Add support for Elliptic Curve Cryptography. Bug 195135.

Contributor(s):
* Sheueling Chang Shantz <sheueling.chang@sun.com> and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
Added Files:
    GF2m_ecl.c GF2m_ecl.h mpi/mp_gf2m.c mpi/mp_gf2m.h
    mpi/tests/mptest-b.c
This commit is contained in:
nelsonb%netscape.com 2003-03-26 05:03:11 +00:00
Родитель c3244ab6bc
Коммит 6d0b871174
5 изменённых файлов: 1478 добавлений и 0 удалений

Просмотреть файл

@ -0,0 +1,539 @@
/*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library for binary polynomial
* field curves.
*
* The Initial Developer of the Original Code is Sun Microsystems, Inc.
* Portions created by Sun Microsystems, Inc. are Copyright (C) 2003
* Sun Microsystems, Inc. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*/
#ifdef NSS_ENABLE_ECC
/*
* GF2m_ecl.c: Contains an implementation of elliptic curve math library
* for curves over GF2m.
*
* XXX Can be moved to a separate subdirectory later.
*
*/
#include "GF2m_ecl.h"
#include "mpi/mplogic.h"
#include "mpi/mp_gf2m.h"
#include <stdlib.h>
/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
mp_err
GF2m_ec_pt_is_inf_aff(const mp_int *px, const mp_int *py)
{
if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
return MP_YES;
} else {
return MP_NO;
}
}
/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
mp_err
GF2m_ec_pt_set_inf_aff(mp_int *px, mp_int *py)
{
mp_zero(px);
mp_zero(py);
return MP_OKAY;
}
/* Computes R = P + Q based on IEEE P1363 A.10.2.
* Elliptic curve points P, Q, and R can all be identical.
* Uses affine coordinates.
*/
mp_err
GF2m_ec_pt_add_aff(const mp_int *pp, const mp_int *a, const mp_int *px,
const mp_int *py, const mp_int *qx, const mp_int *qy,
mp_int *rx, mp_int *ry)
{
mp_err err = MP_OKAY;
mp_int lambda, xtemp, ytemp;
unsigned int *p;
int p_size;
p_size = mp_bpoly2arr(pp, p, 0) + 1;
p = (unsigned int *) (malloc(sizeof(unsigned int) * p_size));
if (p == NULL) goto cleanup;
mp_bpoly2arr(pp, p, p_size);
CHECK_MPI_OK( mp_init(&lambda) );
CHECK_MPI_OK( mp_init(&xtemp) );
CHECK_MPI_OK( mp_init(&ytemp) );
/* if P = inf, then R = Q */
if (GF2m_ec_pt_is_inf_aff(px, py) == 0) {
CHECK_MPI_OK( mp_copy(qx, rx) );
CHECK_MPI_OK( mp_copy(qy, ry) );
err = MP_OKAY;
goto cleanup;
}
/* if Q = inf, then R = P */
if (GF2m_ec_pt_is_inf_aff(qx, qy) == 0) {
CHECK_MPI_OK( mp_copy(px, rx) );
CHECK_MPI_OK( mp_copy(py, ry) );
err = MP_OKAY;
goto cleanup;
}
/* if px != qx, then lambda = (py+qy) / (px+qx),
* xtemp = a + lambda^2 + lambda + px + qx
*/
if (mp_cmp(px, qx) != 0) {
CHECK_MPI_OK( mp_badd(py, qy, &ytemp) );
CHECK_MPI_OK( mp_badd(px, qx, &xtemp) );
CHECK_MPI_OK( mp_bdivmod(&ytemp, &xtemp, pp, p, &lambda) );
CHECK_MPI_OK( mp_bsqrmod(&lambda, p, &xtemp) );
CHECK_MPI_OK( mp_badd(&xtemp, &lambda, &xtemp) );
CHECK_MPI_OK( mp_badd(&xtemp, a, &xtemp) );
CHECK_MPI_OK( mp_badd(&xtemp, px, &xtemp) );
CHECK_MPI_OK( mp_badd(&xtemp, qx, &xtemp) );
} else {
/* if py != qy or qx = 0, then R = inf */
if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qx) == 0)) {
mp_zero(rx);
mp_zero(ry);
err = MP_OKAY;
goto cleanup;
}
/* lambda = qx + qy / qx */
CHECK_MPI_OK( mp_bdivmod(qy, qx, pp, p, &lambda) );
CHECK_MPI_OK( mp_badd(&lambda, qx, &lambda) );
/* xtemp = a + lambda^2 + lambda */
CHECK_MPI_OK( mp_bsqrmod(&lambda, p, &xtemp) );
CHECK_MPI_OK( mp_badd(&xtemp, &lambda, &xtemp) );
CHECK_MPI_OK( mp_badd(&xtemp, a, &xtemp) );
}
/* ry = (qx + xtemp) * lambda + xtemp + qy */
CHECK_MPI_OK( mp_badd(qx, &xtemp, &ytemp) );
CHECK_MPI_OK( mp_bmulmod(&ytemp, &lambda, p, &ytemp) );
CHECK_MPI_OK( mp_badd(&ytemp, &xtemp, &ytemp) );
CHECK_MPI_OK( mp_badd(&ytemp, qy, ry) );
/* rx = xtemp */
CHECK_MPI_OK( mp_copy(&xtemp, rx) );
cleanup:
mp_clear(&lambda);
mp_clear(&xtemp);
mp_clear(&ytemp);
free(p);
return err;
}
/* Computes R = P - Q.
* Elliptic curve points P, Q, and R can all be identical.
* Uses affine coordinates.
