
** allowed in an identifier. For 7-bit characters,
|
||||
** sqlite3IsIdChar[X] must be 1.
|
||||
**
|
||||
** For EBCDIC, the rules are more complex but have the same
|
||||
** end result.
|
||||
**
|
||||
** Ticket #1066. the SQL standard does not allow '$' in the
|
||||
** middle of identfiers. But many SQL implementations do.
|
||||
** SQLite will allow '$' in identifiers for compatibility.
|
||||
** But the feature is undocumented.
|
||||
*/
|
||||
#ifdef SQLITE_ASCII
|
||||
const char sqlite3IsIdChar[] = {
|
||||
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
|
||||
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
|
||||
};
|
||||
#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsIdChar[c-0x20]))
|
||||
#endif
|
||||
#ifdef SQLITE_EBCDIC
|
||||
const char sqlite3IsIdChar[] = {
|
||||
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 4x */
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, /* 5x */
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, /* 6x */
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, /* 7x */
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, /* 8x */
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, /* 9x */
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, /* Ax */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Cx */
|
||||
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Dx */
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */
|
||||
};
|
||||
#define IdChar(C) (((c=C)>=0x42 && sqlite3IsIdChar[c-0x40]))
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** Return the length of the token that begins at z[0].
|
||||
** Store the token type in *tokenType before returning.
|
||||
*/
|
||||
static int getToken(const unsigned char *z, int *tokenType){
|
||||
int i, c;
|
||||
switch( *z ){
|
||||
case ' ': case '\t': case '\n': case '\f': case '\r': {
|
||||
for(i=1; isspace(z[i]); i++){}
|
||||
*tokenType = TK_SPACE;
|
||||
return i;
|
||||
}
|
||||
case '-': {
|
||||
if( z[1]=='-' ){
|
||||
for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
|
||||
*tokenType = TK_COMMENT;
|
||||
return i;
|
||||
}
|
||||
*tokenType = TK_MINUS;
|
||||
return 1;
|
||||
}
|
||||
case '(': {
|
||||
*tokenType = TK_LP;
|
||||
return 1;
|
||||
}
|
||||
case ')': {
|
||||
*tokenType = TK_RP;
|
||||
return 1;
|
||||
}
|
||||
case ';': {
|
||||
*tokenType = TK_SEMI;
|
||||
return 1;
|
||||
}
|
||||
case '+': {
|
||||
*tokenType = TK_PLUS;
|
||||
return 1;
|
||||
}
|
||||
case '*': {
|
||||
*tokenType = TK_STAR;
|
||||
return 1;
|
||||
}
|
||||
case '/': {
|
||||
if( z[1]!='*' || z[2]==0 ){
|
||||
*tokenType = TK_SLASH;
|
||||
return 1;
|
||||
}
|
||||
for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
|
||||
if( c ) i++;
|
||||
*tokenType = TK_COMMENT;
|
||||
return i;
|
||||
}
|
||||
case '%': {
|
||||
*tokenType = TK_REM;
|
||||
return 1;
|
||||
}
|
||||
case '=': {
|
||||
*tokenType = TK_EQ;
|
||||
return 1 + (z[1]=='=');
|
||||
}
|
||||
case '<': {
|
||||
if( (c=z[1])=='=' ){
|
||||
*tokenType = TK_LE;
|
||||
return 2;
|
||||
}else if( c=='>' ){
|
||||
*tokenType = TK_NE;
|
||||
return 2;
|
||||
}else if( c=='<' ){
|
||||
*tokenType = TK_LSHIFT;
|
||||
return 2;
|
||||
}else{
|
||||
*tokenType = TK_LT;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
case '>': {
|
||||
if( (c=z[1])=='=' ){
|
||||
*tokenType = TK_GE;
|
||||
return 2;
|
||||
}else if( c=='>' ){
|
||||
*tokenType = TK_RSHIFT;
|
||||
return 2;
|
||||
}else{
|
||||
*tokenType = TK_GT;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
case '!': {
|
||||
if( z[1]!='=' ){
|
||||
*tokenType = TK_ILLEGAL;
|
||||
return 2;
|
||||
}else{
|
||||
*tokenType = TK_NE;
|
||||
return 2;
|
||||
}
|
||||
}
|
||||
case '|': {
|
||||
if( z[1]!='|' ){
|
||||
*tokenType = TK_BITOR;
|
||||
return 1;
|
||||
}else{
|
||||
*tokenType = TK_CONCAT;
|
||||
return 2;
|
||||
}
|
||||
}
|
||||
case ',': {
|
||||
*tokenType = TK_COMMA;
|
||||
return 1;
|
||||
}
|
||||
case '&': {
|
||||
*tokenType = TK_BITAND;
|
||||
return 1;
|
||||
}
|
||||
case '~': {
|
||||
*tokenType = TK_BITNOT;
|
||||
return 1;
|
||||
}
|
||||
case '`':
|
||||
case '\'':
|
||||
case '"': {
|
||||
int delim = z[0];
|
||||
for(i=1; (c=z[i])!=0; i++){
|
||||
if( c==delim ){
|
||||
if( z[i+1]==delim ){
|
||||
i++;
|
||||
}else{
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if( c ){
|
||||
*tokenType = TK_STRING;
|
||||
return i+1;
|
||||
}else{
|
||||
*tokenType = TK_ILLEGAL;
|
||||
return i;
|
||||
}
|
||||
}
|
||||
case '.': {
|
||||
#ifndef SQLITE_OMIT_FLOATING_POINT
|
||||
if( !isdigit(z[1]) )
|
||||
#endif
|
||||
{
|
||||
*tokenType = TK_DOT;
|
||||
return 1;
|
||||
}
|
||||
/* If the next character is a digit, this is a floating point
|
||||
** number that begins with ".". Fall thru into the next case */
|
||||
}
|
||||
case '0': case '1': case '2': case '3': case '4':
|
||||
case '5': case '6': case '7': case '8': case '9': {
|
||||
*tokenType = TK_INTEGER;
|
||||
for(i=0; isdigit(z[i]); i++){}
|
||||
#ifndef SQLITE_OMIT_FLOATING_POINT
|
||||
if( z[i]=='.' ){
|
||||
i++;
|
||||
while( isdigit(z[i]) ){ i++; }
|
||||
*tokenType = TK_FLOAT;
|
||||
}
|
||||
if( (z[i]=='e' || z[i]=='E') &&
|
||||
( isdigit(z[i+1])
|
||||
|| ((z[i+1]=='+' || z[i+1]=='-') && isdigit(z[i+2]))
|
||||
)
|
||||
){
|
||||
i += 2;
|
||||
while( isdigit(z[i]) ){ i++; }
|
||||
*tokenType = TK_FLOAT;
|
||||
}
|
||||
#endif
|
||||
return i;
|
||||
}
|
||||
case '[': {
|
||||
for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
|
||||
*tokenType = TK_ID;
|
||||
return i;
|
||||
}
|
||||
case '?': {
|
||||
*tokenType = TK_VARIABLE;
|
||||
for(i=1; isdigit(z[i]); i++){}
|
||||
return i;
|
||||
}
|
||||
case '#': {
|
||||
for(i=1; isdigit(z[i]); i++){}
|
||||
if( i>1 ){
|
||||
/* Parameters of the form #NNN (where NNN is a number) are used
|
||||
** internally by sqlite3NestedParse. */
|
||||
*tokenType = TK_REGISTER;
|
||||
return i;
|
||||
}
|
||||
/* Fall through into the next case if the '#' is not followed by
|
||||
** a digit. Try to match #AAAA where AAAA is a parameter name. */
|
||||
}
|
||||
#ifndef SQLITE_OMIT_TCL_VARIABLE
|
||||
case '$':
|
||||
#endif
|
||||
case '@': /* For compatibility with MS SQL Server */
|
||||
case ':': {
|
||||
int n = 0;
|
||||
*tokenType = TK_VARIABLE;
|
||||
for(i=1; (c=z[i])!=0; i++){
|
||||
if( IdChar(c) ){
|
||||
n++;
|
||||
#ifndef SQLITE_OMIT_TCL_VARIABLE
|
||||
}else if( c=='(' && n>0 ){
|
||||
do{
|
||||
i++;
|
||||
}while( (c=z[i])!=0 && !isspace(c) && c!=')' );
|
||||
if( c==')' ){
|
||||
i++;
|
||||
}else{
|
||||
*tokenType = TK_ILLEGAL;
|
||||
}
|
||||
break;
|
||||
}else if( c==':' && z[i+1]==':' ){
|
||||
i++;
|
||||
#endif
|
||||
}else{
|
||||
break;
|
||||
}
|
||||
}
|
||||
if( n==0 ) *tokenType = TK_ILLEGAL;
|
||||
return i;
|
||||
}
|
||||
#ifndef SQLITE_OMIT_BLOB_LITERAL
|
||||
case 'x': case 'X': {
|
||||
if( (c=z[1])=='\'' || c=='"' ){
|
||||
int delim = c;
|
||||
*tokenType = TK_BLOB;
|
||||
for(i=2; (c=z[i])!=0; i++){
|
||||
if( c==delim ){
|
||||
if( i%2 ) *tokenType = TK_ILLEGAL;
|
||||
break;
|
||||
}
|
||||
if( !isxdigit(c) ){
|
||||
*tokenType = TK_ILLEGAL;
|
||||
return i;
|
||||
}
|
||||
}
|
||||
if( c ) i++;
|
||||
return i;
|
||||
}
|
||||
/* Otherwise fall through to the next case */
|
||||
}
|
||||
#endif
|
||||
default: {
|
||||
if( !IdChar(*z) ){
|
||||
break;
|
||||
}
|
||||
for(i=1; IdChar(z[i]); i++){}
|
||||
*tokenType = keywordCode((char*)z, i);
|
||||
return i;
|
||||
}
|
||||
}
|
||||
*tokenType = TK_ILLEGAL;
|
||||
return 1;
|
||||
}
|
||||
int sqlite3GetToken(const unsigned char *z, int *tokenType){
|
||||
return getToken(z, tokenType);
|
||||
}
|
||||
|
||||
/*
|
||||
** Run the parser on the given SQL string. The parser structure is
|
||||
** passed in. An SQLITE_ status code is returned. If an error occurs
|
||||
** and pzErrMsg!=NULL then an error message might be written into
|
||||
** memory obtained from malloc() and *pzErrMsg made to point to that
|
||||
** error message. Or maybe not.
|
||||
*/
|
||||
int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
|
||||
int nErr = 0;
|
||||
int i;
|
||||
void *pEngine;
|
||||
int tokenType;
|
||||
int lastTokenParsed = -1;
|
||||
sqlite3 *db = pParse->db;
|
||||
extern void *sqlite3ParserAlloc(void*(*)(int));
|
||||
extern void sqlite3ParserFree(void*, void(*)(void*));
|
||||
extern int sqlite3Parser(void*, int, Token, Parse*);
|
||||
|
||||
db->flags &= ~SQLITE_Interrupt;
|
||||
pParse->rc = SQLITE_OK;
|
||||
i = 0;
|
||||
pEngine = sqlite3ParserAlloc((void*(*)(int))sqlite3MallocX);
|
||||
if( pEngine==0 ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
assert( pParse->sLastToken.dyn==0 );
|
||||
assert( pParse->pNewTable==0 );
|
||||
assert( pParse->pNewTrigger==0 );
|
||||
assert( pParse->nVar==0 );
|
||||
assert( pParse->nVarExpr==0 );
|
||||
assert( pParse->nVarExprAlloc==0 );
|
||||
assert( pParse->apVarExpr==0 );
|
||||
pParse->zTail = pParse->zSql = zSql;
|
||||
while( !sqlite3MallocFailed() && zSql[i]!=0 ){
|
||||
assert( i>=0 );
|
||||
pParse->sLastToken.z = (u8*)&zSql[i];
|
||||
assert( pParse->sLastToken.dyn==0 );
|
||||
pParse->sLastToken.n = getToken((unsigned char*)&zSql[i],&tokenType);
|
||||
i += pParse->sLastToken.n;
|
||||
switch( tokenType ){
|
||||
case TK_SPACE:
|
||||
case TK_COMMENT: {
|
||||
if( (db->flags & SQLITE_Interrupt)!=0 ){
|
||||
pParse->rc = SQLITE_INTERRUPT;
|
||||
sqlite3SetString(pzErrMsg, "interrupt", (char*)0);
|
||||
goto abort_parse;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case TK_ILLEGAL: {
|
||||
if( pzErrMsg ){
|
||||
sqliteFree(*pzErrMsg);
|
||||
*pzErrMsg = sqlite3MPrintf("unrecognized token: \"%T\"",
|
||||
&pParse->sLastToken);
|
||||
}
|
||||
nErr++;
|
||||
goto abort_parse;
|
||||
}
|
||||
case TK_SEMI: {
|
||||
pParse->zTail = &zSql[i];
|
||||
/* Fall thru into the default case */
|
||||
}
|
||||
default: {
|
||||
sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse);
|
||||
lastTokenParsed = tokenType;
|
||||
if( pParse->rc!=SQLITE_OK ){
|
||||
goto abort_parse;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
abort_parse:
|
||||
if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){
|
||||
if( lastTokenParsed!=TK_SEMI ){
|
||||
sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
|
||||
pParse->zTail = &zSql[i];
|
||||
}
|
||||
sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
|
||||
}
|
||||
sqlite3ParserFree(pEngine, sqlite3FreeX);
|
||||
if( sqlite3MallocFailed() ){
|
||||
pParse->rc = SQLITE_NOMEM;
|
||||
}
|
||||
if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
|
||||
sqlite3SetString(&pParse->zErrMsg, sqlite3ErrStr(pParse->rc), (char*)0);
|
||||
}
|
||||
if( pParse->zErrMsg ){
|
||||
if( pzErrMsg && *pzErrMsg==0 ){
|
||||
*pzErrMsg = pParse->zErrMsg;
|
||||
}else{
|
||||
sqliteFree(pParse->zErrMsg);
|
||||
}
|
||||
pParse->zErrMsg = 0;
|
||||
if( !nErr ) nErr++;
|
||||
}
|
||||
if( pParse->pVdbe && pParse->nErr>0 && pParse->nested==0 ){
|
||||
sqlite3VdbeDelete(pParse->pVdbe);
|
||||
pParse->pVdbe = 0;
|
||||
}
|
||||
#ifndef SQLITE_OMIT_SHARED_CACHE
|
||||
if( pParse->nested==0 ){
|
||||
sqliteFree(pParse->aTableLock);
|
||||
pParse->aTableLock = 0;
|
||||
pParse->nTableLock = 0;
|
||||
}
|
||||
#endif
|
||||
sqlite3DeleteTable(pParse->db, pParse->pNewTable);
|
||||
sqlite3DeleteTrigger(pParse->pNewTrigger);
|
||||
sqliteFree(pParse->apVarExpr);
|
||||
if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){
|
||||
pParse->rc = SQLITE_ERROR;
|
||||
}
|
||||
return nErr;
|
||||
}
|
|
@ -0,0 +1,813 @@
|
|||
/*
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
*
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
/*
|
||||
** Delete a linked list of TriggerStep structures.
|
||||
*/
|
||||
void sqlite3DeleteTriggerStep(TriggerStep *pTriggerStep){
|
||||
while( pTriggerStep ){
|
||||
TriggerStep * pTmp = pTriggerStep;
|
||||
pTriggerStep = pTriggerStep->pNext;
|
||||
|
||||
if( pTmp->target.dyn ) sqliteFree((char*)pTmp->target.z);
|
||||
sqlite3ExprDelete(pTmp->pWhere);
|
||||
sqlite3ExprListDelete(pTmp->pExprList);
|
||||
sqlite3SelectDelete(pTmp->pSelect);
|
||||
sqlite3IdListDelete(pTmp->pIdList);
|
||||
|
||||
sqliteFree(pTmp);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** This is called by the parser when it sees a CREATE TRIGGER statement
|
||||
** up to the point of the BEGIN before the trigger actions. A Trigger
|
||||
** structure is generated based on the information available and stored
|
||||
** in pParse->pNewTrigger. After the trigger actions have been parsed, the
|
||||
** sqlite3FinishTrigger() function is called to complete the trigger
|
||||
** construction process.
|
||||
*/
|
||||
void sqlite3BeginTrigger(
|
||||
Parse *pParse, /* The parse context of the CREATE TRIGGER statement */
|
||||
Token *pName1, /* The name of the trigger */
|
||||
Token *pName2, /* The name of the trigger */
|
||||
int tr_tm, /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */
|
||||
int op, /* One of TK_INSERT, TK_UPDATE, TK_DELETE */
|
||||
IdList *pColumns, /* column list if this is an UPDATE OF trigger */
|
||||
SrcList *pTableName,/* The name of the table/view the trigger applies to */
|
||||
int foreach, /* One of TK_ROW or TK_STATEMENT */
|
||||
Expr *pWhen, /* WHEN clause */
|
||||
int isTemp /* True if the TEMPORARY keyword is present */
|
||||
){
|
||||
Trigger *pTrigger = 0;
|
||||
Table *pTab;
|
||||
char *zName = 0; /* Name of the trigger */
|
||||
sqlite3 *db = pParse->db;
|
||||
int iDb; /* The database to store the trigger in */
|
||||
Token *pName; /* The unqualified db name */
|
||||
DbFixer sFix;
|
||||
int iTabDb;
|
||||
|
||||
assert( pName1!=0 ); /* pName1->z might be NULL, but not pName1 itself */
|
||||
assert( pName2!=0 );
|
||||
if( isTemp ){
|
||||
/* If TEMP was specified, then the trigger name may not be qualified. */
|
||||
if( pName2->n>0 ){
|
||||
sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name");
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
iDb = 1;
|
||||
pName = pName1;
|
||||
}else{
|
||||
/* Figure out the db that the the trigger will be created in */
|
||||
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
||||
if( iDb<0 ){
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
/* If the trigger name was unqualified, and the table is a temp table,
|
||||
** then set iDb to 1 to create the trigger in the temporary database.
|
||||
** If sqlite3SrcListLookup() returns 0, indicating the table does not
|
||||
** exist, the error is caught by the block below.
|
||||
*/
|
||||
if( !pTableName || sqlite3MallocFailed() ){
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
pTab = sqlite3SrcListLookup(pParse, pTableName);
|
||||
if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
|
||||
iDb = 1;
|
||||
}
|
||||
|
||||
/* Ensure the table name matches database name and that the table exists */
|
||||
if( sqlite3MallocFailed() ) goto trigger_cleanup;
|
||||
assert( pTableName->nSrc==1 );
|
||||
if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName) &&
|
||||
sqlite3FixSrcList(&sFix, pTableName) ){
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
pTab = sqlite3SrcListLookup(pParse, pTableName);
|
||||
if( !pTab ){
|
||||
/* The table does not exist. */
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
|
||||
/* Check that the trigger name is not reserved and that no trigger of the
|
||||
** specified name exists */
|
||||
zName = sqlite3NameFromToken(pName);
|
||||
if( !zName || SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash), zName,strlen(zName)) ){
|
||||
sqlite3ErrorMsg(pParse, "trigger %T already exists", pName);
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
|
||||
/* Do not create a trigger on a system table */
|
||||
if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
|
||||
sqlite3ErrorMsg(pParse, "cannot create trigger on system table");
|
||||
pParse->nErr++;
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
|
||||
/* INSTEAD of triggers are only for views and views only support INSTEAD
|
||||
** of triggers.
|
||||
*/
|
||||
if( pTab->pSelect && tr_tm!=TK_INSTEAD ){
|
||||
sqlite3ErrorMsg(pParse, "cannot create %s trigger on view: %S",
|
||||
(tr_tm == TK_BEFORE)?"BEFORE":"AFTER", pTableName, 0);
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
if( !pTab->pSelect && tr_tm==TK_INSTEAD ){
|
||||
sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF"
|
||||
" trigger on table: %S", pTableName, 0);
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
{
|
||||
int code = SQLITE_CREATE_TRIGGER;
|
||||
const char *zDb = db->aDb[iTabDb].zName;
|
||||
const char *zDbTrig = isTemp ? db->aDb[1].zName : zDb;
|
||||
if( iTabDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER;
|
||||
if( sqlite3AuthCheck(pParse, code, zName, pTab->zName, zDbTrig) ){
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iTabDb),0,zDb)){
|
||||
goto trigger_cleanup;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* INSTEAD OF triggers can only appear on views and BEFORE triggers
|
||||
** cannot appear on views. So we might as well translate every
|
||||
** INSTEAD OF trigger into a BEFORE trigger. It simplifies code
|
||||
** elsewhere.
|
||||
*/
|
||||
if (tr_tm == TK_INSTEAD){
|
||||
tr_tm = TK_BEFORE;
|
||||
}
|
||||
|
||||
/* Build the Trigger object */
|
||||
pTrigger = (Trigger*)sqliteMalloc(sizeof(Trigger));
|
||||
if( pTrigger==0 ) goto trigger_cleanup;
|
||||
pTrigger->name = zName;
|
||||
zName = 0;
|
||||
pTrigger->table = sqliteStrDup(pTableName->a[0].zName);
|
||||
pTrigger->pSchema = db->aDb[iDb].pSchema;
|
||||
pTrigger->pTabSchema = pTab->pSchema;
|
||||
pTrigger->op = op;
|
||||
pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER;
|
||||
pTrigger->pWhen = sqlite3ExprDup(pWhen);
|
||||
pTrigger->pColumns = sqlite3IdListDup(pColumns);
|
||||
pTrigger->foreach = foreach;
|
||||
sqlite3TokenCopy(&pTrigger->nameToken,pName);
|
||||
assert( pParse->pNewTrigger==0 );
|
||||
pParse->pNewTrigger = pTrigger;
|
||||
|
||||
trigger_cleanup:
|
||||
sqliteFree(zName);
|
||||
sqlite3SrcListDelete(pTableName);
|
||||
sqlite3IdListDelete(pColumns);
|
||||
sqlite3ExprDelete(pWhen);
|
||||
if( !pParse->pNewTrigger ){
|
||||
sqlite3DeleteTrigger(pTrigger);
|
||||
}else{
|
||||
assert( pParse->pNewTrigger==pTrigger );
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is called after all of the trigger actions have been parsed
|
||||
** in order to complete the process of building the trigger.
|
||||
*/
|
||||
void sqlite3FinishTrigger(
|
||||
Parse *pParse, /* Parser context */
|
||||
TriggerStep *pStepList, /* The triggered program */
|
||||
Token *pAll /* Token that describes the complete CREATE TRIGGER */
|
||||
){
|
||||
Trigger *pTrig = 0; /* The trigger whose construction is finishing up */
|
||||
sqlite3 *db = pParse->db; /* The database */
|
||||
DbFixer sFix;
|
||||
int iDb; /* Database containing the trigger */
|
||||
|
||||
pTrig = pParse->pNewTrigger;
|
||||
pParse->pNewTrigger = 0;
|
||||
if( pParse->nErr || !pTrig ) goto triggerfinish_cleanup;
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
|
||||
pTrig->step_list = pStepList;
|
||||
while( pStepList ){
|
||||
pStepList->pTrig = pTrig;
|
||||
pStepList = pStepList->pNext;
|
||||
}
|
||||
if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", &pTrig->nameToken)
|
||||
&& sqlite3FixTriggerStep(&sFix, pTrig->step_list) ){
|
||||
goto triggerfinish_cleanup;
|
||||
}
|
||||
|
||||
/* if we are not initializing, and this trigger is not on a TEMP table,
|
||||
** build the sqlite_master entry
|
||||
*/
|
||||
if( !db->init.busy ){
|
||||
static const VdbeOpList insertTrig[] = {
|
||||
{ OP_NewRowid, 0, 0, 0 },
|
||||
{ OP_String8, 0, 0, "trigger" },
|
||||
{ OP_String8, 0, 0, 0 }, /* 2: trigger name */
|
||||
{ OP_String8, 0, 0, 0 }, /* 3: table name */
|
||||
{ OP_Integer, 0, 0, 0 },
|
||||
{ OP_String8, 0, 0, "CREATE TRIGGER "},
|
||||
{ OP_String8, 0, 0, 0 }, /* 6: SQL */
|
||||
{ OP_Concat, 0, 0, 0 },
|
||||
{ OP_MakeRecord, 5, 0, "aaada" },
|
||||
{ OP_Insert, 0, 0, 0 },
|
||||
};
|
||||
int addr;
|
||||
Vdbe *v;
|
||||
|
||||
/* Make an entry in the sqlite_master table */
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
if( v==0 ) goto triggerfinish_cleanup;
|
||||
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
||||
sqlite3OpenMasterTable(pParse, iDb);
|
||||
addr = sqlite3VdbeAddOpList(v, ArraySize(insertTrig), insertTrig);
|
||||
sqlite3VdbeChangeP3(v, addr+2, pTrig->name, 0);
|
||||
sqlite3VdbeChangeP3(v, addr+3, pTrig->table, 0);
|
||||
sqlite3VdbeChangeP3(v, addr+6, (char*)pAll->z, pAll->n);
|
||||
sqlite3ChangeCookie(db, v, iDb);
|
||||
sqlite3VdbeAddOp(v, OP_Close, 0, 0);
|
||||
sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
|
||||
sqlite3MPrintf("type='trigger' AND name='%q'", pTrig->name), P3_DYNAMIC);
|
||||
}
|
||||
|
||||
if( db->init.busy ){
|
||||
int n;
|
||||
Table *pTab;
|
||||
Trigger *pDel;
|
||||
pDel = sqlite3HashInsert(&db->aDb[iDb].pSchema->trigHash,
|
||||
pTrig->name, strlen(pTrig->name), pTrig);
|
||||
if( pDel ){
|
||||
assert( sqlite3MallocFailed() && pDel==pTrig );
|
||||
goto triggerfinish_cleanup;
|
||||
}
|
||||
n = strlen(pTrig->table) + 1;
|
||||
pTab = sqlite3HashFind(&pTrig->pTabSchema->tblHash, pTrig->table, n);
|
||||
assert( pTab!=0 );
|
||||
pTrig->pNext = pTab->pTrigger;
|
||||
pTab->pTrigger = pTrig;
|
||||
pTrig = 0;
|
||||
}
|
||||
|
||||
triggerfinish_cleanup:
|
||||
sqlite3DeleteTrigger(pTrig);
|
||||
assert( !pParse->pNewTrigger );
|
||||
sqlite3DeleteTriggerStep(pStepList);
