Stable drop of JavaScript interpreter code from SpiderMonkey140_BRANCH

This commit is contained in:
mccabe%netscape.com 1998-11-05 00:08:43 +00:00
Родитель 24ddb74d95
Коммит ab3c1def59
163 изменённых файлов: 17269 добавлений и 1616 удалений

Просмотреть файл

@ -1,3 +1,4 @@
*.pdb
*.ncb
*.opt
*.plg

Просмотреть файл

@ -82,7 +82,6 @@ EXPORTS = js.msg \
jscntxt.h \
jscompat.h \
jsconfig.h \
jscpucfg.h \
jsdate.h \
jsdbgapi.h \
jsemit.h \
@ -166,12 +165,6 @@ endif # sparc
INCLUDES += -I.
ifdef NSPR20
INCLUDES += -I$(DIST)/include/nspr20/pr
else
INCLUDES += -I$(XPDIST)/public/nspr
endif
ifndef NSBUILDROOT
JSJAVA_STUBHEADERS = -I$(DEPTH)/sun-java/include/_gen \
-I$(DEPTH)/sun-java/netscape/javascript/_jri \
@ -197,6 +190,30 @@ ifeq ($(OS_ARCH), Linux)
LDFLAGS += -ldl
endif
FDLIBM_LIBRARY = fdlibm/$(OBJDIR)/libfdm.a
JSMATH_PRELINK = $(OBJDIR)/jsmathtemp.o
# special rule for jsmath.o since we want to incrementally link
# against fdlibm to pull in only what is needed
$(OBJDIR)/jsmath.o: $(FDLIBM_LIBRARY) $(JSMATH_PRELINK)
@$(MAKE_OBJDIR)
ifneq (,$(filter OS2 WINNT,$(OS_ARCH)))
ld -r -o $@ $(JSMATH_PRELINK) $(FDLIBM_LIBRARY)
else
ld -r -o $@ $(JSMATH_PRELINK) $(FDLIBM_LIBRARY)
endif
$(JSMATH_PRELINK): jsmath.c jslibmath.h
@$(MAKE_OBJDIR)
ifneq (,$(filter OS2 WINNT,$(OS_ARCH)))
$(CC) -Fo$@ -c $(CFLAGS) $<
else
$(CC) -o $@ -c $(CFLAGS) $<
endif
$(FDLIBM_LIBRARY):
cd fdlibm; $(MAKE)
# this requires clobbering and recompiling with XCFLAGS=-DJSFILE
js:
$(MAKE) clobber
@ -218,6 +235,20 @@ endif
# hardwire dependencies on jsopcode.tbl
jsopcode.h jsopcode.c: jsopcode.tbl
# Generate jsautocfg.h header
$(OBJDIR)/jsautocfg.h: $(OBJDIR)/jscpucfg
rm -f $@
$(OBJDIR)/jscpucfg > $@
$(OBJDIR)/jscpucfg: $(OBJDIR)/jscpucfg.o
$(CC) -o $@ $(OBJDIR)/jscpucfg.o
export:: $(OBJDIR)/jsautocfg.h
$(INSTALL) -m 444 $(OBJDIR)/jsautocfg.h $(DIST)/include
# Add to TARGETS so clobber rule works
TARGETS += $(OBJDIR)/jsautocfg.h $(OBJDIR)/jscpucfg $(OBJDIR)/jscpucfg.o
# this section was put in the merged by danda into the
# JAVA_*_MERGE section and normally would have
# been removed. However it looks like it shouldn't have
@ -231,24 +262,6 @@ $(OBJDIR)/js.o: js.c
$(CC) -Fo$@ -c $(CFLAGS) $(JSJAVA_CFLAGS) js.c
endif
clobber::
rm -f $(OBJDIR)/jscpucfg $(OBJDIR)/jscpucfg.h
refdiff:
@for f in `cat commfiles`; do \
t=/tmp/refdiff.$$$$; \
trap 'rm -f $$t' 0 1 2 15; \
sed -f prconv.sed ../ref/$$f > $$t; \
cmp -s $$t $$f; \
if test $$? -ne 0; then \
echo "=== $$f"; \
diff $$f $$t; \
fi; \
rm -f $$t; \
done
refconv:
@for f in `cat commfiles`; do \
echo "=== $$f"; \
sed -f prconv.sed ../ref/$$f > $$f; \
done
.PHONY: refdiff refconv

Просмотреть файл

@ -27,6 +27,8 @@ ifdef MOZ_OJI
DIRS = liveconnect
endif
DIRS += fdlibm
LIBRARY_NAME = js
ifeq ($(subst /,_,$(shell uname -s)),OS2)
@ -87,7 +89,6 @@ EXPORTS = js.msg \
jscntxt.h \
jscompat.h \
jsconfig.h \
jscpucfg.h \
jsdate.h \
jsdbgapi.h \
jsemit.h \
@ -198,6 +199,36 @@ ifeq ($(OS_ARCH), Linux)
LDFLAGS += -ldl
endif
FDLIBM_LIBRARY = fdlibm/libfdm.a
JSMATH_PRELINK = jsmathtemp.o
# special rule for jsmath.o since we want to incrementally link
# against fdlibm to pull in only what is needed
jsmath.o: $(FDLIBM_LIBRARY) $(JSMATH_PRELINK)
@$(MAKE_OBJDIR)
ifneq (,$(filter OS2 WINNT,$(OS_ARCH)))
ld -r -o $@ $(JSMATH_PRELINK) $(FDLIBM_LIBRARY)
else
ld -r -o $@ $(JSMATH_PRELINK) $(FDLIBM_LIBRARY)
endif
$(JSMATH_PRELINK): jsmath.c
@$(MAKE_OBJDIR)
ifneq (,$(filter OS2 WINNT,$(OS_ARCH)))
$(CC) -Fo$@ -c $(CFLAGS) $<
else
$(CC) -o $@ -c $(CFLAGS) $<
endif
# ripped from $(topsrcdir)/config/rules.mk
$(FDLIBM_LIBRARY):
set -e; \
set $(EXIT_ON_ERROR); \
echo "cd $(@D); $(MAKE) $(@F)"; \
oldDir=`pwd`; \
cd $(@D); $(MAKE) $(@F); cd $$oldDir; \
set +e;
# this requires clobbering and recompiling with XCFLAGS=-DJSFILE
js:
$(MAKE) clobber
@ -219,6 +250,20 @@ endif
# hardwire dependencies on jsopcode.tbl
jsopcode.h jsopcode.c: jsopcode.tbl
# Generate jsautocfg.h header
$(OBJDIR)/jsautocfg.h: $(OBJDIR)/jscpucfg
rm -f $@
$(OBJDIR)/jscpucfg > $@
$(OBJDIR)/jscpucfg: $(OBJDIR)/jscpucfg.o
$(CC) -o $@ $(OBJDIR)/jscpucfg.o
export:: $(OBJDIR)/jsautocfg.h
$(INSTALL) -m 444 $(OBJDIR)/jsautocfg.h $(DIST)/include
# Add to TARGETS so clobber rule works
TARGETS += $(OBJDIR)/jsautocfg.h $(OBJDIR)/jscpucfg $(OBJDIR)/jscpucfg.o
# this section was put in the merged by danda into the
# JAVA_*_MERGE section and normally would have
# been removed. However it looks like it shouldn't have
@ -231,25 +276,3 @@ $(OBJDIR)/js.o: js.c
@$(MAKE_OBJDIR)
$(CC) -Fo$@ -c $(CFLAGS) $(JSJAVA_CFLAGS) js.c
endif
refdiff:
@for f in `cat commfiles`; do \
t=/tmp/refdiff.$$$$; \
trap 'rm -f $$t' 0 1 2 15; \
sed -f prconv.sed ../ref/$$f > $$t; \
cmp -s $$t $$f; \
if test $$? -ne 0; then \
echo "=== $$f"; \
diff $$f $$t; \
fi; \
rm -f $$t; \
done
refconv:
@for f in `cat commfiles`; do \
echo "=== $$f"; \
sed -f prconv.sed ../ref/$$f > $$f; \
done
.PHONY: refdiff refconv

Просмотреть файл

@ -24,6 +24,12 @@ include config.mk
#NS_USE_NATIVE = 1
ifdef USE_MSVC
OTHER_LIBS += fdlibm/$(OBJDIR)/fdlibm.lib
else
OTHER_LIBS += -Lfdlibm/$(OBJDIR) -lfdm
endif
ifdef JS_THREADSAFE
DEFINES += -DJS_THREADSAFE
INCLUDES += -I../../dist/$(OBJDIR)/include
@ -32,15 +38,16 @@ OTHER_LIBS += ../../dist/$(OBJDIR)/lib/libnspr21.lib
else
OTHER_LIBS += -L../../dist/$(OBJDIR)/lib -lnspr21
endif
else
# Look in OBJDIR to find prcpucfg.h
INCLUDES += -I$(OBJDIR)
endif
ifdef JS_NO_THIN_LOCKS
DEFINES += -DJS_USE_ONLY_NSPR_LOCKS
endif
ifdef JS_HAS_FILE_OBJECT
DEFINES += -DJS_HAS_FILE_OBJECT
endif
#
# XCFLAGS may be set in the environment or on the gmake command line
#
@ -81,6 +88,7 @@ JS_HFILES = \
jsfun.h \
jsgc.h \
jsinterp.h \
jslibmath.h \
jslock.h \
jsmath.h \
jsnum.h \
@ -146,14 +154,20 @@ JS_CFILES = \
prmjtime.c \
$(NULL)
PREDIRS += fdlibm
ifdef JS_LIVECONNECT
DIRS = liveconnect
DIRS += liveconnect
endif
ifdef JS_PERLCONNECT
JS_CFILES += jsperl.c
endif
ifdef JS_HAS_FILE_OBJECT
JS_CFILES += jsfile.c
JS_HFILES += jsfile.h
endif
LIB_CFILES = $(JS_CFILES)
LIB_ASFILES := $(wildcard *_$(OS_ARCH).s)
PROG_CFILES = js.c
@ -168,6 +182,12 @@ SHARED_LIBRARY = $(OBJDIR)/libjs.so
PROGRAM = $(OBJDIR)/js
endif
ifdef USE_MSVC
FDLIBM_LIBRARY = fdlibm.lib
else
FDLIBM_LIBRARY = libfdm.a
endif
include rules.mk
MOZ_DEPTH = ../..
@ -177,7 +197,7 @@ nsinstall-target:
cd ../../config; $(MAKE) OBJDIR=$(OBJDIR) OBJDIR_NAME=$(OBJDIR)
ifdef USE_MSVC
$(PROGRAM): $(PROG_OBJS) $(LIBRARY)
link.exe -out:"$@" $(EXE_LINK_FLAGS) $?
link.exe -out:"$@" $(EXE_LINK_FLAGS) $^
else
$(PROGRAM): $(PROG_OBJS) $(LIBRARY)
$(CC) -o $@ $(CFLAGS) $(PROG_OBJS) $(LIBRARY) $(LDFLAGS) $(OTHER_LIBS)
@ -187,18 +207,21 @@ $(PROGRAM).pure: $(PROG_OBJS) $(LIBRARY)
purify $(PUREFLAGS) \
$(CC) -o $@ $(PURE_OS_CFLAGS) $(PROG_OBJS) $(LIBRARY) $(LDFLAGS) $(OTHER_LIBS)
$(HFILES) $(CFILES): $(OBJDIR)/jscpucfg.h
ifndef PREBUILT_CPUCFG
$(HFILES) $(CFILES): $(OBJDIR)/jsautocfg.h
ifdef PREBUILT_CPUCFG
$(OBJDIR)/jscpucfg.h: jscpucfg.h
cp jscpucfg.h $(OBJDIR)
else
$(OBJDIR)/jscpucfg.h: $(OBJDIR)/jscpucfg
$(OBJDIR)/jsautocfg.h: $(OBJDIR)/jscpucfg
rm -f $@
$(OBJDIR)/jscpucfg > $@
$(OBJDIR)/jscpucfg: $(OBJDIR)/jscpucfg.o
$(CC) -o $@ $(OBJDIR)/jscpucfg.o
# Look in OBJDIR to find jsautocfg.h
INCLUDES += -I$(OBJDIR)
# Add to TARGETS for clobber rule
TARGETS += $(OBJDIR)/jsautocfg.h $(OBJDIR)/jscpucfg $(OBJDIR)/jscpucfg.o
endif
#