*/
mp_err
GF2m_ec_pt_sub_aff(const mp_int *pp, const mp_int *a, const mp_int *px,
const mp_int *py, const mp_int *qx, const mp_int *qy,
mp_int *rx, mp_int *ry)
{
mp_err err = MP_OKAY;
mp_int nqy;
MP_DIGITS(&nqy) = 0;
CHECK_MPI_OK( mp_init(&nqy) );
/* nqy = qx+qy */
CHECK_MPI_OK( mp_badd(qx, qy, &nqy) );
err = GF2m_ec_pt_add_aff(pp, a, px, py, qx, &nqy, rx, ry);
cleanup:
mp_clear(&nqy);
return err;
}
/* Computes R = 2P.
* Elliptic curve points P and R can be identical.
* Uses affine coordinates.
*/
mp_err
GF2m_ec_pt_dbl_aff(const mp_int *pp, const mp_int *a, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry)
{
return GF2m_ec_pt_add_aff(pp, a, px, py, px, py, rx, ry);
}
/* Gets the i'th bit in the binary representation of a.
* If i >= length(a), then return 0.
* (The above behaviour differs from mpl_get_bit, which
* causes an error if i >= length(a).)
*/
#define MP_GET_BIT(a, i) \
((i) >= mpl_significant_bits((a))) ? 0 : mpl_get_bit((a), (i))
/* Computes R = nP based on IEEE P1363 A.10.3.
* Elliptic curve points P and R can be identical.
* Uses affine coordinates.
*/
mp_err
GF2m_ec_pt_mul_aff(const mp_int *pp, const mp_int *a, const mp_int *b,
const mp_int *px, const mp_int *py, const mp_int *n,
mp_int *rx, mp_int *ry)
{
mp_err err = MP_OKAY;
mp_int k, k3, qx, qy, sx, sy;
int b1, b3, i, l;
unsigned int *p;
int p_size;
MP_DIGITS(&k) = 0;
MP_DIGITS(&k3) = 0;
MP_DIGITS(&qx) = 0;
MP_DIGITS(&qy) = 0;
MP_DIGITS(&sx) = 0;
MP_DIGITS(&sy) = 0;
CHECK_MPI_OK( mp_init(&k) );
CHECK_MPI_OK( mp_init(&k3) );
CHECK_MPI_OK( mp_init(&qx) );
CHECK_MPI_OK( mp_init(&qy) );
CHECK_MPI_OK( mp_init(&sx) );
CHECK_MPI_OK( mp_init(&sy) );
p_size = mp_bpoly2arr(pp, p, 0) + 1;
p = (unsigned int *) (malloc(sizeof(unsigned int) * p_size));
if (p == NULL) goto cleanup;
mp_bpoly2arr(pp, p, p_size);
/* if n = 0 then r = inf */
if (mp_cmp_z(n) == 0) {
mp_zero(rx);
mp_zero(ry);
err = MP_OKAY;
goto cleanup;
}
/* Q = P, k = n */
CHECK_MPI_OK( mp_copy(px, &qx) );
CHECK_MPI_OK( mp_copy(py, &qy) );
CHECK_MPI_OK( mp_copy(n, &k) );
/* if n < 0 then Q = -Q, k = -k */
if (mp_cmp_z(n) < 0) {
CHECK_MPI_OK( mp_badd(&qx, &qy, &qy) );
CHECK_MPI_OK( mp_neg(&k, &k) );
}
#ifdef EC_DEBUG /* basic double and add method */
l = mpl_significant_bits(&k) - 1;
mp_zero(&sx);
mp_zero(&sy);
for (i = l; i >= 0; i--) {
/* if k_i = 1, then S = S + Q */
if (mpl_get_bit(&k, i) != 0) {
CHECK_MPI_OK( GF2m_ec_pt_add_aff(pp, a, &sx, &sy, &qx, &qy, &sx, &sy) );
}
if (i > 0) {
/* S = 2S */
CHECK_MPI_OK( GF2m_ec_pt_dbl_aff(pp, a, &sx, &sy, &sx, &sy) );
}
}
#else /* double and add/subtract method from standard */
/* k3 = 3 * k */
mp_set(&k3, 0x3);
CHECK_MPI_OK( mp_mul(&k, &k3, &k3) );
/* S = Q */
CHECK_MPI_OK( mp_copy(&qx, &sx) );
CHECK_MPI_OK( mp_copy(&qy, &sy) );
/* l = index of high order bit in binary representation of 3*k */
l = mpl_significant_bits(&k3) - 1;
/* for i = l-1 downto 1 */
for (i = l - 1; i >= 1; i--) {
/* S = 2S */
CHECK_MPI_OK( GF2m_ec_pt_dbl_aff(pp, a, &sx, &sy, &sx, &sy) );
b3 = MP_GET_BIT(&k3, i);
b1 = MP_GET_BIT(&k, i);
/* if k3_i = 1 and k_i = 0, then S = S + Q */
if ((b3 == 1) && (b1 == 0)) {
CHECK_MPI_OK( GF2m_ec_pt_add_aff(pp, a, &sx, &sy, &qx, &qy, &sx, &sy) );
/* if k3_i = 0 and k_i = 1, then S = S - Q */
} else if ((b3 == 0) && (b1 == 1)) {
CHECK_MPI_OK( GF2m_ec_pt_sub_aff(pp, a, &sx, &sy, &qx, &qy, &sx, &sy) );
}
}
#endif
/* output S */
CHECK_MPI_OK( mp_copy(&sx, rx) );
CHECK_MPI_OK( mp_copy(&sy, ry) );
cleanup:
mp_clear(&k);
mp_clear(&k3);
mp_clear(&qx);
mp_clear(&qy);
mp_clear(&sx);
mp_clear(&sy);
free(p);
return err;
}
/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
* coordinates.
* Uses algorithm Mdouble in appendix of
* Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation".
* modified to not require precomputation of c=b^{2^{m-1}}.