|
||||
}
|
||||
|
||||
/*
|
||||
** Make a copy of all components of the given trigger step. This has
|
||||
** the effect of copying all Expr.token.z values into memory obtained
|
||||
** from sqliteMalloc(). As initially created, the Expr.token.z values
|
||||
** all point to the input string that was fed to the parser. But that
|
||||
** string is ephemeral - it will go away as soon as the sqlite3_exec()
|
||||
** call that started the parser exits. This routine makes a persistent
|
||||
** copy of all the Expr.token.z strings so that the TriggerStep structure
|
||||
** will be valid even after the sqlite3_exec() call returns.
|
||||
*/
|
||||
static void sqlitePersistTriggerStep(TriggerStep *p){
|
||||
if( p->target.z ){
|
||||
p->target.z = (u8*)sqliteStrNDup((char*)p->target.z, p->target.n);
|
||||
p->target.dyn = 1;
|
||||
}
|
||||
if( p->pSelect ){
|
||||
Select *pNew = sqlite3SelectDup(p->pSelect);
|
||||
sqlite3SelectDelete(p->pSelect);
|
||||
p->pSelect = pNew;
|
||||
}
|
||||
if( p->pWhere ){
|
||||
Expr *pNew = sqlite3ExprDup(p->pWhere);
|
||||
sqlite3ExprDelete(p->pWhere);
|
||||
p->pWhere = pNew;
|
||||
}
|
||||
if( p->pExprList ){
|
||||
ExprList *pNew = sqlite3ExprListDup(p->pExprList);
|
||||
sqlite3ExprListDelete(p->pExprList);
|
||||
p->pExprList = pNew;
|
||||
}
|
||||
if( p->pIdList ){
|
||||
IdList *pNew = sqlite3IdListDup(p->pIdList);
|
||||
sqlite3IdListDelete(p->pIdList);
|
||||
p->pIdList = pNew;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Turn a SELECT statement (that the pSelect parameter points to) into
|
||||
** a trigger step. Return a pointer to a TriggerStep structure.
|
||||
**
|
||||
** The parser calls this routine when it finds a SELECT statement in
|
||||
** body of a TRIGGER.
|
||||
*/
|
||||
TriggerStep *sqlite3TriggerSelectStep(Select *pSelect){
|
||||
TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
|
||||
if( pTriggerStep==0 ) {
|
||||
sqlite3SelectDelete(pSelect);
|
||||
return 0;
|
||||
}
|
||||
|
||||
pTriggerStep->op = TK_SELECT;
|
||||
pTriggerStep->pSelect = pSelect;
|
||||
pTriggerStep->orconf = OE_Default;
|
||||
sqlitePersistTriggerStep(pTriggerStep);
|
||||
|
||||
return pTriggerStep;
|
||||
}
|
||||
|
||||
/*
|
||||
** Build a trigger step out of an INSERT statement. Return a pointer
|
||||
** to the new trigger step.
|
||||
**
|
||||
** The parser calls this routine when it sees an INSERT inside the
|
||||
** body of a trigger.
|
||||
*/
|
||||
TriggerStep *sqlite3TriggerInsertStep(
|
||||
Token *pTableName, /* Name of the table into which we insert */
|
||||
IdList *pColumn, /* List of columns in pTableName to insert into */
|
||||
ExprList *pEList, /* The VALUE clause: a list of values to be inserted */
|
||||
Select *pSelect, /* A SELECT statement that supplies values */
|
||||
int orconf /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
|
||||
){
|
||||
TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
|
||||
|
||||
assert(pEList == 0 || pSelect == 0);
|
||||
assert(pEList != 0 || pSelect != 0);
|
||||
|
||||
if( pTriggerStep ){
|
||||
pTriggerStep->op = TK_INSERT;
|
||||
pTriggerStep->pSelect = pSelect;
|
||||
pTriggerStep->target = *pTableName;
|
||||
pTriggerStep->pIdList = pColumn;
|
||||
pTriggerStep->pExprList = pEList;
|
||||
pTriggerStep->orconf = orconf;
|
||||
sqlitePersistTriggerStep(pTriggerStep);
|
||||
}else{
|
||||
sqlite3IdListDelete(pColumn);
|
||||
sqlite3ExprListDelete(pEList);
|
||||
sqlite3SelectDup(pSelect);
|
||||
}
|
||||
|
||||
return pTriggerStep;
|
||||
}
|
||||
|
||||
/*
|
||||
** Construct a trigger step that implements an UPDATE statement and return
|
||||
** a pointer to that trigger step. The parser calls this routine when it
|
||||
** sees an UPDATE statement inside the body of a CREATE TRIGGER.
|
||||
*/
|
||||
TriggerStep *sqlite3TriggerUpdateStep(
|
||||
Token *pTableName, /* Name of the table to be updated */
|
||||
ExprList *pEList, /* The SET clause: list of column and new values */
|
||||
Expr *pWhere, /* The WHERE clause */
|
||||
int orconf /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
|
||||
){
|
||||
TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
|
||||
if( pTriggerStep==0 ) return 0;
|
||||
|
||||
pTriggerStep->op = TK_UPDATE;
|
||||
pTriggerStep->target = *pTableName;
|
||||
pTriggerStep->pExprList = pEList;
|
||||
pTriggerStep->pWhere = pWhere;
|
||||
pTriggerStep->orconf = orconf;
|
||||
sqlitePersistTriggerStep(pTriggerStep);
|
||||
|
||||
return pTriggerStep;
|
||||
}
|
||||
|
||||
/*
|
||||
** Construct a trigger step that implements a DELETE statement and return
|
||||
** a pointer to that trigger step. The parser calls this routine when it
|
||||
** sees a DELETE statement inside the body of a CREATE TRIGGER.
|
||||
*/
|
||||
TriggerStep *sqlite3TriggerDeleteStep(Token *pTableName, Expr *pWhere){
|
||||
TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
|
||||
if( pTriggerStep==0 ) return 0;
|
||||
|
||||
pTriggerStep->op = TK_DELETE;
|
||||
pTriggerStep->target = *pTableName;
|
||||
pTriggerStep->pWhere = pWhere;
|
||||
pTriggerStep->orconf = OE_Default;
|
||||
sqlitePersistTriggerStep(pTriggerStep);
|
||||
|
||||
return pTriggerStep;
|
||||
}
|
||||
|
||||
/*
|
||||
** Recursively delete a Trigger structure
|
||||
*/
|
||||
void sqlite3DeleteTrigger(Trigger *pTrigger){
|
||||
if( pTrigger==0 ) return;
|
||||
sqlite3DeleteTriggerStep(pTrigger->step_list);
|
||||
sqliteFree(pTrigger->name);
|
||||
sqliteFree(pTrigger->table);
|
||||
sqlite3ExprDelete(pTrigger->pWhen);
|
||||
sqlite3IdListDelete(pTrigger->pColumns);
|
||||
if( pTrigger->nameToken.dyn ) sqliteFree((char*)pTrigger->nameToken.z);
|
||||
sqliteFree(pTrigger);
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is called to drop a trigger from the database schema.
|
||||
**
|
||||
** This may be called directly from the parser and therefore identifies
|
||||
** the trigger by name. The sqlite3DropTriggerPtr() routine does the
|
||||
** same job as this routine except it takes a pointer to the trigger
|
||||
** instead of the trigger name.
|
||||
**/
|
||||
void sqlite3DropTrigger(Parse *pParse, SrcList *pName){
|
||||
Trigger *pTrigger = 0;
|
||||
int i;
|
||||
const char *zDb;
|
||||
const char *zName;
|
||||
int nName;
|
||||
sqlite3 *db = pParse->db;
|
||||
|
||||
if( sqlite3MallocFailed() ) goto drop_trigger_cleanup;
|
||||
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
||||
goto drop_trigger_cleanup;
|
||||
}
|
||||
|
||||
assert( pName->nSrc==1 );
|
||||
zDb = pName->a[0].zDatabase;
|
||||
zName = pName->a[0].zName;
|
||||
nName = strlen(zName);
|
||||
for(i=OMIT_TEMPDB; i<db->nDb; i++){
|
||||
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
||||
if( zDb && sqlite3StrICmp(db->aDb[j].zName, zDb) ) continue;
|
||||
pTrigger = sqlite3HashFind(&(db->aDb[j].pSchema->trigHash), zName, nName);
|
||||
if( pTrigger ) break;
|
||||
}
|
||||
if( !pTrigger ){
|
||||
sqlite3ErrorMsg(pParse, "no such trigger: %S", pName, 0);
|
||||
goto drop_trigger_cleanup;
|
||||
}
|
||||
sqlite3DropTriggerPtr(pParse, pTrigger);
|
||||
|
||||
drop_trigger_cleanup:
|
||||
sqlite3SrcListDelete(pName);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return a pointer to the Table structure for the table that a trigger
|
||||
** is set on.
|
||||
*/
|
||||
static Table *tableOfTrigger(Trigger *pTrigger){
|
||||
int n = strlen(pTrigger->table) + 1;
|
||||
return sqlite3HashFind(&pTrigger->pTabSchema->tblHash, pTrigger->table, n);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Drop a trigger given a pointer to that trigger.
|
||||
*/
|
||||
void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){
|
||||
Table *pTable;
|
||||
Vdbe *v;
|
||||
sqlite3 *db = pParse->db;
|
||||
int iDb;
|
||||
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTrigger->pSchema);
|
||||
assert( iDb>=0 && iDb<db->nDb );
|
||||
pTable = tableOfTrigger(pTrigger);
|
||||
assert( pTable );
|
||||
assert( pTable->pSchema==pTrigger->pSchema || iDb==1 );
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
{
|
||||
int code = SQLITE_DROP_TRIGGER;
|
||||
const char *zDb = db->aDb[iDb].zName;
|
||||
const char *zTab = SCHEMA_TABLE(iDb);
|
||||
if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER;
|
||||
if( sqlite3AuthCheck(pParse, code, pTrigger->name, pTable->zName, zDb) ||
|
||||
sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
|
||||
return;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Generate code to destroy the database record of the trigger.
|
||||
*/
|
||||
assert( pTable!=0 );
|
||||
if( (v = sqlite3GetVdbe(pParse))!=0 ){
|
||||
int base;
|
||||
static const VdbeOpList dropTrigger[] = {
|
||||
{ OP_Rewind, 0, ADDR(9), 0},
|
||||
{ OP_String8, 0, 0, 0}, /* 1 */
|
||||
{ OP_Column, 0, 1, 0},
|
||||
{ OP_Ne, 0, ADDR(8), 0},
|
||||
{ OP_String8, 0, 0, "trigger"},
|
||||
{ OP_Column, 0, 0, 0},
|
||||
{ OP_Ne, 0, ADDR(8), 0},
|
||||
{ OP_Delete, 0, 0, 0},
|
||||
{ OP_Next, 0, ADDR(1), 0}, /* 8 */
|
||||
};
|
||||
|
||||
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
||||
sqlite3OpenMasterTable(pParse, iDb);
|
||||
base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger);
|
||||
sqlite3VdbeChangeP3(v, base+1, pTrigger->name, 0);
|
||||
sqlite3ChangeCookie(db, v, iDb);
|
||||
sqlite3VdbeAddOp(v, OP_Close, 0, 0);
|
||||
sqlite3VdbeOp3(v, OP_DropTrigger, iDb, 0, pTrigger->name, 0);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Remove a trigger from the hash tables of the sqlite* pointer.
|
||||
*/
|
||||
void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){
|
||||
Trigger *pTrigger;
|
||||
int nName = strlen(zName);
|
||||
pTrigger = sqlite3HashInsert(&(db->aDb[iDb].pSchema->trigHash),
|
||||
zName, nName, 0);
|
||||
if( pTrigger ){
|
||||
Table *pTable = tableOfTrigger(pTrigger);
|
||||
assert( pTable!=0 );
|
||||
if( pTable->pTrigger == pTrigger ){
|
||||
pTable->pTrigger = pTrigger->pNext;
|
||||
}else{
|
||||
Trigger *cc = pTable->pTrigger;
|
||||
while( cc ){
|
||||
if( cc->pNext == pTrigger ){
|
||||
cc->pNext = cc->pNext->pNext;
|
||||
break;
|
||||
}
|
||||
cc = cc->pNext;
|
||||
}
|
||||
assert(cc);
|
||||
}
|
||||
sqlite3DeleteTrigger(pTrigger);
|
||||
db->flags |= SQLITE_InternChanges;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** pEList is the SET clause of an UPDATE statement. Each entry
|
||||
** in pEList is of the format <id>=<expr>. If any of the entries
|
||||
** in pEList have an <id> which matches an identifier in pIdList,
|
||||
** then return TRUE. If pIdList==NULL, then it is considered a
|
||||
** wildcard that matches anything. Likewise if pEList==NULL then
|
||||
** it matches anything so always return true. Return false only
|
||||
** if there is no match.
|
||||
*/
|
||||
static int checkColumnOverLap(IdList *pIdList, ExprList *pEList){
|
||||
int e;
|
||||
if( !pIdList || !pEList ) return 1;
|
||||
for(e=0; e<pEList->nExpr; e++){
|
||||
if( sqlite3IdListIndex(pIdList, pEList->a[e].zName)>=0 ) return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return a bit vector to indicate what kind of triggers exist for operation
|
||||
** "op" on table pTab. If pChanges is not NULL then it is a list of columns
|
||||
** that are being updated. Triggers only match if the ON clause of the
|
||||
** trigger definition overlaps the set of columns being updated.
|
||||
**
|
||||
** The returned bit vector is some combination of TRIGGER_BEFORE and
|
||||
** TRIGGER_AFTER.
|
||||
*/
|
||||
int sqlite3TriggersExist(
|
||||
Parse *pParse, /* Used to check for recursive triggers */
|
||||
Table *pTab, /* The table the contains the triggers */
|
||||
int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
|
||||
ExprList *pChanges /* Columns that change in an UPDATE statement */
|
||||
){
|
||||
Trigger *pTrigger = pTab->pTrigger;
|
||||
int mask = 0;
|
||||
|
||||
while( pTrigger ){
|
||||
if( pTrigger->op==op && checkColumnOverLap(pTrigger->pColumns, pChanges) ){
|
||||
mask |= pTrigger->tr_tm;
|
||||
}
|
||||
pTrigger = pTrigger->pNext;
|
||||
}
|
||||
return mask;
|
||||
}
|
||||
|
||||
/*
|
||||
** Convert the pStep->target token into a SrcList and return a pointer
|
||||
** to that SrcList.
|
||||
**
|
||||
** This routine adds a specific database name, if needed, to the target when
|
||||
** forming the SrcList. This prevents a trigger in one database from
|
||||
** referring to a target in another database. An exception is when the
|
||||
** trigger is in TEMP in which case it can refer to any other database it
|
||||
** wants.
|
||||
*/
|
||||
static SrcList *targetSrcList(
|
||||
Parse *pParse, /* The parsing context */
|
||||
TriggerStep *pStep /* The trigger containing the target token */
|
||||
){
|
||||
Token sDb; /* Dummy database name token */
|
||||
int iDb; /* Index of the database to use */
|
||||
SrcList *pSrc; /* SrcList to be returned */
|
||||
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pStep->pTrig->pSchema);
|
||||
if( iDb==0 || iDb>=2 ){
|
||||
assert( iDb<pParse->db->nDb );
|
||||
sDb.z = (u8*)pParse->db->aDb[iDb].zName;
|
||||
sDb.n = strlen((char*)sDb.z);
|
||||
pSrc = sqlite3SrcListAppend(0, &sDb, &pStep->target);
|
||||
} else {
|
||||
pSrc = sqlite3SrcListAppend(0, &pStep->target, 0);
|
||||
}
|
||||
return pSrc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Generate VDBE code for zero or more statements inside the body of a
|
||||
** trigger.
|
||||
*/
|
||||
static int codeTriggerProgram(
|
||||
Parse *pParse, /* The parser context */
|
||||
TriggerStep *pStepList, /* List of statements inside the trigger body */
|
||||
int orconfin /* Conflict algorithm. (OE_Abort, etc) */
|
||||
){
|
||||
TriggerStep * pTriggerStep = pStepList;
|
||||
int orconf;
|
||||
Vdbe *v = pParse->pVdbe;
|
||||
|
||||
assert( pTriggerStep!=0 );
|
||||
assert( v!=0 );
|
||||
sqlite3VdbeAddOp(v, OP_ContextPush, 0, 0);
|
||||
VdbeComment((v, "# begin trigger %s", pStepList->pTrig->name));
|
||||
while( pTriggerStep ){
|
||||
orconf = (orconfin == OE_Default)?pTriggerStep->orconf:orconfin;
|
||||
pParse->trigStack->orconf = orconf;
|
||||
switch( pTriggerStep->op ){
|
||||
case TK_SELECT: {
|
||||
Select * ss = sqlite3SelectDup(pTriggerStep->pSelect);
|
||||
assert(ss);
|
||||
assert(ss->pSrc);
|
||||
sqlite3SelectResolve(pParse, ss, 0);
|
||||
sqlite3Select(pParse, ss, SRT_Discard, 0, 0, 0, 0, 0);
|
||||
sqlite3SelectDelete(ss);
|
||||
break;
|
||||
}
|
||||
case TK_UPDATE: {
|
||||
SrcList *pSrc;
|
||||
pSrc = targetSrcList(pParse, pTriggerStep);
|
||||
sqlite3VdbeAddOp(v, OP_ResetCount, 0, 0);
|
||||
sqlite3Update(pParse, pSrc,
|
||||
sqlite3ExprListDup(pTriggerStep->pExprList),
|
||||
sqlite3ExprDup(pTriggerStep->pWhere), orconf);
|
||||
sqlite3VdbeAddOp(v, OP_ResetCount, 1, 0);
|
||||
break;
|
||||
}
|
||||
case TK_INSERT: {
|
||||
SrcList *pSrc;
|
||||
pSrc = targetSrcList(pParse, pTriggerStep);
|
||||
sqlite3VdbeAddOp(v, OP_ResetCount, 0, 0);
|
||||
sqlite3Insert(pParse, pSrc,
|
||||
sqlite3ExprListDup(pTriggerStep->pExprList),
|
||||
sqlite3SelectDup(pTriggerStep->pSelect),
|
||||
sqlite3IdListDup(pTriggerStep->pIdList), orconf);
|
||||
sqlite3VdbeAddOp(v, OP_ResetCount, 1, 0);
|
||||
break;
|
||||
}
|
||||
case TK_DELETE: {
|
||||
SrcList *pSrc;
|
||||
sqlite3VdbeAddOp(v, OP_ResetCount, 0, 0);
|
||||
pSrc = targetSrcList(pParse, pTriggerStep);
|
||||
sqlite3DeleteFrom(pParse, pSrc, sqlite3ExprDup(pTriggerStep->pWhere));
|
||||
sqlite3VdbeAddOp(v, OP_ResetCount, 1, 0);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
assert(0);
|
||||
}
|
||||
pTriggerStep = pTriggerStep->pNext;
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0);
|
||||
VdbeComment((v, "# end trigger %s", pStepList->pTrig->name));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** This is called to code FOR EACH ROW triggers.
|
||||
**
|
||||
** When the code that this function generates is executed, the following
|
||||
** must be true:
|
||||
**
|
||||
** 1. No cursors may be open in the main database. (But newIdx and oldIdx
|
||||
** can be indices of cursors in temporary tables. See below.)
|
||||
**
|
||||
** 2. If the triggers being coded are ON INSERT or ON UPDATE triggers, then
|
||||
** a temporary vdbe cursor (index newIdx) must be open and pointing at
|
||||
** a row containing values to be substituted for new.* expressions in the
|
||||
** trigger program(s).
|
||||
**
|
||||
** 3. If the triggers being coded are ON DELETE or ON UPDATE triggers, then
|
||||
** a temporary vdbe cursor (index oldIdx) must be open and pointing at
|
||||
** a row containing values to be substituted for old.* expressions in the
|
||||
** trigger program(s).
|
||||
**
|
||||
*/
|
||||
int sqlite3CodeRowTrigger(
|
||||
Parse *pParse, /* Parse context */
|
||||
int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
|
||||
ExprList *pChanges, /* Changes list for any UPDATE OF triggers */
|
||||
int tr_tm, /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
|
||||
Table *pTab, /* The table to code triggers from */
|
||||
int newIdx, /* The indice of the "new" row to access */
|
||||
int oldIdx, /* The indice of the "old" row to access */
|
||||
int orconf, /* ON CONFLICT policy */
|
||||
int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */
|
||||
){
|
||||
Trigger *p;
|
||||
TriggerStack trigStackEntry;
|
||||
|
||||
assert(op == TK_UPDATE || op == TK_INSERT || op == TK_DELETE);
|
||||
assert(tr_tm == TRIGGER_BEFORE || tr_tm == TRIGGER_AFTER );
|
||||
|
||||
assert(newIdx != -1 || oldIdx != -1);
|
||||
|
||||
for(p=pTab->pTrigger; p; p=p->pNext){
|
||||
int fire_this = 0;
|
||||
|
||||
/* Determine whether we should code this trigger */
|
||||
if(
|
||||
p->op==op &&
|
||||
p->tr_tm==tr_tm &&
|
||||
(p->pSchema==p->pTabSchema || p->pSchema==pParse->db->aDb[1].pSchema) &&
|
||||
(op!=TK_UPDATE||!p->pColumns||checkColumnOverLap(p->pColumns,pChanges))
|
||||
){
|
||||
TriggerStack *pS; /* Pointer to trigger-stack entry */
|
||||
for(pS=pParse->trigStack; pS && p!=pS->pTrigger; pS=pS->pNext){}
|
||||
if( !pS ){
|
||||
fire_this = 1;
|
||||
}
|
||||
#if 0 /* Give no warning for recursive triggers. Just do not do them */
|
||||
else{
|
||||
sqlite3ErrorMsg(pParse, "recursive triggers not supported (%s)",
|
||||
p->name);
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
if( fire_this ){
|
||||
int endTrigger;
|
||||
Expr * whenExpr;
|
||||
AuthContext sContext;
|
||||
NameContext sNC;
|
||||
|
||||
memset(&sNC, 0, sizeof(sNC));
|
||||
sNC.pParse = pParse;
|
||||
|
||||
/* Push an entry on to the trigger stack */
|
||||
trigStackEntry.pTrigger = p;
|
||||
trigStackEntry.newIdx = newIdx;
|
||||
trigStackEntry.oldIdx = oldIdx;
|
||||
trigStackEntry.pTab = pTab;
|
||||
trigStackEntry.pNext = pParse->trigStack;
|
||||
trigStackEntry.ignoreJump = ignoreJump;
|
||||
pParse->trigStack = &trigStackEntry;
|
||||
sqlite3AuthContextPush(pParse, &sContext, p->name);
|
||||
|
||||
/* code the WHEN clause */
|
||||
endTrigger = sqlite3VdbeMakeLabel(pParse->pVdbe);
|
||||
whenExpr = sqlite3ExprDup(p->pWhen);
|
||||
if( sqlite3ExprResolveNames(&sNC, whenExpr) ){
|
||||
pParse->trigStack = trigStackEntry.pNext;
|
||||
sqlite3ExprDelete(whenExpr);
|
||||
return 1;
|
||||
}
|
||||
sqlite3ExprIfFalse(pParse, whenExpr, endTrigger, 1);
|
||||
sqlite3ExprDelete(whenExpr);
|
||||
|
||||
codeTriggerProgram(pParse, p->step_list, orconf);
|
||||
|
||||
/* Pop the entry off the trigger stack */
|
||||
pParse->trigStack = trigStackEntry.pNext;
|
||||
sqlite3AuthContextPop(&sContext);
|
||||
|
||||
sqlite3VdbeResolveLabel(pParse->pVdbe, endTrigger);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
#endif /* !defined(SQLITE_OMIT_TRIGGER) */
|
|
@ -0,0 +1,508 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains C code routines that are called by the parser
|
||||
** to handle UPDATE statements.
|
||||
**
|
||||
** $Id: update.c,v 1.123 2006/02/24 02:53:50 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** The most recently coded instruction was an OP_Column to retrieve the
|
||||
** i-th column of table pTab. This routine sets the P3 parameter of the
|
||||
** OP_Column to the default value, if any.
|
||||
**
|
||||
** The default value of a column is specified by a DEFAULT clause in the
|
||||
** column definition. This was either supplied by the user when the table
|
||||
** was created, or added later to the table definition by an ALTER TABLE
|
||||
** command. If the latter, then the row-records in the table btree on disk
|
||||
** may not contain a value for the column and the default value, taken
|
||||
** from the P3 parameter of the OP_Column instruction, is returned instead.
|
||||
** If the former, then all row-records are guaranteed to include a value
|
||||
** for the column and the P3 value is not required.
|
||||
**
|
||||
** Column definitions created by an ALTER TABLE command may only have
|
||||
** literal default values specified: a number, null or a string. (If a more
|
||||
** complicated default expression value was provided, it is evaluated
|
||||
** when the ALTER TABLE is executed and one of the literal values written
|
||||
** into the sqlite_master table.)
|
||||
**
|
||||
** Therefore, the P3 parameter is only required if the default value for
|
||||
** the column is a literal number, string or null. The sqlite3ValueFromExpr()
|
||||
** function is capable of transforming these types of expressions into
|
||||
** sqlite3_value objects.
|
||||
*/
|
||||
void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i){
|
||||
if( pTab && !pTab->pSelect ){
|
||||
sqlite3_value *pValue;
|
||||
u8 enc = ENC(sqlite3VdbeDb(v));
|
||||
Column *pCol = &pTab->aCol[i];
|
||||
sqlite3ValueFromExpr(pCol->pDflt, enc, pCol->affinity, &pValue);
|
||||
if( pValue ){
|
||||
sqlite3VdbeChangeP3(v, -1, (const char *)pValue, P3_MEM);
|
||||
}else{
|
||||
VdbeComment((v, "# %s.%s", pTab->zName, pCol->zName));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Process an UPDATE statement.