Просмотреть файл

@ -1,128 +1,208 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<META NAME="GENERATOR" CONTENT="Mozilla/4.5b2 [en] (WinNT; I) [Netscape]">
<TITLE>JavaScript Reference Implementation (JSRef) README</TITLE>
</HEAD>
<BODY>
<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Mozilla/4.5 [en] (WinNT; I) [Netscape]">
<title>JavaScript Reference Implementation (JSRef) README</title>
</head>
<body>
<H2>
Introduction</H2>
This is the README file for the <SPAN CLASS=LXRSHORTDESC>JavaScript Reference (JSRef) implementation.</SPAN>
It consists of build conventions and instructions, source code conventions,
a design walk-through, and a brief file-by-file description of the source.
<P><SPAN CLASS=LXRLONGDESC>JSRef builds a library or DLL containing the JavaScript runtime (compiler,
interpreter, decompiler, garbage collector, atom manager, standard classes).
It then compiles a small "shell" program and links that with the library
to make an interpreter that can be used interactively and with test .js
files to run scripts.&nbsp; The code has no dependencies on the Navigator.</SPAN>
<P><I>Quick start tip</I>: skip to "Using the JS API" below, build js,
and play with the object named "it" (start by setting 'it.noisy = true').
<H2>
Build conventions</H2>
<h2>
Table of Contents</h2>
<UL>
<LI>
On Windows, use MSDEV4.2 or 5.0.&nbsp; Use either the js.mdp project file
to build with the IDE or '<TT>nmake -f js.mak</TT>' to build from the command-line</LI>
<ul>
<li>
<a href="#Introduction">Introduction</a></li>
<LI>
On Mac, use CodeWarrior 3.x (<TT>JSRef.mcp</TT> in the <TT>js/src/macbuild</TT>
subdirectory)</LI>
<li>
<a href="#Build">Build conventions (standalone JS engine and shell)</a></li>
<LI>
On Unix, use vendor cc or <A HREF="ftp://prep.ai.mit.edu/pub/gnu">gcc</A>
for compiling, and use '<TT>gmake -f Makefile.ref</TT>' for building. To
compile optimized code, pass
<TT>BUILD_OPT=1</TT> on the nmake/gmake command
line or preset it in the environment or makefile. The C preprocessor macro
<TT>DEBUG</TT>
will be undefined, and <TT>NDEBUG </TT>(archaic Unix-ism for "No Debugging")
will be defined. Without <TT>BUILD_OPT</TT>, <TT>DEBUG</TT> is predefined
and
<TT>NDEBUG</TT> is undefined. On Unix, your own debug flag, <TT>DEBUG_$USER</TT>,
will be defined or undefined as <TT>BUILD_OPT</TT> is unset or set.</LI>
<li>
<a href="#Debugging">Debugging notes</a></li>
<LI>
To add C compiler options from the make command line, set <TT>XCFLAGS=-Dfoo</TT>.
To predefine -D or -U options in the makefile, set <TT>DEFINES</TT>. To
predefine -I options in the makefile, set INCLUDES.</LI>
<li>
<a href="#Conventions">Naming and coding conventions</a></li>
<LI>
To turn on GC instrumentation, define <TT>JS_GCMETER</TT>.</LI>
<li>
<a href="#JSAPI">Using the JS API</a></li>
<LI>
To enable multi-threaded execution, define <TT>JS_THREADSAFE</TT> and flesh
out the stubs and required headers in <I>jslock.c</I> and <I>jslock.h</I>.
See the JS API docs for more.</LI>
<li>
<a href="#Design">Design walk-through</a></li>
</ul>
<LI>
To turn on the arena package's instrumentation, define <TT>JS_ARENAMETER</TT>.</LI>
<h2>
<a NAME="Introduction"></a>Introduction</h2>
This is the README file for the&nbsp;<span CLASS=LXRSHORTDESC>JavaScript
Reference (JSRef) implementation.</span> It consists of build conventions
and instructions, source code conventions, a design walk-through, and a
brief file-by-file description of the source.
<p><span CLASS=LXRLONGDESC>JSRef builds a library or DLL containing the
JavaScript runtime (compiler, interpreter, decompiler, garbage collector,
atom manager, standard classes). It then compiles a small "shell" program
and links that with the library to make an interpreter that can be used
interactively and with test .js files to run scripts.&nbsp; The code has
no dependencies on the Navigator code.</span>
<p><i>Quick start tip</i>: skip to "Using the JS API" below, build the
js shell, and play with the object named "it" (start by setting 'it.noisy
= true').
<h2>
<a NAME="Build"></a>Build conventions (standalone JS engine and shell)</h2>
These build directions refer only to building the standalone JavaScript
engine and shell.&nbsp; To build within the browser, refer to the <a href="http://www.mozilla.org/docs/">build
directions</a> on the mozilla.org website.
<p>By default, all platforms build a version of the JS engine that is <i>not</i>
threadsafe.&nbsp; If you require thread-safety, you must also populate
the <tt>mozilla/dist</tt> directory with <a href="http://www.mozilla.org/docs/tplist/catCode/nsprdesc.htm">NSPR</a>
headers and libraries.&nbsp; (NSPR implements a portable threading library,
among other things.&nbsp; The source is downloadable via <a href="http://www.mozilla.org/cvs.html">CVS</a>
from <tt><a href="http://cvs-mirror.mozilla.org/webtools/lxr/source/nsprpub">mozilla/nsprpub</a></tt>.)&nbsp;
Next, you must define <tt>JS_THREADSAFE</tt> when building the JS engine,
either on the command-line (gmake/nmake) or in a universal header file.
<h3>
Windows</h3>
<LI>
To turn on the hash table package's metering, define <TT>JS_HASHMETER</TT>.</LI>
</UL>
<ul>
<li>
Use MSVC 4.2 or 5.0.</li>
<H2>
Naming and coding conventions</H2>
<li>
For building from the IDE use <tt>js/src/js.mdp</tt>.&nbsp; (<tt>js.mdp</tt>
is an MSVC4.2 project file, but if you load it into MSVC5, it will be converted
to the newer project file format.)&nbsp; <font color="#CC0000">NOTE: makefile.win
is an nmake file used only for building the JS-engine in the Mozilla browser.&nbsp;
Don't attempt to use it to build the standalone JS-engine.</font></li>
<UL>
<LI>
Public function names begin with <TT>JS_</TT> followed by capitalized "intercaps",
e.g. <TT>JS_NewObject</TT>.</LI>
<li>
If you prefer to build from the command-line, use '<tt>nmake -f js.mak</tt>'</li>
<LI>
Extern but library-private function names use a <TT>js_</TT> prefix and
mixed case, e.g. <TT>js_LookupSymbol</TT>.</LI>
<li>
Executable shell <tt>js.exe</tt> and runtime library <tt>js32.dll</tt>
are created in either <tt>js/src/Debug</tt> or <tt>js/src/Release</tt>.</li>
</ul>
<LI>
Most static function names have unprefixed, mixed-case names: <TT>GetChar</TT>.</LI>
<h3>
Macintosh</h3>
<LI>
<ul>
<li>
Use CodeWarrior 3.x</li>
<li>
Load the project file <tt>js:src:macbuild:JSRef.mcp </tt>and select "Make"
from the menu.</li>
</ul>
<h3>
Unix</h3>
<ul>
<li>
Use '<tt>gmake -f Makefile.ref</tt>' to build. To compile optimized code,
pass <tt>BUILD_OPT=1</tt> on the gmake command line or preset it in the
environment or <tt>Makefile.ref</tt>.&nbsp; <font color="#CC0000">NOTE:
Do not attempt to use Makefile to build the standalone JavaScript engine.&nbsp;
This file is used only for building the JS-engine in the Mozilla browser.</font></li>
<li>
<font color="#000000">Each platform on which JS is built must have a <tt>*.mk</tt>
configuration file in the <tt>js/src/config</tt> directory.&nbsp; The configuration
file specifies the compiler/linker to be used and allows for customization
of command-line options.&nbsp; To date, the build system has been tested
on Solaris, AIX, HP/UX, OSF, IRIX, x86 Linux and Windows NT.</font></li>
<li>
<font color="#000000">Most platforms will work with either the vendor compiler
</font>or
<a href="ftp://prep.ai.mit.edu/pub/gnu">gcc</a>.&nbsp;
(Except that HP builds only work using the native compiler.&nbsp; gcc won't
link correctly with shared libraries on that platform.&nbsp; If someone
knows a way to fix this, <a href="mailto:wynholds@netscape.com">let us
know</a>.)</li>
<li>
<font color="#000000">If you define <tt>JS_LIVECONNECT</tt>, gmake will
descend into the liveconnect directory and build <a href="http://cvs-mirror.mozilla.org/webtools/lxr/source/js/src/liveconnect/README.html">LiveConnect</a>
after building the JS engine.</font></li>
<li>
To build a binary drop (a zip'ed up file of headers, libraries, binaries),
check out <tt>mozilla/config</tt> and <tt>mozilla/nsprpub/config</tt>.&nbsp;
Use '<tt>gmake -f Makefile.ref nsinstall-target all export ship</tt>'</li>
</ul>
<h2>
<a NAME="Debugging"></a>Debugging notes</h2>
<ul>
<li>
To turn on GC instrumentation, define <tt>JS_GCMETER</tt>.</li>
<li>
To turn on the arena package's instrumentation, define <tt>JS_ARENAMETER</tt>.</li>
<li>
To turn on the hash table package's metering, define <tt>JS_HASHMETER</tt>.</li>
</ul>
<h2>
<a NAME="Conventions"></a>Naming and coding conventions</h2>
<ul>
<li>
Public function names begin with <tt>JS_</tt> followed by capitalized "intercaps",
e.g. <tt>JS_NewObject</tt>.</li>
<li>
Extern but library-private function names use a <tt>js_</tt> prefix and
mixed case, e.g. <tt>js_LookupSymbol</tt>.</li>
<li>
Most static function names have unprefixed, mixed-case names: <tt>GetChar</tt>.</li>
<li>
But static native methods of JS objects have lowercase, underscore-separated
or intercaps names, e.g., <TT>str_indexOf</TT>.</LI>
or intercaps names, e.g., <tt>str_indexOf</tt>.</li>
<LI>
<li>
And library-private and static data use underscores, not intercaps (but
library-private data do use a <TT>js_</TT> prefix).</LI>
library-private data do use a <tt>js_</tt> prefix).</li>
<LI>
Scalar type names are lowercase and js-prefixed: <TT>jsdouble</TT>.</LI>
<li>
Scalar type names are lowercase and js-prefixed: <tt>jsdouble</tt>.</li>
<LI>
Aggregate type names are JS-prefixed and mixed-case: <TT>JSObject.</TT></LI>
<li>
Aggregate type names are JS-prefixed and mixed-case: <tt>JSObject.</tt></li>
<LI>
Macros are generally <TT>ALL_CAPS </TT>and underscored, to call out potential
<li>
Macros are generally <tt>ALL_CAPS </tt>and underscored, to call out potential
side effects, multiple uses of a formal argument, etc. - Four spaces of
indentation per statement nesting level.</LI>
indentation per statement nesting level.</li>
<LI>
<li>
Tabs are taken to be eight spaces, and an Emacs magic comment at the top
of each file tries to help. If you're using MSVC or similar, you'll want
to set tab width to 8, or convert these files to be space-filled.</LI>
to set tab width to 8, or convert these files to be space-filled.</li>
<LI>
DLL entry points have their return type expanded within a <TT>JS_PUBLIC_API()</TT>
<li>
DLL entry points have their return type expanded within a <tt>JS_PUBLIC_API()</tt>
macro call, to get the right Windows secret type qualifiers in the right
places for both 16- and 32-bit builds.</LI>
places for both 16- and 32-bit builds.</li>
<LI>
<li>
Callback functions that might be called from a DLL are similarly macroized
with <TT>JS_STATIC_DLL_CALLBACK</TT> (if the function otherwise would be
static to hide its name) or <TT>JS_DLL_CALLBACK</TT> (this macro takes
with <tt>JS_STATIC_DLL_CALLBACK</tt> (if the function otherwise would be
static to hide its name) or <tt>JS_DLL_CALLBACK</tt> (this macro takes
no type argument; it should be used after the return type and before the
function name).</LI>
</UL>
function name).</li>
</ul>
<H2>
Using the JS API</H2>
<h2>
<a NAME="JSAPI"></a>Using the JS API</h2>
<H4>
Starting up</H4>
<h4>
Starting up</h4>
<PRE><TT>&nbsp;&nbsp;&nbsp; /*
<pre><tt>&nbsp;&nbsp;&nbsp; /*
&nbsp;&nbsp;&nbsp;&nbsp; * Tune this to avoid wasting space for shallow stacks, while saving on
&nbsp;&nbsp;&nbsp;&nbsp; * malloc overhead/fragmentation for deep or highly-variable stacks.
&nbsp;&nbsp;&nbsp;&nbsp; */
@ -147,12 +227,12 @@ Starting up</H4>
&nbsp;&nbsp;&nbsp; JSObject *globalObj;
&nbsp;&nbsp;&nbsp; globalObj = JS_NewObject(cx, &amp;my_global_class, 0, 0);
&nbsp;&nbsp;&nbsp; JS_InitStandardClasses(cx, globalObj);</TT></PRE>
&nbsp;&nbsp;&nbsp; JS_InitStandardClasses(cx, globalObj);</tt></pre>
<H4>
Defining objects and properties</H4>
<h4>
Defining objects and properties</h4>
<PRE><TT>&nbsp;&nbsp;&nbsp; /* Statically initialize a class to make "one-off" objects. */
<pre><tt>&nbsp;&nbsp;&nbsp; /* Statically initialize a class to make "one-off" objects. */
&nbsp;&nbsp;&nbsp; JSClass my_class = {
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; "MyClass",
@ -214,12 +294,12 @@ Defining objects and properties</H4>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; }
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; }
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; return JS_TRUE;
&nbsp;&nbsp;&nbsp; }</TT></PRE>
&nbsp;&nbsp;&nbsp; }</tt></pre>
<H4>
Defining functions</H4>
<h4>
Defining functions</h4>
<PRE><TT>&nbsp;&nbsp;&nbsp; /* Define a bunch of native functions first: */
<pre><tt>&nbsp;&nbsp;&nbsp; /* Define a bunch of native functions first: */
&nbsp;&nbsp;&nbsp; static JSBool
&nbsp;&nbsp;&nbsp; my_abs(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
&nbsp;&nbsp;&nbsp; {
@ -251,12 +331,12 @@ Defining functions</H4>
&nbsp;&nbsp;&nbsp;&nbsp; * a prototype object, the methods will apply to all instances past and
&nbsp;&nbsp;&nbsp;&nbsp; * future of the prototype's class (see below for classes).
&nbsp;&nbsp;&nbsp;&nbsp; */
&nbsp;&nbsp;&nbsp; JS_DefineFunctions(cx, globalObj, my_functions);</TT></PRE>
&nbsp;&nbsp;&nbsp; JS_DefineFunctions(cx, globalObj, my_functions);</tt></pre>
<H4>
Defining classes</H4>
<h4>
Defining classes</h4>
<PRE><TT>&nbsp;&nbsp;&nbsp; /*
<pre><tt>&nbsp;&nbsp;&nbsp; /*
&nbsp;&nbsp;&nbsp;&nbsp; * This pulls together the above API elements by defining a constructor
&nbsp;&nbsp;&nbsp;&nbsp; * function, a prototype object, and properties of the prototype and of
&nbsp;&nbsp;&nbsp;&nbsp; * the constructor, all with one API call.
@ -287,12 +367,12 @@ Defining classes</H4>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; my_props, my_methods,
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; /* class constructor properties and methods */
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; my_static_props, my_static_methods);</TT></PRE>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; my_static_props, my_static_methods);</tt></pre>
<H4>
Running scripts</H4>
<h4>
Running scripts</h4>
<PRE><TT>&nbsp;&nbsp;&nbsp; /* These should indicate source location for diagnostics. */
<pre><tt>&nbsp;&nbsp;&nbsp; /* These should indicate source location for diagnostics. */
&nbsp;&nbsp;&nbsp; char *filename;
&nbsp;&nbsp;&nbsp; uintN lineno;
@ -320,12 +400,12 @@ Running scripts</H4>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ok = JS_ValueToNumber(cx, rval, &amp;d);
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; . . .
&nbsp;&nbsp;&nbsp; }</TT></PRE>
&nbsp;&nbsp;&nbsp; }</tt></pre>
<H4>
Calling functions</H4>
<h4>
Calling functions</h4>
<PRE><TT>&nbsp;&nbsp;&nbsp; /* Call a global function named "foo" that takes no arguments. */
<pre><tt>&nbsp;&nbsp;&nbsp; /* Call a global function named "foo" that takes no arguments. */
&nbsp;&nbsp;&nbsp; ok = JS_CallFunctionName(cx, globalObj, "foo", 0, 0, &amp;rval);
&nbsp;&nbsp;&nbsp; jsval argv[2];
@ -333,43 +413,43 @@ Calling functions</H4>
&nbsp;&nbsp;&nbsp; /* Call a function in obj's scope named "method", passing two arguments. */
&nbsp;&nbsp;&nbsp; argv[0] = . . .;
&nbsp;&nbsp;&nbsp; argv[1] = . . .;
&nbsp;&nbsp;&nbsp; ok = JS_CallFunctionName(cx, obj, "method", 2, argv, &amp;rval);</TT></PRE>
&nbsp;&nbsp;&nbsp; ok = JS_CallFunctionName(cx, obj, "method", 2, argv, &amp;rval);</tt></pre>
<H4>
Shutting down</H4>
<h4>
Shutting down</h4>
<PRE><TT>&nbsp;&nbsp;&nbsp; /* For each context you've created: */
<pre><tt>&nbsp;&nbsp;&nbsp; /* For each context you've created: */
&nbsp;&nbsp;&nbsp; JS_DestroyContext(cx);
&nbsp;&nbsp;&nbsp; /* And finally: */
&nbsp;&nbsp;&nbsp; JS_Finish(rt);</TT></PRE>
&nbsp;&nbsp;&nbsp; JS_Finish(rt);</tt></pre>
<H4>
Debugging API</H4>
See the<TT> trap, untrap, watch, unwatch, line2pc</TT>, and <TT>pc2line</TT>
commands in <TT>js.c</TT>. Also the (scant) comments in <I>jsdbgapi.h</I>.
<H2>
Design walk-through</H2>
<h4>
Debugging API</h4>
See the<tt> trap, untrap, watch, unwatch, line2pc</tt>, and <tt>pc2line</tt>
commands in <tt>js.c</tt>. Also the (scant) comments in <i>jsdbgapi.h</i>.
<h2>
<a NAME="Design"></a>Design walk-through</h2>
This section must be brief for now -- it could easily turn into a book.
<H4>
JS "JavaScript Proper"</H4>
<h4>
JS "JavaScript Proper"</h4>
JS modules declare and implement the JavaScript compiler, interpreter,
decompiler, GC and atom manager, and standard classes.
<P>JavaScript uses untyped bytecode and runtime type tagging of data values.
The <TT>jsval</TT> type is a signed machine word that contains either a
<p>JavaScript uses untyped bytecode and runtime type tagging of data values.
The <tt>jsval</tt> type is a signed machine word that contains either a
signed integer value (if the low bit is set), or a type-tagged pointer
or boolean value (if the low bit is clear). Tagged pointers all refer to
8-byte-aligned things in the GC heap.
<P>Objects consist of a possibly shared structural description, called
<p>Objects consist of a possibly shared structural description, called
the map or scope; and unshared property values in a vector, called the
slots. Object properties are associated with nonnegative integers stored
in <TT>jsval</TT>'s, or with atoms (unique string descriptors) if named
in <tt>jsval</tt>'s, or with atoms (unique string descriptors) if named
by an identifier or a non-integral index expression.
<P>Scripts contain bytecode, source annotations, and a pool of string,
<p>Scripts contain bytecode, source annotations, and a pool of string,
number, and identifier literals. Functions are objects that extend scripts
or native functions with formal parameters, a literal syntax, and a distinct
primitive type ("function").
<P>The compiler consists of a recursive-descent parser and a random-logic
<p>The compiler consists of a recursive-descent parser and a random-logic
rather than table-driven lexical scanner. Semantic and lexical feedback
are used to disambiguate hard cases such as missing semicolons, assignable
expressions ("lvalues" in C parlance), etc. The parser generates bytecode
@ -381,88 +461,89 @@ All state associated with an interpreter instance is passed through formal
parameters to the interpreter entry point; most implicit state is collected
in a type named JSContext. Therefore, all API and almost all other functions
in JSRef take a JSContext pointer as their first argument.
<P>The decompiler translates postfix bytecode into infix source by consulting
<p>The decompiler translates postfix bytecode into infix source by consulting
a separate byte-sized code, called source notes, to disambiguate bytecodes
that result from more than one grammatical production.
<P>The GC is a mark-and-sweep, non-conservative (perfect) collector. It
<p>The GC is a mark-and-sweep, non-conservative (perfect) collector. It
can allocate only fixed-sized things -- the current size is two machine
words. It is used to hold JS object and string descriptors (but not property
lists or string bytes), and double-precision floating point numbers. It
runs automatically only when maxbytes (as passed to <TT>JS_Init()</TT>)
runs automatically only when maxbytes (as passed to <tt>JS_Init()</tt>)
bytes of GC things have been allocated and another thing-allocation request
is made. JS API users should call <TT>JS_GC()</TT> or <TT>JS_MaybeGC()</TT>
is made. JS API users should call <tt>JS_GC()</tt> or <tt>JS_MaybeGC()</tt>
between script executions or from the branch callback, as often as necessary.
<P>An important point about the GC's "perfection": you must add roots for
<p>An important point about the GC's "perfection": you must add roots for
new objects created by your native methods if you store references to them
into a non-JS structure in the malloc heap or in static data. Also, if
you make a new object in a native method, but do not store it through the
<TT>rval</TT> result parameter (see math_abs in the "Using the JS API"
section above) so that it is in a known root, the object is guaranteed
to survive only until another new object is created. Either lock the first
new object when making two in a row, or store it in a root you've added,
or store it via rval.
<P>The atom manager consists of a hash table associating strings uniquely
<tt>rval</tt>
result parameter (see math_abs in the "Using the JS API" section above)
so that it is in a known root, the object is guaranteed to survive only
until another new object is created. Either lock the first new object when
making two in a row, or store it in a root you've added, or store it via
rval.
<p>The atom manager consists of a hash table associating strings uniquely
with scanner/parser information such as keyword type, index in script or
function literal pool, etc. Atoms play three roles in JSRef: as literals
referred to by unaligned 16-bit immediate bytecode operands, as unique
string descriptors for efficient property name hashing, and as members
of the root GC set for perfect GC. This design therefore requires atoms
to be manually reference counted, from script literal pools (<TT>JSAtomMap</TT>)
and object symbol (<TT>JSSymbol</TT>) entry keys.
<P>Native objects and methods for arrays, booleans, dates, functions, numbers,
to be manually reference counted, from script literal pools (<tt>JSAtomMap</tt>)
and object symbol (<tt>JSSymbol</tt>) entry keys.
<p>Native objects and methods for arrays, booleans, dates, functions, numbers,
and strings are implemented using the JS API and certain internal interfaces
used as "fast paths".
<P>In general, errors are signaled by false or unoverloaded-null return
values, and are reported using <TT>JS_ReportError()</TT> or one of its
<p>In general, errors are signaled by false or unoverloaded-null return
values, and are reported using <tt>JS_ReportError()</tt> or one of its
variants by the lowest level in order to provide the most detail. Client
code can substitute its own error reporting function and suppress errors,
or reflect them into Java or some other runtime system as exceptions, GUI
dialogs, etc..
<H2>
File walk-through</H2>
<h2>
File walk-through (BADLY OUT OF DATE!)</h2>
<H4>
jsapi.c, jsapi.h</H4>
<h4>
jsapi.c, jsapi.h</h4>
The public API to be used by almost all client code.&nbsp; If your client
code can't make do with <TT>jsapi.h</TT>, and must reach into a friend
or private js* file, please let us know so we can extend <TT>jsapi.h</TT>
code can't make do with <tt>jsapi.h</tt>, and must reach into a friend
or private js* file, please let us know so we can extend <tt>jsapi.h</tt>
to include what you need in a fashion that we can support over the long
run.
<H4>
jspubtd.h, jsprvtd.h</H4>
<h4>
jspubtd.h, jsprvtd.h</h4>
These files exist to group struct and scalar typedefs so they can be used
everywhere without dragging in struct definitions from N different files.
The <TT>jspubtd.h</TT> file contains public typedefs, and is included by
<TT>jsapi.h</TT>. The <TT>jsprvtd.h</TT> file contains private typedefs
and is included by various .h files that need type names, but not type
sizes or declarations.
<H4>
jsdbgapi.c, jsdbgapi.h</H4>
The <tt>jspubtd.h</tt> file contains public typedefs, and is included by
<tt>jsapi.h</tt>.
The <tt>jsprvtd.h</tt> file contains private typedefs and is included by
various .h files that need type names, but not type sizes or declarations.
<h4>
jsdbgapi.c, jsdbgapi.h</h4>
The Debugging API, still very much under development. Provided so far:
<UL>
<LI>
<ul>
<li>
Traps, with which breakpoints, single-stepping, step over, step out, and
so on can be implemented. The debugger will have to consult jsopcode.def
on its own to figure out where to plant trap instructions to implement
functions like step out, but a future jsdbgapi.h will provide convenience
interfaces to do these things. At most one trap per bytecode can be set.
When a script (<TT>JSScript</TT>) is destroyed, all traps set in its bytecode
are cleared.</LI>
When a script (<tt>JSScript</tt>) is destroyed, all traps set in its bytecode
are cleared.</li>
<LI>
<li>
Watchpoints, for intercepting set operations on properties and running
a debugger-supplied function that receives the old value and a pointer
to the new one, which it can use to modify the new value being set.</LI>
to the new one, which it can use to modify the new value being set.</li>
<LI>
<li>
Line number to PC and back mapping functions. The line-to-PC direction
"rounds" toward the next bytecode generated from a line greater than or
equal to the input line, and may return the PC of a for-loop update part,
if given the line number of the loop body's closing brace. Any line after
the last one in a script or function maps to a PC one byte beyond the last
bytecode in the script. An example, from perfect.js:</LI>
bytecode in the script. An example, from perfect.js:</li>
<PRE><TT>14&nbsp;&nbsp; function perfect(n)
<pre><tt>14&nbsp;&nbsp; function perfect(n)
15&nbsp;&nbsp; {
16&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; print("The perfect numbers up to " +&nbsp; n + " are:");
17
@ -482,10 +563,10 @@ bytecode in the script. An example, from perfect.js:</LI>
31&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; }
32&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; delete sumOfDivisors;
33&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; print("That's all.");
34&nbsp;&nbsp; }</TT></PRE>
34&nbsp;&nbsp; }</tt></pre>
The line number to PC and back mappings can be tested using the js program
with the following script:
<PRE><TT>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; load("perfect.js")
<pre><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; load("perfect.js")
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; print(perfect)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; dis(perfect)
@ -494,9 +575,9 @@ with the following script:
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; var pc = line2pc(perfect,ln)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; var ln2 = pc2line(perfect,pc)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; print("\tline " + ln + " => pc " + pc + " => line " + ln2)
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; }</TT></PRE>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; }</tt></pre>
The result of the for loop over lines 0 to 40 inclusive is:
<PRE><TT>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; line 0 => pc 0 => line 16
<pre><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; line 0 => pc 0 => line 16
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; line 1 => pc 0 => line 16
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; line 2 => pc 0 => line 16
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; line 3 => pc 0 => line 16
@ -536,138 +617,139 @@ The result of the for loop over lines 0 to 40 inclusive is:
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; line 37 => pc 172 => line 33
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; line 38 => pc 172 => line 33
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; line 39 => pc 172 => line 33
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; line 40 => pc 172 => line 33</TT></PRE>
</UL>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; line 40 => pc 172 => line 33</tt></pre>
</ul>
<H4>
jsconfig.h</H4>
Various configuration macros defined as 0 or 1 depending on how <TT>JS_VERSION</TT>
<h4>
jsconfig.h</h4>
Various configuration macros defined as 0 or 1 depending on how <tt>JS_VERSION</tt>
is defined (as 10 for JavaScript 1.0, 11 for JavaScript 1.1, etc.). Not
all macros are tested around related code yet. In particular, JS 1.0 support
is missing from JSRef. JS 1.2 support will appear in a future JSRef release.
<BR>&nbsp;
<H4>
js.c</H4>
<br>&nbsp;
<h4>
js.c</h4>
The "JS shell", a simple interpreter program that uses the JS API and more
than a few internal interfaces (some of these internal interfaces could
be replaced by <TT>jsapi.h</TT> calls). The js program built from this
be replaced by <tt>jsapi.h</tt> calls). The js program built from this
source provides a test vehicle for evaluating scripts and calling functions,
trying out new debugger primitives, etc.
<H4>
jsarray.*, jsbool.*, jdsdate.*, jsfun.*, jsmath.*, jsnum.*, jsstr.*</H4>
<h4>
jsarray.*, jsbool.*, jdsdate.*, jsfun.*, jsmath.*, jsnum.*, jsstr.*</h4>
These file pairs implement the standard classes and (where they exist)
their underlying primitive types. They have similar structure, generally
starting with class definitions and continuing with internal constructors,
finalizers, and helper functions.
<H4>
jsobj.*, jsscope.*</H4>
<h4>
jsobj.*, jsscope.*</h4>
These two pairs declare and implement the JS object system. All of the
following happen here:
<UL>
<LI>
creating objects by class and prototype, and finalizing objects;</LI>
<ul>
<li>
creating objects by class and prototype, and finalizing objects;</li>
<LI>
defining, looking up, getting, setting, and deleting properties;</LI>
<li>
defining, looking up, getting, setting, and deleting properties;</li>
<LI>
creating and destroying properties and binding names to them.</LI>
</UL>
The details of an object map (scope) are mostly hidden in <TT>jsscope.[ch]</TT>,
<li>
creating and destroying properties and binding names to them.</li>
</ul>
The details of an object map (scope) are mostly hidden in <tt>jsscope.[ch]</tt>,
where scopes start out as linked lists of symbols, and grow after some
threshold into PR hash tables.
<H4>
jsatom.c, jsatom.h</H4>
<h4>
jsatom.c, jsatom.h</h4>
The atom manager. Contains well-known string constants, their atoms, the
global atom hash table and related state, the js_Atomize() function that
turns a counted string of bytes into an atom, and literal pool (<TT>JSAtomMap</TT>)
turns a counted string of bytes into an atom, and literal pool (<tt>JSAtomMap</tt>)
methods.
<H4>
jsgc.c, jsgc.h</H4>
<h4>
jsgc.c, jsgc.h</h4>
[TBD]
<H4>
jsinterp.*, jscntxt.*</H4>
<h4>
jsinterp.*, jscntxt.*</h4>
The bytecode interpreter, and related functions such as Call and AllocStack,
live in <I>jsinterp.c</I>. The JSContext constructor and destructor are
factored out into <I>jscntxt.c</I> for minimal linking when the compiler
live in <i>jsinterp.c</i>. The JSContext constructor and destructor are
factored out into <i>jscntxt.c</i> for minimal linking when the compiler
part of JS is split from the interpreter part into a separate program.
<H4>
jsemit.*, jsopcode.tbl, jsopcode.*, jsparse.*, jsscan.*, jsscript.*</H4>
Compiler and decompiler modules. The <I>jsopcode.tbl</I> file is a C preprocessor
<h4>
jsemit.*, jsopcode.tbl, jsopcode.*, jsparse.*, jsscan.*, jsscript.*</h4>
Compiler and decompiler modules. The <i>jsopcode.tbl</i> file is a C preprocessor
source that defines almost everything there is to know about JS bytecodes.
See its major comment for how to use it. For now, a debugger will use it
and its dependents such as <I>jsopcode.h</I> directly, but over time we
intend to extend <I>jsdbgapi.h</I> to hide uninteresting details and provide
and its dependents such as <i>jsopcode.h</i> directly, but over time we
intend to extend <i>jsdbgapi.h</i> to hide uninteresting details and provide
conveniences. The code generator is split across paragraphs of code in
<I>jsparse.c</I>, and the utility methods called on <TT>JSCodeGenerator</TT>
appear in <I>jsemit.c</I>. Source notes generated by <I>jsparse.c</I> and
<I>jsemit.c</I> are used in <I>jsscript.c</I> to map line number to program
counter and back.
<H4>
jstypes.h, jslog2.c</H4>
<i>jsparse.c</i>,
and the utility methods called on <tt>JSCodeGenerator</tt> appear in <i>jsemit.c</i>.
Source notes generated by <i>jsparse.c</i> and
<i>jsemit.c</i> are used
in <i>jsscript.c</i> to map line number to program counter and back.
<h4>
jstypes.h, jslog2.c</h4>
Fundamental representation types and utility macros. This file alone among
all .h files in JSRef must be included first by .c files. It is not nested
in .h files, as other prerequisite .h files generally are, since it is
also a direct dependency of most .c files and would be over-included if
nested in addition to being directly included. The one "not-quite-a-macro
macro" is the <TT>JS_CeilingLog2()</TT> function in <I>jslog2.c</I>.
<H4>
jsarena.c, jsarena.h</H4>
macro" is the <tt>JS_CeilingLog2()</tt> function in <i>jslog2.c</i>.
<h4>
jsarena.c, jsarena.h</h4>
Last-In-First-Out allocation macros that amortize malloc costs and allow
for en-masse freeing. See the paper mentioned in prarena.h's major comment.
<H4>
jsutil.c, jsutil.h</H4>
The <TT>JS_ASSERT</TT> macro is used throughout JSRef source as a proof
<h4>
jsutil.c, jsutil.h</h4>
The <tt>JS_ASSERT</tt> macro is used throughout JSRef source as a proof
device to make invariants and preconditions clear to the reader, and to
hold the line during maintenance and evolution against regressions or violations
of assumptions that it would be too expensive to test unconditionally at
run-time. Certain assertions are followed by run-time tests that cope with
assertion failure, but only where I'm too smart or paranoid to believe
the assertion will never fail...
<H4>
jsclist.h</H4>
<h4>
jsclist.h</h4>
Doubly-linked circular list struct and macros.
<H4>
jscpucfg.c</H4>
This standalone program generates <I>jscpucfg.h</I>, a header file containing
<h4>
jscpucfg.c</h4>
This standalone program generates <i>jscpucfg.h</i>, a header file containing
bytes per word and other constants that depend on CPU architecture and
C compiler type model. It tries to discover most of these constants by
running its own experiments on the build host, so if you are cross-compiling,
beware.
<H4>
prdtoa.c, prdtoa.h</H4>
<h4>
prdtoa.c, prdtoa.h</h4>
David Gay's portable double-precision floating point to string conversion
code, with Permission To Use notice included.
<H4>
prhash.c, prhash.h</H4>
<h4>
prhash.c, prhash.h</h4>
Portable, extensible hash tables. These use multiplicative hash for strength
reduction over division hash, yet with very good key distribution over
power of two table sizes. Collisions resolve via chaining, so each entry
burns a malloc and can fragment the heap.
<H4>
prlong.c, prlong.h</H4>
<h4>
prlong.c, prlong.h</h4>
64-bit integer emulation, and compatible macros that use C's long long
type where it exists (my last company mapped long long to a 128-bit type,
but no real architecture does 128-bit ints yet).
<H4>
jsosdep.h</H4>
<h4>
jsosdep.h</h4>
Annoying OS dependencies rationalized into a few "feature-test" macros
such as <TT>JS_HAVE_LONG_LONG</TT>.
<H4>
jsprf.*</H4>
such as <tt>JS_HAVE_LONG_LONG</tt>.
<h4>
jsprf.*</h4>
Portable, buffer-overrun-resistant sprintf and friends. For no good reason
save lack of time, the %e, %f, and %g formats cause your system's native
sprintf, rather than <TT>JS_dtoa()</TT>, to be used. This bug doesn't affect
JSRef, because it uses its own <TT>JS_dtoa()</TT> call in <I>jsnum.c</I>
sprintf, rather than <tt>JS_dtoa()</tt>, to be used. This bug doesn't affect
JSRef, because it uses its own <tt>JS_dtoa()</tt> call in <i>jsnum.c</i>
to convert from double to string, but it's a bug that we'll fix later,
and one you should be aware of if you intend to use a <TT>JS_*printf()</TT>&nbsp;
and one you should be aware of if you intend to use a <tt>JS_*printf()</tt>&nbsp;
function with your own floating type arguments - various vendor sprintf's
mishandle NaN, +/-Inf, and some even print normal floating values inaccurately.
<H4>
prmjtime.c, prmjtime.h</H4>
<h4>
prmjtime.c, prmjtime.h</h4>
Time functions. These interfaces are named in a way that makes local vs.
universal time confusion likely. Caveat emptor, and we're working on it.
To make matters worse, Java (and therefore JavaScript) uses "local" time
numbers (offsets from the epoch) in its Date class.
</BODY>
</HTML>
</body>
</html>

12
js/src/SpiderMonkey.rsp Normal file
Просмотреть файл

@ -0,0 +1,12 @@
mozilla/js/src/*
mozilla/js/src/config/*
mozilla/js/src/fdlibm/*
mozilla/js/src/liveconnect/*
mozilla/js/src/liveconnect/_jni/*
mozilla/js/src/liveconnect/classes/*
mozilla/js/src/liveconnect/classes/netscape/*
mozilla/js/src/liveconnect/classes/netscape/javascript/*
mozilla/js/src/liveconnect/config/*
mozilla/js/src/liveconnect/macbuild/*
mozilla/js/src/liveconnect/macbuild/JavaSession/*
mozilla/js/src/macbuild/*

Просмотреть файл

@ -40,10 +40,8 @@ else
INSTALL = $(DEPTH)/../../dist/$(OBJDIR)/bin/nsinstall
endif
include $(DEPTH)/config/$(OS_CONFIG).mk
ifdef BUILD_OPT
OPTIMIZER += -O
OPTIMIZER = -O
DEFINES += -UDEBUG -DNDEBUG -UDEBUG_$(shell whoami)
OBJDIR_TAG = _OPT
else
@ -56,6 +54,8 @@ DEFINES += -DDEBUG -DDEBUG_$(shell whoami)
OBJDIR_TAG = _DBG
endif
include $(DEPTH)/config/$(OS_CONFIG).mk
# Name of the binary code directories
OBJDIR = $(OS_CONFIG)$(OBJDIR_TAG).OBJ
VPATH = $(OBJDIR)

Просмотреть файл

@ -21,6 +21,8 @@
CC = xlC_r
CCC = xlC_r
CFLAGS += -qarch=com -qnoansialias -qinline+$(INLINES) -DXP_UNIX -DAIX -DAIXV3 -DSYSV
OPTIMIZER = -O
RANLIB = ranlib
@ -31,12 +33,10 @@ CPU_ARCH = rs6000
GFX_ARCH = x
INLINES = js_compare_and_swap:js_fast_lock1:js_fast_unlock1:js_lock_get_slot:js_lock_set_slot:js_lock_scope1
OS_CFLAGS = -qarch=com -qinline+$(INLINES) -DXP_UNIX -DAIX -DAIXV3 -DSYSV
OS_LIBS = -lbsd -lsvld -lm
XLDFLAGS += -lbsd -lsvld -lm -lc_r
#-lpthreads -lc_r
MKSHLIB = $(LD) -brtl -bM:SRE -bnoentry -bexpall -berok
XLDFLAGS += -lc
ifdef JS_THREADSAFE
XLDFLAGS += -ldl

Просмотреть файл

@ -35,7 +35,7 @@ MKSHLIB = $(LD) -b
CPU_ARCH = hppa
GFX_ARCH = x
OS_CFLAGS = -DXP_UNIX -DHPUX -DSYSV -D_SVID_GETTOD
OS_CFLAGS = -DXP_UNIX -DHPUX -DSYSV
OS_LIBS = -ldld
ifeq ($(OS_RELEASE),B.10)

Просмотреть файл

@ -0,0 +1,53 @@
#
# The contents of this file are subject to the Netscape Public License
# Version 1.0 (the "NPL"); you may not use this file except in
# compliance with the NPL. You may obtain a copy of the NPL at
# http://www.mozilla.org/NPL/
#
# Software distributed under the NPL is distributed on an "AS IS" basis,
# WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
# for the specific language governing rights and limitations under the
# NPL.
#
# The Initial Developer of this code under the NPL is Netscape
# Communications Corporation. Portions created by Netscape are
# Copyright (C) 1998 Netscape Communications Corporation. All Rights
# Reserved.
#
#
# Config stuff for HPUX
#
# CC = gcc
# CCC = g++
# CFLAGS += -Wall -Wno-format -fPIC
CC = cc -Ae +Z
CCC = CC -Ae +a1 +eh +Z
RANLIB = echo
MKSHLIB = $(LD) -b
#.c.o:
# $(CC) -c -MD $*.d $(CFLAGS) $<
CPU_ARCH = hppa
GFX_ARCH = x
OS_CFLAGS = -DXP_UNIX -DHPUX -DSYSV
OS_LIBS = -ldld
ifeq ($(OS_RELEASE),B.10)
PLATFORM_FLAGS += -DHPUX10 -Dhpux10
PORT_FLAGS += -DRW_NO_OVERLOAD_SCHAR -DHAVE_MODEL_H
ifeq ($(OS_VERSION),.10)
PLATFORM_FLAGS += -DHPUX10_10
endif
ifeq ($(OS_VERSION),.20)
PLATFORM_FLAGS += -DHPUX10_20
endif
ifeq ($(OS_VERSION),.30)
PLATFORM_FLAGS += -DHPUX10_30
endif
endif

Просмотреть файл

@ -33,7 +33,7 @@ MKSHLIB = $(LD) -b
CPU_ARCH = hppa
GFX_ARCH = x
OS_CFLAGS = -DXP_UNIX -DHPUX -DSYSV -D_SVID_GETTOD
OS_CFLAGS = -DXP_UNIX -DHPUX -DSYSV
OS_LIBS = -ldld
XLDFLAGS = -lpthread

Просмотреть файл

@ -19,4 +19,4 @@
# Config stuff for IRIX5.3
#
include config/IRIX.mk
include $(DEPTH)/config/IRIX.mk

Просмотреть файл

@ -19,4 +19,4 @@
# Config stuff for IRIX6.3
#
include config/IRIX.mk
include $(DEPTH)/config/IRIX.mk

Просмотреть файл

@ -24,7 +24,7 @@ CCC = g++
CFLAGS += -Wall -Wno-format
RANLIB = echo
MKSHLIB = $(LD) -shared
MKSHLIB = $(LD) -shared $(XMKSHLIBOPTS)
#.c.o:
# $(CC) -c -MD $*.d $(CFLAGS) $<

Просмотреть файл

@ -23,9 +23,15 @@
# Initial DG/UX port by Marc Fraioli (fraioli@dg-rtp.dg.com)
#
AS = as
ifdef NS_USE_GCC
CC = gcc
CCC = g++
CFLAGS += -mieee -Wall -Wno-format
else
CC = cc
CCC = cxx
CFLAGS += -ieee -std
endif
RANLIB = echo
MKSHLIB = $(LD) -shared -all -expect_unresolved "*"

Просмотреть файл

@ -37,7 +37,7 @@ RANLIB = echo
CPU_ARCH = sparc
GFX_ARCH = x
OS_CFLAGS = -DXP_UNIX -DSVR4 -DSYSV -DSOLARIS -D_SVID_GETTOD
OS_CFLAGS = -DXP_UNIX -DSVR4 -DSYSV -DSOLARIS
OS_LIBS = -lsocket -lnsl -ldl
ASFLAGS += -P -L -K PIC -D_ASM -D__STDC__=0
@ -46,28 +46,16 @@ HAVE_PURIFY = 1
NOSUCHFILE = /solaris-rm-f-sucks
ifndef JS_NO_ULTRA
ULTRA_OPTIONS := -xarch=v8plus
ULTRA_OPTIONSD := -DULTRA_SPARC
ifeq ($(OS_CPUARCH),sun4u) # ultra sparc?
ifeq ($(CC),gcc) # using gcc?
ifndef JS_NO_ULTRA # do we want ultra?
ifdef JS_THREADSAFE # only in thread-safe mode
DEFINES += -DULTRA_SPARC
DEFINES += -Wa,-xarch=v8plus,-DULTRA_SPARC
else
ULTRA_OPTIONS := -xarch=v8
ULTRA_OPTIONSD :=
endif
ifeq ($(OS_CPUARCH),sun4u)
DEFINES += $(ULTRA_OPTIONSD)
ifeq ($(CC),gcc)
DEFINES += -Wa,$(ULTRA_OPTIONS),$(ULTRA_OPTIONSD)
else
ASFLAGS += $(ULTRA_OPTIONS) $(ULTRA_OPTIONSD)
ASFLAGS += -xarch=v8plus -DULTRA_SPARC
endif
endif
ifeq ($(OS_CPUARCH),sun4m)
ifeq ($(CC),gcc)
DEFINES += -Wa,-xarch=v8
else
ASFLAGS += -xarch=v8
endif
endif