*/
static mp_err
gf2m_Mdouble(const mp_int *pp, const unsigned int p[], const mp_int *a,
const mp_int *b, mp_int *x, mp_int *z)
{
mp_err err = MP_OKAY;
mp_int t1;
MP_DIGITS(&t1) = 0;
CHECK_MPI_OK( mp_init(&t1) );
CHECK_MPI_OK( mp_bsqrmod(x, p, x) );
CHECK_MPI_OK( mp_bsqrmod(z, p, &t1) );
CHECK_MPI_OK( mp_bmulmod(x, &t1, p, z) );
CHECK_MPI_OK( mp_bsqrmod(x, p, x) );
CHECK_MPI_OK( mp_bsqrmod(&t1, p, &t1) );
CHECK_MPI_OK( mp_bmulmod(b, &t1, p, &t1) );
CHECK_MPI_OK( mp_badd(x, &t1, x) );
cleanup:
mp_clear(&t1);
return err;
}
/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
* projective coordinates.
* Uses algorithm Madd in appendix of
* Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation".
*/
static mp_err
gf2m_Madd(const mp_int *pp, const unsigned int p[], const mp_int *a,
const mp_int *b, const mp_int *x, mp_int *x1, mp_int *z1, mp_int *x2,
mp_int *z2)
{
mp_err err = MP_OKAY;
mp_int t1, t2;
MP_DIGITS(&t1) = 0;
MP_DIGITS(&t2) = 0;
CHECK_MPI_OK( mp_init(&t1) );
CHECK_MPI_OK( mp_init(&t2) );
CHECK_MPI_OK( mp_copy(x, &t1) );
CHECK_MPI_OK( mp_bmulmod(x1, z2, p, x1) );
CHECK_MPI_OK( mp_bmulmod(z1, x2, p, z1) );
CHECK_MPI_OK( mp_bmulmod(x1, z1, p, &t2) );
CHECK_MPI_OK( mp_badd(z1, x1, z1) );
CHECK_MPI_OK( mp_bsqrmod(z1, p, z1) );
CHECK_MPI_OK( mp_bmulmod(z1, &t1, p, x1) );
CHECK_MPI_OK( mp_badd(x1, &t2, x1) );
cleanup:
mp_clear(&t1);
mp_clear(&t2);
return err;
}
/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
* using Montgomery point multiplication algorithm Mxy() in appendix of
* Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation".
* Returns:
* 0 on error
* 1 if return value should be the point at infinity
* 2 otherwise
*/
static int
gf2m_Mxy(const mp_int *pp, const unsigned int p[], const mp_int *a,
const mp_int *b, const mp_int *x, const mp_int *y, mp_int *x1, mp_int *z1,
mp_int *x2, mp_int *z2)
{
mp_err err = MP_OKAY;
int ret;
mp_int t3, t4, t5;
MP_DIGITS(&t3) = 0;
MP_DIGITS(&t4) = 0;
MP_DIGITS(&t5) = 0;
CHECK_MPI_OK( mp_init(&t3) );
CHECK_MPI_OK( mp_init(&t4) );
CHECK_MPI_OK( mp_init(&t5) );
if (mp_cmp_z(z1) == 0) {
mp_zero(x2);
mp_zero(z2);
ret = 1;
goto cleanup;
}
if (mp_cmp_z(z2) == 0) {
CHECK_MPI_OK( mp_copy(x, x2) );
CHECK_MPI_OK( mp_badd(x, y, z2) );
ret = 2;
goto cleanup;
}
mp_set(&t5, 0x1);
CHECK_MPI_OK( mp_bmulmod(z1, z2, p, &t3) );
CHECK_MPI_OK( mp_bmulmod(z1, x, p, z1) );
CHECK_MPI_OK( mp_badd(z1, x1, z1) );
CHECK_MPI_OK( mp_bmulmod(z2, x, p, z2) );
CHECK_MPI_OK( mp_bmulmod(z2, x1, p, x1) );
CHECK_MPI_OK( mp_badd(z2, x2, z2) );
CHECK_MPI_OK( mp_bmulmod(z2, z1, p, z2) );
CHECK_MPI_OK( mp_bsqrmod(x, p, &t4) );
CHECK_MPI_OK( mp_badd(&t4, y, &t4) );
CHECK_MPI_OK( mp_bmulmod(&t4, &t3, p, &t4) );
CHECK_MPI_OK( mp_badd(&t4, z2, &t4) );
CHECK_MPI_OK( mp_bmulmod(&t3, x, p, &t3) );
CHECK_MPI_OK( mp_bdivmod(&t5, &t3, pp, p, &t3) );
CHECK_MPI_OK( mp_bmulmod(&t3, &t4, p, &t4) );
CHECK_MPI_OK( mp_bmulmod(x1, &t3, p, x2) );
CHECK_MPI_OK( mp_badd(x2, x, z2) );
CHECK_MPI_OK( mp_bmulmod(z2, &t4, p, z2) );
CHECK_MPI_OK( mp_badd(z2, y, z2) );
ret = 2;
cleanup:
mp_clear(&t3);
mp_clear(&t4);
mp_clear(&t5);
if (err == MP_OKAY) {
return ret;
} else {
return 0;
}
}
/* Computes R = nP based on algorithm 2P of
* Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation".
* Elliptic curve points P and R can be identical.
* Uses Montgomery projective coordinates.