|
||||
**
|
||||
** UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL;
|
||||
** \_______/ \________/ \______/ \________________/
|
||||
* onError pTabList pChanges pWhere
|
||||
*/
|
||||
void sqlite3Update(
|
||||
Parse *pParse, /* The parser context */
|
||||
SrcList *pTabList, /* The table in which we should change things */
|
||||
ExprList *pChanges, /* Things to be changed */
|
||||
Expr *pWhere, /* The WHERE clause. May be null */
|
||||
int onError /* How to handle constraint errors */
|
||||
){
|
||||
int i, j; /* Loop counters */
|
||||
Table *pTab; /* The table to be updated */
|
||||
int addr = 0; /* VDBE instruction address of the start of the loop */
|
||||
WhereInfo *pWInfo; /* Information about the WHERE clause */
|
||||
Vdbe *v; /* The virtual database engine */
|
||||
Index *pIdx; /* For looping over indices */
|
||||
int nIdx; /* Number of indices that need updating */
|
||||
int nIdxTotal; /* Total number of indices */
|
||||
int iCur; /* VDBE Cursor number of pTab */
|
||||
sqlite3 *db; /* The database structure */
|
||||
Index **apIdx = 0; /* An array of indices that need updating too */
|
||||
char *aIdxUsed = 0; /* aIdxUsed[i]==1 if the i-th index is used */
|
||||
int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the
|
||||
** an expression for the i-th column of the table.
|
||||
** aXRef[i]==-1 if the i-th column is not changed. */
|
||||
int chngRowid; /* True if the record number is being changed */
|
||||
Expr *pRowidExpr = 0; /* Expression defining the new record number */
|
||||
int openAll = 0; /* True if all indices need to be opened */
|
||||
AuthContext sContext; /* The authorization context */
|
||||
NameContext sNC; /* The name-context to resolve expressions in */
|
||||
int iDb; /* Database containing the table being updated */
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
int isView; /* Trying to update a view */
|
||||
int triggers_exist = 0; /* True if any row triggers exist */
|
||||
#endif
|
||||
|
||||
int newIdx = -1; /* index of trigger "new" temp table */
|
||||
int oldIdx = -1; /* index of trigger "old" temp table */
|
||||
|
||||
sContext.pParse = 0;
|
||||
if( pParse->nErr || sqlite3MallocFailed() ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
db = pParse->db;
|
||||
assert( pTabList->nSrc==1 );
|
||||
|
||||
/* Locate the table which we want to update.
|
||||
*/
|
||||
pTab = sqlite3SrcListLookup(pParse, pTabList);
|
||||
if( pTab==0 ) goto update_cleanup;
|
||||
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
||||
|
||||
/* Figure out if we have any triggers and if the table being
|
||||
** updated is a view
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges);
|
||||
isView = pTab->pSelect!=0;
|
||||
#else
|
||||
# define triggers_exist 0
|
||||
# define isView 0
|
||||
#endif
|
||||
#ifdef SQLITE_OMIT_VIEW
|
||||
# undef isView
|
||||
# define isView 0
|
||||
#endif
|
||||
|
||||
if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
if( isView ){
|
||||
if( sqlite3ViewGetColumnNames(pParse, pTab) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
}
|
||||
aXRef = sqliteMallocRaw( sizeof(int) * pTab->nCol );
|
||||
if( aXRef==0 ) goto update_cleanup;
|
||||
for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;
|
||||
|
||||
/* If there are FOR EACH ROW triggers, allocate cursors for the
|
||||
** special OLD and NEW tables
|
||||
*/
|
||||
if( triggers_exist ){
|
||||
newIdx = pParse->nTab++;
|
||||
oldIdx = pParse->nTab++;
|
||||
}
|
||||
|
||||
/* Allocate a cursors for the main database table and for all indices.
|
||||
** The index cursors might not be used, but if they are used they
|
||||
** need to occur right after the database cursor. So go ahead and
|
||||
** allocate enough space, just in case.
|
||||
*/
|
||||
pTabList->a[0].iCursor = iCur = pParse->nTab++;
|
||||
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
||||
pParse->nTab++;
|
||||
}
|
||||
|
||||
/* Initialize the name-context */
|
||||
memset(&sNC, 0, sizeof(sNC));
|
||||
sNC.pParse = pParse;
|
||||
sNC.pSrcList = pTabList;
|
||||
|
||||
/* Resolve the column names in all the expressions of the
|
||||
** of the UPDATE statement. Also find the column index
|
||||
** for each column to be updated in the pChanges array. For each
|
||||
** column to be updated, make sure we have authorization to change
|
||||
** that column.
|
||||
*/
|
||||
chngRowid = 0;
|
||||
for(i=0; i<pChanges->nExpr; i++){
|
||||
if( sqlite3ExprResolveNames(&sNC, pChanges->a[i].pExpr) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
for(j=0; j<pTab->nCol; j++){
|
||||
if( sqlite3StrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){
|
||||
if( j==pTab->iPKey ){
|
||||
chngRowid = 1;
|
||||
pRowidExpr = pChanges->a[i].pExpr;
|
||||
}
|
||||
aXRef[j] = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if( j>=pTab->nCol ){
|
||||
if( sqlite3IsRowid(pChanges->a[i].zName) ){
|
||||
chngRowid = 1;
|
||||
pRowidExpr = pChanges->a[i].pExpr;
|
||||
}else{
|
||||
sqlite3ErrorMsg(pParse, "no such column: %s", pChanges->a[i].zName);
|
||||
goto update_cleanup;
|
||||
}
|
||||
}
|
||||
#ifndef SQLITE_OMIT_AUTHORIZATION
|
||||
{
|
||||
int rc;
|
||||
rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName,
|
||||
pTab->aCol[j].zName, db->aDb[iDb].zName);
|
||||
if( rc==SQLITE_DENY ){
|
||||
goto update_cleanup;
|
||||
}else if( rc==SQLITE_IGNORE ){
|
||||
aXRef[j] = -1;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Allocate memory for the array apIdx[] and fill it with pointers to every
|
||||
** index that needs to be updated. Indices only need updating if their
|
||||
** key includes one of the columns named in pChanges or if the record
|
||||
** number of the original table entry is changing.
|
||||
*/
|
||||
for(nIdx=nIdxTotal=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdxTotal++){
|
||||
if( chngRowid ){
|
||||
i = 0;
|
||||
}else {
|
||||
for(i=0; i<pIdx->nColumn; i++){
|
||||
if( aXRef[pIdx->aiColumn[i]]>=0 ) break;
|
||||
}
|
||||
}
|
||||
if( i<pIdx->nColumn ) nIdx++;
|
||||
}
|
||||
if( nIdxTotal>0 ){
|
||||
apIdx = sqliteMallocRaw( sizeof(Index*) * nIdx + nIdxTotal );
|
||||
if( apIdx==0 ) goto update_cleanup;
|
||||
aIdxUsed = (char*)&apIdx[nIdx];
|
||||
}
|
||||
for(nIdx=j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
|
||||
if( chngRowid ){
|
||||
i = 0;
|
||||
}else{
|
||||
for(i=0; i<pIdx->nColumn; i++){
|
||||
if( aXRef[pIdx->aiColumn[i]]>=0 ) break;
|
||||
}
|
||||
}
|
||||
if( i<pIdx->nColumn ){
|
||||
apIdx[nIdx++] = pIdx;
|
||||
aIdxUsed[j] = 1;
|
||||
}else{
|
||||
aIdxUsed[j] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Resolve the column names in all the expressions in the
|
||||
** WHERE clause.
|
||||
*/
|
||||
if( sqlite3ExprResolveNames(&sNC, pWhere) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
|
||||
/* Start the view context
|
||||
*/
|
||||
if( isView ){
|
||||
sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
|
||||
}
|
||||
|
||||
/* Begin generating code.
|
||||
*/
|
||||
v = sqlite3GetVdbe(pParse);
|
||||
if( v==0 ) goto update_cleanup;
|
||||
if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
|
||||
sqlite3BeginWriteOperation(pParse, 1, iDb);
|
||||
|
||||
/* If we are trying to update a view, realize that view into
|
||||
** a ephemeral table.
|
||||
*/
|
||||
if( isView ){
|
||||
Select *pView;
|
||||
pView = sqlite3SelectDup(pTab->pSelect);
|
||||
sqlite3Select(pParse, pView, SRT_VirtualTab, iCur, 0, 0, 0, 0);
|
||||
sqlite3SelectDelete(pView);
|
||||
}
|
||||
|
||||
/* Begin the database scan
|
||||
*/
|
||||
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
|
||||
if( pWInfo==0 ) goto update_cleanup;
|
||||
|
||||
/* Remember the index of every item to be updated.
|
||||
*/
|
||||
sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
|
||||
sqlite3VdbeAddOp(v, OP_FifoWrite, 0, 0);
|
||||
|
||||
/* End the database scan loop.
|
||||
*/
|
||||
sqlite3WhereEnd(pWInfo);
|
||||
|
||||
/* Initialize the count of updated rows
|
||||
*/
|
||||
if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
|
||||
sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
|
||||
}
|
||||
|
||||
if( triggers_exist ){
|
||||
/* Create pseudo-tables for NEW and OLD
|
||||
*/
|
||||
sqlite3VdbeAddOp(v, OP_OpenPseudo, oldIdx, 0);
|
||||
sqlite3VdbeAddOp(v, OP_SetNumColumns, oldIdx, pTab->nCol);
|
||||
sqlite3VdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
|
||||
sqlite3VdbeAddOp(v, OP_SetNumColumns, newIdx, pTab->nCol);
|
||||
|
||||
/* The top of the update loop for when there are triggers.
|
||||
*/
|
||||
addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, 0);
|
||||
|
||||
if( !isView ){
|
||||
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
|
||||
/* Open a cursor and make it point to the record that is
|
||||
** being updated.
|
||||
*/
|
||||
sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
|
||||
|
||||
/* Generate the OLD table
|
||||
*/
|
||||
sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
|
||||
sqlite3VdbeAddOp(v, OP_RowData, iCur, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Insert, oldIdx, 0);
|
||||
|
||||
/* Generate the NEW table
|
||||
*/
|
||||
if( chngRowid ){
|
||||
sqlite3ExprCodeAndCache(pParse, pRowidExpr);
|
||||
}else{
|
||||
sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
|
||||
}
|
||||
for(i=0; i<pTab->nCol; i++){
|
||||
if( i==pTab->iPKey ){
|
||||
sqlite3VdbeAddOp(v, OP_Null, 0, 0);
|
||||
continue;
|
||||
}
|
||||
j = aXRef[i];
|
||||
if( j<0 ){
|
||||
sqlite3VdbeAddOp(v, OP_Column, iCur, i);
|
||||
sqlite3ColumnDefault(v, pTab, i);
|
||||
}else{
|
||||
sqlite3ExprCodeAndCache(pParse, pChanges->a[j].pExpr);
|
||||
}
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
|
||||
if( !isView ){
|
||||
sqlite3TableAffinityStr(v, pTab);
|
||||
}
|
||||
if( pParse->nErr ) goto update_cleanup;
|
||||
sqlite3VdbeAddOp(v, OP_Insert, newIdx, 0);
|
||||
if( !isView ){
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
|
||||
}
|
||||
|
||||
/* Fire the BEFORE and INSTEAD OF triggers
|
||||
*/
|
||||
if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_BEFORE, pTab,
|
||||
newIdx, oldIdx, onError, addr) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
if( !isView ){
|
||||
/*
|
||||
** Open every index that needs updating. Note that if any
|
||||
** index could potentially invoke a REPLACE conflict resolution
|
||||
** action, then we need to open all indices because we might need
|
||||
** to be deleting some records.
|
||||
*/
|
||||
sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenWrite);
|
||||
if( onError==OE_Replace ){
|
||||
openAll = 1;
|
||||
}else{
|
||||
openAll = 0;
|
||||
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
||||
if( pIdx->onError==OE_Replace ){
|
||||
openAll = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
||||
if( openAll || aIdxUsed[i] ){
|
||||
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
|
||||
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
|
||||
sqlite3VdbeOp3(v, OP_OpenWrite, iCur+i+1, pIdx->tnum,
|
||||
(char*)pKey, P3_KEYINFO_HANDOFF);
|
||||
assert( pParse->nTab>iCur+i+1 );
|
||||
}
|
||||
}
|
||||
|
||||
/* Loop over every record that needs updating. We have to load
|
||||
** the old data for each record to be updated because some columns
|
||||
** might not change and we will need to copy the old value.
|
||||
** Also, the old data is needed to delete the old index entires.
|
||||
** So make the cursor point at the old record.
|
||||
*/
|
||||
if( !triggers_exist ){
|
||||
addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_NotExists, iCur, addr);
|
||||
|
||||
/* If the record number will change, push the record number as it
|
||||
** will be after the update. (The old record number is currently
|
||||
** on top of the stack.)
|
||||
*/
|
||||
if( chngRowid ){
|
||||
sqlite3ExprCode(pParse, pRowidExpr);
|
||||
sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
|
||||
}
|
||||
|
||||
/* Compute new data for this record.
|
||||
*/
|
||||
for(i=0; i<pTab->nCol; i++){
|
||||
if( i==pTab->iPKey ){
|
||||
sqlite3VdbeAddOp(v, OP_Null, 0, 0);
|
||||
continue;
|
||||
}
|
||||
j = aXRef[i];
|
||||
if( j<0 ){
|
||||
sqlite3VdbeAddOp(v, OP_Column, iCur, i);
|
||||
sqlite3ColumnDefault(v, pTab, i);
|
||||
}else{
|
||||
sqlite3ExprCode(pParse, pChanges->a[j].pExpr);
|
||||
}
|
||||
}
|
||||
|
||||
/* Do constraint checks
|
||||
*/
|
||||
sqlite3GenerateConstraintChecks(pParse, pTab, iCur, aIdxUsed, chngRowid, 1,
|
||||
onError, addr);
|
||||
|
||||
/* Delete the old indices for the current record.
|
||||
*/
|
||||
sqlite3GenerateRowIndexDelete(v, pTab, iCur, aIdxUsed);
|
||||
|
||||
/* If changing the record number, delete the old record.
|
||||
*/
|
||||
if( chngRowid ){
|
||||
sqlite3VdbeAddOp(v, OP_Delete, iCur, 0);
|
||||
}
|
||||
|
||||
/* Create the new index entries and the new record.
|
||||
*/
|
||||
sqlite3CompleteInsertion(pParse, pTab, iCur, aIdxUsed, chngRowid, 1, -1);
|
||||
}
|
||||
|
||||
/* Increment the row counter
|
||||
*/
|
||||
if( db->flags & SQLITE_CountRows && !pParse->trigStack){
|
||||
sqlite3VdbeAddOp(v, OP_AddImm, 1, 0);
|
||||
}
|
||||
|
||||
/* If there are triggers, close all the cursors after each iteration
|
||||
** through the loop. The fire the after triggers.
|
||||
*/
|
||||
if( triggers_exist ){
|
||||
if( !isView ){
|
||||
for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
||||
if( openAll || aIdxUsed[i] )
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur+i+1, 0);
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
|
||||
}
|
||||
if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_AFTER, pTab,
|
||||
newIdx, oldIdx, onError, addr) ){
|
||||
goto update_cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
/* Repeat the above with the next record to be updated, until
|
||||
** all record selected by the WHERE clause have been updated.
|
||||
*/
|
||||
sqlite3VdbeAddOp(v, OP_Goto, 0, addr);
|
||||
sqlite3VdbeJumpHere(v, addr);
|
||||
|
||||
/* Close all tables if there were no FOR EACH ROW triggers */
|
||||
if( !triggers_exist ){
|
||||
for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
||||
if( openAll || aIdxUsed[i] ){
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur+i+1, 0);
|
||||
}
|
||||
}
|
||||
sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
|
||||
}else{
|
||||
sqlite3VdbeAddOp(v, OP_Close, newIdx, 0);
|
||||
sqlite3VdbeAddOp(v, OP_Close, oldIdx, 0);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of rows that were changed. If this routine is
|
||||
** generating code because of a call to sqlite3NestedParse(), do not
|
||||
** invoke the callback function.
|
||||
*/
|
||||
if( db->flags & SQLITE_CountRows && !pParse->trigStack && pParse->nested==0 ){
|
||||
sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
|
||||
sqlite3VdbeSetNumCols(v, 1);
|
||||
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", P3_STATIC);
|
||||
}
|
||||
|
||||
update_cleanup:
|
||||
sqlite3AuthContextPop(&sContext);
|
||||
sqliteFree(apIdx);
|
||||
sqliteFree(aXRef);
|
||||
sqlite3SrcListDelete(pTabList);
|
||||
sqlite3ExprListDelete(pChanges);
|
||||
sqlite3ExprDelete(pWhere);
|
||||
return;
|
||||
}
|
|
@ -0,0 +1,596 @@
|
|||
/*
|
||||
** 2004 April 13
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains routines used to translate between UTF-8,
|
||||
** UTF-16, UTF-16BE, and UTF-16LE.
|
||||
**
|
||||
** $Id: utf.c,v 1.39 2006/04/16 12:05:03 drh Exp $
|
||||
**
|
||||
** Notes on UTF-8:
|
||||
**
|
||||
** Byte-0 Byte-1 Byte-2 Byte-3 Value
|
||||
** 0xxxxxxx 00000000 00000000 0xxxxxxx
|
||||
** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx
|
||||
** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx
|
||||
** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx
|
||||
**
|
||||
**
|
||||
** Notes on UTF-16: (with wwww+1==uuuuu)
|
||||
**
|
||||
** Word-0 Word-1 Value
|
||||
** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx
|
||||
** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx
|
||||
**
|
||||
**
|
||||
** BOM or Byte Order Mark:
|
||||
** 0xff 0xfe little-endian utf-16 follows
|
||||
** 0xfe 0xff big-endian utf-16 follows
|
||||
**
|
||||
**
|
||||
** Handling of malformed strings:
|
||||
**
|
||||
** SQLite accepts and processes malformed strings without an error wherever
|
||||
** possible. However this is not possible when converting between UTF-8 and
|
||||
** UTF-16.
|
||||
**
|
||||
** When converting malformed UTF-8 strings to UTF-16, one instance of the
|
||||
** replacement character U+FFFD for each byte that cannot be interpeted as
|
||||
** part of a valid unicode character.
|
||||
**
|
||||
** When converting malformed UTF-16 strings to UTF-8, one instance of the
|
||||
** replacement character U+FFFD for each pair of bytes that cannot be
|
||||
** interpeted as part of a valid unicode character.
|
||||
**
|
||||
** This file contains the following public routines:
|
||||
**
|
||||
** sqlite3VdbeMemTranslate() - Translate the encoding used by a Mem* string.
|
||||
** sqlite3VdbeMemHandleBom() - Handle byte-order-marks in UTF16 Mem* strings.
|
||||
** sqlite3utf16ByteLen() - Calculate byte-length of a void* UTF16 string.
|
||||
** sqlite3utf8CharLen() - Calculate char-length of a char* UTF8 string.
|
||||
** sqlite3utf8LikeCompare() - Do a LIKE match given two UTF8 char* strings.
|
||||
**
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include <assert.h>
|
||||
#include "vdbeInt.h"
|
||||
|
||||
/*
|
||||
** This table maps from the first byte of a UTF-8 character to the number
|
||||
** of trailing bytes expected. A value '255' indicates that the table key
|
||||
** is not a legal first byte for a UTF-8 character.
|
||||
*/
|
||||
static const u8 xtra_utf8_bytes[256] = {
|
||||
/* 0xxxxxxx */
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
|
||||
/* 10wwwwww */
|
||||
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
|
||||
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
|
||||
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
|
||||
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
|
||||
|
||||
/* 110yyyyy */
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
|
||||
/* 1110zzzz */
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
|
||||
/* 11110yyy */
|
||||
3, 3, 3, 3, 3, 3, 3, 3, 255, 255, 255, 255, 255, 255, 255, 255,
|
||||
};