Просмотреть файл

@ -20,11 +20,15 @@
#
AS = as
ifndef NS_USE_NATIVE
CC = gcc
CCC = g++
CFLAGS += -Wall -Wno-format
else
CC = cc
CCC = CC
endif
#CC = /opt/SUNWspro/SC3.0.1/bin/cc
RANLIB = echo
#.c.o:
@ -33,7 +37,7 @@ RANLIB = echo
CPU_ARCH = sparc
GFX_ARCH = x
OS_CFLAGS = -DXP_UNIX -DSVR4 -DSYSV -DSOLARIS -D_SVID_GETTOD
OS_CFLAGS = -DXP_UNIX -DSVR4 -DSYSV -DSOLARIS
OS_LIBS = -lsocket -lnsl -ldl
ASFLAGS += -P -L -K PIC -D_ASM -D__STDC__=0
@ -42,22 +46,15 @@ HAVE_PURIFY = 1
NOSUCHFILE = /solaris-rm-f-sucks
ifndef JS_NO_ULTRA
ULTRA_OPTIONS := -xarch=v8plus -DULTRA_SPARC
ifeq ($(OS_CPUARCH),sun4u) # ultra sparc?
ifeq ($(CC),gcc) # using gcc?
ifndef JS_NO_ULTRA # do we want ultra?
ifdef JS_THREADSAFE # only in thread-safe mode
DEFINES += -DULTRA_SPARC
DEFINES += -Wa,-xarch=v8plus,-DULTRA_SPARC
else
ULTRA_OPTIONS := -xarch=v8
ASFLAGS += -xarch=v8plus -DULTRA_SPARC
endif
ifeq ($(OS_CPUARCH),sun4u)
ASFLAGS += $(ULTRA_OPTIONS)
ifeq ($(CC),gcc)
DEFINES += -Wa,$(ULTRA_OPTIONS)
endif
else
ifeq ($(OS_CPUARCH),sun4m)
ASFLAGS += -xarch=v8
ifeq ($(CC),gcc)
DEFINES += -Wa,-xarch=v8
endif
endif
endif

Просмотреть файл

@ -37,7 +37,7 @@ RANLIB = echo
CPU_ARCH = sparc
GFX_ARCH = x
OS_CFLAGS = -DXP_UNIX -DSVR4 -DSYSV -DSOLARIS -D_SVID_GETTOD
OS_CFLAGS = -DXP_UNIX -DSVR4 -DSYSV -DSOLARIS
OS_LIBS = -lsocket -lnsl -ldl
ASFLAGS += -P -L -K PIC -D_ASM -D__STDC__=0
@ -46,28 +46,16 @@ HAVE_PURIFY = 1
NOSUCHFILE = /solaris-rm-f-sucks
ifndef JS_NO_ULTRA
ULTRA_OPTIONS := -xarch=v8plus
ULTRA_OPTIONSD := -DULTRA_SPARC
ifeq ($(OS_CPUARCH),sun4u) # ultra sparc?
ifeq ($(CC),gcc) # using gcc?
ifndef JS_NO_ULTRA # do we want ultra?
ifdef JS_THREADSAFE # only in thread-safe mode
DEFINES += -DULTRA_SPARC
DEFINES += -Wa,-xarch=v8plus,-DULTRA_SPARC
else
ULTRA_OPTIONS := -xarch=v8
ULTRA_OPTIONSD :=
endif
ifeq ($(OS_CPUARCH),sun4u)
DEFINES += $(ULTRA_OPTIONSD)
ifeq ($(CC),gcc)
DEFINES += -Wa,$(ULTRA_OPTIONS),$(ULTRA_OPTIONSD)
else
ASFLAGS += $(ULTRA_OPTIONS) $(ULTRA_OPTIONSD)
ASFLAGS += -xarch=v8plus -DULTRA_SPARC
endif
endif
ifeq ($(OS_CPUARCH),sun4m)
ifeq ($(CC),gcc)
DEFINES += -Wa,-xarch=v8
else
ASFLAGS += -xarch=v8
endif
endif

Просмотреть файл

@ -28,7 +28,33 @@ RANLIB = echo
CPU_ARCH = x86 # XXX fixme
GFX_ARCH = win32
OS_CFLAGS = -DXP_PC -DWIN32 -D_WINDOWS -D_WIN32
# MSVC compiler options for both debug/optimize
# /nologo - suppress copyright message
# /W3 - Warning level 3
# /Gm - enable minimal rebuild
# /Zi - put debug info in a Program Database (.pdb) file
# /YX - automatic precompiled headers
# /GX - enable C++ exception support
WIN_CFLAGS = /nologo /W3 /Gm /Zi /Fp$(OBJDIR)/js.pch /Fd$(OBJDIR)/js32.pdb
# MSVC compiler options for debug builds
# /MDd - link with MSVCRTD.LIB (Dynamically-linked, multi-threaded, debug C-runtime)
# /Od - minimal optimization
WIN_DEBUG_CFLAGS = /MDd /Od
# MSVC compiler options for release (optimized) builds
# /MD - link with MSVCRT.LIB (Dynamically-linked, multi-threaded, debug C-runtime)
# /O2 - Optimize for speed
# /G5 - Optimize for Pentium
WIN_OPT_CFLAGS = /MD /O2
ifdef BUILD_OPT
OPTIMIZER = $(WIN_OPT_CFLAGS)
else
OPTIMIZER = $(WIN_DEBUG_CFLAGS)
endif
OS_CFLAGS = -DXP_PC -DWIN32 -D_WINDOWS -D_WIN32 $(WIN_CFLAGS)
JSDLL_CFLAGS = -DEXPORT_JS_API
OS_LIBS = -lm -lc
@ -45,10 +71,6 @@ EXE_LINK_FLAGS=kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib\
/subsystem:console /incremental:yes /debug\
/machine:I386
ifdef JS_THREADSAFE
LIB_LINK_FLAGS += $(DIST)/lib/libnspr21.lib
endif
CAFEDIR = t:/cafe
JCLASSPATH = $(CAFEDIR)/Java/Lib/classes.zip
JAVAC = $(CAFEDIR)/Bin/sj.exe

6
js/src/fdlibm/.cvsignore Normal file
Просмотреть файл

@ -0,0 +1,6 @@
*.pdb
*.ncb
*.opt
*.plg
Debug
Release

Просмотреть файл

103
js/src/fdlibm/Makefile.in Normal file
Просмотреть файл

@ -0,0 +1,103 @@
#
# The contents of this file are subject to the Netscape Public License
# Version 1.0 (the "License"); you may not use this file except in
# compliance with the License. You may obtain a copy of the License at
# http://www.mozilla.org/NPL/
#
# Software distributed under the License is distributed on an "AS IS"
# basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
# the License for the specific language governing rights and limitations
# under the License.
#
# The Original Code is Mozilla Communicator client code.
#
# The Initial Developer of the Original Code is Netscape Communications
# Corporation. Portions created by Netscape are Copyright (C) 1998
# Netscape Communications Corporation. All Rights Reserved.
#
DEPTH = ../../..
topsrcdir = @top_srcdir@
VPATH = @srcdir@
srcdir = @srcdir@
include $(DEPTH)/config/autoconf.mk
#
# Default IEEE libm
#
CFLAGS += -D_IEEE_LIBM
LIBRARY_NAME = fdm
MODULE = js
CSRCS = \
e_acos.c \
e_asin.c \
e_atan2.c \
e_exp.c \
e_fmod.c \
e_log.c \
e_pow.c \
e_rem_pio2.c \
s_scalbn.c \
e_sqrt.c \
k_cos.c \
k_sin.c \
k_rem_pio2.c \
k_tan.c \
s_atan.c \
s_ceil.c \
s_copysign.c \
s_cos.c \
s_fabs.c \
s_finite.c \
s_floor.c \
s_isnan.c \
s_lib_version.c \
s_sin.c \
s_tan.c \
w_acos.c \
w_asin.c \
w_atan2.c \
w_exp.c \
w_fmod.c \
w_log.c \
w_pow.c \
w_sqrt.c \
$(NULL)
EXPORTS = fdlibm.h
include $(topsrcdir)/config/rules.mk
# from mozilla/js/src/Makefile
ifeq ($(CPU_ARCH),sparc)
ifndef JS_NO_ULTRA
ULTRA_OPTIONS := -xarch=v8plus,-DULTRA_SPARC
ULTRA_OPTIONSCC := -DULTRA_SPARC
else
ULTRA_OPTIONS := -xarch=v8
ULTRA_OPTIONSCC :=
endif
ifeq ($(shell uname -m),sun4u)
ASFLAGS += -Wa,$(ULTRA_OPTIONS),-P,-L,-D_ASM,-D__STDC__=0 $(ULTRA_OPTIONSCC)
else
ASFLAGS += -Wa,-xarch=v8,-P,-L,-D_ASM,-D__STDC__=0
endif
endif # sparc
ifeq ($(OS_ARCH), OSF1)
LDFLAGS += -lc_r
endif
ifeq ($(OS_ARCH), SunOS)
LDFLAGS += -lposix4 -ldl -lnsl -lsocket
endif
ifeq ($(OS_ARCH), Linux)
LDFLAGS += -ldl
endif
# end from mozilla/js/src/Makefile

167
js/src/fdlibm/Makefile.ref Normal file
Просмотреть файл

@ -0,0 +1,167 @@
#
# The contents of this file are subject to the Netscape Public License
# Version 1.0 (the "NPL"); you may not use this file except in
# compliance with the NPL. You may obtain a copy of the NPL at
# http://www.mozilla.org/NPL/
#
# Software distributed under the NPL is distributed on an "AS IS" basis,
# WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
# for the specific language governing rights and limitations under the
# NPL.
#
# The Initial Developer of this code under the NPL is Sun Microsystems,
# Inc. Portions created by Netscape are
# Copyright (C) 1998 Netscape Communications Corporation. All Rights
# Reserved.
#
# @(#)Makefile 1.4 95/01/18
#
# ====================================================
# Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
#
# Developed at SunSoft, a Sun Microsystems, Inc. business.
# Permission to use, copy, modify, and distribute this
# software is freely granted, provided that this notice
# is preserved.
# ====================================================
#
#
#
# There are two options in making libm at fdlibm compile time:
# _IEEE_LIBM --- IEEE libm; smaller, and somewhat faster
# _MULTI_LIBM --- Support multi-standard at runtime by
# imposing wrapper functions defined in
# fdlibm.h:
# _IEEE_MODE -- IEEE
# _XOPEN_MODE -- X/OPEN
# _POSIX_MODE -- POSIX/ANSI
# _SVID3_MODE -- SVID
#
# Here is how to set up CFLAGS to create the desired libm at
# compile time:
#
# CFLAGS = -D_IEEE_LIBM ... IEEE libm (recommended)
# CFLAGS = -D_SVID3_MODE ... Multi-standard supported
# libm with SVID as the
# default standard
# CFLAGS = -D_XOPEN_MODE ... Multi-standard supported
# libm with XOPEN as the
# default standard
# CFLAGS = -D_POSIX_MODE ... Multi-standard supported
# libm with POSIX as the
# default standard
# CFLAGS = ... Multi-standard supported
# libm with IEEE as the
# default standard
#
# NOTE: if scalb's second arguement is an int, then one must
# define _SCALB_INT in CFLAGS. The default prototype of scalb
# is double scalb(double, double)
#
DEPTH = ..
include $(DEPTH)/config.mk
#
# Default IEEE libm
#
CFLAGS += -DXP_UNIX $(OPTIMIZER) $(OS_CFLAGS) $(DEFINES) $(INCLUDES) \
-DJSFILE $(XCFLAGS) -D_IEEE_LIBM
#CC = cc
INCFILES = fdlibm.h
.INIT: $(INCFILES)
.KEEP_STATE:
FDLIBM_CFILES = \
k_standard.c k_rem_pio2.c \
k_cos.c k_sin.c k_tan.c \
e_acos.c e_acosh.c e_asin.c e_atan2.c \
e_atanh.c e_cosh.c e_exp.c e_fmod.c \
e_gamma.c e_gamma_r.c e_hypot.c e_j0.c \
e_j1.c e_jn.c e_lgamma.c e_lgamma_r.c \
e_log.c e_log10.c e_pow.c e_rem_pio2.c e_remainder.c \
e_scalb.c e_sinh.c e_sqrt.c \
w_acos.c w_acosh.c w_asin.c w_atan2.c \
w_atanh.c w_cosh.c w_exp.c w_fmod.c \
w_gamma.c w_gamma_r.c w_hypot.c w_j0.c \
w_j1.c w_jn.c w_lgamma.c w_lgamma_r.c \
w_log.c w_log10.c w_pow.c w_remainder.c \
w_scalb.c w_sinh.c w_sqrt.c \
s_asinh.c s_atan.c s_cbrt.c s_ceil.c s_copysign.c \
s_cos.c s_erf.c s_expm1.c s_fabs.c s_finite.c s_floor.c \
s_frexp.c s_ilogb.c s_isnan.c s_ldexp.c s_lib_version.c \
s_log1p.c s_logb.c s_matherr.c s_modf.c s_nextafter.c \
s_rint.c s_scalbn.c s_signgam.c s_significand.c s_sin.c \
s_tan.c s_tanh.c
ifdef USE_MSVC
FDLIBM_OBJS = $(addprefix $(OBJDIR)/, $(FDLIBM_CFILES:.c=.obj))
else
FDLIBM_OBJS = $(addprefix $(OBJDIR)/, $(FDLIBM_CFILES:.c=.o))
endif
ifdef USE_MSVC
LIBRARY = $(OBJDIR)/fdlibm.lib
else
LIBRARY = $(OBJDIR)/libfdm.a
endif
define MAKE_OBJDIR
if test ! -d $(@D); then rm -rf $(@D); mkdir $(@D); fi
endef
all: $(LIBRARY)
export:
$(OBJDIR)/%: %.c
@$(MAKE_OBJDIR)
$(CC) -o $@ $(CFLAGS) $*.c $(LDFLAGS)
$(OBJDIR)/%.o: %.c
@$(MAKE_OBJDIR)
$(CC) -o $@ -c $(CFLAGS) $*.c
$(OBJDIR)/%.o: %.s
@$(MAKE_OBJDIR)
$(AS) -o $@ $(ASFLAGS) $*.s
# windows only
$(OBJDIR)/%.obj: %.c
@$(MAKE_OBJDIR)
$(CC) -Fo$(OBJDIR)/ -c $(CFLAGS) $*.c
ifeq ($(OS_ARCH),OS2)
$(LIBRARY): $(FDLIBM_OBJS)
$(AR) $@ $? $(AR_OS2_SUFFIX)
$(RANLIB) $@
else
ifdef USE_MSVC
$(LIBRARY): $(FDLIBM_OBJS)
lib.exe /out:"$@" $?
else
$(LIBRARY): $(FDLIBM_OBJS)
$(AR) rv $@ $?
$(RANLIB) $@
endif
endif
libfdm.a : $(FDLIBM_OBJS)
$(AR) cru $(OBJDIR)/libfdm.a $(FDLIBM_OBJS)
$(RANLIB) $(OBJDIR)/libfdm.a
clean:
rm -rf $(FDLIBM_OBJS)
clobber:
rm -rf $(FDLIBM_OBJS) $(LIBRARY) $(DEPENDENCIES)
SUFFIXES: .i
%.i: %.c
$(CC) -C -E $(CFLAGS) $< > $*.i

121
js/src/fdlibm/e_acos.c Normal file
Просмотреть файл

@ -0,0 +1,121 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_acos.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_acos(x)
* Method :
* acos(x) = pi/2 - asin(x)
* acos(-x) = pi/2 + asin(x)
* For |x|<=0.5
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
* For x>0.5
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
* = 2asin(sqrt((1-x)/2))
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
* = 2f + (2c + 2s*z*R(z))
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
* for f so that f+c ~ sqrt(z).
* For x<-0.5
* acos(x) = pi - 2asin(sqrt((1-|x|)/2))
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
* Function needed: sqrt
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
#ifdef __STDC__
double __ieee754_acos(double x)
#else
double __ieee754_acos(x)
double x;
#endif
{
double z,p,q,r,w,s,c,df;
int hx,ix;
hx = __HI(x);
ix = hx&0x7fffffff;
if(ix>=0x3ff00000) { /* |x| >= 1 */
if(((ix-0x3ff00000)|__LO(x))==0) { /* |x|==1 */
if(hx>0) return 0.0; /* acos(1) = 0 */
else return pi+2.0*pio2_lo; /* acos(-1)= pi */
}
return (x-x)/(x-x); /* acos(|x|>1) is NaN */
}
if(ix<0x3fe00000) { /* |x| < 0.5 */
if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
z = x*x;
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
r = p/q;
return pio2_hi - (x - (pio2_lo-x*r));
} else if (hx<0) { /* x < -0.5 */
z = (one+x)*0.5;
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
s = fd_sqrt(z);
r = p/q;
w = r*s-pio2_lo;
return pi - 2.0*(s+w);
} else { /* x > 0.5 */
z = (one-x)*0.5;
s = fd_sqrt(z);
df = s;
__LO(df) = 0;
c = (z-df*df)/(s+df);
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
r = p/q;
w = r*s+c;
return 2.0*(df+w);
}
}

81
js/src/fdlibm/e_acosh.c Normal file
Просмотреть файл

@ -0,0 +1,81 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_acosh.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_acosh(x)
* Method :
* Based on
* acosh(x) = log [ x + sqrt(x*x-1) ]
* we have
* acosh(x) := log(x)+ln2, if x is large; else
* acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
* acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
*
* Special cases:
* acosh(x) is NaN with signal if x<1.
* acosh(NaN) is NaN without signal.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.0,
ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */
#ifdef __STDC__
double __ieee754_acosh(double x)
#else
double __ieee754_acosh(x)
double x;
#endif
{
double t;
int hx;
hx = __HI(x);
if(hx<0x3ff00000) { /* x < 1 */
return (x-x)/(x-x);
} else if(hx >=0x41b00000) { /* x > 2**28 */
if(hx >=0x7ff00000) { /* x is inf of NaN */
return x+x;
} else
return __ieee754_log(x)+ln2; /* acosh(huge)=log(2x) */
} else if(((hx-0x3ff00000)|__LO(x))==0) {
return 0.0; /* acosh(1) = 0 */
} else if (hx > 0x40000000) { /* 2**28 > x > 2 */
t=x*x;
return __ieee754_log(2.0*x-one/(x+fd_sqrt(t-one)));
} else { /* 1<x<2 */
t = x-one;
return fd_log1p(t+fd_sqrt(2.0*t+t*t));
}
}

130
js/src/fdlibm/e_asin.c Normal file
Просмотреть файл

@ -0,0 +1,130 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_asin.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_asin(x)
* Method :
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
* we approximate asin(x) on [0,0.5] by
* asin(x) = x + x*x^2*R(x^2)
* where
* R(x^2) is a rational approximation of (asin(x)-x)/x^3
* and its remez error is bounded by
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
*
* For x in [0.5,1]
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
* then for x>0.98
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
* For x<=0.98, let pio4_hi = pio2_hi/2, then
* f = hi part of s;
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
* and
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
huge = 1.000e+300,
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
/* coefficient for R(x^2) */
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
#ifdef __STDC__
double __ieee754_asin(double x)
#else
double __ieee754_asin(x)
double x;
#endif
{
double t,w,p,q,c,r,s;
int hx,ix;
hx = __HI(x);
ix = hx&0x7fffffff;
if(ix>= 0x3ff00000) { /* |x|>= 1 */
if(((ix-0x3ff00000)|__LO(x))==0)
/* asin(1)=+-pi/2 with inexact */
return x*pio2_hi+x*pio2_lo;
return (x-x)/(x-x); /* asin(|x|>1) is NaN */
} else if (ix<0x3fe00000) { /* |x|<0.5 */
if(ix<0x3e400000) { /* if |x| < 2**-27 */
if(huge+x>one) return x;/* return x with inexact if x!=0*/
} else
t = x*x;
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
w = p/q;
return x+x*w;
}
/* 1> |x|>= 0.5 */
w = one-fd_fabs(x);
t = w*0.5;
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
s = fd_sqrt(t);
if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
w = p/q;
t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
} else {
w = s;
__LO(w) = 0;
c = (t-w*w)/(s+w);
r = p/q;
p = 2.0*s*r-(pio2_lo-2.0*c);
q = pio4_hi-2.0*w;
t = pio4_hi-(p-q);
}
if(hx>0) return t; else return -t;
}

139
js/src/fdlibm/e_atan2.c Normal file
Просмотреть файл

@ -0,0 +1,139 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_atan2.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_atan2(y,x)
* Method :
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
* 2. Reduce x to positive by (if x and y are unexceptional):
* ARG (x+iy) = arctan(y/x) ... if x > 0,
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
*
* Special cases:
*
* ATAN2((anything), NaN ) is NaN;
* ATAN2(NAN , (anything) ) is NaN;
* ATAN2(+-0, +(anything but NaN)) is +-0 ;
* ATAN2(+-0, -(anything but NaN)) is +-pi ;
* ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
* ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
* ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
* ATAN2(+-INF,+INF ) is +-pi/4 ;
* ATAN2(+-INF,-INF ) is +-3pi/4;
* ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
tiny = 1.0e-300,
zero = 0.0,
pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */
pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */
pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
#ifdef __STDC__
double __ieee754_atan2(double y, double x)
#else
double __ieee754_atan2(y,x)
double y,x;
#endif
{
double z;
int k,m,hx,hy,ix,iy;
unsigned lx,ly;
hx = __HI(x); ix = hx&0x7fffffff;
lx = __LO(x);
hy = __HI(y); iy = hy&0x7fffffff;
ly = __LO(y);
if(((ix|((lx|-(int)lx)>>31))>0x7ff00000)||
((iy|((ly|-(int)ly)>>31))>0x7ff00000)) /* x or y is NaN */
return x+y;
if((hx-0x3ff00000|lx)==0) return fd_atan(y); /* x=1.0 */
m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
/* when y = 0 */
if((iy|ly)==0) {
switch(m) {
case 0:
case 1: return y; /* atan(+-0,+anything)=+-0 */
case 2: return pi+tiny;/* atan(+0,-anything) = pi */
case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
}
}
/* when x = 0 */
if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
/* when x is INF */
if(ix==0x7ff00000) {
if(iy==0x7ff00000) {
switch(m) {
case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */
case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
}
} else {
switch(m) {
case 0: return zero ; /* atan(+...,+INF) */
case 1: return -zero ; /* atan(-...,+INF) */
case 2: return pi+tiny ; /* atan(+...,-INF) */
case 3: return -pi-tiny ; /* atan(-...,-INF) */
}
}
}
/* when y is INF */
if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
/* compute y/x */
k = (iy-ix)>>20;
if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */
else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */
else z=fd_atan(fd_fabs(y/x)); /* safe to do y/x */
switch (m) {
case 0: return z ; /* atan(+,+) */
case 1: __HI(z) ^= 0x80000000;
return z ; /* atan(-,+) */
case 2: return pi-(z-pi_lo);/* atan(+,-) */
default: /* case 3 */
return (z-pi_lo)-pi;/* atan(-,-) */
}
}

84
js/src/fdlibm/e_atanh.c Normal file
Просмотреть файл

@ -0,0 +1,84 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_atanh.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_atanh(x)
* Method :
* 1.Reduced x to positive by atanh(-x) = -atanh(x)
* 2.For x>=0.5
* 1 2x x
* atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
* 2 1 - x 1 - x
*
* For x<0.5
* atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
*
* Special cases:
* atanh(x) is NaN if |x| > 1 with signal;
* atanh(NaN) is that NaN with no signal;
* atanh(+-1) is +-INF with signal.
*
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double one = 1.0, huge = 1e300;
#else
static double one = 1.0, huge = 1e300;
#endif
static double zero = 0.0;
#ifdef __STDC__
double __ieee754_atanh(double x)
#else
double __ieee754_atanh(x)
double x;
#endif
{
double t;
int hx,ix;
unsigned lx;
hx = __HI(x); /* high word */
lx = __LO(x); /* low word */
ix = hx&0x7fffffff;
if ((ix|((lx|(-(int)lx))>>31))>0x3ff00000) /* |x|>1 */
return (x-x)/(x-x);
if(ix==0x3ff00000)
return x/zero;
if(ix<0x3e300000&&(huge+x)>zero) return x; /* x<2**-28 */
__HI(x) = ix; /* x <- |x| */
if(ix<0x3fe00000) { /* x < 0.5 */
t = x+x;
t = 0.5*fd_log1p(t+t*x/(one-x));
} else
t = 0.5*fd_log1p((x+x)/(one-x));
if(hx>=0) return t; else return -t;
}

109
js/src/fdlibm/e_cosh.c Normal file
Просмотреть файл

@ -0,0 +1,109 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_cosh.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_cosh(x)
* Method :
* mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
* 1. Replace x by |x| (cosh(x) = cosh(-x)).
* 2.
* [ exp(x) - 1 ]^2
* 0 <= x <= ln2/2 : cosh(x) := 1 + -------------------
* 2*exp(x)
*
* exp(x) + 1/exp(x)
* ln2/2 <= x <= 22 : cosh(x) := -------------------
* 2
* 22 <= x <= lnovft : cosh(x) := exp(x)/2
* lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2)
* ln2ovft < x : cosh(x) := huge*huge (overflow)
*
* Special cases:
* cosh(x) is |x| if x is +INF, -INF, or NaN.
* only cosh(0)=1 is exact for finite x.
*/
#include "fdlibm.h"
#ifdef _WIN32
#define huge myhuge
#endif
#ifdef __STDC__
static const double one = 1.0, half=0.5, huge = 1.0e300;
#else
static double one = 1.0, half=0.5, huge = 1.0e300;
#endif
#ifdef __STDC__
double __ieee754_cosh(double x)
#else
double __ieee754_cosh(x)
double x;
#endif
{
double t,w;
int ix;
unsigned lx;
/* High word of |x|. */
ix = __HI(x);
ix &= 0x7fffffff;
/* x is INF or NaN */
if(ix>=0x7ff00000) return x*x;
/* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
if(ix<0x3fd62e43) {
t = fd_expm1(fd_fabs(x));
w = one+t;
if (ix<0x3c800000) return w; /* cosh(tiny) = 1 */
return one+(t*t)/(w+w);
}
/* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
if (ix < 0x40360000) {
t = __ieee754_exp(fd_fabs(x));
return half*t+half/t;
}
/* |x| in [22, log(maxdouble)] return half*exp(|x|) */
if (ix < 0x40862E42) return half*__ieee754_exp(fd_fabs(x));
/* |x| in [log(maxdouble), overflowthresold] */
lx = *( (((*(unsigned*)&one)>>29)) + (unsigned*)&x);
if (ix<0x408633CE ||
(ix==0x408633ce)&&(lx<=(unsigned)0x8fb9f87d)) {
w = __ieee754_exp(half*fd_fabs(x));
t = half*w;
return t*w;
}
/* |x| > overflowthresold, cosh(x) overflow */
return huge*huge;
}

173
js/src/fdlibm/e_exp.c Normal file
Просмотреть файл

@ -0,0 +1,173 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_exp.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_exp(x)
* Returns the exponential of x.
*
* Method
* 1. Argument reduction:
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
* Given x, find r and integer k such that
*
* x = k*ln2 + r, |r| <= 0.5*ln2.
*
* Here r will be represented as r = hi-lo for better
* accuracy.
*
* 2. Approximation of exp(r) by a special rational function on
* the interval [0,0.34658]:
* Write
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
* We use a special Reme algorithm on [0,0.34658] to generate
* a polynomial of degree 5 to approximate R. The maximum error
* of this polynomial approximation is bounded by 2**-59. In
* other words,
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
* (where z=r*r, and the values of P1 to P5 are listed below)
* and
* | 5 | -59
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
* | |
* The computation of exp(r) thus becomes
* 2*r
* exp(r) = 1 + -------
* R - r
* r*R1(r)
* = 1 + r + ----------- (for better accuracy)
* 2 - R1(r)
* where
* 2 4 10
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
*
* 3. Scale back to obtain exp(x):
* From step 1, we have
* exp(x) = 2^k * exp(r)
*
* Special cases:
* exp(INF) is INF, exp(NaN) is NaN;
* exp(-INF) is 0, and
* for finite argument, only exp(0)=1 is exact.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Misc. info.
* For IEEE double
* if x > 7.09782712893383973096e+02 then exp(x) overflow
* if x < -7.45133219101941108420e+02 then exp(x) underflow
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.0,
halF[2] = {0.5,-0.5,},
huge = 1.0e+300,
twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
-6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
-1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
#ifdef __STDC__
double __ieee754_exp(double x) /* default IEEE double exp */
#else
double __ieee754_exp(x) /* default IEEE double exp */
double x;
#endif
{
double y,hi,lo,c,t;
int k,xsb;
unsigned hx;
hx = __HI(x); /* high word of x */
xsb = (hx>>31)&1; /* sign bit of x */
hx &= 0x7fffffff; /* high word of |x| */
/* filter out non-finite argument */
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
if(hx>=0x7ff00000) {
if(((hx&0xfffff)|__LO(x))!=0)
return x+x; /* NaN */
else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
}
if(x > o_threshold) return huge*huge; /* overflow */
if(x < u_threshold) return twom1000*twom1000; /* underflow */
}
/* argument reduction */
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
} else {
k = (int)(invln2*x+halF[xsb]);
t = k;
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
lo = t*ln2LO[0];
}
x = hi - lo;
}
else if(hx < 0x3e300000) { /* when |x|<2**-28 */
if(huge+x>one) return one+x;/* trigger inexact */
}
else k = 0;
/* x is now in primary range */
t = x*x;
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
if(k==0) return one-((x*c)/(c-2.0)-x);
else y = one-((lo-(x*c)/(2.0-c))-hi);
if(k >= -1021) {
__HI(y) += (k<<20); /* add k to y's exponent */
return y;
} else {
__HI(y) += ((k+1000)<<20);/* add k to y's exponent */
return y*twom1000;
}
}