*/
mp_err
GF2m_ec_pt_mul_mont(const mp_int *pp, const mp_int *a, const mp_int *b,
const mp_int *px, const mp_int *py, const mp_int *n,
mp_int *rx, mp_int *ry)
{
mp_err err = MP_OKAY;
mp_int x1, x2, z1, z2;
int i, j;
mp_digit top_bit, mask;
unsigned int *p;
int p_size;
MP_DIGITS(&x1) = 0;
MP_DIGITS(&x2) = 0;
MP_DIGITS(&z1) = 0;
MP_DIGITS(&z2) = 0;
CHECK_MPI_OK( mp_init(&x1) );
CHECK_MPI_OK( mp_init(&x2) );
CHECK_MPI_OK( mp_init(&z1) );
CHECK_MPI_OK( mp_init(&z2) );
p_size = mp_bpoly2arr(pp, p, 0) + 1;
p = (unsigned int *) (malloc(sizeof(unsigned int) * p_size));
if (p == NULL) goto cleanup;
mp_bpoly2arr(pp, p, p_size);
/* if result should be point at infinity */
if ((mp_cmp_z(n) == 0) || (GF2m_ec_pt_is_inf_aff(px, py) == MP_YES)) {
CHECK_MPI_OK( GF2m_ec_pt_set_inf_aff(rx, ry) );
goto cleanup;
}
CHECK_MPI_OK( mp_copy(rx, &x2) ); /* x2 = rx */
CHECK_MPI_OK( mp_copy(ry, &z2) ); /* z2 = ry */
CHECK_MPI_OK( mp_copy(px, &x1) ); /* x1 = px */
mp_set(&z1, 0x1); /* z1 = 1 */
CHECK_MPI_OK( mp_bsqrmod(&x1, p, &z2) ); /* z2 = x1^2 = x2^2 */
CHECK_MPI_OK( mp_bsqrmod(&z2, p, &x2) );
CHECK_MPI_OK( mp_badd(&x2, b, &x2) ); /* x2 = px^4 + b */
/* find top-most bit and go one past it */
i = MP_USED(n) - 1;
j = MP_DIGIT_BIT - 1;
top_bit = 1;
top_bit <<= MP_DIGIT_BIT - 1;
mask = top_bit;
while (!(MP_DIGITS(n)[i] & mask)) {
mask >>= 1;
j--;
}
mask >>= 1; j--;
/* if top most bit was at word break, go to next word */
if (!mask) {
i--;
j = MP_DIGIT_BIT - 1;
mask = top_bit;
}
for (; i >= 0; i--) {
for (; j >= 0; j--) {
if (MP_DIGITS(n)[i] & mask) {
CHECK_MPI_OK( gf2m_Madd(pp, p, a, b, px, &x1, &z1, &x2, &z2) );
CHECK_MPI_OK( gf2m_Mdouble(pp, p, a, b, &x2, &z2) );
} else {
CHECK_MPI_OK( gf2m_Madd(pp, p, a, b, px, &x2, &z2, &x1, &z1) );
CHECK_MPI_OK( gf2m_Mdouble(pp, p, a, b, &x1, &z1) );
}
mask >>= 1;
}
j = MP_DIGIT_BIT - 1;
mask = top_bit;
}
/* convert out of "projective" coordinates */
i = gf2m_Mxy(pp, p, a, b, px, py, &x1, &z1, &x2, &z2);
if (i == 0) {
err = MP_BADARG;
goto cleanup;
} else if (i == 1) {
CHECK_MPI_OK( GF2m_ec_pt_set_inf_aff(rx, ry) );
} else {
CHECK_MPI_OK( mp_copy(&x2, rx) );
CHECK_MPI_OK( mp_copy(&z2, ry) );
}
cleanup:
mp_clear(&x1);
mp_clear(&x2);
mp_clear(&z1);
mp_clear(&z2);
free(p);
return err;
}
#endif /* NSS_ENABLE_ECC */

Просмотреть файл

@ -0,0 +1,96 @@
/*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the elliptic curve math library for binary polynomial
* field curves.
*
* The Initial Developer of the Original Code is Sun Microsystems, Inc.
* Portions created by Sun Microsystems, Inc. are Copyright (C) 2003
* Sun Microsystems, Inc. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*/
#ifndef __gf2m_ecl_h_
#define __gf2m_ecl_h_
#ifdef NSS_ENABLE_ECC
#include "secmpi.h"
/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
mp_err GF2m_ec_pt_is_inf_aff(const mp_int *px, const mp_int *py);
/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
mp_err GF2m_ec_pt_set_inf_aff(mp_int *px, mp_int *py);
/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx, qy).
* Uses affine coordinates.
*/
mp_err GF2m_ec_pt_add_aff(const mp_int *pp, const mp_int *a,
const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy,
mp_int *rx, mp_int *ry);
/* Computes R = P - Q. Uses affine coordinates. */
mp_err GF2m_ec_pt_sub_aff(const mp_int *pp, const mp_int *a,
const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy,
mp_int *rx, mp_int *ry);
/* Computes R = 2P. Uses affine coordinates. */
mp_err GF2m_ec_pt_dbl_aff(const mp_int *pp, const mp_int *a,
const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry);
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
* a, b and p are the elliptic curve coefficients and the irreducible that
* determines the field GF2m. Uses affine coordinates.
*/
mp_err GF2m_ec_pt_mul_aff(const mp_int *pp, const mp_int *a, const mp_int *b,
const mp_int *px, const mp_int *py, const mp_int *n,
mp_int *rx, mp_int *ry);
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
* a, b and p are the elliptic curve coefficients and the irreducible that
* determines the field GF2m. Uses Montgomery projective coordinates.
*/
mp_err GF2m_ec_pt_mul_mont(const mp_int *pp, const mp_int *a,
const mp_int *b, const mp_int *px, const mp_int *py,
const mp_int *n, mp_int *rx, mp_int *ry);
#define GF2m_ec_pt_is_inf(px, py) GF2m_ec_pt_is_inf_aff((px), (py))
#define GF2m_ec_pt_add(p, a, px, py, qx, qy, rx, ry) \
GF2m_ec_pt_add_aff((p), (a), (px), (py), (qx), (qy), (rx), (ry))
#define GF2m_ECL_MONTGOMERY
#ifdef GF2m_ECL_AFFINE
#define GF2m_ec_pt_mul(pp, a, b, px, py, n, rx, ry) \
GF2m_ec_pt_mul_aff((pp), (a), (b), (px), (py), (n), (rx), (ry))
#elif defined(GF2m_ECL_MONTGOMERY)
#define GF2m_ec_pt_mul(pp, a, b, px, py, n, rx, ry) \
GF2m_ec_pt_mul_mont((pp), (a), (b), (px), (py), (n), (rx), (ry))
#endif /* GF2m_ECL_AFFINE or GF2m_ECL_MONTGOMERY */
#endif /* NSS_ENABLE_ECC */
#endif /* __gf2m_ecl_h_ */

Просмотреть файл

@ -0,0 +1,570 @@
/*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Multi-precision Binary Polynomial Arithmetic
* Library.