|
||||
|
||||
/*
|
||||
** This table maps from the number of trailing bytes in a UTF-8 character
|
||||
** to an integer constant that is effectively calculated for each character
|
||||
** read by a naive implementation of a UTF-8 character reader. The code
|
||||
** in the READ_UTF8 macro explains things best.
|
||||
*/
|
||||
static const int xtra_utf8_bits[4] = {
|
||||
0,
|
||||
12416, /* (0xC0 << 6) + (0x80) */
|
||||
925824, /* (0xE0 << 12) + (0x80 << 6) + (0x80) */
|
||||
63447168 /* (0xF0 << 18) + (0x80 << 12) + (0x80 << 6) + 0x80 */
|
||||
};
|
||||
|
||||
#define READ_UTF8(zIn, c) { \
|
||||
int xtra; \
|
||||
c = *(zIn)++; \
|
||||
xtra = xtra_utf8_bytes[c]; \
|
||||
switch( xtra ){ \
|
||||
case 255: c = (int)0xFFFD; break; \
|
||||
case 3: c = (c<<6) + *(zIn)++; \
|
||||
case 2: c = (c<<6) + *(zIn)++; \
|
||||
case 1: c = (c<<6) + *(zIn)++; \
|
||||
c -= xtra_utf8_bits[xtra]; \
|
||||
} \
|
||||
}
|
||||
int sqlite3ReadUtf8(const unsigned char *z){
|
||||
int c;
|
||||
READ_UTF8(z, c);
|
||||
return c;
|
||||
}
|
||||
|
||||
#define SKIP_UTF8(zIn) { \
|
||||
zIn += (xtra_utf8_bytes[*(u8 *)zIn] + 1); \
|
||||
}
|
||||
|
||||
#define WRITE_UTF8(zOut, c) { \
|
||||
if( c<0x00080 ){ \
|
||||
*zOut++ = (c&0xFF); \
|
||||
} \
|
||||
else if( c<0x00800 ){ \
|
||||
*zOut++ = 0xC0 + ((c>>6)&0x1F); \
|
||||
*zOut++ = 0x80 + (c & 0x3F); \
|
||||
} \
|
||||
else if( c<0x10000 ){ \
|
||||
*zOut++ = 0xE0 + ((c>>12)&0x0F); \
|
||||
*zOut++ = 0x80 + ((c>>6) & 0x3F); \
|
||||
*zOut++ = 0x80 + (c & 0x3F); \
|
||||
}else{ \
|
||||
*zOut++ = 0xF0 + ((c>>18) & 0x07); \
|
||||
*zOut++ = 0x80 + ((c>>12) & 0x3F); \
|
||||
*zOut++ = 0x80 + ((c>>6) & 0x3F); \
|
||||
*zOut++ = 0x80 + (c & 0x3F); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define WRITE_UTF16LE(zOut, c) { \
|
||||
if( c<=0xFFFF ){ \
|
||||
*zOut++ = (c&0x00FF); \
|
||||
*zOut++ = ((c>>8)&0x00FF); \
|
||||
}else{ \
|
||||
*zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
|
||||
*zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
|
||||
*zOut++ = (c&0x00FF); \
|
||||
*zOut++ = (0x00DC + ((c>>8)&0x03)); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define WRITE_UTF16BE(zOut, c) { \
|
||||
if( c<=0xFFFF ){ \
|
||||
*zOut++ = ((c>>8)&0x00FF); \
|
||||
*zOut++ = (c&0x00FF); \
|
||||
}else{ \
|
||||
*zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
|
||||
*zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
|
||||
*zOut++ = (0x00DC + ((c>>8)&0x03)); \
|
||||
*zOut++ = (c&0x00FF); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define READ_UTF16LE(zIn, c){ \
|
||||
c = (*zIn++); \
|
||||
c += ((*zIn++)<<8); \
|
||||
if( c>=0xD800 && c<=0xE000 ){ \
|
||||
int c2 = (*zIn++); \
|
||||
c2 += ((*zIn++)<<8); \
|
||||
c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define READ_UTF16BE(zIn, c){ \
|
||||
c = ((*zIn++)<<8); \
|
||||
c += (*zIn++); \
|
||||
if( c>=0xD800 && c<=0xE000 ){ \
|
||||
int c2 = ((*zIn++)<<8); \
|
||||
c2 += (*zIn++); \
|
||||
c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define SKIP_UTF16BE(zIn){ \
|
||||
if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn+1)==0x00)) ){ \
|
||||
zIn += 4; \
|
||||
}else{ \
|
||||
zIn += 2; \
|
||||
} \
|
||||
}
|
||||
#define SKIP_UTF16LE(zIn){ \
|
||||
zIn++; \
|
||||
if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn-1)==0x00)) ){ \
|
||||
zIn += 3; \
|
||||
}else{ \
|
||||
zIn += 1; \
|
||||
} \
|
||||
}
|
||||
|
||||
#define RSKIP_UTF16LE(zIn){ \
|
||||
if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn-1)==0x00)) ){ \
|
||||
zIn -= 4; \
|
||||
}else{ \
|
||||
zIn -= 2; \
|
||||
} \
|
||||
}
|
||||
#define RSKIP_UTF16BE(zIn){ \
|
||||
zIn--; \
|
||||
if( *zIn>=0xD8 && (*zIn<0xE0 || (*zIn==0xE0 && *(zIn+1)==0x00)) ){ \
|
||||
zIn -= 3; \
|
||||
}else{ \
|
||||
zIn -= 1; \
|
||||
} \
|
||||
}
|
||||
|
||||
/*
|
||||
** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
|
||||
** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
|
||||
*/
|
||||
/* #define TRANSLATE_TRACE 1 */
|
||||
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
/*
|
||||
** This routine transforms the internal text encoding used by pMem to
|
||||
** desiredEnc. It is an error if the string is already of the desired
|
||||
** encoding, or if *pMem does not contain a string value.
|
||||
*/
|
||||
int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
|
||||
unsigned char zShort[NBFS]; /* Temporary short output buffer */
|
||||
int len; /* Maximum length of output string in bytes */
|
||||
unsigned char *zOut; /* Output buffer */
|
||||
unsigned char *zIn; /* Input iterator */
|
||||
unsigned char *zTerm; /* End of input */
|
||||
unsigned char *z; /* Output iterator */
|
||||
int c;
|
||||
|
||||
assert( pMem->flags&MEM_Str );
|
||||
assert( pMem->enc!=desiredEnc );
|
||||
assert( pMem->enc!=0 );
|
||||
assert( pMem->n>=0 );
|
||||
|
||||
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
|
||||
{
|
||||
char zBuf[100];
|
||||
sqlite3VdbeMemPrettyPrint(pMem, zBuf);
|
||||
fprintf(stderr, "INPUT: %s\n", zBuf);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* If the translation is between UTF-16 little and big endian, then
|
||||
** all that is required is to swap the byte order. This case is handled
|
||||
** differently from the others.
|
||||
*/
|
||||
if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
|
||||
u8 temp;
|
||||
int rc;
|
||||
rc = sqlite3VdbeMemMakeWriteable(pMem);
|
||||
if( rc!=SQLITE_OK ){
|
||||
assert( rc==SQLITE_NOMEM );
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
zIn = (u8*)pMem->z;
|
||||
zTerm = &zIn[pMem->n];
|
||||
while( zIn<zTerm ){
|
||||
temp = *zIn;
|
||||
*zIn = *(zIn+1);
|
||||
zIn++;
|
||||
*zIn++ = temp;
|
||||
}
|
||||
pMem->enc = desiredEnc;
|
||||
goto translate_out;
|
||||
}
|
||||
|
||||
/* Set len to the maximum number of bytes required in the output buffer. */
|
||||
if( desiredEnc==SQLITE_UTF8 ){
|
||||
/* When converting from UTF-16, the maximum growth results from
|
||||
** translating a 2-byte character to a 4-byte UTF-8 character.
|
||||
** A single byte is required for the output string
|
||||
** nul-terminator.
|
||||
*/
|
||||
len = pMem->n * 2 + 1;
|
||||
}else{
|
||||
/* When converting from UTF-8 to UTF-16 the maximum growth is caused
|
||||
** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
|
||||
** character. Two bytes are required in the output buffer for the
|
||||
** nul-terminator.
|
||||
*/
|
||||
len = pMem->n * 2 + 2;
|
||||
}
|
||||
|
||||
/* Set zIn to point at the start of the input buffer and zTerm to point 1
|
||||
** byte past the end.
|
||||
**
|
||||
** Variable zOut is set to point at the output buffer. This may be space
|
||||
** obtained from malloc(), or Mem.zShort, if it large enough and not in
|
||||
** use, or the zShort array on the stack (see above).
|
||||
*/
|
||||
zIn = (u8*)pMem->z;
|
||||
zTerm = &zIn[pMem->n];
|
||||
if( len>NBFS ){
|
||||
zOut = sqliteMallocRaw(len);
|
||||
if( !zOut ) return SQLITE_NOMEM;
|
||||
}else{
|
||||
zOut = zShort;
|
||||
}
|
||||
z = zOut;
|
||||
|
||||
if( pMem->enc==SQLITE_UTF8 ){
|
||||
if( desiredEnc==SQLITE_UTF16LE ){
|
||||
/* UTF-8 -> UTF-16 Little-endian */
|
||||
while( zIn<zTerm ){
|
||||
READ_UTF8(zIn, c);
|
||||
WRITE_UTF16LE(z, c);
|
||||
}
|
||||
}else{
|
||||
assert( desiredEnc==SQLITE_UTF16BE );
|
||||
/* UTF-8 -> UTF-16 Big-endian */
|
||||
while( zIn<zTerm ){
|
||||
READ_UTF8(zIn, c);
|
||||
WRITE_UTF16BE(z, c);
|
||||
}
|
||||
}
|
||||
pMem->n = z - zOut;
|
||||
*z++ = 0;
|
||||
}else{
|
||||
assert( desiredEnc==SQLITE_UTF8 );
|
||||
if( pMem->enc==SQLITE_UTF16LE ){
|
||||
/* UTF-16 Little-endian -> UTF-8 */
|
||||
while( zIn<zTerm ){
|
||||
READ_UTF16LE(zIn, c);
|
||||
WRITE_UTF8(z, c);
|
||||
}
|
||||
}else{
|
||||
/* UTF-16 Little-endian -> UTF-8 */
|
||||
while( zIn<zTerm ){
|
||||
READ_UTF16BE(zIn, c);
|
||||
WRITE_UTF8(z, c);
|
||||
}
|
||||
}
|
||||
pMem->n = z - zOut;
|
||||
}
|
||||
*z = 0;
|
||||
assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
|
||||
|
||||
sqlite3VdbeMemRelease(pMem);
|
||||
pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
|
||||
pMem->enc = desiredEnc;
|
||||
if( zOut==zShort ){
|
||||
memcpy(pMem->zShort, zOut, len);
|
||||
zOut = (u8*)pMem->zShort;
|
||||
pMem->flags |= (MEM_Term|MEM_Short);
|
||||
}else{
|
||||
pMem->flags |= (MEM_Term|MEM_Dyn);
|
||||
}
|
||||
pMem->z = (char*)zOut;
|
||||
|
||||
translate_out:
|
||||
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
|
||||
{
|
||||
char zBuf[100];
|
||||
sqlite3VdbeMemPrettyPrint(pMem, zBuf);
|
||||
fprintf(stderr, "OUTPUT: %s\n", zBuf);
|
||||
}
|
||||
#endif
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine checks for a byte-order mark at the beginning of the
|
||||
** UTF-16 string stored in *pMem. If one is present, it is removed and
|
||||
** the encoding of the Mem adjusted. This routine does not do any
|
||||
** byte-swapping, it just sets Mem.enc appropriately.
|
||||
**
|
||||
** The allocation (static, dynamic etc.) and encoding of the Mem may be
|
||||
** changed by this function.
|
||||
*/
|
||||
int sqlite3VdbeMemHandleBom(Mem *pMem){
|
||||
int rc = SQLITE_OK;
|
||||
u8 bom = 0;
|
||||
|
||||
if( pMem->n<0 || pMem->n>1 ){
|
||||
u8 b1 = *(u8 *)pMem->z;
|
||||
u8 b2 = *(((u8 *)pMem->z) + 1);
|
||||
if( b1==0xFE && b2==0xFF ){
|
||||
bom = SQLITE_UTF16BE;
|
||||
}
|
||||
if( b1==0xFF && b2==0xFE ){
|
||||
bom = SQLITE_UTF16LE;
|
||||
}
|
||||
}
|
||||
|
||||
if( bom ){
|
||||
/* This function is called as soon as a string is stored in a Mem*,
|
||||
** from within sqlite3VdbeMemSetStr(). At that point it is not possible
|
||||
** for the string to be stored in Mem.zShort, or for it to be stored
|
||||
** in dynamic memory with no destructor.
|
||||
*/
|
||||
assert( !(pMem->flags&MEM_Short) );
|
||||
assert( !(pMem->flags&MEM_Dyn) || pMem->xDel );
|
||||
if( pMem->flags & MEM_Dyn ){
|
||||
void (*xDel)(void*) = pMem->xDel;
|
||||
char *z = pMem->z;
|
||||
pMem->z = 0;
|
||||
pMem->xDel = 0;
|
||||
rc = sqlite3VdbeMemSetStr(pMem, &z[2], pMem->n-2, bom, SQLITE_TRANSIENT);
|
||||
xDel(z);
|
||||
}else{
|
||||
rc = sqlite3VdbeMemSetStr(pMem, &pMem->z[2], pMem->n-2, bom,
|
||||
SQLITE_TRANSIENT);
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
||||
|
||||
/*
|
||||
** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
|
||||
** return the number of unicode characters in pZ up to (but not including)
|
||||
** the first 0x00 byte. If nByte is not less than zero, return the
|
||||
** number of unicode characters in the first nByte of pZ (or up to
|
||||
** the first 0x00, whichever comes first).
|
||||
*/
|
||||
int sqlite3utf8CharLen(const char *z, int nByte){
|
||||
int r = 0;
|
||||
const char *zTerm;
|
||||
if( nByte>=0 ){
|
||||
zTerm = &z[nByte];
|
||||
}else{
|
||||
zTerm = (const char *)(-1);
|
||||
}
|
||||
assert( z<=zTerm );
|
||||
while( *z!=0 && z<zTerm ){
|
||||
SKIP_UTF8(z);
|
||||
r++;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
/*
|
||||
** Convert a UTF-16 string in the native encoding into a UTF-8 string.
|
||||
** Memory to hold the UTF-8 string is obtained from malloc and must be
|
||||
** freed by the calling function.
|
||||
**
|
||||
** NULL is returned if there is an allocation error.
|
||||
*/
|
||||
char *sqlite3utf16to8(const void *z, int nByte){
|
||||
Mem m;
|
||||
memset(&m, 0, sizeof(m));
|
||||
sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC);
|
||||
sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
|
||||
assert( m.flags & MEM_Term );
|
||||
assert( m.flags & MEM_Str );
|
||||
return (m.flags & MEM_Dyn)!=0 ? m.z : sqliteStrDup(m.z);
|
||||
}
|
||||
|
||||
/*
|
||||
** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,
|
||||
** return the number of bytes up to (but not including), the first pair
|
||||
** of consecutive 0x00 bytes in pZ. If nChar is not less than zero,
|
||||
** then return the number of bytes in the first nChar unicode characters
|
||||
** in pZ (or up until the first pair of 0x00 bytes, whichever comes first).
|
||||
*/
|
||||
int sqlite3utf16ByteLen(const void *zIn, int nChar){
|
||||
int c = 1;
|
||||
char const *z = zIn;
|
||||
int n = 0;
|
||||
if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
|
||||
/* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here
|
||||
** and in other parts of this file means that at one branch will
|
||||
** not be covered by coverage testing on any single host. But coverage
|
||||
** will be complete if the tests are run on both a little-endian and
|
||||
** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE
|
||||
** macros are constant at compile time the compiler can determine
|
||||
** which branch will be followed. It is therefore assumed that no runtime
|
||||
** penalty is paid for this "if" statement.
|
||||
*/
|
||||
while( c && ((nChar<0) || n<nChar) ){
|
||||
READ_UTF16BE(z, c);
|
||||
n++;
|
||||
}
|
||||
}else{
|
||||
while( c && ((nChar<0) || n<nChar) ){
|
||||
READ_UTF16LE(z, c);
|
||||
n++;
|
||||
}
|
||||
}
|
||||
return (z-(char const *)zIn)-((c==0)?2:0);
|
||||
}
|
||||
|
||||
/*
|
||||
** UTF-16 implementation of the substr()
|
||||
*/
|
||||
void sqlite3utf16Substr(
|
||||
sqlite3_context *context,
|
||||
int argc,
|
||||
sqlite3_value **argv
|
||||
){
|
||||
int y, z;
|
||||
unsigned char const *zStr;
|
||||
unsigned char const *zStrEnd;
|
||||
unsigned char const *zStart;
|
||||
unsigned char const *zEnd;
|
||||
int i;
|
||||
|
||||
zStr = (unsigned char const *)sqlite3_value_text16(argv[0]);
|
||||
zStrEnd = &zStr[sqlite3_value_bytes16(argv[0])];
|
||||
y = sqlite3_value_int(argv[1]);
|
||||
z = sqlite3_value_int(argv[2]);
|
||||
|
||||
if( y>0 ){
|
||||
y = y-1;
|
||||
zStart = zStr;
|
||||
if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){
|
||||
for(i=0; i<y && zStart<zStrEnd; i++) SKIP_UTF16BE(zStart);
|
||||
}else{
|
||||
for(i=0; i<y && zStart<zStrEnd; i++) SKIP_UTF16LE(zStart);
|
||||
}
|
||||
}else{
|
||||
zStart = zStrEnd;
|
||||
if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){
|
||||
for(i=y; i<0 && zStart>zStr; i++) RSKIP_UTF16BE(zStart);
|
||||
}else{
|
||||
for(i=y; i<0 && zStart>zStr; i++) RSKIP_UTF16LE(zStart);
|
||||
}
|
||||
for(; i<0; i++) z -= 1;
|
||||
}
|
||||
|
||||
zEnd = zStart;
|
||||
if( SQLITE_UTF16BE==SQLITE_UTF16NATIVE ){
|
||||
for(i=0; i<z && zEnd<zStrEnd; i++) SKIP_UTF16BE(zEnd);
|
||||
}else{
|
||||
for(i=0; i<z && zEnd<zStrEnd; i++) SKIP_UTF16LE(zEnd);
|
||||
}
|
||||
|
||||
sqlite3_result_text16(context, zStart, zEnd-zStart, SQLITE_TRANSIENT);
|
||||
}
|
||||
|
||||
#if defined(SQLITE_TEST)
|
||||
/*
|
||||
** This routine is called from the TCL test function "translate_selftest".
|
||||
** It checks that the primitives for serializing and deserializing
|
||||
** characters in each encoding are inverses of each other.
|
||||
*/
|
||||
void sqlite3utfSelfTest(){
|
||||
int i;
|
||||
unsigned char zBuf[20];
|
||||
unsigned char *z;
|
||||
int n;
|
||||
int c;
|
||||
|
||||
for(i=0; i<0x00110000; i++){
|
||||
z = zBuf;
|
||||
WRITE_UTF8(z, i);
|
||||
n = z-zBuf;
|
||||
z = zBuf;
|
||||
READ_UTF8(z, c);
|
||||
assert( c==i );
|
||||
assert( (z-zBuf)==n );
|
||||
}
|
||||
for(i=0; i<0x00110000; i++){
|
||||
if( i>=0xD800 && i<=0xE000 ) continue;
|
||||
z = zBuf;
|
||||
WRITE_UTF16LE(z, i);
|
||||
n = z-zBuf;
|
||||
z = zBuf;
|
||||
READ_UTF16LE(z, c);
|
||||
assert( c==i );
|
||||
assert( (z-zBuf)==n );
|
||||
}
|
||||
for(i=0; i<0x00110000; i++){
|
||||
if( i>=0xD800 && i<=0xE000 ) continue;
|
||||
z = zBuf;
|
||||
WRITE_UTF16BE(z, i);
|
||||
n = z-zBuf;
|
||||
z = zBuf;
|
||||
READ_UTF16BE(z, c);
|
||||
assert( c==i );
|
||||
assert( (z-zBuf)==n );
|
||||
}
|
||||
}
|
||||
#endif /* SQLITE_TEST */
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -0,0 +1,329 @@
|
|||
/*
|
||||
** 2003 April 6
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains code used to implement the VACUUM command.
|
||||
**
|
||||
** Most of the code in this file may be omitted by defining the
|
||||
** SQLITE_OMIT_VACUUM macro.
|
||||
**
|
||||
** $Id: vacuum.c,v 1.59 2006/02/24 02:53:50 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "vdbeInt.h"
|
||||
#include "os.h"
|
||||
|
||||
#ifndef SQLITE_OMIT_VACUUM
|
||||
/*
|
||||
** Generate a random name of 20 character in length.
|
||||
*/
|
||||
static void randomName(unsigned char *zBuf){
|
||||
static const unsigned char zChars[] =
|
||||
"abcdefghijklmnopqrstuvwxyz"
|
||||
"0123456789";
|
||||
int i;
|
||||
sqlite3Randomness(20, zBuf);
|
||||
for(i=0; i<20; i++){
|
||||
zBuf[i] = zChars[ zBuf[i]%(sizeof(zChars)-1) ];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Execute zSql on database db. Return an error code.
|
||||
*/
|
||||
static int execSql(sqlite3 *db, const char *zSql){
|
||||
sqlite3_stmt *pStmt;
|
||||
if( SQLITE_OK!=sqlite3_prepare(db, zSql, -1, &pStmt, 0) ){
|
||||
return sqlite3_errcode(db);
|
||||
}
|
||||
while( SQLITE_ROW==sqlite3_step(pStmt) ){}
|
||||
return sqlite3_finalize(pStmt);
|
||||
}
|
||||
|
||||
/*
|
||||
** Execute zSql on database db. The statement returns exactly
|
||||
** one column. Execute this as SQL on the same database.
|
||||
*/
|
||||
static int execExecSql(sqlite3 *db, const char *zSql){
|
||||
sqlite3_stmt *pStmt;
|
||||
int rc;
|
||||
|
||||
rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
|
||||
if( rc!=SQLITE_OK ) return rc;
|
||||
|
||||
while( SQLITE_ROW==sqlite3_step(pStmt) ){
|
||||
rc = execSql(db, (char*)sqlite3_column_text(pStmt, 0));
|
||||
if( rc!=SQLITE_OK ){
|
||||
sqlite3_finalize(pStmt);
|
||||
return rc;
|
||||
}
|
||||
}
|
||||
|
||||
return sqlite3_finalize(pStmt);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The non-standard VACUUM command is used to clean up the database,
|
||||
** collapse free space, etc. It is modelled after the VACUUM command
|
||||
** in PostgreSQL.
|
||||
**
|
||||
** In version 1.0.x of SQLite, the VACUUM command would call
|
||||
** gdbm_reorganize() on all the database tables. But beginning
|
||||
** with 2.0.0, SQLite no longer uses GDBM so this command has
|
||||
** become a no-op.
|
||||
*/
|
||||
void sqlite3Vacuum(Parse *pParse){
|
||||
Vdbe *v = sqlite3GetVdbe(pParse);
|
||||
if( v ){
|
||||
sqlite3VdbeAddOp(v, OP_Vacuum, 0, 0);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine implements the OP_Vacuum opcode of the VDBE.