156
js/src/fdlibm/e_fmod.c Normal file
Просмотреть файл

@ -0,0 +1,156 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_fmod.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __ieee754_fmod(x,y)
* Return x mod y in exact arithmetic
* Method: shift and subtract
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double one = 1.0, Zero[] = {0.0, -0.0,};
#else
static double one = 1.0, Zero[] = {0.0, -0.0,};
#endif
#ifdef __STDC__
double __ieee754_fmod(double x, double y)
#else
double __ieee754_fmod(x,y)
double x,y ;
#endif
{
int n,hx,hy,hz,ix,iy,sx,i;
unsigned lx,ly,lz;
hx = __HI(x); /* high word of x */
lx = __LO(x); /* low word of x */
hy = __HI(y); /* high word of y */
ly = __LO(y); /* low word of y */
sx = hx&0x80000000; /* sign of x */
hx ^=sx; /* |x| */
hy &= 0x7fffffff; /* |y| */
/* purge off exception values */
if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */
((hy|((ly|-(int)ly)>>31))>0x7ff00000)) /* or y is NaN */
return (x*y)/(x*y);
if(hx<=hy) {
if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */
if(lx==ly)
return Zero[(unsigned)sx>>31]; /* |x|=|y| return x*0*/
}
/* determine ix = ilogb(x) */
if(hx<0x00100000) { /* subnormal x */
if(hx==0) {
for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
} else {
for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1;
}
} else ix = (hx>>20)-1023;
/* determine iy = ilogb(y) */
if(hy<0x00100000) { /* subnormal y */
if(hy==0) {
for (iy = -1043, i=ly; i>0; i<<=1) iy -=1;
} else {
for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1;
}
} else iy = (hy>>20)-1023;
/* set up {hx,lx}, {hy,ly} and align y to x */
if(ix >= -1022)
hx = 0x00100000|(0x000fffff&hx);
else { /* subnormal x, shift x to normal */
n = -1022-ix;
if(n<=31) {
hx = (hx<<n)|(lx>>(32-n));
lx <<= n;
} else {
hx = lx<<(n-32);
lx = 0;
}
}
if(iy >= -1022)
hy = 0x00100000|(0x000fffff&hy);
else { /* subnormal y, shift y to normal */
n = -1022-iy;
if(n<=31) {
hy = (hy<<n)|(ly>>(32-n));
ly <<= n;
} else {
hy = ly<<(n-32);
ly = 0;
}
}
/* fix point fmod */
n = ix - iy;
while(n--) {
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;}
else {
if((hz|lz)==0) /* return sign(x)*0 */
return Zero[(unsigned)sx>>31];
hx = hz+hz+(lz>>31); lx = lz+lz;
}
}
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
if(hz>=0) {hx=hz;lx=lz;}
/* convert back to floating value and restore the sign */
if((hx|lx)==0) /* return sign(x)*0 */
return Zero[(unsigned)sx>>31];
while(hx<0x00100000) { /* normalize x */
hx = hx+hx+(lx>>31); lx = lx+lx;
iy -= 1;
}
if(iy>= -1022) { /* normalize output */
hx = ((hx-0x00100000)|((iy+1023)<<20));
__HI(x) = hx|sx;
__LO(x) = lx;
} else { /* subnormal output */
n = -1022 - iy;
if(n<=20) {
lx = (lx>>n)|((unsigned)hx<<(32-n));
hx >>= n;
} else if (n<=31) {
lx = (hx<<(32-n))|(lx>>n); hx = sx;
} else {
lx = hx>>(n-32); hx = sx;
}
__HI(x) = hx|sx;
__LO(x) = lx;
x *= one; /* create necessary signal */
}
return x; /* exact output */
}

49
js/src/fdlibm/e_gamma.c Normal file
Просмотреть файл

@ -0,0 +1,49 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_gamma.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_gamma(x)
* Return the logarithm of the Gamma function of x.
*
* Method: call __ieee754_gamma_r
*/
#include "fdlibm.h"
extern int signgam;
#ifdef __STDC__
double __ieee754_gamma(double x)
#else
double __ieee754_gamma(x)
double x;
#endif
{
return __ieee754_gamma_r(x,&signgam);
}

48
js/src/fdlibm/e_gamma_r.c Normal file
Просмотреть файл

@ -0,0 +1,48 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_gamma_r.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_gamma_r(x, signgamp)
* Reentrant version of the logarithm of the Gamma function
* with user provide pointer for the sign of Gamma(x).
*
* Method: See __ieee754_lgamma_r
*/
#include "fdlibm.h"
#ifdef __STDC__
double __ieee754_gamma_r(double x, int *signgamp)
#else
double __ieee754_gamma_r(x,signgamp)
double x; int *signgamp;
#endif
{
return __ieee754_lgamma_r(x,signgamp);
}

131
js/src/fdlibm/e_hypot.c Normal file
Просмотреть файл

@ -0,0 +1,131 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_hypot.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_hypot(x,y)
*
* Method :
* If (assume round-to-nearest) z=x*x+y*y
* has error less than sqrt(2)/2 ulp, than
* sqrt(z) has error less than 1 ulp (exercise).
*
* So, compute sqrt(x*x+y*y) with some care as
* follows to get the error below 1 ulp:
*
* Assume x>y>0;
* (if possible, set rounding to round-to-nearest)
* 1. if x > 2y use
* x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
* where x1 = x with lower 32 bits cleared, x2 = x-x1; else
* 2. if x <= 2y use
* t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
* where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
* y1= y with lower 32 bits chopped, y2 = y-y1.
*
* NOTE: scaling may be necessary if some argument is too
* large or too tiny
*
* Special cases:
* hypot(x,y) is INF if x or y is +INF or -INF; else
* hypot(x,y) is NAN if x or y is NAN.
*
* Accuracy:
* hypot(x,y) returns sqrt(x^2+y^2) with error less
* than 1 ulps (units in the last place)
*/
#include "fdlibm.h"
#ifdef __STDC__
double __ieee754_hypot(double x, double y)
#else
double __ieee754_hypot(x,y)
double x, y;
#endif
{
double a=x,b=y,t1,t2,y1,y2,w;
int j,k,ha,hb;
ha = __HI(x)&0x7fffffff; /* high word of x */
hb = __HI(y)&0x7fffffff; /* high word of y */
if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
__HI(a) = ha; /* a <- |a| */
__HI(b) = hb; /* b <- |b| */
if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
k=0;
if(ha > 0x5f300000) { /* a>2**500 */
if(ha >= 0x7ff00000) { /* Inf or NaN */
w = a+b; /* for sNaN */
if(((ha&0xfffff)|__LO(a))==0) w = a;
if(((hb^0x7ff00000)|__LO(b))==0) w = b;
return w;
}
/* scale a and b by 2**-600 */
ha -= 0x25800000; hb -= 0x25800000; k += 600;
__HI(a) = ha;
__HI(b) = hb;
}
if(hb < 0x20b00000) { /* b < 2**-500 */
if(hb <= 0x000fffff) { /* subnormal b or 0 */
if((hb|(__LO(b)))==0) return a;
t1=0;
__HI(t1) = 0x7fd00000; /* t1=2^1022 */
b *= t1;
a *= t1;
k -= 1022;
} else { /* scale a and b by 2^600 */
ha += 0x25800000; /* a *= 2^600 */
hb += 0x25800000; /* b *= 2^600 */
k -= 600;
__HI(a) = ha;
__HI(b) = hb;
}
}
/* medium size a and b */
w = a-b;
if (w>b) {
t1 = 0;
__HI(t1) = ha;
t2 = a-t1;
w = fd_sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
} else {
a = a+a;
y1 = 0;
__HI(y1) = hb;
y2 = b - y1;
t1 = 0;
__HI(t1) = ha+0x00100000;
t2 = a - t1;
w = fd_sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
}
if(k!=0) {
t1 = 1.0;
__HI(t1) += (k<<20);
return t1*w;
} else return w;
}

494
js/src/fdlibm/e_j0.c Normal file
Просмотреть файл

@ -0,0 +1,494 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_j0.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_j0(x), __ieee754_y0(x)
* Bessel function of the first and second kinds of order zero.
* Method -- j0(x):
* 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
* 2. Reduce x to |x| since j0(x)=j0(-x), and
* for x in (0,2)
* j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x;
* (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
* for x in (2,inf)
* j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
* as follow:
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
* = 1/sqrt(2) * (cos(x) + sin(x))
* sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* (To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.)
*
* 3 Special cases
* j0(nan)= nan
* j0(0) = 1
* j0(inf) = 0
*
* Method -- y0(x):
* 1. For x<2.
* Since
* y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
* therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
* We use the following function to approximate y0,
* y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
* where
* U(z) = u00 + u01*z + ... + u06*z^6
* V(z) = 1 + v01*z + ... + v04*z^4
* with absolute approximation error bounded by 2**-72.
* Note: For tiny x, U/V = u0 and j0(x)~1, hence
* y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
* 2. For x>=2.
* y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
* by the method mentioned above.
* 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
*/
#include "fdlibm.h"
#ifdef __STDC__
static double pzero(double), qzero(double);
#else
static double pzero(), qzero();
#endif
#ifdef __STDC__
static const double
#else
static double
#endif
huge = 1e300,
one = 1.0,
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
/* R0/S0 on [0, 2.00] */
R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
static double zero = 0.0;
#ifdef __STDC__
double __ieee754_j0(double x)
#else
double __ieee754_j0(x)
double x;
#endif
{
double z, s,c,ss,cc,r,u,v;
int hx,ix;
hx = __HI(x);
ix = hx&0x7fffffff;
if(ix>=0x7ff00000) return one/(x*x);
x = fd_fabs(x);
if(ix >= 0x40000000) { /* |x| >= 2.0 */
s = fd_sin(x);
c = fd_cos(x);
ss = s-c;
cc = s+c;
if(ix<0x7fe00000) { /* make sure x+x not overflow */
z = -fd_cos(x+x);
if ((s*c)<zero) cc = z/ss;
else ss = z/cc;
}
/*
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
*/
if(ix>0x48000000) z = (invsqrtpi*cc)/fd_sqrt(x);
else {
u = pzero(x); v = qzero(x);
z = invsqrtpi*(u*cc-v*ss)/fd_sqrt(x);
}
return z;
}
if(ix<0x3f200000) { /* |x| < 2**-13 */
if(huge+x>one) { /* raise inexact if x != 0 */
if(ix<0x3e400000) return one; /* |x|<2**-27 */
else return one - 0.25*x*x;
}
}
z = x*x;
r = z*(R02+z*(R03+z*(R04+z*R05)));
s = one+z*(S01+z*(S02+z*(S03+z*S04)));
if(ix < 0x3FF00000) { /* |x| < 1.00 */
return one + z*(-0.25+(r/s));
} else {
u = 0.5*x;
return((one+u)*(one-u)+z*(r/s));
}
}
#ifdef __STDC__
static const double
#else
static double
#endif
u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
#ifdef __STDC__
double __ieee754_y0(double x)
#else
double __ieee754_y0(x)
double x;
#endif
{
double z, s,c,ss,cc,u,v;
int hx,ix,lx;
hx = __HI(x);
ix = 0x7fffffff&hx;
lx = __LO(x);
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
if(ix>=0x7ff00000) return one/(x+x*x);
if((ix|lx)==0) return -one/zero;
if(hx<0) return zero/zero;
if(ix >= 0x40000000) { /* |x| >= 2.0 */
/* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
* where x0 = x-pi/4
* Better formula:
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
* = 1/sqrt(2) * (sin(x) + cos(x))
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.
*/
s = fd_sin(x);
c = fd_cos(x);
ss = s-c;
cc = s+c;
/*
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
*/
if(ix<0x7fe00000) { /* make sure x+x not overflow */
z = -fd_cos(x+x);
if ((s*c)<zero) cc = z/ss;
else ss = z/cc;
}
if(ix>0x48000000) z = (invsqrtpi*ss)/fd_sqrt(x);
else {
u = pzero(x); v = qzero(x);
z = invsqrtpi*(u*ss+v*cc)/fd_sqrt(x);
}
return z;
}
if(ix<=0x3e400000) { /* x < 2**-27 */
return(u00 + tpi*__ieee754_log(x));
}
z = x*x;
u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
v = one+z*(v01+z*(v02+z*(v03+z*v04)));
return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x)));
}
/* The asymptotic expansions of pzero is
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
* For x >= 2, We approximate pzero by
* pzero(x) = 1 + (R/S)
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
* S = 1 + pS0*s^2 + ... + pS4*s^10
* and
* | pzero(x)-1-R/S | <= 2 ** ( -60.26)
*/
#ifdef __STDC__
static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
-7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
-8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
-2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
-2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
-5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
};
#ifdef __STDC__
static const double pS8[5] = {
#else
static double pS8[5] = {
#endif
1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
};
#ifdef __STDC__
static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
-1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
-7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
-4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
-6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
-3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
-3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
};
#ifdef __STDC__
static const double pS5[5] = {
#else
static double pS5[5] = {
#endif
6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
};
#ifdef __STDC__
static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#else
static double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
-2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
-7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
-2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
-2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
-5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
-3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
};
#ifdef __STDC__
static const double pS3[5] = {
#else
static double pS3[5] = {
#endif
3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
};
#ifdef __STDC__
static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
-8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
-7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
-1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
-7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
-1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
-3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
};
#ifdef __STDC__
static const double pS2[5] = {
#else
static double pS2[5] = {
#endif
2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
};
#ifdef __STDC__
static double pzero(double x)
#else
static double pzero(x)
double x;
#endif
{
#ifdef __STDC__
const double *p,*q;
#else
double *p,*q;
#endif
double z,r,s;
int ix;
ix = 0x7fffffff&__HI(x);
if(ix>=0x40200000) {p = pR8; q= pS8;}
else if(ix>=0x40122E8B){p = pR5; q= pS5;}
else if(ix>=0x4006DB6D){p = pR3; q= pS3;}
else if(ix>=0x40000000){p = pR2; q= pS2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
return one+ r/s;
}
/* For x >= 8, the asymptotic expansions of qzero is
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
* We approximate pzero by
* qzero(x) = s*(-1.25 + (R/S))
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
* S = 1 + qS0*s^2 + ... + qS5*s^12
* and
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
*/
#ifdef __STDC__
static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
};
#ifdef __STDC__
static const double qS8[6] = {
#else
static double qS8[6] = {
#endif
1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
-3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
};
#ifdef __STDC__
static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
};
#ifdef __STDC__
static const double qS5[6] = {
#else
static double qS5[6] = {
#endif
8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
-5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
};
#ifdef __STDC__
static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#else
static double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
};
#ifdef __STDC__
static const double qS3[6] = {
#else
static double qS3[6] = {
#endif
4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
-1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
};
#ifdef __STDC__
static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
};
#ifdef __STDC__
static const double qS2[6] = {
#else
static double qS2[6] = {
#endif
3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
-5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
};
#ifdef __STDC__
static double qzero(double x)
#else
static double qzero(x)
double x;
#endif
{
#ifdef __STDC__
const double *p,*q;
#else
double *p,*q;
#endif
double s,r,z;
int ix;
ix = 0x7fffffff&__HI(x);
if(ix>=0x40200000) {p = qR8; q= qS8;}
else if(ix>=0x40122E8B){p = qR5; q= qS5;}
else if(ix>=0x4006DB6D){p = qR3; q= qS3;}
else if(ix>=0x40000000){p = qR2; q= qS2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
return (-.125 + r/s)/x;
}

493
js/src/fdlibm/e_j1.c Normal file
Просмотреть файл

@ -0,0 +1,493 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_j1.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_j1(x), __ieee754_y1(x)
* Bessel function of the first and second kinds of order zero.
* Method -- j1(x):
* 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
* 2. Reduce x to |x| since j1(x)=-j1(-x), and
* for x in (0,2)
* j1(x) = x/2 + x*z*R0/S0, where z = x*x;
* (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
* for x in (2,inf)
* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
* as follow:
* cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = -1/sqrt(2) * (sin(x) + cos(x))
* (To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.)
*
* 3 Special cases
* j1(nan)= nan
* j1(0) = 0
* j1(inf) = 0
*
* Method -- y1(x):
* 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
* 2. For x<2.
* Since
* y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
* therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
* We use the following function to approximate y1,
* y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
* where for x in [0,2] (abs err less than 2**-65.89)
* U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
* V(z) = 1 + v0[0]*z + ... + v0[4]*z^5
* Note: For tiny x, 1/x dominate y1 and hence
* y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
* 3. For x>=2.
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
* by method mentioned above.
*/
#include "fdlibm.h"
#ifdef __STDC__
static double pone(double), qone(double);
#else
static double pone(), qone();
#endif
#ifdef __STDC__
static const double
#else
static double
#endif
huge = 1e300,
one = 1.0,
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
/* R0/S0 on [0,2] */
r00 = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
r01 = 1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
r02 = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
r03 = 4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */
s01 = 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
s02 = 1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
s03 = 1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
s04 = 5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
s05 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
static double zero = 0.0;
#ifdef __STDC__
double __ieee754_j1(double x)
#else
double __ieee754_j1(x)
double x;
#endif
{
double z, s,c,ss,cc,r,u,v,y;
int hx,ix;
hx = __HI(x);
ix = hx&0x7fffffff;
if(ix>=0x7ff00000) return one/x;
y = fd_fabs(x);
if(ix >= 0x40000000) { /* |x| >= 2.0 */
s = fd_sin(y);
c = fd_cos(y);
ss = -s-c;
cc = s-c;
if(ix<0x7fe00000) { /* make sure y+y not overflow */
z = fd_cos(y+y);
if ((s*c)>zero) cc = z/ss;
else ss = z/cc;
}
/*
* j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
* y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
*/
if(ix>0x48000000) z = (invsqrtpi*cc)/fd_sqrt(y);
else {
u = pone(y); v = qone(y);
z = invsqrtpi*(u*cc-v*ss)/fd_sqrt(y);
}
if(hx<0) return -z;
else return z;
}
if(ix<0x3e400000) { /* |x|<2**-27 */
if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
}
z = x*x;
r = z*(r00+z*(r01+z*(r02+z*r03)));
s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
r *= x;
return(x*0.5+r/s);
}
#ifdef __STDC__
static const double U0[5] = {
#else
static double U0[5] = {
#endif
-1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
-1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
-9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
};
#ifdef __STDC__
static const double V0[5] = {
#else
static double V0[5] = {
#endif
1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
};
#ifdef __STDC__
double __ieee754_y1(double x)
#else
double __ieee754_y1(x)
double x;
#endif
{
double z, s,c,ss,cc,u,v;
int hx,ix,lx;
hx = __HI(x);
ix = 0x7fffffff&hx;
lx = __LO(x);
/* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
if(ix>=0x7ff00000) return one/(x+x*x);
if((ix|lx)==0) return -one/zero;
if(hx<0) return zero/zero;
if(ix >= 0x40000000) { /* |x| >= 2.0 */
s = fd_sin(x);
c = fd_cos(x);
ss = -s-c;
cc = s-c;
if(ix<0x7fe00000) { /* make sure x+x not overflow */
z = fd_cos(x+x);
if ((s*c)>zero) cc = z/ss;
else ss = z/cc;
}
/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
* where x0 = x-3pi/4
* Better formula:
* cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = -1/sqrt(2) * (cos(x) + sin(x))
* To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.
*/
if(ix>0x48000000) z = (invsqrtpi*ss)/fd_sqrt(x);
else {
u = pone(x); v = qone(x);
z = invsqrtpi*(u*ss+v*cc)/fd_sqrt(x);
}
return z;
}
if(ix<=0x3c900000) { /* x < 2**-54 */
return(-tpi/x);
}
z = x*x;
u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x));
}
/* For x >= 8, the asymptotic expansions of pone is
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
* We approximate pone by
* pone(x) = 1 + (R/S)
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
* S = 1 + ps0*s^2 + ... + ps4*s^10
* and
* | pone(x)-1-R/S | <= 2 ** ( -60.06)
*/
#ifdef __STDC__
static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
};
#ifdef __STDC__
static const double ps8[5] = {
#else
static double ps8[5] = {
#endif
1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
};
#ifdef __STDC__
static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
};
#ifdef __STDC__
static const double ps5[5] = {
#else
static double ps5[5] = {
#endif
5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
};
#ifdef __STDC__
static const double pr3[6] = {
#else
static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
};
#ifdef __STDC__
static const double ps3[5] = {
#else
static double ps3[5] = {
#endif
3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
};
#ifdef __STDC__
static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
};
#ifdef __STDC__
static const double ps2[5] = {
#else
static double ps2[5] = {
#endif
2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
};
#ifdef __STDC__
static double pone(double x)
#else
static double pone(x)
double x;
#endif
{
#ifdef __STDC__
const double *p,*q;
#else
double *p,*q;
#endif
double z,r,s;
int ix;
ix = 0x7fffffff&__HI(x);
if(ix>=0x40200000) {p = pr8; q= ps8;}
else if(ix>=0x40122E8B){p = pr5; q= ps5;}
else if(ix>=0x4006DB6D){p = pr3; q= ps3;}
else if(ix>=0x40000000){p = pr2; q= ps2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
return one+ r/s;
}
/* For x >= 8, the asymptotic expansions of qone is
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
* We approximate pone by
* qone(x) = s*(0.375 + (R/S))
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
* S = 1 + qs1*s^2 + ... + qs6*s^12
* and
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
*/
#ifdef __STDC__
static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#else
static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
#endif
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
-1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
-1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
-7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
-1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
-4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
};
#ifdef __STDC__
static const double qs8[6] = {
#else
static double qs8[6] = {
#endif
1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
-2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
};
#ifdef __STDC__
static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#else
static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
#endif
-2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
-1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
-8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
-1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
-1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
-2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
};
#ifdef __STDC__
static const double qs5[6] = {
#else
static double qs5[6] = {
#endif
8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
-4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
};
#ifdef __STDC__
static const double qr3[6] = {
#else
static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
#endif
-5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
-1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
-4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
-5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
-2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
-2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
};
#ifdef __STDC__
static const double qs3[6] = {
#else
static double qs3[6] = {
#endif
4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
-1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
};
#ifdef __STDC__
static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#else
static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
#endif
-1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
-1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
-2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
-1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
-4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
-2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
};
#ifdef __STDC__
static const double qs2[6] = {
#else
static double qs2[6] = {
#endif
2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
-4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
};
#ifdef __STDC__
static double qone(double x)
#else
static double qone(x)
double x;
#endif
{
#ifdef __STDC__
const double *p,*q;
#else
double *p,*q;
#endif
double s,r,z;
int ix;
ix = 0x7fffffff&__HI(x);
if(ix>=0x40200000) {p = qr8; q= qs8;}
else if(ix>=0x40122E8B){p = qr5; q= qs5;}
else if(ix>=0x4006DB6D){p = qr3; q= qs3;}
else if(ix>=0x40000000){p = qr2; q= qs2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
return (.375 + r/s)/x;
}

288
js/src/fdlibm/e_jn.c Normal file
Просмотреть файл

@ -0,0 +1,288 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_jn.c 1.4 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __ieee754_jn(n, x), __ieee754_yn(n, x)
* floating point Bessel's function of the 1st and 2nd kind
* of order n
*
* Special cases:
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
* Note 2. About jn(n,x), yn(n,x)
* For n=0, j0(x) is called,
* for n=1, j1(x) is called,
* for n<x, forward recursion us used starting
* from values of j0(x) and j1(x).
* for n>x, a continued fraction approximation to
* j(n,x)/j(n-1,x) is evaluated and then backward
* recursion is used starting from a supposed value
* for j(n,x). The resulting value of j(0,x) is
* compared with the actual value to correct the
* supposed value of j(n,x).
*
* yn(n,x) is similar in all respects, except
* that forward recursion is used for all
* values of n>1.
*
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
static double zero = 0.00000000000000000000e+00;
#ifdef __STDC__
double __ieee754_jn(int n, double x)
#else
double __ieee754_jn(n,x)
int n; double x;
#endif
{
int i,hx,ix,lx, sgn;
double a, b, temp, di;
double z, w;
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
* Thus, J(-n,x) = J(n,-x)
*/
hx = __HI(x);
ix = 0x7fffffff&hx;
lx = __LO(x);
/* if J(n,NaN) is NaN */
if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
if(n<0){
n = -n;
x = -x;
hx ^= 0x80000000;
}
if(n==0) return(__ieee754_j0(x));
if(n==1) return(__ieee754_j1(x));
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
x = fd_fabs(x);
if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */
b = zero;
else if((double)n<=x) {
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
if(ix>=0x52D00000) { /* x > 2**302 */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
switch(n&3) {
case 0: temp = fd_cos(x)+fd_sin(x); break;
case 1: temp = -fd_cos(x)+fd_sin(x); break;
case 2: temp = -fd_cos(x)-fd_sin(x); break;
case 3: temp = fd_cos(x)-fd_sin(x); break;
}
b = invsqrtpi*temp/fd_sqrt(x);
} else {
a = __ieee754_j0(x);
b = __ieee754_j1(x);
for(i=1;i<n;i++){
temp = b;
b = b*((double)(i+i)/x) - a; /* avoid underflow */
a = temp;
}
}
} else {
if(ix<0x3e100000) { /* x < 2**-29 */
/* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if(n>33) /* underflow */
b = zero;
else {
temp = x*0.5; b = temp;
for (a=one,i=2;i<=n;i++) {
a *= (double)i; /* a = n! */
b *= temp; /* b = (x/2)^n */
}
b = b/a;
}
} else {
/* use backward recurrence */
/* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
* 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
* -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
* is equal to the continued fraction:
* 1
* = -----------------------
* 1
* w - -----------------
* 1
* w+h - ---------
* w+2h - ...
*
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for double
* When Q(k) > 1e17 good for quadruple
*/
/* determine k */
double t,v;
double q0,q1,h,tmp; int k,m;
w = (n+n)/(double)x; h = 2.0/(double)x;
q0 = w; z = w+h; q1 = w*z - 1.0; k=1;
while(q1<1.0e9) {
k += 1; z += h;
tmp = z*q1 - q0;
q0 = q1;
q1 = tmp;
}
m = n+n;
for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
a = t;
b = one;
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* Hence, if n*(log(2n/x)) > ...
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* long double 1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = n;
v = two/x;
tmp = tmp*__ieee754_log(fd_fabs(v*tmp));
if(tmp<7.09782712893383973096e+02) {
for(i=n-1,di=(double)(i+i);i>0;i--){
temp = b;
b *= di;
b = b/x - a;
a = temp;
di -= two;
}
} else {
for(i=n-1,di=(double)(i+i);i>0;i--){
temp = b;
b *= di;
b = b/x - a;
a = temp;
di -= two;
/* scale b to avoid spurious overflow */
if(b>1e100) {
a /= b;
t /= b;
b = one;
}
}
}
b = (t*__ieee754_j0(x)/b);
}
}
if(sgn==1) return -b; else return b;
}
#ifdef __STDC__
double __ieee754_yn(int n, double x)
#else
double __ieee754_yn(n,x)
int n; double x;
#endif
{
int i,hx,ix,lx;
int sign;
double a, b, temp;
hx = __HI(x);
ix = 0x7fffffff&hx;
lx = __LO(x);
/* if Y(n,NaN) is NaN */
if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
if((ix|lx)==0) return -one/zero;
if(hx<0) return zero/zero;
sign = 1;
if(n<0){
n = -n;
sign = 1 - ((n&1)<<1);
}
if(n==0) return(__ieee754_y0(x));
if(n==1) return(sign*__ieee754_y1(x));
if(ix==0x7ff00000) return zero;
if(ix>=0x52D00000) { /* x > 2**302 */
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
* ----------------------------------
* 0 s-c c+s
* 1 -s-c -c+s
* 2 -s+c -c-s
* 3 s+c c-s
*/
switch(n&3) {
case 0: temp = fd_sin(x)-fd_cos(x); break;
case 1: temp = -fd_sin(x)-fd_cos(x); break;
case 2: temp = -fd_sin(x)+fd_cos(x); break;
case 3: temp = fd_sin(x)+fd_cos(x); break;
}
b = invsqrtpi*temp/fd_sqrt(x);
} else {
a = __ieee754_y0(x);
b = __ieee754_y1(x);
/* quit if b is -inf */
for(i=1;i<n&&(__HI(b) != 0xfff00000);i++){
temp = b;
b = ((double)(i+i)/x)*b - a;
a = temp;
}
}
if(sign>0) return b; else return -b;
}

49
js/src/fdlibm/e_lgamma.c Normal file
Просмотреть файл

@ -0,0 +1,49 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_lgamma.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_lgamma(x)
* Return the logarithm of the Gamma function of x.
*
* Method: call __ieee754_lgamma_r
*/
#include "fdlibm.h"
extern int signgam;
#ifdef __STDC__
double __ieee754_lgamma(double x)
#else
double __ieee754_lgamma(x)
double x;
#endif
{
return __ieee754_lgamma_r(x,&signgam);
}