*
* The Initial Developer of the Original Code is Sun Microsystems, Inc.
* Portions created by Sun Microsystems, Inc. are Copyright (C) 2003
* Sun Microsystems, Inc. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang Shantz <sheueling.chang@sun.com> and
* Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*/
#include "mp_gf2m.h"
#include "mplogic.h"
#include "mpi-priv.h"
static const mp_digit SQR_tb[16] =
{
0, 1, 4, 5, 16, 17, 20, 21,
64, 65, 68, 69, 80, 81, 84, 85
};
#if defined(MP_USE_UINT_DIGIT)
#define MP_DIGIT_BITS 32
/* Platform-specific macros for fast binary polynomial squaring. */
#define gf2m_SQR1(w) \
SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
#define gf2m_SQR0(w) \
SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
/* Multiply two binary polynomials mp_digits a, b.
* Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1.
* Output in two mp_digits rh, rl.
*/
static void
s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
{
register mp_digit h, l, s;
mp_digit tab[8], top2b = a >> 30;
register mp_digit a1, a2, a4;
a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
s = tab[b & 0x7]; l = s;
s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29;
s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26;
s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23;
s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8;
s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5;
s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2;
/* compensate for the top two bits of a */
if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
*rh = h; *rl = l;
}
#endif
#if defined(MP_USE_LONG_DIGIT) || defined(MP_USE_LONG_LONG_DIGIT)
#define MP_DIGIT_BITS 64
#define MP_TOP_BIT
/* Platform-specific fast binary polynomial squaring. */
#define gf2m_SQR1(w) \
SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
#define gf2m_SQR0(w) \
SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
/* Multiply two binary polynomials mp_digits a, b, output in rh, rl */
static void
s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
{
register mp_digit h, l, s;
mp_digit tab[16], top3b = a >> 61;
register mp_digit a1, a2, a4, a8;
a1 = a & (0x1FFFFFFFFFFFFFFF); a2 = a1 << 1;
a4 = a2 << 1; a8 = a4 << 1;
tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2;
tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4;
tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8;
tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
s = tab[b & 0xF]; l = s;
s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60;
s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56;
s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8;
s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4;
/* compensate for the top three bits of a */
if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
*rh = h; *rl = l;
}
#endif
#if 0 /* to be used later */
/* Compute xor-multiply of two binary polynomials (a1, a0) x (b1, b0)
* result is a binary polynomial in 4 mp_digits r[4].
* The caller MUST ensure that r has the right amount of space allocated.
*/
static void
s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1,
const mp_digit b0)
{
mp_digit m1, m0;
/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
s_bmul_1x1(r+3, r+2, a1, b1);
s_bmul_1x1(r+1, r, a0, b0);
s_bmul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
}
#endif /* 0 */
/* Compute addition of two binary polynomials a and b,
* store result in c; c could be a or b, a and b could be equal;
* c is the bitwise XOR of a and b.
*/
mp_err
mp_badd(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_digit *pa, *pb, *pc;
mp_size ix;
mp_size used_pa, used_pb;
mp_err res = MP_OKAY;
/* Add all digits up to the precision of b. If b had more
* precision than a initially, swap a, b first
*/
if (MP_USED(a) >= MP_USED(b)) {
pa = MP_DIGITS(a);
pb = MP_DIGITS(b);
used_pa = MP_USED(a);
used_pb = MP_USED(b);
} else {
pa = MP_DIGITS(b);
pb = MP_DIGITS(a);
used_pa = MP_USED(b);
used_pb = MP_USED(a);
}
/* Make sure c has enough precision for the output value */
MP_CHECKOK( s_mp_pad(c, used_pa) );
/* Do word-by-word xor */
pc = MP_DIGITS(c);
for (ix = 0; ix < used_pb; ix++) {
(*pc++) = (*pa++) ^ (*pb++);
}
/* Finish the rest of digits until we're actually done */
for (; ix < used_pa; ++ix) {
*pc++ = *pa++;
}
MP_USED(c) = used_pa;
MP_SIGN(c) = ZPOS;
s_mp_clamp(c);
CLEANUP:
return res;
}
#define s_mp_div2(a) MP_CHECKOK( mpl_rsh((a), (a), 1) );
/* Compute binary polynomial multiply d = a * b */
static void
s_bmul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
{
mp_digit a_i, a0b0, a1b1, carry = 0;
while (a_len--) {
a_i = *a++;
s_bmul_1x1(&a1b1, &a0b0, a_i, b);
*d++ = a0b0 ^ carry;
carry = a1b1;
}
*d = carry;
}
/* Compute binary polynomial xor multiply accumulate d ^= a * b */
static void
s_bmul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
{
mp_digit a_i, a0b0, a1b1, carry = 0;
while (a_len--) {
a_i = *a++;
s_bmul_1x1(&a1b1, &a0b0, a_i, b);
*d++ ^= a0b0 ^ carry;
carry = a1b1;
}
*d ^= carry;
}
/* Compute binary polynomial xor multiply c = a * b.
* All parameters may be identical.