|
||||
*/
|
||||
int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
|
||||
int rc = SQLITE_OK; /* Return code from service routines */
|
||||
#ifndef SQLITE_OMIT_VACUUM
|
||||
const char *zFilename; /* full pathname of the database file */
|
||||
int nFilename; /* number of characters in zFilename[] */
|
||||
char *zTemp = 0; /* a temporary file in same directory as zFilename */
|
||||
Btree *pMain; /* The database being vacuumed */
|
||||
Btree *pTemp;
|
||||
char *zSql = 0;
|
||||
int saved_flags; /* Saved value of the db->flags */
|
||||
Db *pDb = 0; /* Database to detach at end of vacuum */
|
||||
|
||||
/* Save the current value of the write-schema flag before setting it. */
|
||||
saved_flags = db->flags;
|
||||
db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks;
|
||||
|
||||
if( !db->autoCommit ){
|
||||
sqlite3SetString(pzErrMsg, "cannot VACUUM from within a transaction",
|
||||
(char*)0);
|
||||
rc = SQLITE_ERROR;
|
||||
goto end_of_vacuum;
|
||||
}
|
||||
|
||||
/* Get the full pathname of the database file and create a
|
||||
** temporary filename in the same directory as the original file.
|
||||
*/
|
||||
pMain = db->aDb[0].pBt;
|
||||
zFilename = sqlite3BtreeGetFilename(pMain);
|
||||
assert( zFilename );
|
||||
if( zFilename[0]=='\0' ){
|
||||
/* The in-memory database. Do nothing. Return directly to avoid causing
|
||||
** an error trying to DETACH the vacuum_db (which never got attached)
|
||||
** in the exit-handler.
|
||||
*/
|
||||
return SQLITE_OK;
|
||||
}
|
||||
nFilename = strlen(zFilename);
|
||||
zTemp = sqliteMalloc( nFilename+100 );
|
||||
if( zTemp==0 ){
|
||||
rc = SQLITE_NOMEM;
|
||||
goto end_of_vacuum;
|
||||
}
|
||||
strcpy(zTemp, zFilename);
|
||||
|
||||
/* The randomName() procedure in the following loop uses an excellent
|
||||
** source of randomness to generate a name from a space of 1.3e+31
|
||||
** possibilities. So unless the directory already contains on the order
|
||||
** of 1.3e+31 files, the probability that the following loop will
|
||||
** run more than once or twice is vanishingly small. We are certain
|
||||
** enough that this loop will always terminate (and terminate quickly)
|
||||
** that we don't even bother to set a maximum loop count.
|
||||
*/
|
||||
do {
|
||||
zTemp[nFilename] = '-';
|
||||
randomName((unsigned char*)&zTemp[nFilename+1]);
|
||||
} while( sqlite3OsFileExists(zTemp) );
|
||||
|
||||
/* Attach the temporary database as 'vacuum_db'. The synchronous pragma
|
||||
** can be set to 'off' for this file, as it is not recovered if a crash
|
||||
** occurs anyway. The integrity of the database is maintained by a
|
||||
** (possibly synchronous) transaction opened on the main database before
|
||||
** sqlite3BtreeCopyFile() is called.
|
||||
**
|
||||
** An optimisation would be to use a non-journaled pager.
|
||||
*/
|
||||
zSql = sqlite3MPrintf("ATTACH '%q' AS vacuum_db;", zTemp);
|
||||
if( !zSql ){
|
||||
rc = SQLITE_NOMEM;
|
||||
goto end_of_vacuum;
|
||||
}
|
||||
rc = execSql(db, zSql);
|
||||
sqliteFree(zSql);
|
||||
zSql = 0;
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
pDb = &db->aDb[db->nDb-1];
|
||||
assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 );
|
||||
pTemp = db->aDb[db->nDb-1].pBt;
|
||||
sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain),
|
||||
sqlite3BtreeGetReserve(pMain));
|
||||
assert( sqlite3BtreeGetPageSize(pTemp)==sqlite3BtreeGetPageSize(pMain) );
|
||||
rc = execSql(db, "PRAGMA vacuum_db.synchronous=OFF");
|
||||
if( rc!=SQLITE_OK ){
|
||||
goto end_of_vacuum;
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_AUTOVACUUM
|
||||
sqlite3BtreeSetAutoVacuum(pTemp, sqlite3BtreeGetAutoVacuum(pMain));
|
||||
#endif
|
||||
|
||||
/* Begin a transaction */
|
||||
rc = execSql(db, "BEGIN EXCLUSIVE;");
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
|
||||
/* Query the schema of the main database. Create a mirror schema
|
||||
** in the temporary database.
|
||||
*/
|
||||
rc = execExecSql(db,
|
||||
"SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14,100000000) "
|
||||
" FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'");
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
rc = execExecSql(db,
|
||||
"SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14,100000000)"
|
||||
" FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' ");
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
rc = execExecSql(db,
|
||||
"SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21,100000000) "
|
||||
" FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'");
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
rc = execExecSql(db,
|
||||
"SELECT 'CREATE VIEW vacuum_db.' || substr(sql,13,100000000) "
|
||||
" FROM sqlite_master WHERE type='view'"
|
||||
);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
|
||||
/* Loop through the tables in the main database. For each, do
|
||||
** an "INSERT INTO vacuum_db.xxx SELECT * FROM xxx;" to copy
|
||||
** the contents to the temporary database.
|
||||
*/
|
||||
rc = execExecSql(db,
|
||||
"SELECT 'INSERT INTO vacuum_db.' || quote(name) "
|
||||
"|| ' SELECT * FROM ' || quote(name) || ';'"
|
||||
"FROM sqlite_master "
|
||||
"WHERE type = 'table' AND name!='sqlite_sequence';"
|
||||
);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
|
||||
/* Copy over the sequence table
|
||||
*/
|
||||
rc = execExecSql(db,
|
||||
"SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' "
|
||||
"FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' "
|
||||
);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
rc = execExecSql(db,
|
||||
"SELECT 'INSERT INTO vacuum_db.' || quote(name) "
|
||||
"|| ' SELECT * FROM ' || quote(name) || ';' "
|
||||
"FROM vacuum_db.sqlite_master WHERE name=='sqlite_sequence';"
|
||||
);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
|
||||
|
||||
/* Copy the triggers from the main database to the temporary database.
|
||||
** This was deferred before in case the triggers interfered with copying
|
||||
** the data. It's possible the indices should be deferred until this
|
||||
** point also.
|
||||
*/
|
||||
rc = execExecSql(db,
|
||||
"SELECT 'CREATE TRIGGER vacuum_db.' || substr(sql, 16, 1000000) "
|
||||
"FROM sqlite_master WHERE type='trigger'"
|
||||
);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
|
||||
|
||||
/* At this point, unless the main db was completely empty, there is now a
|
||||
** transaction open on the vacuum database, but not on the main database.
|
||||
** Open a btree level transaction on the main database. This allows a
|
||||
** call to sqlite3BtreeCopyFile(). The main database btree level
|
||||
** transaction is then committed, so the SQL level never knows it was
|
||||
** opened for writing. This way, the SQL transaction used to create the
|
||||
** temporary database never needs to be committed.
|
||||
*/
|
||||
if( rc==SQLITE_OK ){
|
||||
u32 meta;
|
||||
int i;
|
||||
|
||||
/* This array determines which meta meta values are preserved in the
|
||||
** vacuum. Even entries are the meta value number and odd entries
|
||||
** are an increment to apply to the meta value after the vacuum.
|
||||
** The increment is used to increase the schema cookie so that other
|
||||
** connections to the same database will know to reread the schema.
|
||||
*/
|
||||
static const unsigned char aCopy[] = {
|
||||
1, 1, /* Add one to the old schema cookie */
|
||||
3, 0, /* Preserve the default page cache size */
|
||||
5, 0, /* Preserve the default text encoding */
|
||||
6, 0, /* Preserve the user version */
|
||||
};
|
||||
|
||||
assert( 1==sqlite3BtreeIsInTrans(pTemp) );
|
||||
assert( 1==sqlite3BtreeIsInTrans(pMain) );
|
||||
|
||||
/* Copy Btree meta values */
|
||||
for(i=0; i<sizeof(aCopy)/sizeof(aCopy[0]); i+=2){
|
||||
rc = sqlite3BtreeGetMeta(pMain, aCopy[i], &meta);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
}
|
||||
|
||||
rc = sqlite3BtreeCopyFile(pMain, pTemp);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
rc = sqlite3BtreeCommit(pTemp);
|
||||
if( rc!=SQLITE_OK ) goto end_of_vacuum;
|
||||
rc = sqlite3BtreeCommit(pMain);
|
||||
}
|
||||
|
||||
end_of_vacuum:
|
||||
/* Restore the original value of db->flags */
|
||||
db->flags = saved_flags;
|
||||
|
||||
/* Currently there is an SQL level transaction open on the vacuum
|
||||
** database. No locks are held on any other files (since the main file
|
||||
** was committed at the btree level). So it safe to end the transaction
|
||||
** by manually setting the autoCommit flag to true and detaching the
|
||||
** vacuum database. The vacuum_db journal file is deleted when the pager
|
||||
** is closed by the DETACH.
|
||||
*/
|
||||
db->autoCommit = 1;
|
||||
|
||||
if( pDb ){
|
||||
sqlite3MallocDisallow();
|
||||
sqlite3BtreeClose(pDb->pBt);
|
||||
sqlite3MallocAllow();
|
||||
pDb->pBt = 0;
|
||||
pDb->pSchema = 0;
|
||||
}
|
||||
|
||||
/* If one of the execSql() calls above returned SQLITE_NOMEM, then the
|
||||
** mallocFailed flag will be clear (because execSql() calls sqlite3_exec()).
|
||||
** Fix this so the flag and return code match.
|
||||
*/
|
||||
if( rc==SQLITE_NOMEM ){
|
||||
sqlite3MallocFailed();
|
||||
}
|
||||
|
||||
if( zTemp ){
|
||||
sqlite3OsDelete(zTemp);
|
||||
sqliteFree(zTemp);
|
||||
}
|
||||
sqliteFree( zSql );
|
||||
sqlite3ResetInternalSchema(db, 0);
|
||||
#endif
|
||||
|
||||
return rc;
|
||||
}
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -0,0 +1,144 @@
|
|||
/*
|
||||
** 2001 September 15
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** Header file for the Virtual DataBase Engine (VDBE)
|
||||
**
|
||||
** This header defines the interface to the virtual database engine
|
||||
** or VDBE. The VDBE implements an abstract machine that runs a
|
||||
** simple program to access and modify the underlying database.
|
||||
**
|
||||
** $Id: vdbe.h,v 1.102 2006/03/17 13:56:34 drh Exp $
|
||||
*/
|
||||
#ifndef _SQLITE_VDBE_H_
|
||||
#define _SQLITE_VDBE_H_
|
||||
#include <stdio.h>
|
||||
|
||||
/*
|
||||
** A single VDBE is an opaque structure named "Vdbe". Only routines
|
||||
** in the source file sqliteVdbe.c are allowed to see the insides
|
||||
** of this structure.
|
||||
*/
|
||||
typedef struct Vdbe Vdbe;
|
||||
|
||||
/*
|
||||
** A single instruction of the virtual machine has an opcode
|
||||
** and as many as three operands. The instruction is recorded
|
||||
** as an instance of the following structure:
|
||||
*/
|
||||
struct VdbeOp {
|
||||
u8 opcode; /* What operation to perform */
|
||||
int p1; /* First operand */
|
||||
int p2; /* Second parameter (often the jump destination) */
|
||||
char *p3; /* Third parameter */
|
||||
int p3type; /* One of the P3_xxx constants defined below */
|
||||
#ifdef VDBE_PROFILE
|
||||
int cnt; /* Number of times this instruction was executed */
|
||||
long long cycles; /* Total time spend executing this instruction */
|
||||
#endif
|
||||
};
|
||||
typedef struct VdbeOp VdbeOp;
|
||||
|
||||
/*
|
||||
** A smaller version of VdbeOp used for the VdbeAddOpList() function because
|
||||
** it takes up less space.
|
||||
*/
|
||||
struct VdbeOpList {
|
||||
u8 opcode; /* What operation to perform */
|
||||
signed char p1; /* First operand */
|
||||
short int p2; /* Second parameter (often the jump destination) */
|
||||
char *p3; /* Third parameter */
|
||||
};
|
||||
typedef struct VdbeOpList VdbeOpList;
|
||||
|
||||
/*
|
||||
** Allowed values of VdbeOp.p3type
|
||||
*/
|
||||
#define P3_NOTUSED 0 /* The P3 parameter is not used */
|
||||
#define P3_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */
|
||||
#define P3_STATIC (-2) /* Pointer to a static string */
|
||||
#define P3_COLLSEQ (-4) /* P3 is a pointer to a CollSeq structure */
|
||||
#define P3_FUNCDEF (-5) /* P3 is a pointer to a FuncDef structure */
|
||||
#define P3_KEYINFO (-6) /* P3 is a pointer to a KeyInfo structure */
|
||||
#define P3_VDBEFUNC (-7) /* P3 is a pointer to a VdbeFunc structure */
|
||||
#define P3_MEM (-8) /* P3 is a pointer to a Mem* structure */
|
||||
#define P3_TRANSIENT (-9) /* P3 is a pointer to a transient string */
|
||||
|
||||
/* When adding a P3 argument using P3_KEYINFO, a copy of the KeyInfo structure
|
||||
** is made. That copy is freed when the Vdbe is finalized. But if the
|
||||
** argument is P3_KEYINFO_HANDOFF, the passed in pointer is used. It still
|
||||
** gets freed when the Vdbe is finalized so it still should be obtained
|
||||
** from a single sqliteMalloc(). But no copy is made and the calling
|
||||
** function should *not* try to free the KeyInfo.
|
||||
*/
|
||||
#define P3_KEYINFO_HANDOFF (-9)
|
||||
|
||||
/*
|
||||
** The Vdbe.aColName array contains 5n Mem structures, where n is the
|
||||
** number of columns of data returned by the statement.
|
||||
*/
|
||||
#define COLNAME_NAME 0
|
||||
#define COLNAME_DECLTYPE 1
|
||||
#define COLNAME_DATABASE 2
|
||||
#define COLNAME_TABLE 3
|
||||
#define COLNAME_COLUMN 4
|
||||
#define COLNAME_N 5 /* Number of COLNAME_xxx symbols */
|
||||
|
||||
/*
|
||||
** The following macro converts a relative address in the p2 field
|
||||
** of a VdbeOp structure into a negative number so that
|
||||
** sqlite3VdbeAddOpList() knows that the address is relative. Calling
|
||||
** the macro again restores the address.
|
||||
*/
|
||||
#define ADDR(X) (-1-(X))
|
||||
|
||||
/*
|
||||
** The makefile scans the vdbe.c source file and creates the "opcodes.h"
|
||||
** header file that defines a number for each opcode used by the VDBE.
|
||||
*/
|
||||
#include "opcodes.h"
|
||||
|
||||
/*
|
||||
** Prototypes for the VDBE interface. See comments on the implementation
|
||||
** for a description of what each of these routines does.
|
||||
*/
|
||||
Vdbe *sqlite3VdbeCreate(sqlite3*);
|
||||
void sqlite3VdbeCreateCallback(Vdbe*, int*);
|
||||
int sqlite3VdbeAddOp(Vdbe*,int,int,int);
|
||||
int sqlite3VdbeOp3(Vdbe*,int,int,int,const char *zP3,int);
|
||||
int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
|
||||
void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
|
||||
void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
|
||||
void sqlite3VdbeJumpHere(Vdbe*, int addr);
|
||||
void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
|
||||
void sqlite3VdbeChangeP3(Vdbe*, int addr, const char *zP1, int N);
|
||||
VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
|
||||
int sqlite3VdbeMakeLabel(Vdbe*);
|
||||
void sqlite3VdbeDelete(Vdbe*);
|
||||
void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int);
|
||||
int sqlite3VdbeFinalize(Vdbe*);
|
||||
void sqlite3VdbeResolveLabel(Vdbe*, int);
|
||||
int sqlite3VdbeCurrentAddr(Vdbe*);
|
||||
void sqlite3VdbeTrace(Vdbe*,FILE*);
|
||||
int sqlite3VdbeReset(Vdbe*);
|
||||
int sqliteVdbeSetVariables(Vdbe*,int,const char**);
|
||||
void sqlite3VdbeSetNumCols(Vdbe*,int);
|
||||
int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, int);
|
||||
void sqlite3VdbeCountChanges(Vdbe*);
|
||||
sqlite3 *sqlite3VdbeDb(Vdbe*);
|
||||
|
||||
#ifndef NDEBUG
|
||||
void sqlite3VdbeComment(Vdbe*, const char*, ...);
|
||||
# define VdbeComment(X) sqlite3VdbeComment X
|
||||
#else
|
||||
# define VdbeComment(X)
|
||||
#endif
|
||||
|
||||
#endif
|
|
@ -0,0 +1,392 @@
|
|||
/*
|
||||
** 2003 September 6
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This is the header file for information that is private to the
|
||||
** VDBE. This information used to all be at the top of the single
|
||||
** source code file "vdbe.c". When that file became too big (over
|
||||
** 6000 lines long) it was split up into several smaller files and
|
||||
** this header information was factored out.
|
||||
*/
|
||||
|
||||
/*
|
||||
** intToKey() and keyToInt() used to transform the rowid. But with
|
||||
** the latest versions of the design they are no-ops.
|
||||
*/
|
||||
#define keyToInt(X) (X)
|
||||
#define intToKey(X) (X)
|
||||
|
||||
/*
|
||||
** The makefile scans the vdbe.c source file and creates the following
|
||||
** array of string constants which are the names of all VDBE opcodes. This
|
||||
** array is defined in a separate source code file named opcode.c which is
|
||||
** automatically generated by the makefile.
|
||||
*/
|
||||
extern char *sqlite3OpcodeNames[];
|
||||
|
||||
/*
|
||||
** SQL is translated into a sequence of instructions to be
|
||||
** executed by a virtual machine. Each instruction is an instance
|
||||
** of the following structure.
|
||||
*/
|
||||
typedef struct VdbeOp Op;
|
||||
|
||||
/*
|
||||
** Boolean values
|
||||
*/
|
||||
typedef unsigned char Bool;
|
||||
|
||||
/*
|
||||
** A cursor is a pointer into a single BTree within a database file.
|
||||
** The cursor can seek to a BTree entry with a particular key, or
|
||||
** loop over all entries of the Btree. You can also insert new BTree
|
||||
** entries or retrieve the key or data from the entry that the cursor
|
||||
** is currently pointing to.
|
||||
**
|
||||
** Every cursor that the virtual machine has open is represented by an
|
||||
** instance of the following structure.
|
||||
**
|
||||
** If the Cursor.isTriggerRow flag is set it means that this cursor is
|
||||
** really a single row that represents the NEW or OLD pseudo-table of
|
||||
** a row trigger. The data for the row is stored in Cursor.pData and
|
||||
** the rowid is in Cursor.iKey.
|
||||
*/
|
||||
struct Cursor {
|
||||
BtCursor *pCursor; /* The cursor structure of the backend */
|
||||
int iDb; /* Index of cursor database in db->aDb[] (or -1) */
|
||||
i64 lastRowid; /* Last rowid from a Next or NextIdx operation */
|
||||
i64 nextRowid; /* Next rowid returned by OP_NewRowid */
|
||||
Bool zeroed; /* True if zeroed out and ready for reuse */
|
||||
Bool rowidIsValid; /* True if lastRowid is valid */
|
||||
Bool atFirst; /* True if pointing to first entry */
|
||||
Bool useRandomRowid; /* Generate new record numbers semi-randomly */
|
||||
Bool nullRow; /* True if pointing to a row with no data */
|
||||
Bool nextRowidValid; /* True if the nextRowid field is valid */
|
||||
Bool pseudoTable; /* This is a NEW or OLD pseudo-tables of a trigger */
|
||||
Bool deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */
|
||||
Bool isTable; /* True if a table requiring integer keys */
|
||||
Bool isIndex; /* True if an index containing keys only - no data */
|
||||
u8 bogusIncrKey; /* Something for pIncrKey to point to if pKeyInfo==0 */
|
||||
i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */
|
||||
Btree *pBt; /* Separate file holding temporary table */
|
||||
int nData; /* Number of bytes in pData */
|
||||
char *pData; /* Data for a NEW or OLD pseudo-table */
|
||||
i64 iKey; /* Key for the NEW or OLD pseudo-table row */
|
||||
u8 *pIncrKey; /* Pointer to pKeyInfo->incrKey */
|
||||
KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */
|
||||
int nField; /* Number of fields in the header */
|
||||
i64 seqCount; /* Sequence counter */
|
||||
|
||||
/* Cached information about the header for the data record that the
|
||||
** cursor is currently pointing to. Only valid if cacheValid is true.
|
||||
** aRow might point to (ephemeral) data for the current row, or it might
|
||||
** be NULL.
|
||||
*/
|
||||
int cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */
|
||||
int payloadSize; /* Total number of bytes in the record */
|
||||
u32 *aType; /* Type values for all entries in the record */
|
||||
u32 *aOffset; /* Cached offsets to the start of each columns data */
|
||||
u8 *aRow; /* Data for the current row, if all on one page */
|
||||
};
|
||||
typedef struct Cursor Cursor;
|
||||
|
||||
/*
|
||||
** Number of bytes of string storage space available to each stack
|
||||
** layer without having to malloc. NBFS is short for Number of Bytes
|
||||
** For Strings.
|
||||
*/
|
||||
#define NBFS 32
|
||||
|
||||
/*
|
||||
** A value for Cursor.cacheValid that means the cache is always invalid.
|
||||
*/
|
||||
#define CACHE_STALE 0
|
||||
|
||||
/*
|
||||
** Internally, the vdbe manipulates nearly all SQL values as Mem
|
||||
** structures. Each Mem struct may cache multiple representations (string,
|
||||
** integer etc.) of the same value. A value (and therefore Mem structure)
|
||||
** has the following properties:
|
||||
**
|
||||
** Each value has a manifest type. The manifest type of the value stored
|
||||
** in a Mem struct is returned by the MemType(Mem*) macro. The type is
|
||||
** one of SQLITE_NULL, SQLITE_INTEGER, SQLITE_REAL, SQLITE_TEXT or
|
||||
** SQLITE_BLOB.
|
||||
*/
|
||||
struct Mem {
|
||||
i64 i; /* Integer value. Or FuncDef* when flags==MEM_Agg */
|
||||
double r; /* Real value */
|
||||
char *z; /* String or BLOB value */
|
||||
int n; /* Number of characters in string value, including '\0' */
|
||||
u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
|
||||
u8 type; /* One of MEM_Null, MEM_Str, etc. */
|
||||
u8 enc; /* TEXT_Utf8, TEXT_Utf16le, or TEXT_Utf16be */
|
||||
void (*xDel)(void *); /* If not null, call this function to delete Mem.z */
|
||||
char zShort[NBFS]; /* Space for short strings */
|
||||
};
|
||||
typedef struct Mem Mem;
|
||||
|
||||
/* One or more of the following flags are set to indicate the validOK
|
||||
** representations of the value stored in the Mem struct.
|
||||
**
|
||||
** If the MEM_Null flag is set, then the value is an SQL NULL value.
|
||||
** No other flags may be set in this case.
|
||||
**
|
||||
** If the MEM_Str flag is set then Mem.z points at a string representation.
|
||||
** Usually this is encoded in the same unicode encoding as the main
|
||||
** database (see below for exceptions). If the MEM_Term flag is also
|
||||
** set, then the string is nul terminated. The MEM_Int and MEM_Real
|
||||
** flags may coexist with the MEM_Str flag.
|
||||
**
|
||||
** Multiple of these values can appear in Mem.flags. But only one
|
||||
** at a time can appear in Mem.type.
|
||||
*/
|
||||
#define MEM_Null 0x0001 /* Value is NULL */
|
||||
#define MEM_Str 0x0002 /* Value is a string */
|
||||
#define MEM_Int 0x0004 /* Value is an integer */
|
||||
#define MEM_Real 0x0008 /* Value is a real number */
|
||||
#define MEM_Blob 0x0010 /* Value is a BLOB */
|
||||
|
||||
/* Whenever Mem contains a valid string or blob representation, one of
|
||||
** the following flags must be set to determine the memory management
|
||||
** policy for Mem.z. The MEM_Term flag tells us whether or not the
|
||||
** string is \000 or \u0000 terminated
|
||||
*/
|
||||
#define MEM_Term 0x0020 /* String rep is nul terminated */
|
||||
#define MEM_Dyn 0x0040 /* Need to call sqliteFree() on Mem.z */
|
||||
#define MEM_Static 0x0080 /* Mem.z points to a static string */
|
||||
#define MEM_Ephem 0x0100 /* Mem.z points to an ephemeral string */
|
||||
#define MEM_Short 0x0200 /* Mem.z points to Mem.zShort */
|
||||
#define MEM_Agg 0x0400 /* Mem.z points to an agg function context */
|
||||
|
||||
|
||||
/* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains
|
||||
** additional information about auxiliary information bound to arguments
|
||||
** of the function. This is used to implement the sqlite3_get_auxdata()
|
||||
** and sqlite3_set_auxdata() APIs. The "auxdata" is some auxiliary data
|
||||
** that can be associated with a constant argument to a function. This
|
||||
** allows functions such as "regexp" to compile their constant regular
|
||||
** expression argument once and reused the compiled code for multiple
|
||||
** invocations.
|
||||
*/
|
||||
struct VdbeFunc {
|
||||
FuncDef *pFunc; /* The definition of the function */
|
||||
int nAux; /* Number of entries allocated for apAux[] */
|
||||
struct AuxData {
|
||||
void *pAux; /* Aux data for the i-th argument */
|
||||
void (*xDelete)(void *); /* Destructor for the aux data */
|
||||
} apAux[1]; /* One slot for each function argument */
|
||||
};
|
||||
typedef struct VdbeFunc VdbeFunc;
|
||||
|
||||
/*
|
||||
** The "context" argument for a installable function. A pointer to an
|
||||
** instance of this structure is the first argument to the routines used
|
||||
** implement the SQL functions.
|
||||
**
|
||||
** There is a typedef for this structure in sqlite.h. So all routines,
|
||||
** even the public interface to SQLite, can use a pointer to this structure.
|
||||
** But this file is the only place where the internal details of this
|
||||
** structure are known.
|
||||
**
|
||||
** This structure is defined inside of vdbeInt.h because it uses substructures
|
||||
** (Mem) which are only defined there.
|
||||
*/
|
||||
struct sqlite3_context {
|
||||
FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */
|
||||
VdbeFunc *pVdbeFunc; /* Auxilary data, if created. */
|
||||
Mem s; /* The return value is stored here */
|
||||
Mem *pMem; /* Memory cell used to store aggregate context */
|
||||
u8 isError; /* Set to true for an error */
|
||||
CollSeq *pColl; /* Collating sequence */
|
||||
};
|
||||
|
||||
/*
|
||||
** A Set structure is used for quick testing to see if a value
|
||||
** is part of a small set. Sets are used to implement code like
|
||||
** this:
|
||||
** x.y IN ('hi','hoo','hum')
|
||||
*/
|
||||
typedef struct Set Set;
|
||||
struct Set {
|
||||
Hash hash; /* A set is just a hash table */
|
||||
HashElem *prev; /* Previously accessed hash elemen */
|
||||
};