320
js/src/fdlibm/e_lgamma_r.c Normal file
Просмотреть файл

@ -0,0 +1,320 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_lgamma_r.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_lgamma_r(x, signgamp)
* Reentrant version of the logarithm of the Gamma function
* with user provide pointer for the sign of Gamma(x).
*
* Method:
* 1. Argument Reduction for 0 < x <= 8
* Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
* reduce x to a number in [1.5,2.5] by
* lgamma(1+s) = log(s) + lgamma(s)
* for example,
* lgamma(7.3) = log(6.3) + lgamma(6.3)
* = log(6.3*5.3) + lgamma(5.3)
* = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
* 2. Polynomial approximation of lgamma around its
* minimun ymin=1.461632144968362245 to maintain monotonicity.
* On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
* Let z = x-ymin;
* lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
* where
* poly(z) is a 14 degree polynomial.
* 2. Rational approximation in the primary interval [2,3]
* We use the following approximation:
* s = x-2.0;
* lgamma(x) = 0.5*s + s*P(s)/Q(s)
* with accuracy
* |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
* Our algorithms are based on the following observation
*
* zeta(2)-1 2 zeta(3)-1 3
* lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
* 2 3
*
* where Euler = 0.5771... is the Euler constant, which is very
* close to 0.5.
*
* 3. For x>=8, we have
* lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
* (better formula:
* lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
* Let z = 1/x, then we approximation
* f(z) = lgamma(x) - (x-0.5)(log(x)-1)
* by
* 3 5 11
* w = w0 + w1*z + w2*z + w3*z + ... + w6*z
* where
* |w - f(z)| < 2**-58.74
*
* 4. For negative x, since (G is gamma function)
* -x*G(-x)*G(x) = pi/sin(pi*x),
* we have
* G(x) = pi/(sin(pi*x)*(-x)*G(-x))
* since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
* Hence, for x<0, signgam = sign(sin(pi*x)) and
* lgamma(x) = log(|Gamma(x)|)
* = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
* Note: one should avoid compute pi*(-x) directly in the
* computation of sin(pi*(-x)).
*
* 5. Special Cases
* lgamma(2+s) ~ s*(1-Euler) for tiny s
* lgamma(1)=lgamma(2)=0
* lgamma(x) ~ -log(x) for tiny x
* lgamma(0) = lgamma(inf) = inf
* lgamma(-integer) = +-inf
*
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
two52= 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
/* tt = -(tail of tf) */
tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
static double zero= 0.00000000000000000000e+00;
#ifdef __STDC__
static double sin_pi(double x)
#else
static double sin_pi(x)
double x;
#endif
{
double y,z;
int n,ix;
ix = 0x7fffffff&__HI(x);
if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0);
y = -x; /* x is assume negative */
/*
* argument reduction, make sure inexact flag not raised if input
* is an integer
*/
z = fd_floor(y);
if(z!=y) { /* inexact anyway */
y *= 0.5;
y = 2.0*(y - fd_floor(y)); /* y = |x| mod 2.0 */
n = (int) (y*4.0);
} else {
if(ix>=0x43400000) {
y = zero; n = 0; /* y must be even */
} else {
if(ix<0x43300000) z = y+two52; /* exact */
n = __LO(z)&1; /* lower word of z */
y = n;
n<<= 2;
}
}
switch (n) {
case 0: y = __kernel_sin(pi*y,zero,0); break;
case 1:
case 2: y = __kernel_cos(pi*(0.5-y),zero); break;
case 3:
case 4: y = __kernel_sin(pi*(one-y),zero,0); break;
case 5:
case 6: y = -__kernel_cos(pi*(y-1.5),zero); break;
default: y = __kernel_sin(pi*(y-2.0),zero,0); break;
}
return -y;
}
#ifdef __STDC__
double __ieee754_lgamma_r(double x, int *signgamp)
#else
double __ieee754_lgamma_r(x,signgamp)
double x; int *signgamp;
#endif
{
double t,y,z,nadj,p,p1,p2,p3,q,r,w;
int i,hx,lx,ix;
hx = __HI(x);
lx = __LO(x);
/* purge off +-inf, NaN, +-0, and negative arguments */
*signgamp = 1;
ix = hx&0x7fffffff;
if(ix>=0x7ff00000) return x*x;
if((ix|lx)==0) return one/zero;
if(ix<0x3b900000) { /* |x|<2**-70, return -log(|x|) */
if(hx<0) {
*signgamp = -1;
return -__ieee754_log(-x);
} else return -__ieee754_log(x);
}
if(hx<0) {
if(ix>=0x43300000) /* |x|>=2**52, must be -integer */
return one/zero;
t = sin_pi(x);
if(t==zero) return one/zero; /* -integer */
nadj = __ieee754_log(pi/fd_fabs(t*x));
if(t<zero) *signgamp = -1;
x = -x;
}
/* purge off 1 and 2 */
if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
/* for x < 2.0 */
else if(ix<0x40000000) {
if(ix<=0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
r = -__ieee754_log(x);
if(ix>=0x3FE76944) {y = one-x; i= 0;}
else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
else {y = x; i=2;}
} else {
r = zero;
if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
else {y=x-one;i=2;}
}
switch(i) {
case 0:
z = y*y;
p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
p = y*p1+p2;
r += (p-0.5*y); break;
case 1:
z = y*y;
w = z*y;
p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
p = z*p1-(tt-w*(p2+y*p3));
r += (tf + p); break;
case 2:
p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
r += (-0.5*y + p1/p2);
}
}
else if(ix<0x40200000) { /* x < 8.0 */
i = (int)x;
t = zero;
y = x-(double)i;
p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
r = half*y+p/q;
z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
switch(i) {
case 7: z *= (y+6.0); /* FALLTHRU */
case 6: z *= (y+5.0); /* FALLTHRU */
case 5: z *= (y+4.0); /* FALLTHRU */
case 4: z *= (y+3.0); /* FALLTHRU */
case 3: z *= (y+2.0); /* FALLTHRU */
r += __ieee754_log(z); break;
}
/* 8.0 <= x < 2**58 */
} else if (ix < 0x43900000) {
t = __ieee754_log(x);
z = one/x;
y = z*z;
w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
r = (x-half)*(t-one)+w;
} else
/* 2**58 <= x <= inf */
r = x*(__ieee754_log(x)-one);
if(hx<0) r = nadj - r;
return r;
}

155
js/src/fdlibm/e_log.c Normal file
Просмотреть файл

@ -0,0 +1,155 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_log.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_log(x)
* Return the logrithm of x
*
* Method :
* 1. Argument Reduction: find k and f such that
* x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* 2. Approximation of log(1+f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Reme algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
* (the values of Lg1 to Lg7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lg1*s +...+Lg7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log(1+f) = f - s*(f - R) (if f is not too large)
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
*
* 3. Finally, log(x) = k*ln2 + log(1+f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
* Here ln2 is split into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
* log(x) is NaN with signal if x < 0 (including -INF) ;
* log(+INF) is +INF; log(0) is -INF with signal;
* log(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
static double zero = 0.0;
#ifdef __STDC__
double __ieee754_log(double x)
#else
double __ieee754_log(x)
double x;
#endif
{
double hfsq,f,s,z,R,w,t1,t2,dk;
int k,hx,i,j;
unsigned lx;
hx = __HI(x); /* high word of x */
lx = __LO(x); /* low word of x */
k=0;
if (hx < 0x00100000) { /* x < 2**-1022 */
if (((hx&0x7fffffff)|lx)==0)
return -two54/zero; /* log(+-0)=-inf */
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
k -= 54; x *= two54; /* subnormal number, scale up x */
hx = __HI(x); /* high word of x */
}
if (hx >= 0x7ff00000) return x+x;
k += (hx>>20)-1023;
hx &= 0x000fffff;
i = (hx+0x95f64)&0x100000;
__HI(x) = hx|(i^0x3ff00000); /* normalize x or x/2 */
k += (i>>20);
f = x-1.0;
if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
if(f==zero) if(k==0) return zero; else {dk=(double)k;
return dk*ln2_hi+dk*ln2_lo;}
R = f*f*(0.5-0.33333333333333333*f);
if(k==0) return f-R; else {dk=(double)k;
return dk*ln2_hi-((R-dk*ln2_lo)-f);}
}
s = f/(2.0+f);
dk = (double)k;
z = s*s;
i = hx-0x6147a;
w = z*z;
j = 0x6b851-hx;
t1= w*(Lg2+w*(Lg4+w*Lg6));
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
i |= j;
R = t2+t1;
if(i>0) {
hfsq=0.5*f*f;
if(k==0) return f-(hfsq-s*(hfsq+R)); else
return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
} else {
if(k==0) return f-s*(f-R); else
return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
}
}

107
js/src/fdlibm/e_log10.c Normal file
Просмотреть файл

@ -0,0 +1,107 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_log10.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_log10(x)
* Return the base 10 logarithm of x
*
* Method :
* Let log10_2hi = leading 40 bits of log10(2) and
* log10_2lo = log10(2) - log10_2hi,
* ivln10 = 1/log(10) rounded.
* Then
* n = ilogb(x),
* if(n<0) n = n+1;
* x = scalbn(x,-n);
* log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
*
* Note 1:
* To guarantee log10(10**n)=n, where 10**n is normal, the rounding
* mode must set to Round-to-Nearest.
* Note 2:
* [1/log(10)] rounded to 53 bits has error .198 ulps;
* log10 is monotonic at all binary break points.
*
* Special cases:
* log10(x) is NaN with signal if x < 0;
* log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
* log10(NaN) is that NaN with no signal;
* log10(10**N) = N for N=0,1,...,22.
*
* Constants:
* The hexadecimal values are the intended ones for the following constants.
* The decimal values may be used, provided that the compiler will convert
* from decimal to binary accurately enough to produce the hexadecimal values
* shown.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
ivln10 = 4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */
log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
static double zero = 0.0;
#ifdef __STDC__
double __ieee754_log10(double x)
#else
double __ieee754_log10(x)
double x;
#endif
{
double y,z;
int i,k,hx;
unsigned lx;
hx = __HI(x); /* high word of x */
lx = __LO(x); /* low word of x */
k=0;
if (hx < 0x00100000) { /* x < 2**-1022 */
if (((hx&0x7fffffff)|lx)==0)
return -two54/zero; /* log(+-0)=-inf */
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
k -= 54; x *= two54; /* subnormal number, scale up x */
hx = __HI(x); /* high word of x */
}
if (hx >= 0x7ff00000) return x+x;
k += (hx>>20)-1023;
i = ((unsigned)k&0x80000000)>>31;
hx = (hx&0x000fffff)|((0x3ff-i)<<20);
y = (double)(k+i);
__HI(x) = hx;
z = y*log10_2lo + ivln10*__ieee754_log(x);
return z+y*log10_2hi;
}

325
js/src/fdlibm/e_pow.c Normal file
Просмотреть файл

@ -0,0 +1,325 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_pow.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_pow(x,y) return x**y
*
* n
* Method: Let x = 2 * (1+f)
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 53-24 = 29 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
* arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
* Special cases:
* 1. (anything) ** 0 is 1
* 2. (anything) ** 1 is itself
* 3. (anything) ** NAN is NAN
* 4. NAN ** (anything except 0) is NAN
* 5. +-(|x| > 1) ** +INF is +INF
* 6. +-(|x| > 1) ** -INF is +0
* 7. +-(|x| < 1) ** +INF is +0
* 8. +-(|x| < 1) ** -INF is +INF
* 9. +-1 ** +-INF is NAN
* 10. +0 ** (+anything except 0, NAN) is +0
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
* 12. +0 ** (-anything except 0, NAN) is +INF
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
* 15. +INF ** (+anything except 0,NAN) is +INF
* 16. +INF ** (-anything except 0,NAN) is +0
* 17. -INF ** (anything) = -0 ** (-anything)
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
*
* Accuracy:
* pow(x,y) returns x**y nearly rounded. In particular
* pow(integer,integer)
* always returns the correct integer provided it is
* representable.
*
* Constants :
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
bp[] = {1.0, 1.5,},
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
zero = 0.0,
one = 1.0,
two = 2.0,
two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
huge = 1.0e300,
tiny = 1.0e-300,
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
#ifdef __STDC__
double __ieee754_pow(double x, double y)
#else
double __ieee754_pow(x,y)
double x, y;
#endif
{
double z,ax,z_h,z_l,p_h,p_l;
double y1,t1,t2,r,s,t,u,v,w;
int i,j,k,yisint,n;
int hx,hy,ix,iy;
unsigned lx,ly;
hx = __HI(x); lx = __LO(x);
hy = __HI(y); ly = __LO(y);
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
/* y==zero: x**0 = 1 */
if((iy|ly)==0) return one;
/* +-NaN return x+y */
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
return x+y;
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
* yisint = 1 ... y is an odd int
* yisint = 2 ... y is an even int
*/
yisint = 0;
if(hx<0) {
if(iy>=0x43400000) yisint = 2; /* even integer y */
else if(iy>=0x3ff00000) {
k = (iy>>20)-0x3ff; /* exponent */
if(k>20) {
j = ly>>(52-k);
if((j<<(52-k))==(int)ly) yisint = 2-(j&1);
} else if(ly==0) {
j = iy>>(20-k);
if((j<<(20-k))==iy) yisint = 2-(j&1);
}
}
}
/* special value of y */
if(ly==0) {
if (iy==0x7ff00000) { /* y is +-inf */
if(((ix-0x3ff00000)|lx)==0)
return y - y; /* inf**+-1 is NaN */
else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
return (hy>=0)? y: zero;
else /* (|x|<1)**-,+inf = inf,0 */
return (hy<0)?-y: zero;
}
if(iy==0x3ff00000) { /* y is +-1 */
if(hy<0) return one/x; else return x;
}
if(hy==0x40000000) return x*x; /* y is 2 */
if(hy==0x3fe00000) { /* y is 0.5 */
if(hx>=0) /* x >= +0 */
return fd_sqrt(x);
}
}
ax = fd_fabs(x);
/* special value of x */
if(lx==0) {
if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
z = ax; /*x is +-0,+-inf,+-1*/
if(hy<0) z = one/z; /* z = (1/|x|) */
if(hx<0) {
if(((ix-0x3ff00000)|yisint)==0) {
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
} else if(yisint==1) {
#ifdef HPUX
__HI(z) ^= 1<<31; /* some HPUXes cannot negate 0.. */
#else
z = -z; /* (x<0)**odd = -(|x|**odd) */
#endif
}
}
return z;
}
}
/* (x<0)**(non-int) is NaN */
if((((hx>>31)+1)|yisint)==0) return (x-x)/(x-x);
/* |y| is huge */
if(iy>0x41e00000) { /* if |y| > 2**31 */
if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
}
/* over/underflow if x is not close to one */
if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
/* now |1-x| is tiny <= 2**-20, suffice to compute
log(x) by x-x^2/2+x^3/3-x^4/4 */
t = x-1; /* t has 20 trailing zeros */
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
v = t*ivln2_l-w*ivln2;
t1 = u+v;
__LO(t1) = 0;
t2 = v-(t1-u);
} else {
double s2,s_h,s_l,t_h,t_l;
n = 0;
/* take care subnormal number */
if(ix<0x00100000)
{ax *= two53; n -= 53; ix = __HI(ax); }
n += ((ix)>>20)-0x3ff;
j = ix&0x000fffff;
/* determine interval */
ix = j|0x3ff00000; /* normalize ix */
if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
else {k=0;n+=1;ix -= 0x00100000;}
__HI(ax) = ix;
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
v = one/(ax+bp[k]);
s = u*v;
s_h = s;
__LO(s_h) = 0;
/* t_h=ax+bp[k] High */
t_h = zero;
__HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
t_l = ax - (t_h-bp[k]);
s_l = v*((u-s_h*t_h)-s_h*t_l);
/* compute log(ax) */
s2 = s*s;
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
r += s_l*(s_h+s);
s2 = s_h*s_h;
t_h = 3.0+s2+r;
__LO(t_h) = 0;
t_l = r-((t_h-3.0)-s2);
/* u+v = s*(1+...) */
u = s_h*t_h;
v = s_l*t_h+t_l*s;
/* 2/(3log2)*(s+...) */
p_h = u+v;
__LO(p_h) = 0;
p_l = v-(p_h-u);
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
z_l = cp_l*p_h+p_l*cp+dp_l[k];
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
t = (double)n;
t1 = (((z_h+z_l)+dp_h[k])+t);
__LO(t1) = 0;
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
}
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
if((((hx>>31)+1)|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
y1 = y;
__LO(y1) = 0;
p_l = (y-y1)*t1+y*t2;
p_h = y1*t1;
z = p_l+p_h;
j = __HI(z);
i = __LO(z);
if (j>=0x40900000) { /* z >= 1024 */
if(((j-0x40900000)|i)!=0) /* if z > 1024 */
return s*huge*huge; /* overflow */
else {
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
}
} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
return s*tiny*tiny; /* underflow */
else {
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
}
}
/*
* compute 2**(p_h+p_l)
*/
i = j&0x7fffffff;
k = (i>>20)-0x3ff;
n = 0;
if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
n = j+(0x00100000>>(k+1));
k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
t = zero;
__HI(t) = (n&~(0x000fffff>>k));
n = ((n&0x000fffff)|0x00100000)>>(20-k);
if(j<0) n = -n;
p_h -= t;
}
t = p_l+p_h;
__LO(t) = 0;
u = t*lg2_h;
v = (p_l-(t-p_h))*lg2+t*lg2_l;
z = u+v;
w = v-(z-u);
t = z*z;
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
r = (z*t1)/(t1-two)-(w+z*w);
z = one-(r-z);
j = __HI(z);
j += (n<<20);
if((j>>20)<=0) z = fd_scalbn(z,n); /* subnormal output */
else __HI(z) += (n<<20);
return s*z;
}

191
js/src/fdlibm/e_rem_pio2.c Normal file
Просмотреть файл

@ -0,0 +1,191 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_rem_pio2.c 1.4 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* __ieee754_rem_pio2(x,y)
*
* return the remainder of x rem pi/2 in y[0]+y[1]
* use __kernel_rem_pio2()
*/
#include "fdlibm.h"
/*
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
*/
#ifdef __STDC__
static const int two_over_pi[] = {
#else
static int two_over_pi[] = {
#endif
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
};
#ifdef __STDC__
static const int npio2_hw[] = {
#else
static int npio2_hw[] = {
#endif
0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
0x404858EB, 0x404921FB,
};
/*
* invpio2: 53 bits of 2/pi
* pio2_1: first 33 bit of pi/2
* pio2_1t: pi/2 - pio2_1
* pio2_2: second 33 bit of pi/2
* pio2_2t: pi/2 - (pio2_1+pio2_2)
* pio2_3: third 33 bit of pi/2
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
*/
#ifdef __STDC__
static const double
#else
static double
#endif
zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
#ifdef __STDC__
int __ieee754_rem_pio2(double x, double *y)
#else
int __ieee754_rem_pio2(x,y)
double x,y[];
#endif
{
double z,w,t,r,fn;
double tx[3];
int e0,i,j,nx,n,ix,hx;
hx = __HI(x); /* high word of x */
ix = hx&0x7fffffff;
if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */
{y[0] = x; y[1] = 0; return 0;}
if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */
if(hx>0) {
z = x - pio2_1;
if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
y[0] = z - pio2_1t;
y[1] = (z-y[0])-pio2_1t;
} else { /* near pi/2, use 33+33+53 bit pi */
z -= pio2_2;
y[0] = z - pio2_2t;
y[1] = (z-y[0])-pio2_2t;
}
return 1;
} else { /* negative x */
z = x + pio2_1;
if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
y[0] = z + pio2_1t;
y[1] = (z-y[0])+pio2_1t;
} else { /* near pi/2, use 33+33+53 bit pi */
z += pio2_2;
y[0] = z + pio2_2t;
y[1] = (z-y[0])+pio2_2t;
}
return -1;
}
}
if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
t = fd_fabs(x);
n = (int) (t*invpio2+half);
fn = (double)n;
r = t-fn*pio2_1;
w = fn*pio2_1t; /* 1st round good to 85 bit */
if(n<32&&ix!=npio2_hw[n-1]) {
y[0] = r-w; /* quick check no cancellation */
} else {
j = ix>>20;
y[0] = r-w;
i = j-(((__HI(y[0]))>>20)&0x7ff);
if(i>16) { /* 2nd iteration needed, good to 118 */
t = r;
w = fn*pio2_2;
r = t-w;
w = fn*pio2_2t-((t-r)-w);
y[0] = r-w;
i = j-(((__HI(y[0]))>>20)&0x7ff);
if(i>49) { /* 3rd iteration need, 151 bits acc */
t = r; /* will cover all possible cases */
w = fn*pio2_3;
r = t-w;
w = fn*pio2_3t-((t-r)-w);
y[0] = r-w;
}
}
}
y[1] = (r-y[0])-w;
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
else return n;
}
/*
* all other (large) arguments
*/
if(ix>=0x7ff00000) { /* x is inf or NaN */
y[0]=y[1]=x-x; return 0;
}
/* set z = scalbn(|x|,ilogb(x)-23) */
__LO(z) = __LO(x);
e0 = (ix>>20)-1046; /* e0 = ilogb(z)-23; */
__HI(z) = ix - (e0<<20);
for(i=0;i<2;i++) {
tx[i] = (double)((int)(z));
z = (z-tx[i])*two24;
}
tx[2] = z;
nx = 3;
while(tx[nx-1]==zero) nx--; /* skip zero term */
n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi);
if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
return n;
}

Просмотреть файл

@ -0,0 +1,93 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_remainder.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_remainder(x,p)
* Return :
* returns x REM p = x - [x/p]*p as if in infinite
* precise arithmetic, where [x/p] is the (infinite bit)
* integer nearest x/p (in half way case choose the even one).
* Method :
* Based on fmod() return x-[x/p]chopped*p exactlp.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double zero = 0.0;
#else
static double zero = 0.0;
#endif
#ifdef __STDC__
double __ieee754_remainder(double x, double p)
#else
double __ieee754_remainder(x,p)
double x,p;
#endif
{
int hx,hp;
unsigned sx,lx,lp;
double p_half;
hx = __HI(x); /* high word of x */
lx = __LO(x); /* low word of x */
hp = __HI(p); /* high word of p */
lp = __LO(p); /* low word of p */
sx = hx&0x80000000;
hp &= 0x7fffffff;
hx &= 0x7fffffff;
/* purge off exception values */
if((hp|lp)==0) return (x*p)/(x*p); /* p = 0 */
if((hx>=0x7ff00000)|| /* x not finite */
((hp>=0x7ff00000)&& /* p is NaN */
(((hp-0x7ff00000)|lp)!=0)))
return (x*p)/(x*p);
if (hp<=0x7fdfffff) x = __ieee754_fmod(x,p+p); /* now x < 2p */
if (((hx-hp)|(lx-lp))==0) return zero*x;
x = fd_fabs(x);
p = fd_fabs(p);
if (hp<0x00200000) {
if(x+x>p) {
x-=p;
if(x+x>=p) x -= p;
}
} else {
p_half = 0.5*p;
if(x>p_half) {
x-=p;
if(x>=p_half) x -= p;
}
}
__HI(x) ^= sx;
return x;
}

67
js/src/fdlibm/e_scalb.c Normal file
Просмотреть файл

@ -0,0 +1,67 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_scalb.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __ieee754_scalb(x, fn) is provide for
* passing various standard test suite. One
* should use scalbn() instead.
*/
#include "fdlibm.h"
#ifdef _SCALB_INT
#ifdef __STDC__
double __ieee754_scalb(double x, int fn)
#else
double __ieee754_scalb(x,fn)
double x; int fn;
#endif
#else
#ifdef __STDC__
double __ieee754_scalb(double x, double fn)
#else
double __ieee754_scalb(x,fn)
double x, fn;
#endif
#endif
{
#ifdef _SCALB_INT
return fd_scalbn(x,fn);
#else
if (fd_isnan(x)||fd_isnan(fn)) return x*fn;
if (!fd_finite(fn)) {
if(fn>0.0) return x*fn;
else return x/(-fn);
}
if (fd_rint(fn)!=fn) return (fn-fn)/(fn-fn);
if ( fn > 65000.0) return fd_scalbn(x, 65000);
if (-fn > 65000.0) return fd_scalbn(x,-65000);
return fd_scalbn(x,(int)fn);
#endif
}

98
js/src/fdlibm/e_sinh.c Normal file
Просмотреть файл

@ -0,0 +1,98 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_sinh.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_sinh(x)
* Method :
* mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
* 1. Replace x by |x| (sinh(-x) = -sinh(x)).
* 2.
* E + E/(E+1)
* 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x)
* 2
*
* 22 <= x <= lnovft : sinh(x) := exp(x)/2
* lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2)
* ln2ovft < x : sinh(x) := x*shuge (overflow)
*
* Special cases:
* sinh(x) is |x| if x is +INF, -INF, or NaN.
* only sinh(0)=0 is exact for finite x.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double one = 1.0, shuge = 1.0e307;
#else
static double one = 1.0, shuge = 1.0e307;
#endif
#ifdef __STDC__
double __ieee754_sinh(double x)
#else
double __ieee754_sinh(x)
double x;
#endif
{
double t,w,h;
int ix,jx;
unsigned lx;
/* High word of |x|. */
jx = __HI(x);
ix = jx&0x7fffffff;
/* x is INF or NaN */
if(ix>=0x7ff00000) return x+x;
h = 0.5;
if (jx<0) h = -h;
/* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
if (ix < 0x40360000) { /* |x|<22 */
if (ix<0x3e300000) /* |x|<2**-28 */
if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
t = fd_expm1(fd_fabs(x));
if(ix<0x3ff00000) return h*(2.0*t-t*t/(t+one));
return h*(t+t/(t+one));
}
/* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
if (ix < 0x40862E42) return h*__ieee754_exp(fd_fabs(x));
/* |x| in [log(maxdouble), overflowthresold] */
lx = *( (((*(unsigned*)&one)>>29)) + (unsigned*)&x);
if (ix<0x408633CE || (ix==0x408633ce)&&(lx<=(unsigned)0x8fb9f87d)) {
w = __ieee754_exp(0.5*fd_fabs(x));
t = h*w;
return t*w;
}
/* |x| > overflowthresold, sinh(x) overflow */
return x*shuge;
}