*/
mp_err
mp_bmul(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_digit *pb, b_i;
mp_int tmp;
mp_size ib, a_used, b_used;
mp_err res = MP_OKAY;
ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
if (a == c) {
MP_CHECKOK( mp_init_copy(&tmp, a) );
if (a == b)
b = &tmp;
a = &tmp;
} else if (b == c) {
MP_CHECKOK( mp_init_copy(&tmp, b) );
b = &tmp;
} else MP_DIGITS(&tmp) = 0;
if (MP_USED(a) < MP_USED(b)) {
const mp_int *xch = b; /* switch a and b if b longer */
b = a;
a = xch;
}
MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
MP_CHECKOK( s_mp_pad(c, USED(a) + USED(b)) );
pb = MP_DIGITS(b);
s_bmul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c));
/* Outer loop: Digits of b */
a_used = MP_USED(a);
b_used = MP_USED(b);
for (ib = 1; ib < b_used; ib++) {
b_i = *pb++;
/* Inner product: Digits of a */
if (b_i)
s_bmul_d_add(MP_DIGITS(a), a_used, b_i, MP_DIGITS(c) + ib);
else
MP_DIGIT(c, ib + a_used) = b_i;
}
s_mp_clamp(c);
SIGN(c) = ZPOS;
CLEANUP:
mp_clear(&tmp);
return res;
}
/* Compute modular reduction of a and store result in r.
* r could be a.
* For modular arithmetic, the irreducible polynomial f(t) is represented
* as an array of int[], where f(t) is of the form:
* f(t) = t^p[0] + t^p[1] + ... + t^p[k]
* where m = p[0] > p[1] > ... > p[k] = 0.
*/
int
mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r)
{
int j, k;
int n, dN, d0, d1;
mp_digit zz, *z, tmp;
mp_size used;
mp_err res = MP_OKAY;
/* The algorithm does the reduction in place in r,
* if a != r, copy a into r first so reduction can be done in r
*/
if (a != r) {
MP_CHECKOK( mp_copy(a, r) );
}
z = MP_DIGITS(r);
/* start reduction */
dN = p[0] / MP_DIGIT_BITS;
used = MP_USED(r);
for (j = used - 1; j > dN;) {
zz = z[j];
if (zz == 0) {
j--; continue;
}
z[j] = 0;
for (k = 1; p[k] > 0; k++) {
/* reducing component t^p[k] */
n = p[0] - p[k];
d0 = n % MP_DIGIT_BITS;
d1 = MP_DIGIT_BITS - d0;
n /= MP_DIGIT_BITS;
z[j-n] ^= (zz>>d0);
if (d0)
z[j-n-1] ^= (zz<<d1);
}
/* reducing component t^0 */
n = dN;
d0 = p[0] % MP_DIGIT_BITS;
d1 = MP_DIGIT_BITS - d0;
z[j-n] ^= (zz >> d0);
if (d0)
z[j-n-1] ^= (zz << d1);
}
/* final round of reduction */
while (j == dN) {
d0 = p[0] % MP_DIGIT_BITS;
zz = z[dN] >> d0;
if (zz == 0) break;
d1 = MP_DIGIT_BITS - d0;
/* clear up the top d1 bits */
if (d0) z[dN] = (z[dN] << d1) >> d1;
*z ^= zz; /* reduction t^0 component */
for (k = 1; p[k] > 0; k++) {
/* reducing component t^p[k]*/
n = p[k] / MP_DIGIT_BITS;
d0 = p[k] % MP_DIGIT_BITS;
d1 = MP_DIGIT_BITS - d0;
z[n] ^= (zz << d0);
tmp = zz >> d1;
if (d0 && tmp)
z[n+1] ^= tmp;
}
}
s_mp_clamp(r);
CLEANUP:
return res;
}
/* Compute the product of two polynomials a and b, reduce modulo p,
* Store the result in r. r could be a or b; a could be b.
*/
mp_err
mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[], mp_int *r)
{
mp_err res;
if (a == b) return mp_bsqrmod(a, p, r);
if ((res = mp_bmul(a, b, r) ) != MP_OKAY)
return res;
return mp_bmod(r, p, r);
}
/* Compute binary polynomial squaring c = a*a mod p .
* Parameter r and a can be identical.
*/
mp_err
mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r)
{
mp_digit *pa, *pr, a_i;
mp_int tmp;
mp_size ia, a_used;
mp_err res;
ARGCHK(a != NULL && r != NULL, MP_BADARG);
if (a == r) {
MP_CHECKOK( mp_init_copy(&tmp, a) );
a = &tmp;
} else MP_DIGITS(&tmp) = 0;
MP_USED(r) = 1; MP_DIGIT(r, 0) = 0;
MP_CHECKOK( s_mp_pad(r, 2*USED(a)) );
pa = MP_DIGITS(a);
pr = MP_DIGITS(r);
a_used = MP_USED(a);
for (ia = 0; ia < a_used; ia++) {
a_i = *pa++;
*pr++ = gf2m_SQR0(a_i);
*pr++ = gf2m_SQR1(a_i);
}
MP_CHECKOK( mp_bmod(r, p, r) );
s_mp_clamp(r);
SIGN(r) = ZPOS;
CLEANUP:
mp_clear(&tmp);
return res;
}
/* Compute binary polynomial y/x mod p, y divided by x, reduce modulo p.
* Store the result in r. r could be x or y, and x could equal y.
* Uses algorithm Modular_Division_GF(2^m) from
* Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
* the Great Divide".