|
||||
|
||||
/*
|
||||
** A FifoPage structure holds a single page of valves. Pages are arranged
|
||||
** in a list.
|
||||
*/
|
||||
typedef struct FifoPage FifoPage;
|
||||
struct FifoPage {
|
||||
int nSlot; /* Number of entries aSlot[] */
|
||||
int iWrite; /* Push the next value into this entry in aSlot[] */
|
||||
int iRead; /* Read the next value from this entry in aSlot[] */
|
||||
FifoPage *pNext; /* Next page in the fifo */
|
||||
i64 aSlot[1]; /* One or more slots for rowid values */
|
||||
};
|
||||
|
||||
/*
|
||||
** The Fifo structure is typedef-ed in vdbeInt.h. But the implementation
|
||||
** of that structure is private to this file.
|
||||
**
|
||||
** The Fifo structure describes the entire fifo.
|
||||
*/
|
||||
typedef struct Fifo Fifo;
|
||||
struct Fifo {
|
||||
int nEntry; /* Total number of entries */
|
||||
FifoPage *pFirst; /* First page on the list */
|
||||
FifoPage *pLast; /* Last page on the list */
|
||||
};
|
||||
|
||||
/*
|
||||
** A Context stores the last insert rowid, the last statement change count,
|
||||
** and the current statement change count (i.e. changes since last statement).
|
||||
** The current keylist is also stored in the context.
|
||||
** Elements of Context structure type make up the ContextStack, which is
|
||||
** updated by the ContextPush and ContextPop opcodes (used by triggers).
|
||||
** The context is pushed before executing a trigger a popped when the
|
||||
** trigger finishes.
|
||||
*/
|
||||
typedef struct Context Context;
|
||||
struct Context {
|
||||
i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */
|
||||
int nChange; /* Statement changes (Vdbe.nChanges) */
|
||||
Fifo sFifo; /* Records that will participate in a DELETE or UPDATE */
|
||||
};
|
||||
|
||||
/*
|
||||
** An instance of the virtual machine. This structure contains the complete
|
||||
** state of the virtual machine.
|
||||
**
|
||||
** The "sqlite3_stmt" structure pointer that is returned by sqlite3_compile()
|
||||
** is really a pointer to an instance of this structure.
|
||||
*/
|
||||
struct Vdbe {
|
||||
sqlite3 *db; /* The whole database */
|
||||
Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
|
||||
FILE *trace; /* Write an execution trace here, if not NULL */
|
||||
int nOp; /* Number of instructions in the program */
|
||||
int nOpAlloc; /* Number of slots allocated for aOp[] */
|
||||
Op *aOp; /* Space to hold the virtual machine's program */
|
||||
int nLabel; /* Number of labels used */
|
||||
int nLabelAlloc; /* Number of slots allocated in aLabel[] */
|
||||
int *aLabel; /* Space to hold the labels */
|
||||
Mem *aStack; /* The operand stack, except string values */
|
||||
Mem *pTos; /* Top entry in the operand stack */
|
||||
Mem **apArg; /* Arguments to currently executing user function */
|
||||
Mem *aColName; /* Column names to return */
|
||||
int nCursor; /* Number of slots in apCsr[] */
|
||||
Cursor **apCsr; /* One element of this array for each open cursor */
|
||||
int nVar; /* Number of entries in aVar[] */
|
||||
Mem *aVar; /* Values for the OP_Variable opcode. */
|
||||
char **azVar; /* Name of variables */
|
||||
int okVar; /* True if azVar[] has been initialized */
|
||||
int magic; /* Magic number for sanity checking */
|
||||
int nMem; /* Number of memory locations currently allocated */
|
||||
Mem *aMem; /* The memory locations */
|
||||
int nCallback; /* Number of callbacks invoked so far */
|
||||
int cacheCtr; /* Cursor row cache generation counter */
|
||||
Fifo sFifo; /* A list of ROWIDs */
|
||||
int contextStackTop; /* Index of top element in the context stack */
|
||||
int contextStackDepth; /* The size of the "context" stack */
|
||||
Context *contextStack; /* Stack used by opcodes ContextPush & ContextPop*/
|
||||
int pc; /* The program counter */
|
||||
int rc; /* Value to return */
|
||||
unsigned uniqueCnt; /* Used by OP_MakeRecord when P2!=0 */
|
||||
int errorAction; /* Recovery action to do in case of an error */
|
||||
int inTempTrans; /* True if temp database is transactioned */
|
||||
int returnStack[100]; /* Return address stack for OP_Gosub & OP_Return */
|
||||
int returnDepth; /* Next unused element in returnStack[] */
|
||||
int nResColumn; /* Number of columns in one row of the result set */
|
||||
char **azResColumn; /* Values for one row of result */
|
||||
int popStack; /* Pop the stack this much on entry to VdbeExec() */
|
||||
char *zErrMsg; /* Error message written here */
|
||||
u8 resOnStack; /* True if there are result values on the stack */
|
||||
u8 explain; /* True if EXPLAIN present on SQL command */
|
||||
u8 changeCntOn; /* True to update the change-counter */
|
||||
u8 aborted; /* True if ROLLBACK in another VM causes an abort */
|
||||
u8 expired; /* True if the VM needs to be recompiled */
|
||||
u8 minWriteFileFormat; /* Minimum file format for writable database files */
|
||||
int nChange; /* Number of db changes made since last reset */
|
||||
i64 startTime; /* Time when query started - used for profiling */
|
||||
#ifdef SQLITE_SSE
|
||||
int fetchId; /* Statement number used by sqlite3_fetch_statement */
|
||||
int lru; /* Counter used for LRU cache replacement */
|
||||
#endif
|
||||
};
|
||||
|
||||
/*
|
||||
** The following are allowed values for Vdbe.magic
|
||||
*/
|
||||
#define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */
|
||||
#define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */
|
||||
#define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */
|
||||
#define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */
|
||||
|
||||
/*
|
||||
** Function prototypes
|
||||
*/
|
||||
void sqlite3VdbeFreeCursor(Cursor*);
|
||||
void sqliteVdbePopStack(Vdbe*,int);
|
||||
int sqlite3VdbeCursorMoveto(Cursor*);
|
||||
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
|
||||
void sqlite3VdbePrintOp(FILE*, int, Op*);
|
||||
#endif
|
||||
#ifdef SQLITE_DEBUG
|
||||
void sqlite3VdbePrintSql(Vdbe*);
|
||||
#endif
|
||||
int sqlite3VdbeSerialTypeLen(u32);
|
||||
u32 sqlite3VdbeSerialType(Mem*, int);
|
||||
int sqlite3VdbeSerialPut(unsigned char*, Mem*, int);
|
||||
int sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
|
||||
void sqlite3VdbeDeleteAuxData(VdbeFunc*, int);
|
||||
|
||||
int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
|
||||
int sqlite3VdbeIdxKeyCompare(Cursor*, int , const unsigned char*, int*);
|
||||
int sqlite3VdbeIdxRowid(BtCursor *, i64 *);
|
||||
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
|
||||
int sqlite3VdbeRecordCompare(void*,int,const void*,int, const void*);
|
||||
int sqlite3VdbeIdxRowidLen(const u8*);
|
||||
int sqlite3VdbeExec(Vdbe*);
|
||||
int sqlite3VdbeList(Vdbe*);
|
||||
int sqlite3VdbeHalt(Vdbe*);
|
||||
int sqlite3VdbeChangeEncoding(Mem *, int);
|
||||
int sqlite3VdbeMemCopy(Mem*, const Mem*);
|
||||
void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
|
||||
int sqlite3VdbeMemMove(Mem*, Mem*);
|
||||
int sqlite3VdbeMemNulTerminate(Mem*);
|
||||
int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
|
||||
void sqlite3VdbeMemSetInt64(Mem*, i64);
|
||||
void sqlite3VdbeMemSetDouble(Mem*, double);
|
||||
void sqlite3VdbeMemSetNull(Mem*);
|
||||
int sqlite3VdbeMemMakeWriteable(Mem*);
|
||||
int sqlite3VdbeMemDynamicify(Mem*);
|
||||
int sqlite3VdbeMemStringify(Mem*, int);
|
||||
i64 sqlite3VdbeIntValue(Mem*);
|
||||
int sqlite3VdbeMemIntegerify(Mem*);
|
||||
double sqlite3VdbeRealValue(Mem*);
|
||||
void sqlite3VdbeIntegerAffinity(Mem*);
|
||||
int sqlite3VdbeMemRealify(Mem*);
|
||||
int sqlite3VdbeMemNumerify(Mem*);
|
||||
int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
|
||||
void sqlite3VdbeMemRelease(Mem *p);
|
||||
int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
|
||||
#ifndef NDEBUG
|
||||
void sqlite3VdbeMemSanity(Mem*);
|
||||
int sqlite3VdbeOpcodeNoPush(u8);
|
||||
#endif
|
||||
int sqlite3VdbeMemTranslate(Mem*, u8);
|
||||
void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
|
||||
int sqlite3VdbeMemHandleBom(Mem *pMem);
|
||||
void sqlite3VdbeFifoInit(Fifo*);
|
||||
int sqlite3VdbeFifoPush(Fifo*, i64);
|
||||
int sqlite3VdbeFifoPop(Fifo*, i64*);
|
||||
void sqlite3VdbeFifoClear(Fifo*);
|
|
@ -0,0 +1,815 @@
|
|||
/*
|
||||
** 2004 May 26
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file contains code use to implement APIs that are part of the
|
||||
** VDBE.
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "vdbeInt.h"
|
||||
#include "os.h"
|
||||
|
||||
/*
|
||||
** Return TRUE (non-zero) of the statement supplied as an argument needs
|
||||
** to be recompiled. A statement needs to be recompiled whenever the
|
||||
** execution environment changes in a way that would alter the program
|
||||
** that sqlite3_prepare() generates. For example, if new functions or
|
||||
** collating sequences are registered or if an authorizer function is
|
||||
** added or changed.
|
||||
*/
|
||||
int sqlite3_expired(sqlite3_stmt *pStmt){
|
||||
Vdbe *p = (Vdbe*)pStmt;
|
||||
return p==0 || p->expired;
|
||||
}
|
||||
|
||||
/**************************** sqlite3_value_ *******************************
|
||||
** The following routines extract information from a Mem or sqlite3_value
|
||||
** structure.
|
||||
*/
|
||||
const void *sqlite3_value_blob(sqlite3_value *pVal){
|
||||
Mem *p = (Mem*)pVal;
|
||||
if( p->flags & (MEM_Blob|MEM_Str) ){
|
||||
return p->z;
|
||||
}else{
|
||||
return sqlite3_value_text(pVal);
|
||||
}
|
||||
}
|
||||
int sqlite3_value_bytes(sqlite3_value *pVal){
|
||||
return sqlite3ValueBytes(pVal, SQLITE_UTF8);
|
||||
}
|
||||
int sqlite3_value_bytes16(sqlite3_value *pVal){
|
||||
return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
|
||||
}
|
||||
double sqlite3_value_double(sqlite3_value *pVal){
|
||||
return sqlite3VdbeRealValue((Mem*)pVal);
|
||||
}
|
||||
int sqlite3_value_int(sqlite3_value *pVal){
|
||||
return sqlite3VdbeIntValue((Mem*)pVal);
|
||||
}
|
||||
sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
|
||||
return sqlite3VdbeIntValue((Mem*)pVal);
|
||||
}
|
||||
const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
|
||||
return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
|
||||
}
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
const void *sqlite3_value_text16(sqlite3_value* pVal){
|
||||
return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
|
||||
}
|
||||
const void *sqlite3_value_text16be(sqlite3_value *pVal){
|
||||
return sqlite3ValueText(pVal, SQLITE_UTF16BE);
|
||||
}
|
||||
const void *sqlite3_value_text16le(sqlite3_value *pVal){
|
||||
return sqlite3ValueText(pVal, SQLITE_UTF16LE);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
||||
int sqlite3_value_type(sqlite3_value* pVal){
|
||||
return pVal->type;
|
||||
}
|
||||
/* sqlite3_value_numeric_type() defined in vdbe.c */
|
||||
|
||||
/**************************** sqlite3_result_ *******************************
|
||||
** The following routines are used by user-defined functions to specify
|
||||
** the function result.
|
||||
*/
|
||||
void sqlite3_result_blob(
|
||||
sqlite3_context *pCtx,
|
||||
const void *z,
|
||||
int n,
|
||||
void (*xDel)(void *)
|
||||
){
|
||||
assert( n>=0 );
|
||||
sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
|
||||
}
|
||||
void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
|
||||
sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
|
||||
}
|
||||
void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
|
||||
pCtx->isError = 1;
|
||||
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
|
||||
}
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
|
||||
pCtx->isError = 1;
|
||||
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
|
||||
}
|
||||
#endif
|
||||
void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
|
||||
sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
|
||||
}
|
||||
void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
|
||||
sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
|
||||
}
|
||||
void sqlite3_result_null(sqlite3_context *pCtx){
|
||||
sqlite3VdbeMemSetNull(&pCtx->s);
|
||||
}
|
||||
void sqlite3_result_text(
|
||||
sqlite3_context *pCtx,
|
||||
const char *z,
|
||||
int n,
|
||||
void (*xDel)(void *)
|
||||
){
|
||||
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
|
||||
}
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
void sqlite3_result_text16(
|
||||
sqlite3_context *pCtx,
|
||||
const void *z,
|
||||
int n,
|
||||
void (*xDel)(void *)
|
||||
){
|
||||
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
|
||||
}
|
||||
void sqlite3_result_text16be(
|
||||
sqlite3_context *pCtx,
|
||||
const void *z,
|
||||
int n,
|
||||
void (*xDel)(void *)
|
||||
){
|
||||
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
|
||||
}
|
||||
void sqlite3_result_text16le(
|
||||
sqlite3_context *pCtx,
|
||||
const void *z,
|
||||
int n,
|
||||
void (*xDel)(void *)
|
||||
){
|
||||
sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
||||
void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
|
||||
sqlite3VdbeMemCopy(&pCtx->s, pValue);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Execute the statement pStmt, either until a row of data is ready, the
|
||||
** statement is completely executed or an error occurs.
|
||||
*/
|
||||
int sqlite3_step(sqlite3_stmt *pStmt){
|
||||
Vdbe *p = (Vdbe*)pStmt;
|
||||
sqlite3 *db;
|
||||
int rc;
|
||||
|
||||
/* Assert that malloc() has not failed */
|
||||
assert( !sqlite3MallocFailed() );
|
||||
|
||||
if( p==0 || p->magic!=VDBE_MAGIC_RUN ){
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
if( p->aborted ){
|
||||
return SQLITE_ABORT;
|
||||
}
|
||||
if( p->pc<=0 && p->expired ){
|
||||
if( p->rc==SQLITE_OK ){
|
||||
p->rc = SQLITE_SCHEMA;
|
||||
}
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
db = p->db;
|
||||
if( sqlite3SafetyOn(db) ){
|
||||
p->rc = SQLITE_MISUSE;
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
if( p->pc<0 ){
|
||||
#ifndef SQLITE_OMIT_TRACE
|
||||
/* Invoke the trace callback if there is one
|
||||
*/
|
||||
if( db->xTrace && !db->init.busy ){
|
||||
assert( p->nOp>0 );
|
||||
assert( p->aOp[p->nOp-1].opcode==OP_Noop );
|
||||
assert( p->aOp[p->nOp-1].p3!=0 );
|
||||
assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
|
||||
sqlite3SafetyOff(db);
|
||||
db->xTrace(db->pTraceArg, p->aOp[p->nOp-1].p3);
|
||||
if( sqlite3SafetyOn(db) ){
|
||||
p->rc = SQLITE_MISUSE;
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
}
|
||||
if( db->xProfile && !db->init.busy ){
|
||||
double rNow;
|
||||
sqlite3OsCurrentTime(&rNow);
|
||||
p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Print a copy of SQL as it is executed if the SQL_TRACE pragma is turned
|
||||
** on in debugging mode.
|
||||
*/
|
||||
#ifdef SQLITE_DEBUG
|
||||
if( (db->flags & SQLITE_SqlTrace)!=0 ){
|
||||
sqlite3DebugPrintf("SQL-trace: %s\n", p->aOp[p->nOp-1].p3);
|
||||
}
|
||||
#endif /* SQLITE_DEBUG */
|
||||
|
||||
db->activeVdbeCnt++;
|
||||
p->pc = 0;
|
||||
}
|
||||
#ifndef SQLITE_OMIT_EXPLAIN
|
||||
if( p->explain ){
|
||||
rc = sqlite3VdbeList(p);
|
||||
}else
|
||||
#endif /* SQLITE_OMIT_EXPLAIN */
|
||||
{
|
||||
rc = sqlite3VdbeExec(p);
|
||||
}
|
||||
|
||||
if( sqlite3SafetyOff(db) ){
|
||||
rc = SQLITE_MISUSE;
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_TRACE
|
||||
/* Invoke the profile callback if there is one
|
||||
*/
|
||||
if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy ){
|
||||
double rNow;
|
||||
u64 elapseTime;
|
||||
|
||||
sqlite3OsCurrentTime(&rNow);
|
||||
elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
|
||||
assert( p->nOp>0 );
|
||||
assert( p->aOp[p->nOp-1].opcode==OP_Noop );
|
||||
assert( p->aOp[p->nOp-1].p3!=0 );
|
||||
assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC );
|
||||
db->xProfile(db->pProfileArg, p->aOp[p->nOp-1].p3, elapseTime);
|
||||
}
|
||||
#endif
|
||||
|
||||
sqlite3Error(p->db, rc, 0);
|
||||
p->rc = sqlite3ApiExit(p->db, p->rc);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Extract the user data from a sqlite3_context structure and return a
|
||||
** pointer to it.
|
||||
*/
|
||||
void *sqlite3_user_data(sqlite3_context *p){
|
||||
assert( p && p->pFunc );
|
||||
return p->pFunc->pUserData;
|
||||
}
|
||||
|
||||
/*
|
||||
** Allocate or return the aggregate context for a user function. A new
|
||||
** context is allocated on the first call. Subsequent calls return the
|
||||
** same context that was returned on prior calls.
|
||||
*/
|
||||
void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
|
||||
Mem *pMem = p->pMem;
|
||||
assert( p && p->pFunc && p->pFunc->xStep );
|
||||
if( (pMem->flags & MEM_Agg)==0 ){
|
||||
if( nByte==0 ){
|
||||
assert( pMem->flags==MEM_Null );
|
||||
pMem->z = 0;
|
||||
}else{
|
||||
pMem->flags = MEM_Agg;
|
||||
pMem->xDel = sqlite3FreeX;
|
||||
*(FuncDef**)&pMem->i = p->pFunc;
|
||||
if( nByte<=NBFS ){
|
||||
pMem->z = pMem->zShort;
|
||||
memset(pMem->z, 0, nByte);
|
||||
}else{
|
||||
pMem->z = sqliteMalloc( nByte );
|
||||
}
|
||||
}
|
||||
}
|
||||
return (void*)pMem->z;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the auxilary data pointer, if any, for the iArg'th argument to
|
||||
** the user-function defined by pCtx.
|
||||
*/
|
||||
void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
|
||||
VdbeFunc *pVdbeFunc = pCtx->pVdbeFunc;
|
||||
if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
|
||||
return 0;
|
||||
}
|
||||
return pVdbeFunc->apAux[iArg].pAux;
|
||||
}
|
||||
|
||||
/*
|
||||
** Set the auxilary data pointer and delete function, for the iArg'th
|
||||
** argument to the user-function defined by pCtx. Any previous value is
|
||||
** deleted by calling the delete function specified when it was set.
|
||||
*/
|
||||
void sqlite3_set_auxdata(
|
||||
sqlite3_context *pCtx,
|
||||
int iArg,
|
||||
void *pAux,
|
||||
void (*xDelete)(void*)
|
||||
){
|
||||
struct AuxData *pAuxData;
|
||||
VdbeFunc *pVdbeFunc;
|
||||
if( iArg<0 ) return;
|
||||
|
||||
pVdbeFunc = pCtx->pVdbeFunc;
|
||||
if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
|
||||
int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
|
||||
pVdbeFunc = sqliteRealloc(pVdbeFunc, nMalloc);
|
||||
if( !pVdbeFunc ) return;
|
||||
pCtx->pVdbeFunc = pVdbeFunc;
|
||||
memset(&pVdbeFunc->apAux[pVdbeFunc->nAux], 0,
|
||||
sizeof(struct AuxData)*(iArg+1-pVdbeFunc->nAux));
|
||||
pVdbeFunc->nAux = iArg+1;
|
||||
pVdbeFunc->pFunc = pCtx->pFunc;
|
||||
}
|
||||
|
||||
pAuxData = &pVdbeFunc->apAux[iArg];
|
||||
if( pAuxData->pAux && pAuxData->xDelete ){
|
||||
pAuxData->xDelete(pAuxData->pAux);
|
||||
}
|
||||
pAuxData->pAux = pAux;
|
||||
pAuxData->xDelete = xDelete;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of times the Step function of a aggregate has been
|
||||
** called.
|
||||
**
|
||||
** This function is deprecated. Do not use it for new code. It is
|
||||
** provide only to avoid breaking legacy code. New aggregate function
|
||||
** implementations should keep their own counts within their aggregate
|
||||
** context.
|
||||
*/
|
||||
int sqlite3_aggregate_count(sqlite3_context *p){
|
||||
assert( p && p->pFunc && p->pFunc->xStep );
|
||||
return p->pMem->n;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of columns in the result set for the statement pStmt.