466
js/src/fdlibm/e_sqrt.c Normal file
Просмотреть файл

@ -0,0 +1,466 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)e_sqrt.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_sqrt(x)
* Return correctly rounded sqrt.
* ------------------------------------------
* | Use the hardware sqrt if you have one |
* ------------------------------------------
* Method:
* Bit by bit method using integer arithmetic. (Slow, but portable)
* 1. Normalization
* Scale x to y in [1,4) with even powers of 2:
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
* sqrt(x) = 2^k * sqrt(y)
* 2. Bit by bit computation
* Let q = sqrt(y) truncated to i bit after binary point (q = 1),
* i 0
* i+1 2
* s = 2*q , and y = 2 * ( y - q ). (1)
* i i i i
*
* To compute q from q , one checks whether
* i+1 i
*
* -(i+1) 2
* (q + 2 ) <= y. (2)
* i
* -(i+1)
* If (2) is false, then q = q ; otherwise q = q + 2 .
* i+1 i i+1 i
*
* With some algebric manipulation, it is not difficult to see
* that (2) is equivalent to
* -(i+1)
* s + 2 <= y (3)
* i i
*
* The advantage of (3) is that s and y can be computed by
* i i
* the following recurrence formula:
* if (3) is false
*
* s = s , y = y ; (4)
* i+1 i i+1 i
*
* otherwise,
* -i -(i+1)
* s = s + 2 , y = y - s - 2 (5)
* i+1 i i+1 i i
*
* One may easily use induction to prove (4) and (5).
* Note. Since the left hand side of (3) contain only i+2 bits,
* it does not necessary to do a full (53-bit) comparison
* in (3).
* 3. Final rounding
* After generating the 53 bits result, we compute one more bit.
* Together with the remainder, we can decide whether the
* result is exact, bigger than 1/2ulp, or less than 1/2ulp
* (it will never equal to 1/2ulp).
* The rounding mode can be detected by checking whether
* huge + tiny is equal to huge, and whether huge - tiny is
* equal to huge for some floating point number "huge" and "tiny".
*
* Special cases:
* sqrt(+-0) = +-0 ... exact
* sqrt(inf) = inf
* sqrt(-ve) = NaN ... with invalid signal
* sqrt(NaN) = NaN ... with invalid signal for signaling NaN
*
* Other methods : see the appended file at the end of the program below.
*---------------
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double one = 1.0, tiny=1.0e-300;
#else
static double one = 1.0, tiny=1.0e-300;
#endif
#ifdef __STDC__
double __ieee754_sqrt(double x)
#else
double __ieee754_sqrt(x)
double x;
#endif
{
double z;
int sign = (int)0x80000000;
unsigned r,t1,s1,ix1,q1;
int ix0,s0,q,m,t,i;
ix0 = __HI(x); /* high word of x */
ix1 = __LO(x); /* low word of x */
/* take care of Inf and NaN */
if((ix0&0x7ff00000)==0x7ff00000) {
return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
sqrt(-inf)=sNaN */
}
/* take care of zero */
if(ix0<=0) {
if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
else if(ix0<0)
return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
}
/* normalize x */
m = (ix0>>20);
if(m==0) { /* subnormal x */
while(ix0==0) {
m -= 21;
ix0 |= (ix1>>11); ix1 <<= 21;
}
for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
m -= i-1;
ix0 |= (ix1>>(32-i));
ix1 <<= i;
}
m -= 1023; /* unbias exponent */
ix0 = (ix0&0x000fffff)|0x00100000;
if(m&1){ /* odd m, double x to make it even */
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
}
m >>= 1; /* m = [m/2] */
/* generate sqrt(x) bit by bit */
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
r = 0x00200000; /* r = moving bit from right to left */
while(r!=0) {
t = s0+r;
if(t<=ix0) {
s0 = t+r;
ix0 -= t;
q += r;
}
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
r>>=1;
}
r = sign;
while(r!=0) {
t1 = s1+r;
t = s0;
if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
s1 = t1+r;
if(((int)(t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
ix0 -= t;
if (ix1 < t1) ix0 -= 1;
ix1 -= t1;
q1 += r;
}
ix0 += ix0 + ((ix1&sign)>>31);
ix1 += ix1;
r>>=1;
}
/* use floating add to find out rounding direction */
if((ix0|ix1)!=0) {
z = one-tiny; /* trigger inexact flag */
if (z>=one) {
z = one+tiny;
if (q1==(unsigned)0xffffffff) { q1=0; q += 1;}
else if (z>one) {
if (q1==(unsigned)0xfffffffe) q+=1;
q1+=2;
} else
q1 += (q1&1);
}
}
ix0 = (q>>1)+0x3fe00000;
ix1 = q1>>1;
if ((q&1)==1) ix1 |= sign;
ix0 += (m <<20);
__HI(z) = ix0;
__LO(z) = ix1;
return z;
}
/*
Other methods (use floating-point arithmetic)
-------------
(This is a copy of a drafted paper by Prof W. Kahan
and K.C. Ng, written in May, 1986)
Two algorithms are given here to implement sqrt(x)
(IEEE double precision arithmetic) in software.
Both supply sqrt(x) correctly rounded. The first algorithm (in
Section A) uses newton iterations and involves four divisions.
The second one uses reciproot iterations to avoid division, but
requires more multiplications. Both algorithms need the ability
to chop results of arithmetic operations instead of round them,
and the INEXACT flag to indicate when an arithmetic operation
is executed exactly with no roundoff error, all part of the
standard (IEEE 754-1985). The ability to perform shift, add,
subtract and logical AND operations upon 32-bit words is needed
too, though not part of the standard.
A. sqrt(x) by Newton Iteration
(1) Initial approximation
Let x0 and x1 be the leading and the trailing 32-bit words of
a floating point number x (in IEEE double format) respectively
1 11 52 ...widths
------------------------------------------------------
x: |s| e | f |
------------------------------------------------------
msb lsb msb lsb ...order
------------------------ ------------------------
x0: |s| e | f1 | x1: | f2 |
------------------------ ------------------------
By performing shifts and subtracts on x0 and x1 (both regarded
as integers), we obtain an 8-bit approximation of sqrt(x) as
follows.
k := (x0>>1) + 0x1ff80000;
y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
Here k is a 32-bit integer and T1[] is an integer array containing
correction terms. Now magically the floating value of y (y's
leading 32-bit word is y0, the value of its trailing word is 0)
approximates sqrt(x) to almost 8-bit.
Value of T1:
static int T1[32]= {
0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
(2) Iterative refinement
Apply Heron's rule three times to y, we have y approximates
sqrt(x) to within 1 ulp (Unit in the Last Place):
y := (y+x/y)/2 ... almost 17 sig. bits
y := (y+x/y)/2 ... almost 35 sig. bits
y := y-(y-x/y)/2 ... within 1 ulp
Remark 1.
Another way to improve y to within 1 ulp is:
y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
2
(x-y )*y
y := y + 2* ---------- ...within 1 ulp
2
3y + x
This formula has one division fewer than the one above; however,
it requires more multiplications and additions. Also x must be
scaled in advance to avoid spurious overflow in evaluating the
expression 3y*y+x. Hence it is not recommended uless division
is slow. If division is very slow, then one should use the
reciproot algorithm given in section B.
(3) Final adjustment
By twiddling y's last bit it is possible to force y to be
correctly rounded according to the prevailing rounding mode
as follows. Let r and i be copies of the rounding mode and
inexact flag before entering the square root program. Also we
use the expression y+-ulp for the next representable floating
numbers (up and down) of y. Note that y+-ulp = either fixed
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
mode.
I := FALSE; ... reset INEXACT flag I
R := RZ; ... set rounding mode to round-toward-zero
z := x/y; ... chopped quotient, possibly inexact
If(not I) then { ... if the quotient is exact
if(z=y) {
I := i; ... restore inexact flag
R := r; ... restore rounded mode
return sqrt(x):=y.
} else {
z := z - ulp; ... special rounding
}
}
i := TRUE; ... sqrt(x) is inexact
If (r=RN) then z=z+ulp ... rounded-to-nearest
If (r=RP) then { ... round-toward-+inf
y = y+ulp; z=z+ulp;
}
y := y+z; ... chopped sum
y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
I := i; ... restore inexact flag
R := r; ... restore rounded mode
return sqrt(x):=y.
(4) Special cases
Square root of +inf, +-0, or NaN is itself;
Square root of a negative number is NaN with invalid signal.
B. sqrt(x) by Reciproot Iteration
(1) Initial approximation
Let x0 and x1 be the leading and the trailing 32-bit words of
a floating point number x (in IEEE double format) respectively
(see section A). By performing shifs and subtracts on x0 and y0,
we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
k := 0x5fe80000 - (x0>>1);
y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
Here k is a 32-bit integer and T2[] is an integer array
containing correction terms. Now magically the floating
value of y (y's leading 32-bit word is y0, the value of
its trailing word y1 is set to zero) approximates 1/sqrt(x)
to almost 7.8-bit.
Value of T2:
static int T2[64]= {
0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
(2) Iterative refinement
Apply Reciproot iteration three times to y and multiply the
result by x to get an approximation z that matches sqrt(x)
to about 1 ulp. To be exact, we will have
-1ulp < sqrt(x)-z<1.0625ulp.
... set rounding mode to Round-to-nearest
y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
... special arrangement for better accuracy
z := x*y ... 29 bits to sqrt(x), with z*y<1
z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
(a) the term z*y in the final iteration is always less than 1;
(b) the error in the final result is biased upward so that
-1 ulp < sqrt(x) - z < 1.0625 ulp
instead of |sqrt(x)-z|<1.03125ulp.
(3) Final adjustment
By twiddling y's last bit it is possible to force y to be
correctly rounded according to the prevailing rounding mode
as follows. Let r and i be copies of the rounding mode and
inexact flag before entering the square root program. Also we
use the expression y+-ulp for the next representable floating
numbers (up and down) of y. Note that y+-ulp = either fixed
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
mode.
R := RZ; ... set rounding mode to round-toward-zero
switch(r) {
case RN: ... round-to-nearest
if(x<= z*(z-ulp)...chopped) z = z - ulp; else
if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
break;
case RZ:case RM: ... round-to-zero or round-to--inf
R:=RP; ... reset rounding mod to round-to-+inf
if(x<z*z ... rounded up) z = z - ulp; else
if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
break;
case RP: ... round-to-+inf
if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
if(x>z*z ...chopped) z = z+ulp;
break;
}
Remark 3. The above comparisons can be done in fixed point. For
example, to compare x and w=z*z chopped, it suffices to compare
x1 and w1 (the trailing parts of x and w), regarding them as
two's complement integers.
...Is z an exact square root?
To determine whether z is an exact square root of x, let z1 be the
trailing part of z, and also let x0 and x1 be the leading and
trailing parts of x.
If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
I := 1; ... Raise Inexact flag: z is not exact
else {
j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
k := z1 >> 26; ... get z's 25-th and 26-th
fraction bits
I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
}
R:= r ... restore rounded mode
return sqrt(x):=z.
If multiplication is cheaper then the foregoing red tape, the
Inexact flag can be evaluated by
I := i;
I := (z*z!=x) or I.
Note that z*z can overwrite I; this value must be sensed if it is
True.
Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
zero.
--------------------
z1: | f2 |
--------------------
bit 31 bit 0
Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
or even of logb(x) have the following relations:
-------------------------------------------------
bit 27,26 of z1 bit 1,0 of x1 logb(x)
-------------------------------------------------
00 00 odd and even
01 01 even
10 10 odd
10 00 even
11 01 even
-------------------------------------------------
(4) Special cases (see (4) of Section A).
*/

242
js/src/fdlibm/fdlibm.h Normal file
Просмотреть файл

@ -0,0 +1,242 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)fdlibm.h 1.5 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Modified defines start here.. */
#ifdef _WIN32
#define huge myhuge
#define __LITTLE_ENDIAN
#endif
/* End here. The rest is the standard file. */
#ifdef __NEWVALID /* special setup for Sun test regime */
#if defined(i386) || defined(i486) || \
defined(intel) || defined(x86) || defined(i86pc)
#define __LITTLE_ENDIAN
#endif
#endif
#ifdef __LITTLE_ENDIAN
#define __HI(x) *(1+(int*)&x)
#define __LO(x) *(int*)&x
#define __HIp(x) *(1+(int*)x)
#define __LOp(x) *(int*)x
#else
#define __HI(x) *(int*)&x
#define __LO(x) *(1+(int*)&x)
#define __HIp(x) *(int*)x
#define __LOp(x) *(1+(int*)x)
#endif
#ifdef __STDC__
#define __P(p) p
#else
#define __P(p) ()
#endif
/*
* ANSI/POSIX
*/
extern int signgam;
#define MAXFLOAT ((float)3.40282346638528860e+38)
enum fdversion {fdlibm_ieee = -1, fdlibm_svid, fdlibm_xopen, fdlibm_posix};
#define _LIB_VERSION_TYPE enum fdversion
#define _LIB_VERSION _fdlib_version
/* if global variable _LIB_VERSION is not desirable, one may
* change the following to be a constant by:
* #define _LIB_VERSION_TYPE const enum version
* In that case, after one initializes the value _LIB_VERSION (see
* s_lib_version.c) during compile time, it cannot be modified
* in the middle of a program
*/
extern _LIB_VERSION_TYPE _LIB_VERSION;
#define _IEEE_ fdlibm_ieee
#define _SVID_ fdlibm_svid
#define _XOPEN_ fdlibm_xopen
#define _POSIX_ fdlibm_posix
struct exception {
int type;
char *name;
double arg1;
double arg2;
double retval;
};
#define HUGE MAXFLOAT
/*
* set X_TLOSS = pi*2**52, which is possibly defined in <values.h>
* (one may replace the following line by "#include <values.h>")
*/
#define X_TLOSS 1.41484755040568800000e+16
#define DOMAIN 1
#define SING 2
#define OVERFLOW 3
#define UNDERFLOW 4
#define TLOSS 5
#define PLOSS 6
/*
* ANSI/POSIX
*/
extern double fd_acos __P((double));
extern double fd_asin __P((double));
extern double fd_atan __P((double));
extern double fd_atan2 __P((double, double));
extern double fd_cos __P((double));
extern double fd_sin __P((double));
extern double fd_tan __P((double));
extern double fd_cosh __P((double));
extern double fd_sinh __P((double));
extern double fd_tanh __P((double));
extern double fd_exp __P((double));
extern double fd_frexp __P((double, int *));
extern double fd_ldexp __P((double, int));
extern double fd_log __P((double));
extern double fd_log10 __P((double));
extern double fd_modf __P((double, double *));
extern double fd_pow __P((double, double));
extern double fd_sqrt __P((double));
extern double fd_ceil __P((double));
extern double fd_fabs __P((double));
extern double fd_floor __P((double));
extern double fd_fmod __P((double, double));
extern double fd_erf __P((double));
extern double fd_erfc __P((double));
extern double fd_gamma __P((double));
extern double fd_hypot __P((double, double));
extern int fd_isnan __P((double));
extern int fd_finite __P((double));
extern double fd_j0 __P((double));
extern double fd_j1 __P((double));
extern double fd_jn __P((int, double));
extern double fd_lgamma __P((double));
extern double fd_y0 __P((double));
extern double fd_y1 __P((double));
extern double fd_yn __P((int, double));
extern double fd_acosh __P((double));
extern double fd_asinh __P((double));
extern double fd_atanh __P((double));
extern double fd_cbrt __P((double));
extern double fd_logb __P((double));
extern double fd_nextafter __P((double, double));
extern double fd_remainder __P((double, double));
#ifdef _SCALB_INT
extern double fd_scalb __P((double, int));
#else
extern double fd_scalb __P((double, double));
#endif
extern int fd_matherr __P((struct exception *));
/*
* IEEE Test Vector
*/
extern double significand __P((double));
/*
* Functions callable from C, intended to support IEEE arithmetic.
*/
extern double fd_copysign __P((double, double));
extern int fd_ilogb __P((double));
extern double fd_rint __P((double));
extern double fd_scalbn __P((double, int));
/*
* BSD math library entry points
*/
extern double fd_expm1 __P((double));
extern double fd_log1p __P((double));
/*
* Reentrant version of gamma & lgamma; passes signgam back by reference
* as the second argument; user must allocate space for signgam.
*/
#ifdef _REENTRANT
extern double gamma_r __P((double, int *));
extern double lgamma_r __P((double, int *));
#endif /* _REENTRANT */
/* ieee style elementary functions */
extern double __ieee754_sqrt __P((double));
extern double __ieee754_acos __P((double));
extern double __ieee754_acosh __P((double));
extern double __ieee754_log __P((double));
extern double __ieee754_atanh __P((double));
extern double __ieee754_asin __P((double));
extern double __ieee754_atan2 __P((double,double));
extern double __ieee754_exp __P((double));
extern double __ieee754_cosh __P((double));
extern double __ieee754_fmod __P((double,double));
extern double __ieee754_pow __P((double,double));
extern double __ieee754_lgamma_r __P((double,int *));
extern double __ieee754_gamma_r __P((double,int *));
extern double __ieee754_lgamma __P((double));
extern double __ieee754_gamma __P((double));
extern double __ieee754_log10 __P((double));
extern double __ieee754_sinh __P((double));
extern double __ieee754_hypot __P((double,double));
extern double __ieee754_j0 __P((double));
extern double __ieee754_j1 __P((double));
extern double __ieee754_y0 __P((double));
extern double __ieee754_y1 __P((double));
extern double __ieee754_jn __P((int,double));
extern double __ieee754_yn __P((int,double));
extern double __ieee754_remainder __P((double,double));
extern int __ieee754_rem_pio2 __P((double,double*));
#ifdef _SCALB_INT
extern double __ieee754_scalb __P((double,int));
#else
extern double __ieee754_scalb __P((double,double));
#endif
/* fdlibm kernel function */
extern double __kernel_standard __P((double,double,int));
extern double __kernel_sin __P((double,double,int));
extern double __kernel_cos __P((double,double));
extern double __kernel_tan __P((double,double,int));
extern int __kernel_rem_pio2 __P((double*,double*,int,int,int,const int*));

1453
js/src/fdlibm/fdlibm.mak Normal file

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Двоичные данные
js/src/fdlibm/fdlibm.mdp Normal file

Двоичный файл не отображается.

Просмотреть файл

108
js/src/fdlibm/k_cos.c Normal file
Просмотреть файл

@ -0,0 +1,108 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)k_cos.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __kernel_cos( x, y )
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
*
* Algorithm
* 1. Since cos(-x) = cos(x), we need only to consider positive x.
* 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
* 3. cos(x) is approximated by a polynomial of degree 14 on
* [0,pi/4]
* 4 14
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
* where the remez error is
*
* | 2 4 6 8 10 12 14 | -58
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
* | |
*
* 4 6 8 10 12 14
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
* cos(x) = 1 - x*x/2 + r
* since cos(x+y) ~ cos(x) - sin(x)*y
* ~ cos(x) - x*y,
* a correction term is necessary in cos(x) and hence
* cos(x+y) = 1 - (x*x/2 - (r - x*y))
* For better accuracy when x > 0.3, let qx = |x|/4 with
* the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
* Then
* cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
* Note that 1-qx and (x*x/2-qx) is EXACT here, and the
* magnitude of the latter is at least a quarter of x*x/2,
* thus, reducing the rounding error in the subtraction.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
#ifdef __STDC__
double __kernel_cos(double x, double y)
#else
double __kernel_cos(x, y)
double x,y;
#endif
{
double a,hz,z,r,qx;
int ix;
ix = __HI(x)&0x7fffffff; /* ix = |x|'s high word*/
if(ix<0x3e400000) { /* if x < 2**27 */
if(((int)x)==0) return one; /* generate inexact */
}
z = x*x;
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
if(ix < 0x3FD33333) /* if |x| < 0.3 */
return one - (0.5*z - (z*r - x*y));
else {
if(ix > 0x3fe90000) { /* x > 0.78125 */
qx = 0.28125;
} else {
__HI(qx) = ix-0x00200000; /* x/4 */
__LO(qx) = 0;
}
hz = 0.5*z-qx;
a = one-qx;
return a - (hz - (z*r-x*y));
}
}

332
js/src/fdlibm/k_rem_pio2.c Normal file
Просмотреть файл

@ -0,0 +1,332 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)k_rem_pio2.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
* double x[],y[]; int e0,nx,prec; int ipio2[];
*
* __kernel_rem_pio2 return the last three digits of N with
* y = x - N*pi/2
* so that |y| < pi/2.
*
* The method is to compute the integer (mod 8) and fraction parts of
* (2/pi)*x without doing the full multiplication. In general we
* skip the part of the product that are known to be a huge integer (
* more accurately, = 0 mod 8 ). Thus the number of operations are
* independent of the exponent of the input.
*
* (2/pi) is represented by an array of 24-bit integers in ipio2[].
*
* Input parameters:
* x[] The input value (must be positive) is broken into nx
* pieces of 24-bit integers in double precision format.
* x[i] will be the i-th 24 bit of x. The scaled exponent
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
* match x's up to 24 bits.
*
* Example of breaking a double positive z into x[0]+x[1]+x[2]:
* e0 = ilogb(z)-23
* z = scalbn(z,-e0)
* for i = 0,1,2
* x[i] = floor(z)
* z = (z-x[i])*2**24
*
*
* y[] ouput result in an array of double precision numbers.
* The dimension of y[] is:
* 24-bit precision 1
* 53-bit precision 2
* 64-bit precision 2
* 113-bit precision 3
* The actual value is the sum of them. Thus for 113-bit
* precison, one may have to do something like:
*
* long double t,w,r_head, r_tail;
* t = (long double)y[2] + (long double)y[1];
* w = (long double)y[0];
* r_head = t+w;
* r_tail = w - (r_head - t);
*
* e0 The exponent of x[0]
*
* nx dimension of x[]
*
* prec an integer indicating the precision:
* 0 24 bits (single)
* 1 53 bits (double)
* 2 64 bits (extended)
* 3 113 bits (quad)
*
* ipio2[]
* integer array, contains the (24*i)-th to (24*i+23)-th
* bit of 2/pi after binary point. The corresponding
* floating value is
*
* ipio2[i] * 2^(-24(i+1)).
*
* External function:
* double scalbn(), floor();
*
*
* Here is the description of some local variables:
*
* jk jk+1 is the initial number of terms of ipio2[] needed
* in the computation. The recommended value is 2,3,4,
* 6 for single, double, extended,and quad.
*
* jz local integer variable indicating the number of
* terms of ipio2[] used.
*
* jx nx - 1
*
* jv index for pointing to the suitable ipio2[] for the
* computation. In general, we want
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
* is an integer. Thus
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv
* Hence jv = max(0,(e0-3)/24).
*
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
*
* q[] double array with integral value, representing the
* 24-bits chunk of the product of x and 2/pi.
*
* q0 the corresponding exponent of q[0]. Note that the
* exponent for q[i] would be q0-24*i.
*
* PIo2[] double precision array, obtained by cutting pi/2
* into 24 bits chunks.
*
* f[] ipio2[] in floating point
*
* iq[] integer array by breaking up q[] in 24-bits chunk.
*
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
*
* ih integer. If >0 it indicates q[] is >= 0.5, hence
* it also indicates the *sign* of the result.
*
*/
/*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
#else
static int init_jk[] = {2,3,4,6};
#endif
#ifdef __STDC__
static const double PIo2[] = {
#else
static double PIo2[] = {
#endif
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
};
#ifdef __STDC__
static const double
#else
static double
#endif
zero = 0.0,
one = 1.0,
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
#ifdef __STDC__
int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2)
#else
int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
double x[], y[]; int e0,nx,prec; int ipio2[];
#endif
{
int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
double z,fw,f[20],fq[20],q[20];
/* initialize jk*/
jk = init_jk[prec];
jp = jk;
/* determine jx,jv,q0, note that 3>q0 */
jx = nx-1;
jv = (e0-3)/24; if(jv<0) jv=0;
q0 = e0-24*(jv+1);
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
j = jv-jx; m = jx+jk;
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
/* compute q[0],q[1],...q[jk] */
for (i=0;i<=jk;i++) {
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
}
jz = jk;
recompute:
/* distill q[] into iq[] reversingly */
for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
fw = (double)((int)(twon24* z));
iq[i] = (int)(z-two24*fw);
z = q[j-1]+fw;
}
/* compute n */
z = fd_scalbn(z,q0); /* actual value of z */
z -= 8.0*fd_floor(z*0.125); /* trim off integer >= 8 */
n = (int) z;
z -= (double)n;
ih = 0;
if(q0>0) { /* need iq[jz-1] to determine n */
i = (iq[jz-1]>>(24-q0)); n += i;
iq[jz-1] -= i<<(24-q0);
ih = iq[jz-1]>>(23-q0);
}
else if(q0==0) ih = iq[jz-1]>>23;
else if(z>=0.5) ih=2;
if(ih>0) { /* q > 0.5 */
n += 1; carry = 0;
for(i=0;i<jz ;i++) { /* compute 1-q */
j = iq[i];
if(carry==0) {
if(j!=0) {
carry = 1; iq[i] = 0x1000000- j;
}
} else iq[i] = 0xffffff - j;
}
if(q0>0) { /* rare case: chance is 1 in 12 */
switch(q0) {
case 1:
iq[jz-1] &= 0x7fffff; break;
case 2:
iq[jz-1] &= 0x3fffff; break;
}
}
if(ih==2) {
z = one - z;
if(carry!=0) z -= fd_scalbn(one,q0);
}
}
/* check if recomputation is needed */
if(z==zero) {
j = 0;
for (i=jz-1;i>=jk;i--) j |= iq[i];
if(j==0) { /* need recomputation */
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
f[jx+i] = (double) ipio2[jv+i];
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
q[i] = fw;
}
jz += k;
goto recompute;
}
}
/* chop off zero terms */
if(z==0.0) {
jz -= 1; q0 -= 24;
while(iq[jz]==0) { jz--; q0-=24;}
} else { /* break z into 24-bit if necessary */
z = fd_scalbn(z,-q0);
if(z>=two24) {
fw = (double)((int)(twon24*z));
iq[jz] = (int)(z-two24*fw);
jz += 1; q0 += 24;
iq[jz] = (int) fw;
} else iq[jz] = (int) z ;
}
/* convert integer "bit" chunk to floating-point value */
fw = fd_scalbn(one,q0);
for(i=jz;i>=0;i--) {
q[i] = fw*(double)iq[i]; fw*=twon24;
}
/* compute PIo2[0,...,jp]*q[jz,...,0] */
for(i=jz;i>=0;i--) {
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
fq[jz-i] = fw;
}
/* compress fq[] into y[] */
switch(prec) {
case 0:
fw = 0.0;
for (i=jz;i>=0;i--) fw += fq[i];
y[0] = (ih==0)? fw: -fw;
break;
case 1:
case 2:
fw = 0.0;
for (i=jz;i>=0;i--) fw += fq[i];
y[0] = (ih==0)? fw: -fw;
fw = fq[0]-fw;
for (i=1;i<=jz;i++) fw += fq[i];
y[1] = (ih==0)? fw: -fw;
break;
case 3: /* painful */
for (i=jz;i>0;i--) {
fw = fq[i-1]+fq[i];
fq[i] += fq[i-1]-fw;
fq[i-1] = fw;
}
for (i=jz;i>1;i--) {
fw = fq[i-1]+fq[i];
fq[i] += fq[i-1]-fw;
fq[i-1] = fw;
}
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
if(ih==0) {
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
} else {
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
}
}
return n&7;
}

90
js/src/fdlibm/k_sin.c Normal file
Просмотреть файл

@ -0,0 +1,90 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)k_sin.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __kernel_sin( x, y, iy)
* kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
*
* Algorithm
* 1. Since sin(-x) = -sin(x), we need only to consider positive x.
* 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
* 3. sin(x) is approximated by a polynomial of degree 13 on
* [0,pi/4]
* 3 13
* sin(x) ~ x + S1*x + ... + S6*x
* where
*
* |sin(x) 2 4 6 8 10 12 | -58
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
* | x |
*
* 4. sin(x+y) = sin(x) + sin'(x')*y
* ~ sin(x) + (1-x*x/2)*y
* For better accuracy, let
* 3 2 2 2 2
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
* then 3 2
* sin(x) = x + (S1*x + (x *(r-y/2)+y))
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
#ifdef __STDC__
double __kernel_sin(double x, double y, int iy)
#else
double __kernel_sin(x, y, iy)
double x,y; int iy; /* iy=0 if y is zero */
#endif
{
double z,r,v;
int ix;
ix = __HI(x)&0x7fffffff; /* high word of x */
if(ix<0x3e400000) /* |x| < 2**-27 */
{if((int)x==0) return x;} /* generate inexact */
z = x*x;
v = z*x;
r = S2+z*(S3+z*(S4+z*(S5+z*S6)));
if(iy==0) return x+v*(S1+z*r);
else return x-((z*(half*y-v*r)-y)-v*S1);
}