*/
int
mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp,
const unsigned int p[], mp_int *r)
{
mp_int aa, bb, uu;
mp_int *a, *b, *u, *v;
mp_err res = MP_OKAY;
MP_CHECKOK( mp_init_copy(&aa, x) );
MP_CHECKOK( mp_init_copy(&uu, y) );
MP_CHECKOK( mp_init_copy(&bb, pp) );
MP_CHECKOK( s_mp_pad(r, USED(pp)) );
MP_USED(r) = 1; MP_DIGIT(r, 0) = 0;
a = &aa; b= &bb; u=&uu; v=r;
/* reduce x and y mod p */
MP_CHECKOK( mp_bmod(a, p, a) );
MP_CHECKOK( mp_bmod(u, p, u) );
while (!mp_isodd(a)) {
s_mp_div2(a);
if (mp_isodd(u)) {
MP_CHECKOK( mp_badd(u, pp, u) );
}
s_mp_div_2(u);
}
do {
if (mp_cmp_mag(b, a) > 0) {
MP_CHECKOK( mp_badd(b, a, b) );
MP_CHECKOK( mp_badd(v, u, v) );
do {
s_mp_div2(b);
if (mp_isodd(v)) {
MP_CHECKOK( mp_badd(v, pp, v) );
}
s_mp_div2(v);
} while (!mp_isodd(b));
}
else if ((MP_DIGIT(a,0) == 1) && (MP_USED(a) == 1))
break;
else {
MP_CHECKOK( mp_badd(a, b, a) );
MP_CHECKOK( mp_badd(u, v, u) );
do {
s_mp_div2(a);
if (mp_isodd(u)) {
MP_CHECKOK( mp_badd(u, pp, u) );
}
s_mp_div2(u);
} while (!mp_isodd(a));
}
} while (1);
MP_CHECKOK( mp_copy(u, r) );
CLEANUP:
return res;
}
/* Convert the bit-string representation of a polynomial a into an array
* of integers corresponding to the bits with non-zero coefficient.
* Up to max elements of the array will be filled. Return value is total
* number of coefficients that would be extracted if array was large enough.
*/
int
mp_bpoly2arr(const mp_int *a, unsigned int p[], int max)
{
int i, j, k;
mp_digit top_bit, mask;
top_bit = 1;
top_bit <<= MP_DIGIT_BIT - 1;
for (k = 0; k < max; k++) p[k] = 0;
k = 0;
for (i = MP_USED(a) - 1; i >= 0; i--) {
mask = top_bit;
for (j = MP_DIGIT_BIT - 1; j >= 0; j--) {
if (MP_DIGITS(a)[i] & mask) {
if (k < max) p[k] = MP_DIGIT_BIT * i + j;
k++;
}
mask >>= 1;
}
}
return k;
}
/* Convert the coefficient array representation of a polynomial to a
* bit-string. The array must be terminated by 0.
*/
mp_err
mp_barr2poly(const unsigned int p[], mp_int *a)
{
mp_err res = MP_OKAY;
int i;
mp_zero(a);
for (i = 0; p[i] > 0; i++) {
MP_CHECKOK( mpl_set_bit(a, p[i], 1) );
}
MP_CHECKOK( mpl_set_bit(a, 0, 1) );
CLEANUP:
return MP_OKAY;
}

Просмотреть файл

@ -0,0 +1,62 @@
/*
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is the Multi-precision Binary Polynomial Arithmetic
* Library.
*
* The Initial Developer of the Original Code is Sun Microsystems, Inc.
* Portions created by Sun Microsystems, Inc. are Copyright (C) 2003
* Sun Microsystems, Inc. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang Shantz <sheueling.chang@sun.com> and
* Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
*/
#ifndef _MP_GF2M_H_
#define _MP_GF2M_H_
#include "mpi.h"
mp_err mp_badd(const mp_int *a, const mp_int *b, mp_int *c);
mp_err mp_bmul(const mp_int *a, const mp_int *b, mp_int *c);
/* For modular arithmetic, the irreducible polynomial f(t) is represented
* as an array of int[], where f(t) is of the form:
* f(t) = t^p[0] + t^p[1] + ... + t^p[k]
* where m = p[0] > p[1] > ... > p[k] = 0.
*/
mp_err mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r);
mp_err mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[],
mp_int *r);
mp_err mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r);
mp_err mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp,
const unsigned int p[], mp_int *r);
int mp_bpoly2arr(const mp_int *a, unsigned int p[], int max);
mp_err mp_barr2poly(const unsigned int p[], mp_int *a);
#endif /* _MP_GF2M_H_ */

Просмотреть файл

@ -0,0 +1,211 @@
/*
* Simple test driver for MPI library
*
* Test GF2m: Binary Polynomial Arithmetic
*
* The contents of this file are subject to the Mozilla Public
* License Version 1.1 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
* The Original Code is the Multi-precision Binary Polynomial Arithmetic
* Library.
*
* Contributor(s):
* Sheueling Chang Shantz <sheueling.chang@sun.com> and
* Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
*
* Alternatively, the contents of this file may be used under the
* terms of the GNU General Public License Version 2 or later (the
* "GPL"), in which case the provisions of the GPL are applicable
* instead of those above. If you wish to allow use of your
* version of this file only under the terms of the GPL and not to
* allow others to use your version of this file under the MPL,
* indicate your decision by deleting the provisions above and
* replace them with the notice and other provisions required by
* the GPL. If you do not delete the provisions above, a recipient
* may use your version of this file under either the MPL or the GPL.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <limits.h>
#include "mp_gf2m.h"
int main(int argc, char *argv[])
{
int ix;
mp_int pp, a, b, x, y, order;
mp_int c, d, e;
mp_digit r;
mp_err res;
unsigned int p[] = {163,7,6,3,0};