|
||||
*/
|
||||
int sqlite3_column_count(sqlite3_stmt *pStmt){
|
||||
Vdbe *pVm = (Vdbe *)pStmt;
|
||||
return pVm ? pVm->nResColumn : 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of values available from the current row of the
|
||||
** currently executing statement pStmt.
|
||||
*/
|
||||
int sqlite3_data_count(sqlite3_stmt *pStmt){
|
||||
Vdbe *pVm = (Vdbe *)pStmt;
|
||||
if( pVm==0 || !pVm->resOnStack ) return 0;
|
||||
return pVm->nResColumn;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Check to see if column iCol of the given statement is valid. If
|
||||
** it is, return a pointer to the Mem for the value of that column.
|
||||
** If iCol is not valid, return a pointer to a Mem which has a value
|
||||
** of NULL.
|
||||
*/
|
||||
static Mem *columnMem(sqlite3_stmt *pStmt, int i){
|
||||
Vdbe *pVm = (Vdbe *)pStmt;
|
||||
int vals = sqlite3_data_count(pStmt);
|
||||
if( i>=vals || i<0 ){
|
||||
static Mem nullMem;
|
||||
if( nullMem.flags==0 ){ nullMem.flags = MEM_Null; }
|
||||
sqlite3Error(pVm->db, SQLITE_RANGE, 0);
|
||||
return &nullMem;
|
||||
}
|
||||
return &pVm->pTos[(1-vals)+i];
|
||||
}
|
||||
|
||||
/*
|
||||
** This function is called after invoking an sqlite3_value_XXX function on a
|
||||
** column value (i.e. a value returned by evaluating an SQL expression in the
|
||||
** select list of a SELECT statement) that may cause a malloc() failure. If
|
||||
** malloc() has failed, the threads mallocFailed flag is cleared and the result
|
||||
** code of statement pStmt set to SQLITE_NOMEM.
|
||||
**
|
||||
** Specificly, this is called from within:
|
||||
**
|
||||
** sqlite3_column_int()
|
||||
** sqlite3_column_int64()
|
||||
** sqlite3_column_text()
|
||||
** sqlite3_column_text16()
|
||||
** sqlite3_column_real()
|
||||
** sqlite3_column_bytes()
|
||||
** sqlite3_column_bytes16()
|
||||
**
|
||||
** But not for sqlite3_column_blob(), which never calls malloc().
|
||||
*/
|
||||
static void columnMallocFailure(sqlite3_stmt *pStmt)
|
||||
{
|
||||
/* If malloc() failed during an encoding conversion within an
|
||||
** sqlite3_column_XXX API, then set the return code of the statement to
|
||||
** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
|
||||
** and _finalize() will return NOMEM.
|
||||
*/
|
||||
Vdbe *p = (Vdbe *)pStmt;
|
||||
p->rc = sqlite3ApiExit(0, p->rc);
|
||||
}
|
||||
|
||||
/**************************** sqlite3_column_ *******************************
|
||||
** The following routines are used to access elements of the current row
|
||||
** in the result set.
|
||||
*/
|
||||
const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
|
||||
const void *val;
|
||||
sqlite3MallocDisallow();
|
||||
val = sqlite3_value_blob( columnMem(pStmt,i) );
|
||||
sqlite3MallocAllow();
|
||||
return val;
|
||||
}
|
||||
int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
|
||||
int val = sqlite3_value_bytes( columnMem(pStmt,i) );
|
||||
columnMallocFailure(pStmt);
|
||||
return val;
|
||||
}
|
||||
int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
|
||||
int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
|
||||
columnMallocFailure(pStmt);
|
||||
return val;
|
||||
}
|
||||
double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
|
||||
double val = sqlite3_value_double( columnMem(pStmt,i) );
|
||||
columnMallocFailure(pStmt);
|
||||
return val;
|
||||
}
|
||||
int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
|
||||
int val = sqlite3_value_int( columnMem(pStmt,i) );
|
||||
columnMallocFailure(pStmt);
|
||||
return val;
|
||||
}
|
||||
sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
|
||||
sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
|
||||
columnMallocFailure(pStmt);
|
||||
return val;
|
||||
}
|
||||
const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
|
||||
const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
|
||||
columnMallocFailure(pStmt);
|
||||
return val;
|
||||
}
|
||||
#if 0
|
||||
sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
|
||||
return columnMem(pStmt, i);
|
||||
}
|
||||
#endif
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
|
||||
const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
|
||||
columnMallocFailure(pStmt);
|
||||
return val;
|
||||
}
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
||||
int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
|
||||
return sqlite3_value_type( columnMem(pStmt,i) );
|
||||
}
|
||||
|
||||
/* The following function is experimental and subject to change or
|
||||
** removal */
|
||||
/*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
|
||||
** return sqlite3_value_numeric_type( columnMem(pStmt,i) );
|
||||
**}
|
||||
*/
|
||||
|
||||
/*
|
||||
** Convert the N-th element of pStmt->pColName[] into a string using
|
||||
** xFunc() then return that string. If N is out of range, return 0.
|
||||
**
|
||||
** There are up to 5 names for each column. useType determines which
|
||||
** name is returned. Here are the names:
|
||||
**
|
||||
** 0 The column name as it should be displayed for output
|
||||
** 1 The datatype name for the column
|
||||
** 2 The name of the database that the column derives from
|
||||
** 3 The name of the table that the column derives from
|
||||
** 4 The name of the table column that the result column derives from
|
||||
**
|
||||
** If the result is not a simple column reference (if it is an expression
|
||||
** or a constant) then useTypes 2, 3, and 4 return NULL.
|
||||
*/
|
||||
static const void *columnName(
|
||||
sqlite3_stmt *pStmt,
|
||||
int N,
|
||||
const void *(*xFunc)(Mem*),
|
||||
int useType
|
||||
){
|
||||
const void *ret;
|
||||
Vdbe *p = (Vdbe *)pStmt;
|
||||
int n = sqlite3_column_count(pStmt);
|
||||
|
||||
if( p==0 || N>=n || N<0 ){
|
||||
return 0;
|
||||
}
|
||||
N += useType*n;
|
||||
ret = xFunc(&p->aColName[N]);
|
||||
|
||||
/* A malloc may have failed inside of the xFunc() call. If this is the case,
|
||||
** clear the mallocFailed flag and return NULL.
|
||||
*/
|
||||
sqlite3ApiExit(0, 0);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the name of the Nth column of the result set returned by SQL
|
||||
** statement pStmt.
|
||||
*/
|
||||
const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
|
||||
return columnName(
|
||||
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
|
||||
}
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
|
||||
return columnName(
|
||||
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Return the column declaration type (if applicable) of the 'i'th column
|
||||
** of the result set of SQL statement pStmt.
|
||||
*/
|
||||
const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
|
||||
return columnName(
|
||||
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
|
||||
}
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
|
||||
return columnName(
|
||||
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
||||
|
||||
#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
||||
/*
|
||||
** Return the name of the database from which a result column derives.
|
||||
** NULL is returned if the result column is an expression or constant or
|
||||
** anything else which is not an unabiguous reference to a database column.
|
||||
*/
|
||||
const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
|
||||
return columnName(
|
||||
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
|
||||
}
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
|
||||
return columnName(
|
||||
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
||||
|
||||
/*
|
||||
** Return the name of the table from which a result column derives.
|
||||
** NULL is returned if the result column is an expression or constant or
|
||||
** anything else which is not an unabiguous reference to a database column.
|
||||
*/
|
||||
const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
|
||||
return columnName(
|
||||
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
|
||||
}
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
|
||||
return columnName(
|
||||
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
||||
|
||||
/*
|
||||
** Return the name of the table column from which a result column derives.
|
||||
** NULL is returned if the result column is an expression or constant or
|
||||
** anything else which is not an unabiguous reference to a database column.
|
||||
*/
|
||||
const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
|
||||
return columnName(
|
||||
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
|
||||
}
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
|
||||
return columnName(
|
||||
pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
||||
#endif /* SQLITE_ENABLE_COLUMN_METADATA */
|
||||
|
||||
|
||||
/******************************* sqlite3_bind_ ***************************
|
||||
**
|
||||
** Routines used to attach values to wildcards in a compiled SQL statement.
|
||||
*/
|
||||
/*
|
||||
** Unbind the value bound to variable i in virtual machine p. This is the
|
||||
** the same as binding a NULL value to the column. If the "i" parameter is
|
||||
** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
|
||||
**
|
||||
** The error code stored in database p->db is overwritten with the return
|
||||
** value in any case.
|
||||
*/
|
||||
static int vdbeUnbind(Vdbe *p, int i){
|
||||
Mem *pVar;
|
||||
if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
|
||||
if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0);
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
if( i<1 || i>p->nVar ){
|
||||
sqlite3Error(p->db, SQLITE_RANGE, 0);
|
||||
return SQLITE_RANGE;
|
||||
}
|
||||
i--;
|
||||
pVar = &p->aVar[i];
|
||||
sqlite3VdbeMemRelease(pVar);
|
||||
pVar->flags = MEM_Null;
|
||||
sqlite3Error(p->db, SQLITE_OK, 0);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Bind a text or BLOB value.
|
||||
*/
|
||||
static int bindText(
|
||||
sqlite3_stmt *pStmt,
|
||||
int i,
|
||||
const void *zData,
|
||||
int nData,
|
||||
void (*xDel)(void*),
|
||||
int encoding
|
||||
){
|
||||
Vdbe *p = (Vdbe *)pStmt;
|
||||
Mem *pVar;
|
||||
int rc;
|
||||
|
||||
rc = vdbeUnbind(p, i);
|
||||
if( rc || zData==0 ){
|
||||
return rc;
|
||||
}
|
||||
pVar = &p->aVar[i-1];
|
||||
rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
|
||||
if( rc==SQLITE_OK && encoding!=0 ){
|
||||
rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
|
||||
}
|
||||
|
||||
sqlite3Error(((Vdbe *)pStmt)->db, rc, 0);
|
||||
return sqlite3ApiExit(((Vdbe *)pStmt)->db, rc);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Bind a blob value to an SQL statement variable.
|
||||
*/
|
||||
int sqlite3_bind_blob(
|
||||
sqlite3_stmt *pStmt,
|
||||
int i,
|
||||
const void *zData,
|
||||
int nData,
|
||||
void (*xDel)(void*)
|
||||
){
|
||||
return bindText(pStmt, i, zData, nData, xDel, 0);
|
||||
}
|
||||
int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
|
||||
int rc;
|
||||
Vdbe *p = (Vdbe *)pStmt;
|
||||
rc = vdbeUnbind(p, i);
|
||||
if( rc==SQLITE_OK ){
|
||||
sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
|
||||
return sqlite3_bind_int64(p, i, (i64)iValue);
|
||||
}
|
||||
int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
|
||||
int rc;
|
||||
Vdbe *p = (Vdbe *)pStmt;
|
||||
rc = vdbeUnbind(p, i);
|
||||
if( rc==SQLITE_OK ){
|
||||
sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
int sqlite3_bind_null(sqlite3_stmt* p, int i){
|
||||
return vdbeUnbind((Vdbe *)p, i);
|
||||
}
|
||||
int sqlite3_bind_text(
|
||||
sqlite3_stmt *pStmt,
|
||||
int i,
|
||||
const char *zData,
|
||||
int nData,
|
||||
void (*xDel)(void*)
|
||||
){
|
||||
return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
|
||||
}
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
int sqlite3_bind_text16(
|
||||
sqlite3_stmt *pStmt,
|
||||
int i,
|
||||
const void *zData,
|
||||
int nData,
|
||||
void (*xDel)(void*)
|
||||
){
|
||||
return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
|
||||
}
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
||||
|
||||
/*
|
||||
** Return the number of wildcards that can be potentially bound to.
|
||||
** This routine is added to support DBD::SQLite.
|
||||
*/
|
||||
int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
|
||||
Vdbe *p = (Vdbe*)pStmt;
|
||||
return p ? p->nVar : 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Create a mapping from variable numbers to variable names
|
||||
** in the Vdbe.azVar[] array, if such a mapping does not already
|
||||
** exist.
|
||||
*/
|
||||
static void createVarMap(Vdbe *p){
|
||||
if( !p->okVar ){
|
||||
int j;
|
||||
Op *pOp;
|
||||
for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
|
||||
if( pOp->opcode==OP_Variable ){
|
||||
assert( pOp->p1>0 && pOp->p1<=p->nVar );
|
||||
p->azVar[pOp->p1-1] = pOp->p3;
|
||||
}
|
||||
}
|
||||
p->okVar = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the name of a wildcard parameter. Return NULL if the index
|
||||
** is out of range or if the wildcard is unnamed.
|
||||
**
|
||||
** The result is always UTF-8.
|
||||
*/
|
||||
const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
|
||||
Vdbe *p = (Vdbe*)pStmt;
|
||||
if( p==0 || i<1 || i>p->nVar ){
|
||||
return 0;
|
||||
}
|
||||
createVarMap(p);
|
||||
return p->azVar[i-1];
|
||||
}
|
||||
|
||||
/*
|
||||
** Given a wildcard parameter name, return the index of the variable
|
||||
** with that name. If there is no variable with the given name,
|
||||
** return 0.
|
||||
*/
|
||||
int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
|
||||
Vdbe *p = (Vdbe*)pStmt;
|
||||
int i;
|
||||
if( p==0 ){
|
||||
return 0;
|
||||
}
|
||||
createVarMap(p);
|
||||
if( zName ){
|
||||
for(i=0; i<p->nVar; i++){
|
||||
const char *z = p->azVar[i];
|
||||
if( z && strcmp(z,zName)==0 ){
|
||||
return i+1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Transfer all bindings from the first statement over to the second.
|
||||
** If the two statements contain a different number of bindings, then
|
||||
** an SQLITE_ERROR is returned.
|
||||
*/
|
||||
int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
|
||||
Vdbe *pFrom = (Vdbe*)pFromStmt;
|
||||
Vdbe *pTo = (Vdbe*)pToStmt;
|
||||
int i, rc = SQLITE_OK;
|
||||
if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
|
||||
|| (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT) ){
|
||||
return SQLITE_MISUSE;
|
||||
}
|
||||
if( pFrom->nVar!=pTo->nVar ){
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
|
||||
sqlite3MallocDisallow();
|
||||
rc = sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
|
||||
sqlite3MallocAllow();
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the sqlite3* database handle to which the prepared statement given
|
||||
** in the argument belongs. This is the same database handle that was
|
||||
** the first argument to the sqlite3_prepare() that was used to create
|
||||
** the statement in the first place.
|
||||
*/
|
||||
sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
|
||||
return pStmt ? ((Vdbe*)pStmt)->db : 0;
|
||||
}
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -0,0 +1,114 @@
|
|||
/*
|
||||
** 2005 June 16
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file implements a FIFO queue of rowids used for processing
|
||||
** UPDATE and DELETE statements.
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "vdbeInt.h"
|
||||
|
||||
/*
|
||||
** Allocate a new FifoPage and return a pointer to it. Return NULL if
|
||||
** we run out of memory. Leave space on the page for nEntry entries.
|
||||
*/
|
||||
static FifoPage *allocatePage(int nEntry){
|
||||
FifoPage *pPage;
|
||||
if( nEntry>32767 ){
|
||||
nEntry = 32767;
|
||||
}
|
||||
pPage = sqliteMallocRaw( sizeof(FifoPage) + sizeof(i64)*(nEntry-1) );
|
||||
if( pPage ){
|
||||
pPage->nSlot = nEntry;
|
||||
pPage->iWrite = 0;
|
||||
pPage->iRead = 0;
|
||||
pPage->pNext = 0;
|
||||
}
|
||||
return pPage;
|
||||
}
|
||||
|
||||
/*
|
||||
** Initialize a Fifo structure.
|
||||
*/
|
||||
void sqlite3VdbeFifoInit(Fifo *pFifo){
|
||||
memset(pFifo, 0, sizeof(*pFifo));
|
||||
}
|
||||
|
||||
/*
|
||||
** Push a single 64-bit integer value into the Fifo. Return SQLITE_OK
|
||||
** normally. SQLITE_NOMEM is returned if we are unable to allocate
|
||||
** memory.
|
||||
*/
|
||||
int sqlite3VdbeFifoPush(Fifo *pFifo, i64 val){
|
||||
FifoPage *pPage;
|
||||
pPage = pFifo->pLast;
|
||||
if( pPage==0 ){
|
||||
pPage = pFifo->pLast = pFifo->pFirst = allocatePage(20);
|
||||
if( pPage==0 ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
}else if( pPage->iWrite>=pPage->nSlot ){
|
||||
pPage->pNext = allocatePage(pFifo->nEntry);
|
||||
if( pPage->pNext==0 ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
pPage = pFifo->pLast = pPage->pNext;
|
||||
}
|
||||
pPage->aSlot[pPage->iWrite++] = val;
|
||||
pFifo->nEntry++;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Extract a single 64-bit integer value from the Fifo. The integer
|
||||
** extracted is the one least recently inserted. If the Fifo is empty
|
||||
** return SQLITE_DONE.
|
||||
*/
|
||||
int sqlite3VdbeFifoPop(Fifo *pFifo, i64 *pVal){
|
||||
FifoPage *pPage;
|
||||
if( pFifo->nEntry==0 ){
|
||||
return SQLITE_DONE;
|
||||
}
|
||||
assert( pFifo->nEntry>0 );
|
||||
pPage = pFifo->pFirst;
|
||||
assert( pPage!=0 );
|
||||
assert( pPage->iWrite>pPage->iRead );
|
||||
assert( pPage->iWrite<=pPage->nSlot );
|
||||
assert( pPage->iRead<pPage->nSlot );
|
||||
assert( pPage->iRead>=0 );
|
||||
*pVal = pPage->aSlot[pPage->iRead++];
|
||||
pFifo->nEntry--;
|
||||
if( pPage->iRead>=pPage->iWrite ){
|
||||
pFifo->pFirst = pPage->pNext;
|
||||
sqliteFree(pPage);
|
||||
if( pFifo->nEntry==0 ){
|
||||
assert( pFifo->pLast==pPage );
|
||||
pFifo->pLast = 0;
|
||||
}else{
|
||||
assert( pFifo->pFirst!=0 );
|
||||
}
|
||||
}else{
|
||||
assert( pFifo->nEntry>0 );
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Delete all information from a Fifo object. Free all memory held
|
||||
** by the Fifo.
|
||||
*/
|
||||
void sqlite3VdbeFifoClear(Fifo *pFifo){
|
||||
FifoPage *pPage, *pNextPage;
|
||||
for(pPage=pFifo->pFirst; pPage; pPage=pNextPage){
|
||||
pNextPage = pPage->pNext;
|
||||
sqliteFree(pPage);
|
||||
}
|
||||
sqlite3VdbeFifoInit(pFifo);
|
||||
}
|
|
@ -0,0 +1,907 @@
|
|||
/*
|
||||
** 2004 May 26
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** This file contains code use to manipulate "Mem" structure. A "Mem"
|
||||
** stores a single value in the VDBE. Mem is an opaque structure visible
|
||||
** only within the VDBE. Interface routines refer to a Mem using the
|
||||
** name sqlite_value
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "os.h"
|
||||
#include <ctype.h>
|
||||
#include "vdbeInt.h"
|
||||
|
||||
/*
|
||||
** If pMem is an object with a valid string representation, this routine
|
||||
** ensures the internal encoding for the string representation is
|
||||
** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
|
||||
**
|
||||
** If pMem is not a string object, or the encoding of the string
|
||||
** representation is already stored using the requested encoding, then this
|
||||
** routine is a no-op.
|
||||
**
|
||||
** SQLITE_OK is returned if the conversion is successful (or not required).
|
||||
** SQLITE_NOMEM may be returned if a malloc() fails during conversion
|
||||
** between formats.
|
||||
*/
|
||||
int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
|
||||
int rc;
|
||||
if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
#ifdef SQLITE_OMIT_UTF16
|
||||
return SQLITE_ERROR;
|
||||
#else
|
||||
|
||||
|
||||
/* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
|
||||
** then the encoding of the value may not have changed.
|
||||
*/
|
||||
rc = sqlite3VdbeMemTranslate(pMem, desiredEnc);
|
||||
assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
|
||||
assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
|
||||
assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
|
||||
|
||||
if( rc==SQLITE_NOMEM ){
|
||||
/*
|
||||
sqlite3VdbeMemRelease(pMem);
|
||||
pMem->flags = MEM_Null;
|
||||
pMem->z = 0;
|
||||
*/
|
||||
}
|
||||
return rc;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** Make the given Mem object MEM_Dyn.
|
||||
**
|
||||
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
|
||||
*/
|
||||
int sqlite3VdbeMemDynamicify(Mem *pMem){
|
||||
int n = pMem->n;
|
||||
u8 *z;
|
||||
if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
assert( (pMem->flags & MEM_Dyn)==0 );
|
||||
assert( pMem->flags & (MEM_Str|MEM_Blob) );
|
||||
z = sqliteMallocRaw( n+2 );
|
||||
if( z==0 ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
pMem->flags |= MEM_Dyn|MEM_Term;
|
||||
pMem->xDel = 0;
|
||||
memcpy(z, pMem->z, n );
|
||||
z[n] = 0;
|
||||
z[n+1] = 0;
|
||||
pMem->z = (char*)z;
|
||||
pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes
|
||||
** of the Mem.z[] array can be modified.
|
||||
**
|
||||
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
|
||||
*/
|
||||
int sqlite3VdbeMemMakeWriteable(Mem *pMem){
|
||||
int n;
|
||||
u8 *z;
|
||||
if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
assert( (pMem->flags & MEM_Dyn)==0 );
|
||||
assert( pMem->flags & (MEM_Str|MEM_Blob) );
|
||||
if( (n = pMem->n)+2<sizeof(pMem->zShort) ){
|
||||
z = (u8*)pMem->zShort;
|
||||
pMem->flags |= MEM_Short|MEM_Term;
|
||||
}else{
|
||||
z = sqliteMallocRaw( n+2 );
|
||||
if( z==0 ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
pMem->flags |= MEM_Dyn|MEM_Term;
|
||||
pMem->xDel = 0;
|
||||
}
|
||||
memcpy(z, pMem->z, n );
|
||||
z[n] = 0;
|
||||
z[n+1] = 0;
|
||||
pMem->z = (char*)z;
|
||||
pMem->flags &= ~(MEM_Ephem|MEM_Static);
|
||||
assert(0==(1&(int)pMem->z));
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Make sure the given Mem is \u0000 terminated.
|
||||
*/
|
||||
int sqlite3VdbeMemNulTerminate(Mem *pMem){
|
||||
/* In SQLite, a string without a nul terminator occurs when a string
|
||||
** is loaded from disk (in this case the memory management is ephemeral),
|
||||
** or when it is supplied by the user as a bound variable or function
|
||||
** return value. Therefore, the memory management of the string must be
|
||||
** either ephemeral, static or controlled by a user-supplied destructor.
|
||||
*/
|
||||
assert(
|
||||
!(pMem->flags&MEM_Str) || /* it's not a string, or */
|
||||
(pMem->flags&MEM_Term) || /* it's nul term. already, or */
|
||||
(pMem->flags&(MEM_Ephem|MEM_Static)) || /* it's static or ephem, or */
|
||||
(pMem->flags&MEM_Dyn && pMem->xDel) /* external management */
|
||||
);
|
||||
if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
|
||||
return SQLITE_OK; /* Nothing to do */
|
||||
}
|
||||
|
||||
if( pMem->flags & (MEM_Static|MEM_Ephem) ){
|
||||
return sqlite3VdbeMemMakeWriteable(pMem);
|
||||
}else{
|
||||
char *z = sqliteMalloc(pMem->n+2);
|
||||
if( !z ) return SQLITE_NOMEM;
|
||||
memcpy(z, pMem->z, pMem->n);
|
||||
z[pMem->n] = 0;
|
||||
z[pMem->n+1] = 0;
|
||||
pMem->xDel(pMem->z);
|
||||
pMem->xDel = 0;
|
||||
pMem->z = z;
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Add MEM_Str to the set of representations for the given Mem. Numbers
|
||||
** are converted using sqlite3_snprintf(). Converting a BLOB to a string
|
||||
** is a no-op.
|
||||
**
|
||||
** Existing representations MEM_Int and MEM_Real are *not* invalidated.
|
||||
**
|
||||
** A MEM_Null value will never be passed to this function. This function is
|
||||
** used for converting values to text for returning to the user (i.e. via
|
||||
** sqlite3_value_text()), or for ensuring that values to be used as btree
|
||||
** keys are strings. In the former case a NULL pointer is returned the
|
||||
** user and the later is an internal programming error.
|
||||
*/
|
||||
int sqlite3VdbeMemStringify(Mem *pMem, int enc){
|
||||
int rc = SQLITE_OK;
|
||||
int fg = pMem->flags;
|
||||
char *z = pMem->zShort;
|
||||
|
||||
assert( !(fg&(MEM_Str|MEM_Blob)) );
|
||||
assert( fg&(MEM_Int|MEM_Real) );
|
||||
|
||||
/* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
|
||||
** string representation of the value. Then, if the required encoding
|
||||
** is UTF-16le or UTF-16be do a translation.
|
||||
**
|
||||
** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
|
||||
*/
|
||||
if( fg & MEM_Int ){
|
||||
sqlite3_snprintf(NBFS, z, "%lld", pMem->i);
|
||||
}else{
|
||||
assert( fg & MEM_Real );
|
||||
sqlite3_snprintf(NBFS, z, "%!.15g", pMem->r);
|
||||
}
|
||||
pMem->n = strlen(z);
|
||||
pMem->z = z;
|
||||
pMem->enc = SQLITE_UTF8;
|
||||
pMem->flags |= MEM_Str | MEM_Short | MEM_Term;
|
||||
sqlite3VdbeChangeEncoding(pMem, enc);
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Memory cell pMem contains the context of an aggregate function.