758
js/src/fdlibm/k_standard.c Normal file
Просмотреть файл

@ -0,0 +1,758 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)k_standard.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
#include "fdlibm.h"
/* XXX ugly hack to get msvc to link without error. */
#if _LIB_VERSION == _IEEE_
int errno;
# define EDOM 0
# define ERANGE 0
#else
# include <errno.h>
#endif
#ifndef _USE_WRITE
#include <stdio.h> /* fputs(), stderr */
#define WRITE2(u,v) fputs(u, stderr)
#else /* !defined(_USE_WRITE) */
#include <unistd.h> /* write */
#define WRITE2(u,v) write(2, u, v)
#undef fflush
#endif /* !defined(_USE_WRITE) */
static double zero = 0.0; /* used as const */
/*
* Standard conformance (non-IEEE) on exception cases.
* Mapping:
* 1 -- acos(|x|>1)
* 2 -- asin(|x|>1)
* 3 -- atan2(+-0,+-0)
* 4 -- hypot overflow
* 5 -- cosh overflow
* 6 -- exp overflow
* 7 -- exp underflow
* 8 -- y0(0)
* 9 -- y0(-ve)
* 10-- y1(0)
* 11-- y1(-ve)
* 12-- yn(0)
* 13-- yn(-ve)
* 14-- lgamma(finite) overflow
* 15-- lgamma(-integer)
* 16-- log(0)
* 17-- log(x<0)
* 18-- log10(0)
* 19-- log10(x<0)
* 20-- pow(0.0,0.0)
* 21-- pow(x,y) overflow
* 22-- pow(x,y) underflow
* 23-- pow(0,negative)
* 24-- pow(neg,non-integral)
* 25-- sinh(finite) overflow
* 26-- sqrt(negative)
* 27-- fmod(x,0)
* 28-- remainder(x,0)
* 29-- acosh(x<1)
* 30-- atanh(|x|>1)
* 31-- atanh(|x|=1)
* 32-- scalb overflow
* 33-- scalb underflow
* 34-- j0(|x|>X_TLOSS)
* 35-- y0(x>X_TLOSS)
* 36-- j1(|x|>X_TLOSS)
* 37-- y1(x>X_TLOSS)
* 38-- jn(|x|>X_TLOSS, n)
* 39-- yn(x>X_TLOSS, n)
* 40-- gamma(finite) overflow
* 41-- gamma(-integer)
* 42-- pow(NaN,0.0)
*/
#ifdef __STDC__
double __kernel_standard(double x, double y, int type)
#else
double __kernel_standard(x,y,type)
double x,y; int type;
#endif
{
struct exception exc;
#ifndef HUGE_VAL /* this is the only routine that uses HUGE_VAL */
#define HUGE_VAL inf
double inf = 0.0;
__HI(inf) = 0x7ff00000; /* set inf to infinite */
#endif
#ifdef _USE_WRITE
(void) fflush(stdout);
#endif
exc.arg1 = x;
exc.arg2 = y;
switch(type) {
case 1:
/* acos(|x|>1) */
exc.type = DOMAIN;
exc.name = "acos";
exc.retval = zero;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if(_LIB_VERSION == _SVID_) {
(void) WRITE2("acos: DOMAIN error\n", 19);
}
errno = EDOM;
}
break;
case 2:
/* asin(|x|>1) */
exc.type = DOMAIN;
exc.name = "asin";
exc.retval = zero;
if(_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if(_LIB_VERSION == _SVID_) {
(void) WRITE2("asin: DOMAIN error\n", 19);
}
errno = EDOM;
}
break;
case 3:
/* atan2(+-0,+-0) */
exc.arg1 = y;
exc.arg2 = x;
exc.type = DOMAIN;
exc.name = "atan2";
exc.retval = zero;
if(_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if(_LIB_VERSION == _SVID_) {
(void) WRITE2("atan2: DOMAIN error\n", 20);
}
errno = EDOM;
}
break;
case 4:
/* hypot(finite,finite) overflow */
exc.type = OVERFLOW;
exc.name = "hypot";
if (_LIB_VERSION == _SVID_)
exc.retval = HUGE;
else
exc.retval = HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!fd_matherr(&exc)) {
errno = ERANGE;
}
break;
case 5:
/* cosh(finite) overflow */
exc.type = OVERFLOW;
exc.name = "cosh";
if (_LIB_VERSION == _SVID_)
exc.retval = HUGE;
else
exc.retval = HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!fd_matherr(&exc)) {
errno = ERANGE;
}
break;
case 6:
/* exp(finite) overflow */
exc.type = OVERFLOW;
exc.name = "exp";
if (_LIB_VERSION == _SVID_)
exc.retval = HUGE;
else
exc.retval = HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!fd_matherr(&exc)) {
errno = ERANGE;
}
break;
case 7:
/* exp(finite) underflow */
exc.type = UNDERFLOW;
exc.name = "exp";
exc.retval = zero;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!fd_matherr(&exc)) {
errno = ERANGE;
}
break;
case 8:
/* y0(0) = -inf */
exc.type = DOMAIN; /* should be SING for IEEE */
exc.name = "y0";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("y0: DOMAIN error\n", 17);
}
errno = EDOM;
}
break;
case 9:
/* y0(x<0) = NaN */
exc.type = DOMAIN;
exc.name = "y0";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("y0: DOMAIN error\n", 17);
}
errno = EDOM;
}
break;
case 10:
/* y1(0) = -inf */
exc.type = DOMAIN; /* should be SING for IEEE */
exc.name = "y1";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("y1: DOMAIN error\n", 17);
}
errno = EDOM;
}
break;
case 11:
/* y1(x<0) = NaN */
exc.type = DOMAIN;
exc.name = "y1";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("y1: DOMAIN error\n", 17);
}
errno = EDOM;
}
break;
case 12:
/* yn(n,0) = -inf */
exc.type = DOMAIN; /* should be SING for IEEE */
exc.name = "yn";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("yn: DOMAIN error\n", 17);
}
errno = EDOM;
}
break;
case 13:
/* yn(x<0) = NaN */
exc.type = DOMAIN;
exc.name = "yn";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("yn: DOMAIN error\n", 17);
}
errno = EDOM;
}
break;
case 14:
/* lgamma(finite) overflow */
exc.type = OVERFLOW;
exc.name = "lgamma";
if (_LIB_VERSION == _SVID_)
exc.retval = HUGE;
else
exc.retval = HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!fd_matherr(&exc)) {
errno = ERANGE;
}
break;
case 15:
/* lgamma(-integer) or lgamma(0) */
exc.type = SING;
exc.name = "lgamma";
if (_LIB_VERSION == _SVID_)
exc.retval = HUGE;
else
exc.retval = HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("lgamma: SING error\n", 19);
}
errno = EDOM;
}
break;
case 16:
/* log(0) */
exc.type = SING;
exc.name = "log";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("log: SING error\n", 16);
}
errno = EDOM;
}
break;
case 17:
/* log(x<0) */
exc.type = DOMAIN;
exc.name = "log";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("log: DOMAIN error\n", 18);
}
errno = EDOM;
}
break;
case 18:
/* log10(0) */
exc.type = SING;
exc.name = "log10";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("log10: SING error\n", 18);
}
errno = EDOM;
}
break;
case 19:
/* log10(x<0) */
exc.type = DOMAIN;
exc.name = "log10";
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("log10: DOMAIN error\n", 20);
}
errno = EDOM;
}
break;
case 20:
/* pow(0.0,0.0) */
/* error only if _LIB_VERSION == _SVID_ */
exc.type = DOMAIN;
exc.name = "pow";
exc.retval = zero;
if (_LIB_VERSION != _SVID_) exc.retval = 1.0;
else if (!fd_matherr(&exc)) {
(void) WRITE2("pow(0,0): DOMAIN error\n", 23);
errno = EDOM;
}
break;
case 21:
/* pow(x,y) overflow */
exc.type = OVERFLOW;
exc.name = "pow";
if (_LIB_VERSION == _SVID_) {
exc.retval = HUGE;
y *= 0.5;
if(x<zero&&fd_rint(y)!=y) exc.retval = -HUGE;
} else {
exc.retval = HUGE_VAL;
y *= 0.5;
if(x<zero&&fd_rint(y)!=y) exc.retval = -HUGE_VAL;
}
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!fd_matherr(&exc)) {
errno = ERANGE;
}
break;
case 22:
/* pow(x,y) underflow */
exc.type = UNDERFLOW;
exc.name = "pow";
exc.retval = zero;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!fd_matherr(&exc)) {
errno = ERANGE;
}
break;
case 23:
/* 0**neg */
exc.type = DOMAIN;
exc.name = "pow";
if (_LIB_VERSION == _SVID_)
exc.retval = zero;
else
exc.retval = -HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("pow(0,neg): DOMAIN error\n", 25);
}
errno = EDOM;
}
break;
case 24:
/* neg**non-integral */
exc.type = DOMAIN;
exc.name = "pow";
if (_LIB_VERSION == _SVID_)
exc.retval = zero;
else
exc.retval = zero/zero; /* X/Open allow NaN */
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("neg**non-integral: DOMAIN error\n", 32);
}
errno = EDOM;
}
break;
case 25:
/* sinh(finite) overflow */
exc.type = OVERFLOW;
exc.name = "sinh";
if (_LIB_VERSION == _SVID_)
exc.retval = ( (x>zero) ? HUGE : -HUGE);
else
exc.retval = ( (x>zero) ? HUGE_VAL : -HUGE_VAL);
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!fd_matherr(&exc)) {
errno = ERANGE;
}
break;
case 26:
/* sqrt(x<0) */
exc.type = DOMAIN;
exc.name = "sqrt";
if (_LIB_VERSION == _SVID_)
exc.retval = zero;
else
exc.retval = zero/zero;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("sqrt: DOMAIN error\n", 19);
}
errno = EDOM;
}
break;
case 27:
/* fmod(x,0) */
exc.type = DOMAIN;
exc.name = "fmod";
if (_LIB_VERSION == _SVID_)
exc.retval = x;
else
exc.retval = zero/zero;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("fmod: DOMAIN error\n", 20);
}
errno = EDOM;
}
break;
case 28:
/* remainder(x,0) */
exc.type = DOMAIN;
exc.name = "remainder";
exc.retval = zero/zero;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("remainder: DOMAIN error\n", 24);
}
errno = EDOM;
}
break;
case 29:
/* acosh(x<1) */
exc.type = DOMAIN;
exc.name = "acosh";
exc.retval = zero/zero;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("acosh: DOMAIN error\n", 20);
}
errno = EDOM;
}
break;
case 30:
/* atanh(|x|>1) */
exc.type = DOMAIN;
exc.name = "atanh";
exc.retval = zero/zero;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("atanh: DOMAIN error\n", 20);
}
errno = EDOM;
}
break;
case 31:
/* atanh(|x|=1) */
exc.type = SING;
exc.name = "atanh";
exc.retval = x/zero; /* sign(x)*inf */
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("atanh: SING error\n", 18);
}
errno = EDOM;
}
break;
case 32:
/* scalb overflow; SVID also returns +-HUGE_VAL */
exc.type = OVERFLOW;
exc.name = "scalb";
exc.retval = x > zero ? HUGE_VAL : -HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!fd_matherr(&exc)) {
errno = ERANGE;
}
break;
case 33:
/* scalb underflow */
exc.type = UNDERFLOW;
exc.name = "scalb";
exc.retval = fd_copysign(zero,x);
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!fd_matherr(&exc)) {
errno = ERANGE;
}
break;
case 34:
/* j0(|x|>X_TLOSS) */
exc.type = TLOSS;
exc.name = "j0";
exc.retval = zero;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2(exc.name, 2);
(void) WRITE2(": TLOSS error\n", 14);
}
errno = ERANGE;
}
break;
case 35:
/* y0(x>X_TLOSS) */
exc.type = TLOSS;
exc.name = "y0";
exc.retval = zero;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2(exc.name, 2);
(void) WRITE2(": TLOSS error\n", 14);
}
errno = ERANGE;
}
break;
case 36:
/* j1(|x|>X_TLOSS) */
exc.type = TLOSS;
exc.name = "j1";
exc.retval = zero;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2(exc.name, 2);
(void) WRITE2(": TLOSS error\n", 14);
}
errno = ERANGE;
}
break;
case 37:
/* y1(x>X_TLOSS) */
exc.type = TLOSS;
exc.name = "y1";
exc.retval = zero;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2(exc.name, 2);
(void) WRITE2(": TLOSS error\n", 14);
}
errno = ERANGE;
}
break;
case 38:
/* jn(|x|>X_TLOSS) */
exc.type = TLOSS;
exc.name = "jn";
exc.retval = zero;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2(exc.name, 2);
(void) WRITE2(": TLOSS error\n", 14);
}
errno = ERANGE;
}
break;
case 39:
/* yn(x>X_TLOSS) */
exc.type = TLOSS;
exc.name = "yn";
exc.retval = zero;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2(exc.name, 2);
(void) WRITE2(": TLOSS error\n", 14);
}
errno = ERANGE;
}
break;
case 40:
/* gamma(finite) overflow */
exc.type = OVERFLOW;
exc.name = "gamma";
if (_LIB_VERSION == _SVID_)
exc.retval = HUGE;
else
exc.retval = HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!fd_matherr(&exc)) {
errno = ERANGE;
}
break;
case 41:
/* gamma(-integer) or gamma(0) */
exc.type = SING;
exc.name = "gamma";
if (_LIB_VERSION == _SVID_)
exc.retval = HUGE;
else
exc.retval = HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!fd_matherr(&exc)) {
if (_LIB_VERSION == _SVID_) {
(void) WRITE2("gamma: SING error\n", 18);
}
errno = EDOM;
}
break;
case 42:
/* pow(NaN,0.0) */
/* error only if _LIB_VERSION == _SVID_ & _XOPEN_ */
exc.type = DOMAIN;
exc.name = "pow";
exc.retval = x;
if (_LIB_VERSION == _IEEE_ ||
_LIB_VERSION == _POSIX_) exc.retval = 1.0;
else if (!fd_matherr(&exc)) {
errno = EDOM;
}
break;
}
return exc.retval;
}

141
js/src/fdlibm/k_tan.c Normal file
Просмотреть файл

@ -0,0 +1,141 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)k_tan.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __kernel_tan( x, y, k )
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
* Input k indicates whether tan (if k=1) or
* -1/tan (if k= -1) is returned.
*
* Algorithm
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
* 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
* 3. tan(x) is approximated by a odd polynomial of degree 27 on
* [0,0.67434]
* 3 27
* tan(x) ~ x + T1*x + ... + T13*x
* where
*
* |tan(x) 2 4 26 | -59.2
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
* | x |
*
* Note: tan(x+y) = tan(x) + tan'(x)*y
* ~ tan(x) + (1+x*x)*y
* Therefore, for better accuracy in computing tan(x+y), let
* 3 2 2 2 2
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
* then
* 3 2
* tan(x+y) = x + (T1*x + (x *(r+y)+y))
*
* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
T[] = {
3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
-1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
};
#ifdef __STDC__
double __kernel_tan(double x, double y, int iy)
#else
double __kernel_tan(x, y, iy)
double x,y; int iy;
#endif
{
double z,r,v,w,s;
int ix,hx;
hx = __HI(x); /* high word of x */
ix = hx&0x7fffffff; /* high word of |x| */
if(ix<0x3e300000) /* x < 2**-28 */
{if((int)x==0) { /* generate inexact */
if(((ix|__LO(x))|(iy+1))==0) return one/fd_fabs(x);
else return (iy==1)? x: -one/x;
}
}
if(ix>=0x3FE59428) { /* |x|>=0.6744 */
if(hx<0) {x = -x; y = -y;}
z = pio4-x;
w = pio4lo-y;
x = z+w; y = 0.0;
}
z = x*x;
w = z*z;
/* Break x^5*(T[1]+x^2*T[2]+...) into
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
*/
r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
s = z*x;
r = y + z*(s*(r+v)+y);
r += T[0]*s;
w = x+r;
if(ix>=0x3FE59428) {
v = (double)iy;
return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
}
if(iy==1) return w;
else { /* if allow error up to 2 ulp,
simply return -1.0/(x+r) here */
/* compute -1.0/(x+r) accurately */
double a,t;
z = w;
__LO(z) = 0;
v = r-(z - x); /* z+v = r+x */
t = a = -1.0/w; /* a = -1.0/w */
__LO(t) = 0;
s = 1.0+t*z;
return t+a*(s+t*v);
}
}

Просмотреть файл

@ -0,0 +1,80 @@
#// The contents of this file are subject to the Netscape Public License
#// Version 1.0 (the "NPL"); you may not use this file except in
#// compliance with the NPL. You may obtain a copy of the NPL at
#// http://www.mozilla.org/NPL/
#//
#// Software distributed under the NPL is distributed on an "AS IS" basis,
#// WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
#// for the specific language governing rights and limitations under the
#// NPL.
#//
#// The Initial Developer of this code under the NPL is Netscape
#// Communications Corporation. Portions created by Netscape are
#// Copyright (C) 1998 Netscape Communications Corporation. All Rights
#// Reserved.
#//------------------------------------------------------------------------
#//
#// Specify the depth of the current directory relative to the
#// root of NS
#//
#//------------------------------------------------------------------------
DEPTH=..\..\..
include <$(DEPTH)\config\config.mak>
#//------------------------------------------------------------------------
#//
#// Define any Public Make Variables here: (ie. PDFFILE, MAPFILE, ...)
#//
#//------------------------------------------------------------------------
LIBRARY_NAME = fdlibm
#//------------------------------------------------------------------------
#//
#// Define the files necessary to build the target (ie. OBJS)
#//
#//------------------------------------------------------------------------
OBJS = \
.\$(OBJDIR)\e_atan2.obj \
.\$(OBJDIR)\e_pow.obj \
.\$(OBJDIR)\e_sqrt.obj \
.\$(OBJDIR)\k_standard.obj \
.\$(OBJDIR)\s_atan.obj \
.\$(OBJDIR)\s_copysign.obj \
.\$(OBJDIR)\s_fabs.obj \
.\$(OBJDIR)\s_finite.obj \
.\$(OBJDIR)\s_isnan.obj \
.\$(OBJDIR)\s_matherr.obj \
.\$(OBJDIR)\s_rint.obj \
.\$(OBJDIR)\s_scalbn.obj \
.\$(OBJDIR)\w_atan2.obj \
.\$(OBJDIR)\w_pow.obj \
.\$(OBJDIR)\w_sqrt.obj \
.\$(OBJDIR)\s_lib_version.obj \
$(NULL)
#//------------------------------------------------------------------------
#//
#// Include the common makefile rules
#//
#//------------------------------------------------------------------------
include <$(DEPTH)\config\rules.mak>
export:: $(LIBRARY)
#//------------------------------------------------------------------------
#//
#// Standalone js.exe interpreter
#//
#//------------------------------------------------------------------------
#//PROGRAM = $(OBJDIR)\js.exe
#//js: $(PROGRAM)
#//
#//$(PROGRAM): $(OBJDIR)\js.obj $(LIBRARY)
#// @$(MAKE_OBJDIR)
#// $(link) /debug /out:$(PROGRAM) $(OBJDIR)\js.obj $(DIST)\lib\pr3240.lib $(LIBRARY) $(LDFLAGS)
#//
#//$(OBJDIR)\js.obj: js.c
#// $(CC) /Fo$(OBJDIR)\js.obj js.c $(CFLAGS) -DJSFILE

77
js/src/fdlibm/s_asinh.c Normal file
Просмотреть файл

@ -0,0 +1,77 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_asinh.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* asinh(x)
* Method :
* Based on
* asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
* we have
* asinh(x) := x if 1+x*x=1,
* := sign(x)*(log(x)+ln2)) for large |x|, else
* := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
* := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
ln2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
huge= 1.00000000000000000000e+300;
#ifdef __STDC__
double fd_asinh(double x)
#else
double fd_asinh(x)
double x;
#endif
{
double t,w;
int hx,ix;
hx = __HI(x);
ix = hx&0x7fffffff;
if(ix>=0x7ff00000) return x+x; /* x is inf or NaN */
if(ix< 0x3e300000) { /* |x|<2**-28 */
if(huge+x>one) return x; /* return x inexact except 0 */
}
if(ix>0x41b00000) { /* |x| > 2**28 */
w = __ieee754_log(fd_fabs(x))+ln2;
} else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */
t = fd_fabs(x);
w = __ieee754_log(2.0*t+one/(fd_sqrt(x*x+one)+t));
} else { /* 2.0 > |x| > 2**-28 */
t = x*x;
w =fd_log1p(fd_fabs(x)+t/(one+fd_sqrt(one+t)));
}
if(hx>0) return w; else return -w;
}

150
js/src/fdlibm/s_atan.c Normal file
Просмотреть файл

@ -0,0 +1,150 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_atan.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* atan(x)
* Method
* 1. Reduce x to positive by atan(x) = -atan(-x).
* 2. According to the integer k=4t+0.25 chopped, t=x, the argument
* is further reduced to one of the following intervals and the
* arctangent of t is evaluated by the corresponding formula:
*
* [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
* [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
* [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
* [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double atanhi[] = {
#else
static double atanhi[] = {
#endif
4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
};
#ifdef __STDC__
static const double atanlo[] = {
#else
static double atanlo[] = {
#endif
2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
};
#ifdef __STDC__
static const double aT[] = {
#else
static double aT[] = {
#endif
3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
-1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
-1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
-7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
-5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
-3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
};
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.0,
huge = 1.0e300;
#ifdef __STDC__
double fd_atan(double x)
#else
double fd_atan(x)
double x;
#endif
{
double w,s1,s2,z;
int ix,hx,id;
hx = __HI(x);
ix = hx&0x7fffffff;
if(ix>=0x44100000) { /* if |x| >= 2^66 */
if(ix>0x7ff00000||
(ix==0x7ff00000&&(__LO(x)!=0)))
return x+x; /* NaN */
if(hx>0) return atanhi[3]+atanlo[3];
else return -atanhi[3]-atanlo[3];
} if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
if (ix < 0x3e200000) { /* |x| < 2^-29 */
if(huge+x>one) return x; /* raise inexact */
}
id = -1;
} else {
x = fd_fabs(x);
if (ix < 0x3ff30000) { /* |x| < 1.1875 */
if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
id = 0; x = (2.0*x-one)/(2.0+x);
} else { /* 11/16<=|x|< 19/16 */
id = 1; x = (x-one)/(x+one);
}
} else {
if (ix < 0x40038000) { /* |x| < 2.4375 */
id = 2; x = (x-1.5)/(one+1.5*x);
} else { /* 2.4375 <= |x| < 2^66 */
id = 3; x = -1.0/x;
}
}}
/* end of argument reduction */
z = x*x;
w = z*z;
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
if (id<0) return x - x*(s1+s2);
else {
z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
return (hx<0)? -z:z;
}
}

103
js/src/fdlibm/s_cbrt.c Normal file
Просмотреть файл

@ -0,0 +1,103 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_cbrt.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
#include "fdlibm.h"
/* cbrt(x)
* Return cube root of x
*/
#ifdef __STDC__
static const unsigned
#else
static unsigned
#endif
B1 = 715094163, /* B1 = (682-0.03306235651)*2**20 */
B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */
#ifdef __STDC__
static const double
#else
static double
#endif
C = 5.42857142857142815906e-01, /* 19/35 = 0x3FE15F15, 0xF15F15F1 */
D = -7.05306122448979611050e-01, /* -864/1225 = 0xBFE691DE, 0x2532C834 */
E = 1.41428571428571436819e+00, /* 99/70 = 0x3FF6A0EA, 0x0EA0EA0F */
F = 1.60714285714285720630e+00, /* 45/28 = 0x3FF9B6DB, 0x6DB6DB6E */
G = 3.57142857142857150787e-01; /* 5/14 = 0x3FD6DB6D, 0xB6DB6DB7 */
#ifdef __STDC__
double fd_cbrt(double x)
#else
double fd_cbrt(x)
double x;
#endif
{
int hx;
double r,s,t=0.0,w;
unsigned sign;
hx = __HI(x); /* high word of x */
sign=hx&0x80000000; /* sign= sign(x) */
hx ^=sign;
if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */
if((hx|__LO(x))==0)
return(x); /* cbrt(0) is itself */
__HI(x) = hx; /* x <- |x| */
/* rough cbrt to 5 bits */
if(hx<0x00100000) /* subnormal number */
{__HI(t)=0x43500000; /* set t= 2**54 */
t*=x; __HI(t)=__HI(t)/3+B2;
}
else
__HI(t)=hx/3+B1;
/* new cbrt to 23 bits, may be implemented in single precision */
r=t*t/x;
s=C+r*t;
t*=G+F/(s+E+D/s);
/* chopped to 20 bits and make it larger than cbrt(x) */
__LO(t)=0; __HI(t)+=0x00000001;
/* one step newton iteration to 53 bits with error less than 0.667 ulps */
s=t*t; /* t*t is exact */
r=x/s;
w=t+t;
r=(r-t)/(w+r); /* r-s is exact */
t=t+t*r;
/* retore the sign bit */
__HI(t) |= sign;
return(t);
}

94
js/src/fdlibm/s_ceil.c Normal file
Просмотреть файл

@ -0,0 +1,94 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_ceil.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* ceil(x)
* Return x rounded toward -inf to integral value
* Method:
* Bit twiddling.
* Exception:
* Inexact flag raised if x not equal to ceil(x).
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double huge = 1.0e300;
#else
static double huge = 1.0e300;
#endif
#ifdef __STDC__
double fd_ceil(double x)
#else
double fd_ceil(x)
double x;
#endif
{
int i0,i1,j0;
unsigned i,j;
i0 = __HI(x);
i1 = __LO(x);
j0 = ((i0>>20)&0x7ff)-0x3ff;
if(j0<20) {
if(j0<0) { /* raise inexact if x != 0 */
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
if(i0<0) {i0=0x80000000;i1=0;}
else if((i0|i1)!=0) { i0=0x3ff00000;i1=0;}
}
} else {
i = (0x000fffff)>>j0;
if(((i0&i)|i1)==0) return x; /* x is integral */
if(huge+x>0.0) { /* raise inexact flag */
if(i0>0) i0 += (0x00100000)>>j0;
i0 &= (~i); i1=0;
}
}
} else if (j0>51) {
if(j0==0x400) return x+x; /* inf or NaN */
else return x; /* x is integral */
} else {
i = ((unsigned)(0xffffffff))>>(j0-20);
if((i1&i)==0) return x; /* x is integral */
if(huge+x>0.0) { /* raise inexact flag */
if(i0>0) {
if(j0==20) i0+=1;
else {
j = i1 + (1<<(52-j0));
if((int)j<i1) i0+=1; /* got a carry */
i1 = j;
}
}
i1 &= (~i);
}
}
__HI(x) = i0;
__LO(x) = i1;
return x;
}

Просмотреть файл

@ -0,0 +1,47 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_copysign.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* copysign(double x, double y)
* copysign(x,y) returns a value with the magnitude of x and
* with the sign bit of y.
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_copysign(double x, double y)
#else
double fd_copysign(x,y)
double x,y;
#endif
{
__HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000);
return x;
}

94
js/src/fdlibm/s_cos.c Normal file
Просмотреть файл

@ -0,0 +1,94 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_cos.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* cos(x)
* Return cosine function of x.
*
* kernel function:
* __kernel_sin ... sine function on [-pi/4,pi/4]
* __kernel_cos ... cosine function on [-pi/4,pi/4]
* __ieee754_rem_pio2 ... argument reduction routine
*
* Method.
* Let S,C and T denote the sin, cos and tan respectively on
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
* in [-pi/4 , +pi/4], and let n = k mod 4.
* We have
*
* n sin(x) cos(x) tan(x)
* ----------------------------------------------------------
* 0 S C T
* 1 C -S -1/T
* 2 -S -C T
* 3 -C S -1/T
* ----------------------------------------------------------
*
* Special cases:
* Let trig be any of sin, cos, or tan.
* trig(+-INF) is NaN, with signals;
* trig(NaN) is that NaN;
*
* Accuracy:
* TRIG(x) returns trig(x) nearly rounded
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_cos(double x)
#else
double fd_cos(x)
double x;
#endif
{
double y[2],z=0.0;
int n, ix;
/* High word of x. */
ix = __HI(x);
/* |x| ~< pi/4 */
ix &= 0x7fffffff;
if(ix <= 0x3fe921fb) return __kernel_cos(x,z);
/* cos(Inf or NaN) is NaN */
else if (ix>=0x7ff00000) return x-x;
/* argument reduction needed */
else {
n = __ieee754_rem_pio2(x,y);
switch(n&3) {
case 0: return __kernel_cos(y[0],y[1]);
case 1: return -__kernel_sin(y[0],y[1],1);
case 2: return -__kernel_cos(y[0],y[1]);
default:
return __kernel_sin(y[0],y[1],1);
}
}
}

326
js/src/fdlibm/s_erf.c Normal file
Просмотреть файл

@ -0,0 +1,326 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_erf.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* double erf(double x)
* double erfc(double x)
* x
* 2 |\
* erf(x) = --------- | exp(-t*t)dt
* sqrt(pi) \|
* 0
*
* erfc(x) = 1-erf(x)
* Note that
* erf(-x) = -erf(x)
* erfc(-x) = 2 - erfc(x)
*
* Method:
* 1. For |x| in [0, 0.84375]
* erf(x) = x + x*R(x^2)
* erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
* = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
* where R = P/Q where P is an odd poly of degree 8 and
* Q is an odd poly of degree 10.
* -57.90
* | R - (erf(x)-x)/x | <= 2
*
*
* Remark. The formula is derived by noting
* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
* and that
* 2/sqrt(pi) = 1.128379167095512573896158903121545171688
* is close to one. The interval is chosen because the fix
* point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
* near 0.6174), and by some experiment, 0.84375 is chosen to
* guarantee the error is less than one ulp for erf.
*
* 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
* c = 0.84506291151 rounded to single (24 bits)
* erf(x) = sign(x) * (c + P1(s)/Q1(s))
* erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
* 1+(c+P1(s)/Q1(s)) if x < 0
* |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
* Remark: here we use the taylor series expansion at x=1.
* erf(1+s) = erf(1) + s*Poly(s)
* = 0.845.. + P1(s)/Q1(s)
* That is, we use rational approximation to approximate
* erf(1+s) - (c = (single)0.84506291151)
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
* where
* P1(s) = degree 6 poly in s
* Q1(s) = degree 6 poly in s
*
* 3. For x in [1.25,1/0.35(~2.857143)],
* erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
* erf(x) = 1 - erfc(x)
* where
* R1(z) = degree 7 poly in z, (z=1/x^2)
* S1(z) = degree 8 poly in z
*
* 4. For x in [1/0.35,28]
* erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
* = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
* = 2.0 - tiny (if x <= -6)
* erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
* erf(x) = sign(x)*(1.0 - tiny)
* where
* R2(z) = degree 6 poly in z, (z=1/x^2)
* S2(z) = degree 7 poly in z
*
* Note1:
* To compute exp(-x*x-0.5625+R/S), let s be a single
* precision number and s := x; then
* -x*x = -s*s + (s-x)*(s+x)
* exp(-x*x-0.5626+R/S) =
* exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
* Note2:
* Here 4 and 5 make use of the asymptotic series
* exp(-x*x)
* erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
* x*sqrt(pi)
* We use rational approximation to approximate
* g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
* Here is the error bound for R1/S1 and R2/S2
* |R1/S1 - f(x)| < 2**(-62.57)
* |R2/S2 - f(x)| < 2**(-61.52)
*
* 5. For inf > x >= 28
* erf(x) = sign(x) *(1 - tiny) (raise inexact)
* erfc(x) = tiny*tiny (raise underflow) if x > 0
* = 2 - tiny if x<0
*
* 7. Special case:
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
* erfc/erf(NaN) is NaN
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
tiny = 1e-300,
half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
/* c = (float)0.84506291151 */
erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
/*
* Coefficients for approximation to erf on [0,0.84375]
*/
efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
/*
* Coefficients for approximation to erf in [0.84375,1.25]
*/
pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
/*
* Coefficients for approximation to erfc in [1.25,1/0.35]
*/
ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
/*
* Coefficients for approximation to erfc in [1/.35,28]
*/
rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
#ifdef __STDC__
double fd_erf(double x)
#else
double fd_erf(x)
double x;
#endif
{
int hx,ix,i;
double R,S,P,Q,s,y,z,r;
hx = __HI(x);
ix = hx&0x7fffffff;
if(ix>=0x7ff00000) { /* erf(nan)=nan */
i = ((unsigned)hx>>31)<<1;
return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
}
if(ix < 0x3feb0000) { /* |x|<0.84375 */
if(ix < 0x3e300000) { /* |x|<2**-28 */
if (ix < 0x00800000)
return 0.125*(8.0*x+efx8*x); /*avoid underflow */
return x + efx*x;
}
z = x*x;
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
y = r/s;
return x + x*y;
}
if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
s = fd_fabs(x)-one;
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
if(hx>=0) return erx + P/Q; else return -erx - P/Q;
}
if (ix >= 0x40180000) { /* inf>|x|>=6 */
if(hx>=0) return one-tiny; else return tiny-one;
}
x = fd_fabs(x);
s = one/(x*x);
if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
ra5+s*(ra6+s*ra7))))));
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
sa5+s*(sa6+s*(sa7+s*sa8)))))));
} else { /* |x| >= 1/0.35 */
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
rb5+s*rb6)))));
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
sb5+s*(sb6+s*sb7))))));
}
z = x;
__LO(z) = 0;
r = __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
if(hx>=0) return one-r/x; else return r/x-one;
}
#ifdef __STDC__
double erfc(double x)
#else
double erfc(x)
double x;
#endif
{
int hx,ix;
double R,S,P,Q,s,y,z,r;
hx = __HI(x);
ix = hx&0x7fffffff;
if(ix>=0x7ff00000) { /* erfc(nan)=nan */
/* erfc(+-inf)=0,2 */
return (double)(((unsigned)hx>>31)<<1)+one/x;
}
if(ix < 0x3feb0000) { /* |x|<0.84375 */
if(ix < 0x3c700000) /* |x|<2**-56 */
return one-x;
z = x*x;
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
y = r/s;
if(hx < 0x3fd00000) { /* x<1/4 */
return one-(x+x*y);
} else {
r = x*y;
r += (x-half);
return half - r ;
}
}
if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
s = fd_fabs(x)-one;
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
if(hx>=0) {
z = one-erx; return z - P/Q;
} else {
z = erx+P/Q; return one+z;
}
}
if (ix < 0x403c0000) { /* |x|<28 */
x = fd_fabs(x);
s = one/(x*x);
if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
ra5+s*(ra6+s*ra7))))));
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
sa5+s*(sa6+s*(sa7+s*sa8)))))));
} else { /* |x| >= 1/.35 ~ 2.857143 */
if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
rb5+s*rb6)))));
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
sb5+s*(sb6+s*sb7))))));
}
z = x;
__LO(z) = 0;
r = __ieee754_exp(-z*z-0.5625)*
__ieee754_exp((z-x)*(z+x)+R/S);
if(hx>0) return r/x; else return two-r/x;
} else {
if(hx>0) return tiny*tiny; else return two-tiny;
}
}