unsigned int ptemp[10];
printf("Test b: Binary Polynomial Arithmetic\n\n");
mp_init(&pp);
mp_init(&a);
mp_init(&b);
mp_init(&x);
mp_init(&y);
mp_init(&order);
mp_read_radix(&pp, "0800000000000000000000000000000000000000C9", 16);
mp_read_radix(&a, "1", 16);
mp_read_radix(&b, "020A601907B8C953CA1481EB10512F78744A3205FD", 16);
mp_read_radix(&x, "03F0EBA16286A2D57EA0991168D4994637E8343E36", 16);
mp_read_radix(&y, "00D51FBC6C71A0094FA2CDD545B11C5C0C797324F1", 16);
mp_read_radix(&order, "040000000000000000000292FE77E70C12A4234C33", 16);
printf("pp = "); mp_print(&pp, stdout); fputc('\n', stdout);
printf("a = "); mp_print(&a, stdout); fputc('\n', stdout);
printf("b = "); mp_print(&b, stdout); fputc('\n', stdout);
printf("x = "); mp_print(&x, stdout); fputc('\n', stdout);
printf("y = "); mp_print(&y, stdout); fputc('\n', stdout);
printf("order = "); mp_print(&order, stdout); fputc('\n', stdout);
mp_init(&c);
mp_init(&d);
mp_init(&e);
/* Test polynomial conversion */
ix = mp_bpoly2arr(&pp, ptemp, 10);
if (
(ix != 5) ||
(ptemp[0] != p[0]) ||
(ptemp[1] != p[1]) ||
(ptemp[2] != p[2]) ||
(ptemp[3] != p[3]) ||
(ptemp[4] != p[4])
) {
printf("Polynomial to array conversion not correct\n");
return -1;
}
printf("Polynomial conversion test #1 successful.\n");
MP_CHECKOK( mp_barr2poly(p, &c) );
if (mp_cmp(&pp, &c) != 0) {
printf("Array to polynomial conversion not correct\n");
return -1;
}
printf("Polynomial conversion test #2 successful.\n");
/* Test addition */
MP_CHECKOK( mp_badd(&a, &a, &c) );
if (mp_cmp_z(&c) != 0) {
printf("a+a should equal zero\n");
return -1;
}
printf("Addition test #1 successful.\n");
MP_CHECKOK( mp_badd(&a, &b, &c) );
MP_CHECKOK( mp_badd(&b, &c, &c) );
if (mp_cmp(&c, &a) != 0) {
printf("c = (a + b) + b should equal a\n");
printf("a = "); mp_print(&a, stdout); fputc('\n', stdout);
printf("c = "); mp_print(&c, stdout); fputc('\n', stdout);
return -1;
}
printf("Addition test #2 successful.\n");
/* Test multiplication */
mp_set(&c, 2);
MP_CHECKOK( mp_bmul(&b, &c, &c) );
MP_CHECKOK( mp_badd(&b, &c, &c) );
mp_set(&d, 3);
MP_CHECKOK( mp_bmul(&b, &d, &d) );
if (mp_cmp(&c, &d) != 0) {
printf("c = (2 * b) + b should equal c = 3 * b\n");
printf("c = "); mp_print(&c, stdout); fputc('\n', stdout);
printf("d = "); mp_print(&d, stdout); fputc('\n', stdout);
return -1;
}
printf("Multiplication test #1 successful.\n");
/* Test modular reduction */
MP_CHECKOK( mp_bmod(&b, p, &c) );
if (mp_cmp(&b, &c) != 0) {
printf("c = b mod p should equal b\n");
printf("b = "); mp_print(&b, stdout); fputc('\n', stdout);
printf("c = "); mp_print(&c, stdout); fputc('\n', stdout);
return -1;
}
printf("Modular reduction test #1 successful.\n");
MP_CHECKOK( mp_badd(&b, &pp, &c) );
MP_CHECKOK( mp_bmod(&c, p, &c) );
if (mp_cmp(&b, &c) != 0) {
printf("c = (b + p) mod p should equal b\n");
printf("b = "); mp_print(&b, stdout); fputc('\n', stdout);
printf("c = "); mp_print(&c, stdout); fputc('\n', stdout);
return -1;
}
printf("Modular reduction test #2 successful.\n");
MP_CHECKOK( mp_bmul(&b, &pp, &c) );
MP_CHECKOK( mp_bmod(&c, p, &c) );
if (mp_cmp_z(&c) != 0) {
printf("c = (b * p) mod p should equal 0\n");
printf("c = "); mp_print(&c, stdout); fputc('\n', stdout);
return -1;
}
printf("Modular reduction test #3 successful.\n");
/* Test modular multiplication */
MP_CHECKOK( mp_bmulmod(&b, &pp, p, &c) );
if (mp_cmp_z(&c) != 0) {
printf("c = (b * p) mod p should equal 0\n");
printf("c = "); mp_print(&c, stdout); fputc('\n', stdout);
return -1;
}
printf("Modular multiplication test #1 successful.\n");
mp_set(&c, 1);
MP_CHECKOK( mp_badd(&pp, &c, &c) );
MP_CHECKOK( mp_bmulmod(&b, &c, p, &c) );
if (mp_cmp(&b, &c) != 0) {
printf("c = (b * (p + 1)) mod p should equal b\n");
printf("b = "); mp_print(&b, stdout); fputc('\n', stdout);
printf("c = "); mp_print(&c, stdout); fputc('\n', stdout);
return -1;
}
printf("Modular multiplication test #2 successful.\n");
/* Test modular squaring */
MP_CHECKOK( mp_copy(&b, &c) );
MP_CHECKOK( mp_bmulmod(&b, &c, p, &c) );
MP_CHECKOK( mp_bsqrmod(&b, p, &d) );
if (mp_cmp(&c, &d) != 0) {
printf("c = (b * b) mod p should equal d = b^2 mod p\n");
printf("c = "); mp_print(&c, stdout); fputc('\n', stdout);
printf("d = "); mp_print(&d, stdout); fputc('\n', stdout);
return -1;
}
printf("Modular squaring test #1 successful.\n");
/* Test modular division */
MP_CHECKOK( mp_bdivmod(&b, &x, &pp, p, &c) );
MP_CHECKOK( mp_bmulmod(&c, &x, p, &c) );
if (mp_cmp(&b, &c) != 0) {
printf("c = (b / x) * x mod p should equal b\n");
printf("b = "); mp_print(&b, stdout); fputc('\n', stdout);
printf("c = "); mp_print(&c, stdout); fputc('\n', stdout);
return -1;
}
printf("Modular division test #1 successful.\n");
CLEANUP:
mp_clear(&order);
mp_clear(&y);
mp_clear(&x);
mp_clear(&b);
mp_clear(&a);
mp_clear(&pp);
return 0;
}