|
||||
** This routine calls the finalize method for that function. The
|
||||
** result of the aggregate is stored back into pMem.
|
||||
**
|
||||
** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
|
||||
** otherwise.
|
||||
*/
|
||||
int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
|
||||
int rc = SQLITE_OK;
|
||||
if( pFunc && pFunc->xFinalize ){
|
||||
sqlite3_context ctx;
|
||||
assert( (pMem->flags & MEM_Null)!=0 || pFunc==*(FuncDef**)&pMem->i );
|
||||
ctx.s.flags = MEM_Null;
|
||||
ctx.s.z = pMem->zShort;
|
||||
ctx.pMem = pMem;
|
||||
ctx.pFunc = pFunc;
|
||||
ctx.isError = 0;
|
||||
pFunc->xFinalize(&ctx);
|
||||
if( pMem->z && pMem->z!=pMem->zShort ){
|
||||
sqliteFree( pMem->z );
|
||||
}
|
||||
*pMem = ctx.s;
|
||||
if( pMem->flags & MEM_Short ){
|
||||
pMem->z = pMem->zShort;
|
||||
}
|
||||
if( ctx.isError ){
|
||||
rc = SQLITE_ERROR;
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Release any memory held by the Mem. This may leave the Mem in an
|
||||
** inconsistent state, for example with (Mem.z==0) and
|
||||
** (Mem.type==SQLITE_TEXT).
|
||||
*/
|
||||
void sqlite3VdbeMemRelease(Mem *p){
|
||||
if( p->flags & (MEM_Dyn|MEM_Agg) ){
|
||||
if( p->xDel ){
|
||||
if( p->flags & MEM_Agg ){
|
||||
sqlite3VdbeMemFinalize(p, *(FuncDef**)&p->i);
|
||||
assert( (p->flags & MEM_Agg)==0 );
|
||||
sqlite3VdbeMemRelease(p);
|
||||
}else{
|
||||
p->xDel((void *)p->z);
|
||||
}
|
||||
}else{
|
||||
sqliteFree(p->z);
|
||||
}
|
||||
p->z = 0;
|
||||
p->xDel = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Return some kind of integer value which is the best we can do
|
||||
** at representing the value that *pMem describes as an integer.
|
||||
** If pMem is an integer, then the value is exact. If pMem is
|
||||
** a floating-point then the value returned is the integer part.
|
||||
** If pMem is a string or blob, then we make an attempt to convert
|
||||
** it into a integer and return that. If pMem is NULL, return 0.
|
||||
**
|
||||
** If pMem is a string, its encoding might be changed.
|
||||
*/
|
||||
i64 sqlite3VdbeIntValue(Mem *pMem){
|
||||
int flags = pMem->flags;
|
||||
if( flags & MEM_Int ){
|
||||
return pMem->i;
|
||||
}else if( flags & MEM_Real ){
|
||||
return (i64)pMem->r;
|
||||
}else if( flags & (MEM_Str|MEM_Blob) ){
|
||||
i64 value;
|
||||
if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
|
||||
|| sqlite3VdbeMemNulTerminate(pMem) ){
|
||||
return 0;
|
||||
}
|
||||
assert( pMem->z );
|
||||
sqlite3atoi64(pMem->z, &value);
|
||||
return value;
|
||||
}else{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the best representation of pMem that we can get into a
|
||||
** double. If pMem is already a double or an integer, return its
|
||||
** value. If it is a string or blob, try to convert it to a double.
|
||||
** If it is a NULL, return 0.0.
|
||||
*/
|
||||
double sqlite3VdbeRealValue(Mem *pMem){
|
||||
if( pMem->flags & MEM_Real ){
|
||||
return pMem->r;
|
||||
}else if( pMem->flags & MEM_Int ){
|
||||
return (double)pMem->i;
|
||||
}else if( pMem->flags & (MEM_Str|MEM_Blob) ){
|
||||
double val = 0.0;
|
||||
if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
|
||||
|| sqlite3VdbeMemNulTerminate(pMem) ){
|
||||
return 0.0;
|
||||
}
|
||||
assert( pMem->z );
|
||||
sqlite3AtoF(pMem->z, &val);
|
||||
return val;
|
||||
}else{
|
||||
return 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** The MEM structure is already a MEM_Real. Try to also make it a
|
||||
** MEM_Int if we can.
|
||||
*/
|
||||
void sqlite3VdbeIntegerAffinity(Mem *pMem){
|
||||
assert( pMem->flags & MEM_Real );
|
||||
pMem->i = pMem->r;
|
||||
if( ((double)pMem->i)==pMem->r ){
|
||||
pMem->flags |= MEM_Int;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Convert pMem to type integer. Invalidate any prior representations.
|
||||
*/
|
||||
int sqlite3VdbeMemIntegerify(Mem *pMem){
|
||||
pMem->i = sqlite3VdbeIntValue(pMem);
|
||||
sqlite3VdbeMemRelease(pMem);
|
||||
pMem->flags = MEM_Int;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Convert pMem so that it is of type MEM_Real.
|
||||
** Invalidate any prior representations.
|
||||
*/
|
||||
int sqlite3VdbeMemRealify(Mem *pMem){
|
||||
pMem->r = sqlite3VdbeRealValue(pMem);
|
||||
sqlite3VdbeMemRelease(pMem);
|
||||
pMem->flags = MEM_Real;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Convert pMem so that it has types MEM_Real or MEM_Int or both.
|
||||
** Invalidate any prior representations.
|
||||
*/
|
||||
int sqlite3VdbeMemNumerify(Mem *pMem){
|
||||
sqlite3VdbeMemRealify(pMem);
|
||||
sqlite3VdbeIntegerAffinity(pMem);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Delete any previous value and set the value stored in *pMem to NULL.
|
||||
*/
|
||||
void sqlite3VdbeMemSetNull(Mem *pMem){
|
||||
sqlite3VdbeMemRelease(pMem);
|
||||
pMem->flags = MEM_Null;
|
||||
pMem->type = SQLITE_NULL;
|
||||
pMem->n = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Delete any previous value and set the value stored in *pMem to val,
|
||||
** manifest type INTEGER.
|
||||
*/
|
||||
void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
|
||||
sqlite3VdbeMemRelease(pMem);
|
||||
pMem->i = val;
|
||||
pMem->flags = MEM_Int;
|
||||
pMem->type = SQLITE_INTEGER;
|
||||
}
|
||||
|
||||
/*
|
||||
** Delete any previous value and set the value stored in *pMem to val,
|
||||
** manifest type REAL.
|
||||
*/
|
||||
void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
|
||||
sqlite3VdbeMemRelease(pMem);
|
||||
pMem->r = val;
|
||||
pMem->flags = MEM_Real;
|
||||
pMem->type = SQLITE_FLOAT;
|
||||
}
|
||||
|
||||
/*
|
||||
** Make an shallow copy of pFrom into pTo. Prior contents of
|
||||
** pTo are overwritten. The pFrom->z field is not duplicated. If
|
||||
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
|
||||
** and flags gets srcType (either MEM_Ephem or MEM_Static).
|
||||
*/
|
||||
void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
|
||||
memcpy(pTo, pFrom, sizeof(*pFrom)-sizeof(pFrom->zShort));
|
||||
pTo->xDel = 0;
|
||||
if( pTo->flags & (MEM_Str|MEM_Blob) ){
|
||||
pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short|MEM_Ephem);
|
||||
assert( srcType==MEM_Ephem || srcType==MEM_Static );
|
||||
pTo->flags |= srcType;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Make a full copy of pFrom into pTo. Prior contents of pTo are
|
||||
** freed before the copy is made.
|
||||
*/
|
||||
int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
|
||||
int rc;
|
||||
if( pTo->flags & MEM_Dyn ){
|
||||
sqlite3VdbeMemRelease(pTo);
|
||||
}
|
||||
sqlite3VdbeMemShallowCopy(pTo, pFrom, MEM_Ephem);
|
||||
if( pTo->flags & MEM_Ephem ){
|
||||
rc = sqlite3VdbeMemMakeWriteable(pTo);
|
||||
}else{
|
||||
rc = SQLITE_OK;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Transfer the contents of pFrom to pTo. Any existing value in pTo is
|
||||
** freed. If pFrom contains ephemeral data, a copy is made.
|
||||
**
|
||||
** pFrom contains an SQL NULL when this routine returns. SQLITE_NOMEM
|
||||
** might be returned if pFrom held ephemeral data and we were unable
|
||||
** to allocate enough space to make a copy.
|
||||
*/
|
||||
int sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
|
||||
int rc;
|
||||
if( pTo->flags & MEM_Dyn ){
|
||||
sqlite3VdbeMemRelease(pTo);
|
||||
}
|
||||
memcpy(pTo, pFrom, sizeof(Mem));
|
||||
if( pFrom->flags & MEM_Short ){
|
||||
pTo->z = pTo->zShort;
|
||||
}
|
||||
pFrom->flags = MEM_Null;
|
||||
pFrom->xDel = 0;
|
||||
if( pTo->flags & MEM_Ephem ){
|
||||
rc = sqlite3VdbeMemMakeWriteable(pTo);
|
||||
}else{
|
||||
rc = SQLITE_OK;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Change the value of a Mem to be a string or a BLOB.
|
||||
*/
|
||||
int sqlite3VdbeMemSetStr(
|
||||
Mem *pMem, /* Memory cell to set to string value */
|
||||
const char *z, /* String pointer */
|
||||
int n, /* Bytes in string, or negative */
|
||||
u8 enc, /* Encoding of z. 0 for BLOBs */
|
||||
void (*xDel)(void*) /* Destructor function */
|
||||
){
|
||||
sqlite3VdbeMemRelease(pMem);
|
||||
if( !z ){
|
||||
pMem->flags = MEM_Null;
|
||||
pMem->type = SQLITE_NULL;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
pMem->z = (char *)z;
|
||||
if( xDel==SQLITE_STATIC ){
|
||||
pMem->flags = MEM_Static;
|
||||
}else if( xDel==SQLITE_TRANSIENT ){
|
||||
pMem->flags = MEM_Ephem;
|
||||
}else{
|
||||
pMem->flags = MEM_Dyn;
|
||||
pMem->xDel = xDel;
|
||||
}
|
||||
|
||||
pMem->enc = enc;
|
||||
pMem->type = enc==0 ? SQLITE_BLOB : SQLITE_TEXT;
|
||||
pMem->n = n;
|
||||
|
||||
assert( enc==0 || enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE
|
||||
|| enc==SQLITE_UTF16BE );
|
||||
switch( enc ){
|
||||
case 0:
|
||||
pMem->flags |= MEM_Blob;
|
||||
pMem->enc = SQLITE_UTF8;
|
||||
break;
|
||||
|
||||
case SQLITE_UTF8:
|
||||
pMem->flags |= MEM_Str;
|
||||
if( n<0 ){
|
||||
pMem->n = strlen(z);
|
||||
pMem->flags |= MEM_Term;
|
||||
}
|
||||
break;
|
||||
|
||||
#ifndef SQLITE_OMIT_UTF16
|
||||
case SQLITE_UTF16LE:
|
||||
case SQLITE_UTF16BE:
|
||||
pMem->flags |= MEM_Str;
|
||||
if( pMem->n<0 ){
|
||||
pMem->n = sqlite3utf16ByteLen(pMem->z,-1);
|
||||
pMem->flags |= MEM_Term;
|
||||
}
|
||||
if( sqlite3VdbeMemHandleBom(pMem) ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
#endif /* SQLITE_OMIT_UTF16 */
|
||||
}
|
||||
if( pMem->flags&MEM_Ephem ){
|
||||
return sqlite3VdbeMemMakeWriteable(pMem);
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Compare the values contained by the two memory cells, returning
|
||||
** negative, zero or positive if pMem1 is less than, equal to, or greater
|
||||
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
|
||||
** and reals) sorted numerically, followed by text ordered by the collating
|
||||
** sequence pColl and finally blob's ordered by memcmp().
|
||||
**
|
||||
** Two NULL values are considered equal by this function.
|
||||
*/
|
||||
int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
|
||||
int rc;
|
||||
int f1, f2;
|
||||
int combined_flags;
|
||||
|
||||
/* Interchange pMem1 and pMem2 if the collating sequence specifies
|
||||
** DESC order.
|
||||
*/
|
||||
f1 = pMem1->flags;
|
||||
f2 = pMem2->flags;
|
||||
combined_flags = f1|f2;
|
||||
|
||||
/* If one value is NULL, it is less than the other. If both values
|
||||
** are NULL, return 0.
|
||||
*/
|
||||
if( combined_flags&MEM_Null ){
|
||||
return (f2&MEM_Null) - (f1&MEM_Null);
|
||||
}
|
||||
|
||||
/* If one value is a number and the other is not, the number is less.
|
||||
** If both are numbers, compare as reals if one is a real, or as integers
|
||||
** if both values are integers.
|
||||
*/
|
||||
if( combined_flags&(MEM_Int|MEM_Real) ){
|
||||
if( !(f1&(MEM_Int|MEM_Real)) ){
|
||||
return 1;
|
||||
}
|
||||
if( !(f2&(MEM_Int|MEM_Real)) ){
|
||||
return -1;
|
||||
}
|
||||
if( (f1 & f2 & MEM_Int)==0 ){
|
||||
double r1, r2;
|
||||
if( (f1&MEM_Real)==0 ){
|
||||
r1 = pMem1->i;
|
||||
}else{
|
||||
r1 = pMem1->r;
|
||||
}
|
||||
if( (f2&MEM_Real)==0 ){
|
||||
r2 = pMem2->i;
|
||||
}else{
|
||||
r2 = pMem2->r;
|
||||
}
|
||||
if( r1<r2 ) return -1;
|
||||
if( r1>r2 ) return 1;
|
||||
return 0;
|
||||
}else{
|
||||
assert( f1&MEM_Int );
|
||||
assert( f2&MEM_Int );
|
||||
if( pMem1->i < pMem2->i ) return -1;
|
||||
if( pMem1->i > pMem2->i ) return 1;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* If one value is a string and the other is a blob, the string is less.
|
||||
** If both are strings, compare using the collating functions.
|
||||
*/
|
||||
if( combined_flags&MEM_Str ){
|
||||
if( (f1 & MEM_Str)==0 ){
|
||||
return 1;
|
||||
}
|
||||
if( (f2 & MEM_Str)==0 ){
|
||||
return -1;
|
||||
}
|
||||
|
||||
assert( pMem1->enc==pMem2->enc );
|
||||
assert( pMem1->enc==SQLITE_UTF8 ||
|
||||
pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
|
||||
|
||||
/* The collation sequence must be defined at this point, even if
|
||||
** the user deletes the collation sequence after the vdbe program is
|
||||
** compiled (this was not always the case).
|
||||
*/
|
||||
assert( !pColl || pColl->xCmp );
|
||||
|
||||
if( pColl ){
|
||||
if( pMem1->enc==pColl->enc ){
|
||||
/* The strings are already in the correct encoding. Call the
|
||||
** comparison function directly */
|
||||
return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
|
||||
}else{
|
||||
u8 origEnc = pMem1->enc;
|
||||
const void *v1, *v2;
|
||||
int n1, n2;
|
||||
/* Convert the strings into the encoding that the comparison
|
||||
** function expects */
|
||||
v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc);
|
||||
n1 = v1==0 ? 0 : pMem1->n;
|
||||
assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) );
|
||||
v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc);
|
||||
n2 = v2==0 ? 0 : pMem2->n;
|
||||
assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) );
|
||||
/* Do the comparison */
|
||||
rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
|
||||
/* Convert the strings back into the database encoding */
|
||||
sqlite3ValueText((sqlite3_value*)pMem1, origEnc);
|
||||
sqlite3ValueText((sqlite3_value*)pMem2, origEnc);
|
||||
return rc;
|
||||
}
|
||||
}
|
||||
/* If a NULL pointer was passed as the collate function, fall through
|
||||
** to the blob case and use memcmp(). */
|
||||
}
|
||||
|
||||
/* Both values must be blobs. Compare using memcmp(). */
|
||||
rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
|
||||
if( rc==0 ){
|
||||
rc = pMem1->n - pMem2->n;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Move data out of a btree key or data field and into a Mem structure.
|
||||
** The data or key is taken from the entry that pCur is currently pointing
|
||||
** to. offset and amt determine what portion of the data or key to retrieve.
|
||||
** key is true to get the key or false to get data. The result is written
|
||||
** into the pMem element.
|
||||
**
|
||||
** The pMem structure is assumed to be uninitialized. Any prior content
|
||||
** is overwritten without being freed.
|
||||
**
|
||||
** If this routine fails for any reason (malloc returns NULL or unable
|
||||
** to read from the disk) then the pMem is left in an inconsistent state.
|
||||
*/
|
||||
int sqlite3VdbeMemFromBtree(
|
||||
BtCursor *pCur, /* Cursor pointing at record to retrieve. */
|
||||
int offset, /* Offset from the start of data to return bytes from. */
|
||||
int amt, /* Number of bytes to return. */
|
||||
int key, /* If true, retrieve from the btree key, not data. */
|
||||
Mem *pMem /* OUT: Return data in this Mem structure. */
|
||||
){
|
||||
char *zData; /* Data from the btree layer */
|
||||
int available; /* Number of bytes available on the local btree page */
|
||||
|
||||
if( key ){
|
||||
zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
|
||||
}else{
|
||||
zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
|
||||
}
|
||||
|
||||
pMem->n = amt;
|
||||
if( offset+amt<=available ){
|
||||
pMem->z = &zData[offset];
|
||||
pMem->flags = MEM_Blob|MEM_Ephem;
|
||||
}else{
|
||||
int rc;
|
||||
if( amt>NBFS-2 ){
|
||||
zData = (char *)sqliteMallocRaw(amt+2);
|
||||
if( !zData ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
|
||||
pMem->xDel = 0;
|
||||
}else{
|
||||
zData = &(pMem->zShort[0]);
|
||||
pMem->flags = MEM_Blob|MEM_Short|MEM_Term;
|
||||
}
|
||||
pMem->z = zData;
|
||||
pMem->enc = 0;
|
||||
pMem->type = SQLITE_BLOB;
|
||||
|
||||
if( key ){
|
||||
rc = sqlite3BtreeKey(pCur, offset, amt, zData);
|
||||
}else{
|
||||
rc = sqlite3BtreeData(pCur, offset, amt, zData);
|
||||
}
|
||||
zData[amt] = 0;
|
||||
zData[amt+1] = 0;
|
||||
if( rc!=SQLITE_OK ){
|
||||
if( amt>NBFS-2 ){
|
||||
assert( zData!=pMem->zShort );
|
||||
assert( pMem->flags & MEM_Dyn );
|
||||
sqliteFree(zData);
|
||||
} else {
|
||||
assert( zData==pMem->zShort );
|
||||
assert( pMem->flags & MEM_Short );
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
}
|
||||
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
/*
|
||||
** Perform various checks on the memory cell pMem. An assert() will
|
||||
** fail if pMem is internally inconsistent.
|
||||
*/
|
||||
void sqlite3VdbeMemSanity(Mem *pMem){
|
||||
int flags = pMem->flags;
|
||||
assert( flags!=0 ); /* Must define some type */
|
||||
if( pMem->flags & (MEM_Str|MEM_Blob) ){
|
||||
int x = pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
|
||||
assert( x!=0 ); /* Strings must define a string subtype */
|
||||
assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */
|
||||
assert( pMem->z!=0 ); /* Strings must have a value */
|
||||
/* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
|
||||
assert( (pMem->flags & MEM_Short)==0 || pMem->z==pMem->zShort );
|
||||
assert( (pMem->flags & MEM_Short)!=0 || pMem->z!=pMem->zShort );
|
||||
/* No destructor unless there is MEM_Dyn */
|
||||
assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 );
|
||||
|
||||
if( (flags & MEM_Str) ){
|
||||
assert( pMem->enc==SQLITE_UTF8 ||
|
||||
pMem->enc==SQLITE_UTF16BE ||
|
||||
pMem->enc==SQLITE_UTF16LE
|
||||
);
|
||||
/* If the string is UTF-8 encoded and nul terminated, then pMem->n
|
||||
** must be the length of the string. (Later:) If the database file
|
||||
** has been corrupted, '\000' characters might have been inserted
|
||||
** into the middle of the string. In that case, the strlen() might
|
||||
** be less.
|
||||
*/
|
||||
if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){
|
||||
assert( strlen(pMem->z)<=pMem->n );
|
||||
assert( pMem->z[pMem->n]==0 );
|
||||
}
|
||||
}
|
||||
}else{
|
||||
/* Cannot define a string subtype for non-string objects */
|
||||
assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
|
||||
assert( pMem->xDel==0 );
|
||||
}
|
||||
/* MEM_Null excludes all other types */
|
||||
assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0
|
||||
|| (pMem->flags&MEM_Null)==0 );
|
||||
/* If the MEM is both real and integer, the values are equal */
|
||||
assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real)
|
||||
|| pMem->r==pMem->i );
|
||||
}
|
||||
#endif
|
||||
|
||||
/* This function is only available internally, it is not part of the
|
||||
** external API. It works in a similar way to sqlite3_value_text(),
|
||||
** except the data returned is in the encoding specified by the second
|
||||
** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
|
||||
** SQLITE_UTF8.
|
||||
**
|
||||
** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
|
||||
** If that is the case, then the result must be aligned on an even byte
|
||||
** boundary.
|
||||
*/
|
||||
const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
|
||||
if( !pVal ) return 0;
|
||||
assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
|
||||
|
||||
if( pVal->flags&MEM_Null ){
|
||||
return 0;
|
||||
}
|
||||
assert( (MEM_Blob>>3) == MEM_Str );
|
||||
pVal->flags |= (pVal->flags & MEM_Blob)>>3;
|
||||
if( pVal->flags&MEM_Str ){
|
||||
sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
|
||||
if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(int)pVal->z) ){
|
||||
assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
|
||||
if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
}else if( !(pVal->flags&MEM_Blob) ){
|
||||
sqlite3VdbeMemStringify(pVal, enc);
|
||||
assert( 0==(1&(int)pVal->z) );
|
||||
}
|
||||
assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || sqlite3MallocFailed() );
|
||||
if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
|
||||
return pVal->z;
|
||||
}else{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Create a new sqlite3_value object.
|
||||
*/
|
||||
sqlite3_value* sqlite3ValueNew(void){
|
||||
Mem *p = sqliteMalloc(sizeof(*p));
|
||||
if( p ){
|
||||
p->flags = MEM_Null;
|
||||
p->type = SQLITE_NULL;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Create a new sqlite3_value object, containing the value of pExpr.
|
||||
**
|
||||
** This only works for very simple expressions that consist of one constant
|
||||
** token (i.e. "5", "5.1", "NULL", "'a string'"). If the expression can
|
||||
** be converted directly into a value, then the value is allocated and
|
||||
** a pointer written to *ppVal. The caller is responsible for deallocating
|
||||
** the value by passing it to sqlite3ValueFree() later on. If the expression
|
||||
** cannot be converted to a value, then *ppVal is set to NULL.
|
||||
*/
|
||||
int sqlite3ValueFromExpr(
|
||||
Expr *pExpr,
|
||||
u8 enc,
|
||||
u8 affinity,
|
||||
sqlite3_value **ppVal
|
||||
){
|
||||
int op;
|
||||
char *zVal = 0;
|
||||
sqlite3_value *pVal = 0;
|
||||
|
||||
if( !pExpr ){
|
||||
*ppVal = 0;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
op = pExpr->op;
|
||||
|
||||
if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
|
||||
zVal = sqliteStrNDup((char*)pExpr->token.z, pExpr->token.n);
|
||||
pVal = sqlite3ValueNew();
|
||||
if( !zVal || !pVal ) goto no_mem;
|
||||
sqlite3Dequote(zVal);
|
||||
sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3FreeX);
|
||||
if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
|
||||
sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);
|
||||
}else{
|
||||
sqlite3ValueApplyAffinity(pVal, affinity, enc);
|
||||
}
|
||||
}else if( op==TK_UMINUS ) {
|
||||
if( SQLITE_OK==sqlite3ValueFromExpr(pExpr->pLeft, enc, affinity, &pVal) ){
|
||||
pVal->i = -1 * pVal->i;
|
||||
pVal->r = -1.0 * pVal->r;
|
||||
}
|
||||
}
|
||||
#ifndef SQLITE_OMIT_BLOB_LITERAL
|
||||
else if( op==TK_BLOB ){
|
||||
int nVal;
|
||||
pVal = sqlite3ValueNew();
|
||||
zVal = sqliteStrNDup((char*)pExpr->token.z+1, pExpr->token.n-1);
|
||||
if( !zVal || !pVal ) goto no_mem;
|
||||
sqlite3Dequote(zVal);
|
||||
nVal = strlen(zVal)/2;
|
||||
sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(zVal), nVal, 0, sqlite3FreeX);
|
||||
sqliteFree(zVal);
|
||||
}
|
||||
#endif
|
||||
|
||||
*ppVal = pVal;
|
||||
return SQLITE_OK;
|
||||
|
||||
no_mem:
|
||||
sqliteFree(zVal);
|
||||
sqlite3ValueFree(pVal);
|
||||
*ppVal = 0;
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
|
||||
/*
|
||||
** Change the string value of an sqlite3_value object
|
||||
*/
|
||||
void sqlite3ValueSetStr(
|
||||
sqlite3_value *v,
|
||||
int n,
|
||||
const void *z,
|
||||
u8 enc,
|
||||
void (*xDel)(void*)
|
||||
){
|
||||
if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
|
||||
}
|
||||
|
||||
/*
|
||||
** Free an sqlite3_value object
|
||||
*/
|
||||
void sqlite3ValueFree(sqlite3_value *v){
|
||||
if( !v ) return;
|
||||
sqlite3ValueSetStr(v, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
|
||||
sqliteFree(v);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of bytes in the sqlite3_value object assuming
|
||||
** that it uses the encoding "enc"
|
||||
*/
|
||||
int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
|
||||
Mem *p = (Mem*)pVal;
|
||||
if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
|
||||
return p->n;
|
||||
}
|
||||
return 0;
|
||||
}
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -475,11 +475,8 @@ mozStorageConnection::CreateFunction(const char *aFunctionName,
|
|||
nsresult
|
||||
mozStorageConnection::Preload()
|
||||
{
|
||||
/*
|
||||
int srv = sqlite3Preload(mDBConn);
|
||||
return ConvertResultCode(srv);
|
||||
*/
|
||||
return NS_OK; // XXX restore after sqlite upgrade
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
Загрузка…
Ссылка в новой задаче