232
js/src/fdlibm/s_expm1.c Normal file
Просмотреть файл

@ -0,0 +1,232 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_expm1.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* expm1(x)
* Returns exp(x)-1, the exponential of x minus 1.
*
* Method
* 1. Argument reduction:
* Given x, find r and integer k such that
*
* x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
*
* Here a correction term c will be computed to compensate
* the error in r when rounded to a floating-point number.
*
* 2. Approximating expm1(r) by a special rational function on
* the interval [0,0.34658]:
* Since
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
* we define R1(r*r) by
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
* That is,
* R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
* = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
* = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
* We use a special Reme algorithm on [0,0.347] to generate
* a polynomial of degree 5 in r*r to approximate R1. The
* maximum error of this polynomial approximation is bounded
* by 2**-61. In other words,
* R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
* where Q1 = -1.6666666666666567384E-2,
* Q2 = 3.9682539681370365873E-4,
* Q3 = -9.9206344733435987357E-6,
* Q4 = 2.5051361420808517002E-7,
* Q5 = -6.2843505682382617102E-9;
* (where z=r*r, and the values of Q1 to Q5 are listed below)
* with error bounded by
* | 5 | -61
* | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
* | |
*
* expm1(r) = exp(r)-1 is then computed by the following
* specific way which minimize the accumulation rounding error:
* 2 3
* r r [ 3 - (R1 + R1*r/2) ]
* expm1(r) = r + --- + --- * [--------------------]
* 2 2 [ 6 - r*(3 - R1*r/2) ]
*
* To compensate the error in the argument reduction, we use
* expm1(r+c) = expm1(r) + c + expm1(r)*c
* ~ expm1(r) + c + r*c
* Thus c+r*c will be added in as the correction terms for
* expm1(r+c). Now rearrange the term to avoid optimization
* screw up:
* ( 2 2 )
* ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
* expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
* ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
* ( )
*
* = r - E
* 3. Scale back to obtain expm1(x):
* From step 1, we have
* expm1(x) = either 2^k*[expm1(r)+1] - 1
* = or 2^k*[expm1(r) + (1-2^-k)]
* 4. Implementation notes:
* (A). To save one multiplication, we scale the coefficient Qi
* to Qi*2^i, and replace z by (x^2)/2.
* (B). To achieve maximum accuracy, we compute expm1(x) by
* (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
* (ii) if k=0, return r-E
* (iii) if k=-1, return 0.5*(r-E)-0.5
* (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
* else return 1.0+2.0*(r-E);
* (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
* (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
* (vii) return 2^k(1-((E+2^-k)-r))
*
* Special cases:
* expm1(INF) is INF, expm1(NaN) is NaN;
* expm1(-INF) is -1, and
* for finite argument, only expm1(0)=0 is exact.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Misc. info.
* For IEEE double
* if x > 7.09782712893383973096e+02 then expm1(x) overflow
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
one = 1.0,
huge = 1.0e+300,
tiny = 1.0e-300,
o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
/* scaled coefficients related to expm1 */
Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
#ifdef __STDC__
double fd_expm1(double x)
#else
double fd_expm1(x)
double x;
#endif
{
double y,hi,lo,c,t,e,hxs,hfx,r1;
int k,xsb;
unsigned hx;
hx = __HI(x); /* high word of x */
xsb = hx&0x80000000; /* sign bit of x */
if(xsb==0) y=x; else y= -x; /* y = |x| */
hx &= 0x7fffffff; /* high word of |x| */
/* filter out huge and non-finite argument */
if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
if(hx>=0x7ff00000) {
if(((hx&0xfffff)|__LO(x))!=0)
return x+x; /* NaN */
else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
}
if(x > o_threshold) return huge*huge; /* overflow */
}
if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
if(x+tiny<0.0) /* raise inexact */
return tiny-one; /* return -1 */
}
}
/* argument reduction */
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
if(xsb==0)
{hi = x - ln2_hi; lo = ln2_lo; k = 1;}
else
{hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
} else {
k = (int)(invln2*x+((xsb==0)?0.5:-0.5));
t = k;
hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
lo = t*ln2_lo;
}
x = hi - lo;
c = (hi-x)-lo;
}
else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
t = huge+x; /* return x with inexact flags when x!=0 */
return x - (t-(huge+x));
}
else k = 0;
/* x is now in primary range */
hfx = 0.5*x;
hxs = x*hfx;
r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
t = 3.0-r1*hfx;
e = hxs*((r1-t)/(6.0 - x*t));
if(k==0) return x - (x*e-hxs); /* c is 0 */
else {
e = (x*(e-c)-c);
e -= hxs;
if(k== -1) return 0.5*(x-e)-0.5;
if(k==1)
if(x < -0.25) return -2.0*(e-(x+0.5));
else return one+2.0*(x-e);
if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
y = one-(e-x);
__HI(y) += (k<<20); /* add k to y's exponent */
return y-one;
}
t = one;
if(k<20) {
__HI(t) = 0x3ff00000 - (0x200000>>k); /* t=1-2^-k */
y = t-(e-x);
__HI(y) += (k<<20); /* add k to y's exponent */
} else {
__HI(t) = ((0x3ff-k)<<20); /* 2^-k */
y = x-(e+t);
y += one;
__HI(y) += (k<<20); /* add k to y's exponent */
}
}
return y;
}

45
js/src/fdlibm/s_fabs.c Normal file
Просмотреть файл

@ -0,0 +1,45 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_fabs.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* fabs(x) returns the absolute value of x.
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_fabs(double x)
#else
double fd_fabs(x)
double x;
#endif
{
__HI(x) &= 0x7fffffff;
return x;
}

47
js/src/fdlibm/s_finite.c Normal file
Просмотреть файл

@ -0,0 +1,47 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_finite.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* finite(x) returns 1 is x is finite, else 0;
* no branching!
*/
#include "fdlibm.h"
#ifdef __STDC__
int fd_finite(double x)
#else
int fd_finite(x)
double x;
#endif
{
int hx;
hx = __HI(x);
return (unsigned)((hx&0x7fffffff)-0x7ff00000)>>31;
}

95
js/src/fdlibm/s_floor.c Normal file
Просмотреть файл

@ -0,0 +1,95 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_floor.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* floor(x)
* Return x rounded toward -inf to integral value
* Method:
* Bit twiddling.
* Exception:
* Inexact flag raised if x not equal to floor(x).
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double huge = 1.0e300;
#else
static double huge = 1.0e300;
#endif
#ifdef __STDC__
double fd_floor(double x)
#else
double fd_floor(x)
double x;
#endif
{
int i0,i1,j0;
unsigned i,j;
i0 = __HI(x);
i1 = __LO(x);
j0 = ((i0>>20)&0x7ff)-0x3ff;
if(j0<20) {
if(j0<0) { /* raise inexact if x != 0 */
if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
if(i0>=0) {i0=i1=0;}
else if(((i0&0x7fffffff)|i1)!=0)
{ i0=0xbff00000;i1=0;}
}
} else {
i = (0x000fffff)>>j0;
if(((i0&i)|i1)==0) return x; /* x is integral */
if(huge+x>0.0) { /* raise inexact flag */
if(i0<0) i0 += (0x00100000)>>j0;
i0 &= (~i); i1=0;
}
}
} else if (j0>51) {
if(j0==0x400) return x+x; /* inf or NaN */
else return x; /* x is integral */
} else {
i = ((unsigned)(0xffffffff))>>(j0-20);
if((i1&i)==0) return x; /* x is integral */
if(huge+x>0.0) { /* raise inexact flag */
if(i0<0) {
if(j0==20) i0+=1;
else {
j = i1+(1<<(52-j0));
if((int)j<i1) i0 +=1 ; /* got a carry */
i1=j;
}
}
i1 &= (~i);
}
}
__HI(x) = i0;
__LO(x) = i1;
return x;
}

72
js/src/fdlibm/s_frexp.c Normal file
Просмотреть файл

@ -0,0 +1,72 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_frexp.c 1.4 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* for non-zero x
* x = frexp(arg,&exp);
* return a double fp quantity x such that 0.5 <= |x| <1.0
* and the corresponding binary exponent "exp". That is
* arg = x*2^exp.
* If arg is inf, 0.0, or NaN, then frexp(arg,&exp) returns arg
* with *exp=0.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
two54 = 1.80143985094819840000e+16; /* 0x43500000, 0x00000000 */
#ifdef __STDC__
double fd_frexp(double x, int *eptr)
#else
double fd_frexp(x, eptr)
double x; int *eptr;
#endif
{
int hx, ix, lx;
hx = __HI(x);
ix = 0x7fffffff&hx;
lx = __LO(x);
*eptr = 0;
if(ix>=0x7ff00000||((ix|lx)==0)) return x; /* 0,inf,nan */
if (ix<0x00100000) { /* subnormal */
x *= two54;
hx = __HI(x);
ix = hx&0x7fffffff;
*eptr = -54;
}
*eptr += (ix>>20)-1022;
hx = (hx&0x800fffff)|0x3fe00000;
__HI(x) = hx;
return x;
}

62
js/src/fdlibm/s_ilogb.c Normal file
Просмотреть файл

@ -0,0 +1,62 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_ilogb.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* ilogb(double x)
* return the binary exponent of non-zero x
* ilogb(0) = 0x80000001
* ilogb(inf/NaN) = 0x7fffffff (no signal is raised)
*/
#include "fdlibm.h"
#ifdef __STDC__
int fd_ilogb(double x)
#else
int fd_ilogb(x)
double x;
#endif
{
int hx,lx,ix;
hx = (__HI(x))&0x7fffffff; /* high word of x */
if(hx<0x00100000) {
lx = __LO(x);
if((hx|lx)==0)
return 0x80000001; /* ilogb(0) = 0x80000001 */
else /* subnormal x */
if(hx==0) {
for (ix = -1043; lx>0; lx<<=1) ix -=1;
} else {
for (ix = -1022,hx<<=11; hx>0; hx<<=1) ix -=1;
}
return ix;
}
else if (hx<0x7ff00000) return (hx>>20)-1023;
else return 0x7fffffff;
}

50
js/src/fdlibm/s_isnan.c Normal file
Просмотреть файл

@ -0,0 +1,50 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_isnan.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* isnan(x) returns 1 is x is nan, else 0;
* no branching!
*/
#include "fdlibm.h"
#ifdef __STDC__
int fd_isnan(double x)
#else
int fd_isnan(x)
double x;
#endif
{
int hx,lx;
hx = (__HI(x)&0x7fffffff);
lx = __LO(x);
hx |= (unsigned)(lx|(-lx))>>31;
hx = 0x7ff00000 - hx;
return ((unsigned)(hx))>>31;
}

44
js/src/fdlibm/s_ldexp.c Normal file
Просмотреть файл

@ -0,0 +1,44 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_ldexp.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "fdlibm.h"
#include <errno.h>
#ifdef __STDC__
double fd_ldexp(double value, int exp)
#else
double fd_ldexp(value, exp)
double value; int exp;
#endif
{
if(!fd_finite(value)||value==0.0) return value;
value = fd_scalbn(value,exp);
if(!fd_finite(value)||value==0.0) errno = ERANGE;
return value;
}

Просмотреть файл

@ -0,0 +1,51 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_lib_version.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* MACRO for standards
*/
#include "fdlibm.h"
/*
* define and initialize _LIB_VERSION
*/
#ifdef _POSIX_MODE
_LIB_VERSION_TYPE _LIB_VERSION = _POSIX_;
#else
#ifdef _XOPEN_MODE
_LIB_VERSION_TYPE _LIB_VERSION = _XOPEN_;
#else
#ifdef _SVID3_MODE
_LIB_VERSION_TYPE _LIB_VERSION = _SVID_;
#else /* default _IEEE_MODE */
_LIB_VERSION_TYPE _LIB_VERSION = _IEEE_;
#endif
#endif
#endif

181
js/src/fdlibm/s_log1p.c Normal file
Просмотреть файл

@ -0,0 +1,181 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_log1p.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* double log1p(double x)
*
* Method :
* 1. Argument Reduction: find k and f such that
* 1+x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* Note. If k=0, then f=x is exact. However, if k!=0, then f
* may not be representable exactly. In that case, a correction
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
* and add back the correction term c/u.
* (Note: when x > 2**53, one can simply return log(x))
*
* 2. Approximation of log1p(f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Reme algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
* (the values of Lp1 to Lp7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lp1*s +...+Lp7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log1p(f) = f - (hfsq - s*(hfsq+R)).
*
* 3. Finally, log1p(x) = k*ln2 + log1p(f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
* Here ln2 is split into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
* log1p(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*
* Note: Assuming log() return accurate answer, the following
* algorithm can be used to compute log1p(x) to within a few ULP:
*
* u = 1+x;
* if(u==1.0) return x ; else
* return log(u)*(x/(u-1.0));
*
* See HP-15C Advanced Functions Handbook, p.193.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
static double zero = 0.0;
#ifdef __STDC__
double fd_log1p(double x)
#else
double fd_log1p(x)
double x;
#endif
{
double hfsq,f,c,s,z,R,u;
int k,hx,hu,ax;
hx = __HI(x); /* high word of x */
ax = hx&0x7fffffff;
k = 1;
if (hx < 0x3FDA827A) { /* x < 0.41422 */
if(ax>=0x3ff00000) { /* x <= -1.0 */
if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
}
if(ax<0x3e200000) { /* |x| < 2**-29 */
if(two54+x>zero /* raise inexact */
&&ax<0x3c900000) /* |x| < 2**-54 */
return x;
else
return x - x*x*0.5;
}
if(hx>0||hx<=((int)0xbfd2bec3)) {
k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
}
if (hx >= 0x7ff00000) return x+x;
if(k!=0) {
if(hx<0x43400000) {
u = 1.0+x;
hu = __HI(u); /* high word of u */
k = (hu>>20)-1023;
c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
c /= u;
} else {
u = x;
hu = __HI(u); /* high word of u */
k = (hu>>20)-1023;
c = 0;
}
hu &= 0x000fffff;
if(hu<0x6a09e) {
__HI(u) = hu|0x3ff00000; /* normalize u */
} else {
k += 1;
__HI(u) = hu|0x3fe00000; /* normalize u/2 */
hu = (0x00100000-hu)>>2;
}
f = u-1.0;
}
hfsq=0.5*f*f;
if(hu==0) { /* |f| < 2**-20 */
if(f==zero) if(k==0) return zero;
else {c += k*ln2_lo; return k*ln2_hi+c;}
R = hfsq*(1.0-0.66666666666666666*f);
if(k==0) return f-R; else
return k*ln2_hi-((R-(k*ln2_lo+c))-f);
}
s = f/(2.0+f);
z = s*s;
R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
if(k==0) return f-(hfsq-s*(hfsq+R)); else
return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
}

54
js/src/fdlibm/s_logb.c Normal file
Просмотреть файл

@ -0,0 +1,54 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_logb.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* double logb(x)
* IEEE 754 logb. Included to pass IEEE test suite. Not recommend.
* Use ilogb instead.
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_logb(double x)
#else
double fd_logb(x)
double x;
#endif
{
int lx,ix;
ix = (__HI(x))&0x7fffffff; /* high |x| */
lx = __LO(x); /* low x */
if((ix|lx)==0) return -1.0/fd_fabs(x);
if(ix>=0x7ff00000) return x*x;
if((ix>>=20)==0) /* IEEE 754 logb */
return -1022.0;
else
return (double) (ix-1023);
}

42
js/src/fdlibm/s_matherr.c Normal file
Просмотреть файл

@ -0,0 +1,42 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_matherr.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "fdlibm.h"
#ifdef __STDC__
int fd_matherr(struct exception *x)
#else
int fd_matherr(x)
struct exception *x;
#endif
{
int n=0;
if(x->arg1!=x->arg1) return 0;
return n;
}

96
js/src/fdlibm/s_modf.c Normal file
Просмотреть файл

@ -0,0 +1,96 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_modf.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* modf(double x, double *iptr)
* return fraction part of x, and return x's integral part in *iptr.
* Method:
* Bit twiddling.
*
* Exception:
* No exception.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double one = 1.0;
#else
static double one = 1.0;
#endif
#ifdef __STDC__
double fd_modf(double x, double *iptr)
#else
double fd_modf(x, iptr)
double x,*iptr;
#endif
{
int i0,i1,j0;
unsigned i;
i0 = __HI(x); /* high x */
i1 = __LO(x); /* low x */
j0 = ((i0>>20)&0x7ff)-0x3ff; /* exponent of x */
if(j0<20) { /* integer part in high x */
if(j0<0) { /* |x|<1 */
__HIp(iptr) = i0&0x80000000;
__LOp(iptr) = 0; /* *iptr = +-0 */
return x;
} else {
i = (0x000fffff)>>j0;
if(((i0&i)|i1)==0) { /* x is integral */
*iptr = x;
__HI(x) &= 0x80000000;
__LO(x) = 0; /* return +-0 */
return x;
} else {
__HIp(iptr) = i0&(~i);
__LOp(iptr) = 0;
return x - *iptr;
}
}
} else if (j0>51) { /* no fraction part */
*iptr = x*one;
__HI(x) &= 0x80000000;
__LO(x) = 0; /* return +-0 */
return x;
} else { /* fraction part in low x */
i = ((unsigned)(0xffffffff))>>(j0-20);
if((i1&i)==0) { /* x is integral */
*iptr = x;
__HI(x) &= 0x80000000;
__LO(x) = 0; /* return +-0 */
return x;
} else {
__HIp(iptr) = i0;
__LOp(iptr) = i1&(~i);
return x - *iptr;
}
}
}

Просмотреть файл

@ -0,0 +1,94 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_nextafter.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* IEEE functions
* nextafter(x,y)
* return the next machine floating-point number of x in the
* direction toward y.
* Special cases:
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_nextafter(double x, double y)
#else
double fd_nextafter(x,y)
double x,y;
#endif
{
int hx,hy,ix,iy;
unsigned lx,ly;
hx = __HI(x); /* high word of x */
lx = __LO(x); /* low word of x */
hy = __HI(y); /* high word of y */
ly = __LO(y); /* low word of y */
ix = hx&0x7fffffff; /* |x| */
iy = hy&0x7fffffff; /* |y| */
if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) || /* x is nan */
((iy>=0x7ff00000)&&((iy-0x7ff00000)|ly)!=0)) /* y is nan */
return x+y;
if(x==y) return x; /* x=y, return x */
if((ix|lx)==0) { /* x == 0 */
__HI(x) = hy&0x80000000; /* return +-minsubnormal */
__LO(x) = 1;
y = x*x;
if(y==x) return y; else return x; /* raise underflow flag */
}
if(hx>=0) { /* x > 0 */
if(hx>hy||((hx==hy)&&(lx>ly))) { /* x > y, x -= ulp */
if(lx==0) hx -= 1;
lx -= 1;
} else { /* x < y, x += ulp */
lx += 1;
if(lx==0) hx += 1;
}
} else { /* x < 0 */
if(hy>=0||hx>hy||((hx==hy)&&(lx>ly))){/* x < y, x -= ulp */
if(lx==0) hx -= 1;
lx -= 1;
} else { /* x > y, x += ulp */
lx += 1;
if(lx==0) hx += 1;
}
}
hy = hx&0x7ff00000;
if(hy>=0x7ff00000) return x+x; /* overflow */
if(hy<0x00100000) { /* underflow */
y = x*x;
if(y!=x) { /* raise underflow flag */
__HI(y) = hx; __LO(y) = lx;
return y;
}
}
__HI(x) = hx; __LO(x) = lx;
return x;
}

100
js/src/fdlibm/s_rint.c Normal file
Просмотреть файл

@ -0,0 +1,100 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_rint.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* rint(x)
* Return x rounded to integral value according to the prevailing
* rounding mode.
* Method:
* Using floating addition.
* Exception:
* Inexact flag raised if x not equal to rint(x).
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
TWO52[2]={
4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
-4.50359962737049600000e+15, /* 0xC3300000, 0x00000000 */
};
#ifdef __STDC__
double fd_rint(double x)
#else
double fd_rint(x)
double x;
#endif
{
int i0,j0,sx;
unsigned i,i1;
double w,t;
i0 = __HI(x);
sx = (i0>>31)&1;
i1 = __LO(x);
j0 = ((i0>>20)&0x7ff)-0x3ff;
if(j0<20) {
if(j0<0) {
if(((i0&0x7fffffff)|i1)==0) return x;
i1 |= (i0&0x0fffff);
i0 &= 0xfffe0000;
i0 |= ((i1|-(int)i1)>>12)&0x80000;
__HI(x)=i0;
w = TWO52[sx]+x;
t = w-TWO52[sx];
i0 = __HI(t);
__HI(t) = (i0&0x7fffffff)|(sx<<31);
return t;
} else {
i = (0x000fffff)>>j0;
if(((i0&i)|i1)==0) return x; /* x is integral */
i>>=1;
if(((i0&i)|i1)!=0) {
if(j0==19) i1 = 0x40000000; else
i0 = (i0&(~i))|((0x20000)>>j0);
}
}
} else if (j0>51) {
if(j0==0x400) return x+x; /* inf or NaN */
else return x; /* x is integral */
} else {
i = ((unsigned)(0xffffffff))>>(j0-20);
if((i1&i)==0) return x; /* x is integral */
i>>=1;
if((i1&i)!=0) i1 = (i1&(~i))|((0x40000000)>>(j0-20));
}
__HI(x) = i0;
__LO(x) = i1;
w = TWO52[sx]+x;
return w-TWO52[sx];
}

79
js/src/fdlibm/s_scalbn.c Normal file
Просмотреть файл

@ -0,0 +1,79 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_scalbn.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* scalbn (double x, int n)
* scalbn(x,n) returns x* 2**n computed by exponent
* manipulation rather than by actually performing an
* exponentiation or a multiplication.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
huge = 1.0e+300,
tiny = 1.0e-300;
#ifdef __STDC__
double fd_scalbn (double x, int n)
#else
double fd_scalbn (x,n)
double x; int n;
#endif
{
int k,hx,lx;
hx = __HI(x);
lx = __LO(x);
k = (hx&0x7ff00000)>>20; /* extract exponent */
if (k==0) { /* 0 or subnormal x */
if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
x *= two54;
hx = __HI(x);
k = ((hx&0x7ff00000)>>20) - 54;
if (n< -50000) return tiny*x; /*underflow*/
}
if (k==0x7ff) return x+x; /* NaN or Inf */
k = k+n;
if (k > 0x7fe) return huge*fd_copysign(huge,x); /* overflow */
if (k > 0) /* normal result */
{__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
if (k <= -54)
if (n > 50000) /* in case integer overflow in n+k */
return huge*fd_copysign(huge,x); /*overflow*/
else return tiny*fd_copysign(tiny,x); /*underflow*/
k += 54; /* subnormal result */
__HI(x) = (hx&0x800fffff)|(k<<20);
return x*twom54;
}

18
js/src/fdlibm/s_signgam.c Normal file
Просмотреть файл

@ -0,0 +1,18 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
#include "fdlibm.h"
int signgam = 0;

Просмотреть файл

@ -0,0 +1,46 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_significand.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* significand(x) computes just
* scalb(x, (double) -ilogb(x)),
* for exercising the fraction-part(F) IEEE 754-1985 test vector.
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_significand(double x)
#else
double fd_significand(x)
double x;
#endif
{
return __ieee754_scalb(x,(double) -fd_ilogb(x));
}

94
js/src/fdlibm/s_sin.c Normal file
Просмотреть файл

@ -0,0 +1,94 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_sin.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* sin(x)
* Return sine function of x.
*
* kernel function:
* __kernel_sin ... sine function on [-pi/4,pi/4]
* __kernel_cos ... cose function on [-pi/4,pi/4]
* __ieee754_rem_pio2 ... argument reduction routine
*
* Method.
* Let S,C and T denote the sin, cos and tan respectively on
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
* in [-pi/4 , +pi/4], and let n = k mod 4.
* We have
*
* n sin(x) cos(x) tan(x)
* ----------------------------------------------------------
* 0 S C T
* 1 C -S -1/T
* 2 -S -C T
* 3 -C S -1/T
* ----------------------------------------------------------
*
* Special cases:
* Let trig be any of sin, cos, or tan.
* trig(+-INF) is NaN, with signals;
* trig(NaN) is that NaN;
*
* Accuracy:
* TRIG(x) returns trig(x) nearly rounded
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_sin(double x)
#else
double fd_sin(x)
double x;
#endif
{
double y[2],z=0.0;
int n, ix;
/* High word of x. */
ix = __HI(x);
/* |x| ~< pi/4 */
ix &= 0x7fffffff;
if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);
/* sin(Inf or NaN) is NaN */
else if (ix>=0x7ff00000) return x-x;
/* argument reduction needed */
else {
n = __ieee754_rem_pio2(x,y);
switch(n&3) {
case 0: return __kernel_sin(y[0],y[1],1);
case 1: return __kernel_cos(y[0],y[1]);
case 2: return -__kernel_sin(y[0],y[1],1);
default:
return -__kernel_cos(y[0],y[1]);
}
}
}

88
js/src/fdlibm/s_tan.c Normal file
Просмотреть файл

@ -0,0 +1,88 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_tan.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* tan(x)
* Return tangent function of x.
*
* kernel function:
* __kernel_tan ... tangent function on [-pi/4,pi/4]
* __ieee754_rem_pio2 ... argument reduction routine
*
* Method.
* Let S,C and T denote the sin, cos and tan respectively on
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
* in [-pi/4 , +pi/4], and let n = k mod 4.
* We have
*
* n sin(x) cos(x) tan(x)
* ----------------------------------------------------------
* 0 S C T
* 1 C -S -1/T
* 2 -S -C T
* 3 -C S -1/T
* ----------------------------------------------------------
*
* Special cases:
* Let trig be any of sin, cos, or tan.
* trig(+-INF) is NaN, with signals;
* trig(NaN) is that NaN;
*
* Accuracy:
* TRIG(x) returns trig(x) nearly rounded
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_tan(double x)
#else
double fd_tan(x)
double x;
#endif
{
double y[2],z=0.0;
int n, ix;
/* High word of x. */
ix = __HI(x);
/* |x| ~< pi/4 */
ix &= 0x7fffffff;
if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
/* tan(Inf or NaN) is NaN */
else if (ix>=0x7ff00000) return x-x; /* NaN */
/* argument reduction needed */
else {
n = __ieee754_rem_pio2(x,y);
return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
-1 -- n odd */
}
}

98
js/src/fdlibm/s_tanh.c Normal file
Просмотреть файл

@ -0,0 +1,98 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)s_tanh.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Tanh(x)
* Return the Hyperbolic Tangent of x
*
* Method :
* x -x
* e - e
* 0. tanh(x) is defined to be -----------
* x -x
* e + e
* 1. reduce x to non-negative by tanh(-x) = -tanh(x).
* 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x)
* -t
* 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x)
* t + 2
* 2
* 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x)
* t + 2
* 22.0 < x <= INF : tanh(x) := 1.
*
* Special cases:
* tanh(NaN) is NaN;
* only tanh(0)=0 is exact for finite argument.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double one=1.0, two=2.0, tiny = 1.0e-300;
#else
static double one=1.0, two=2.0, tiny = 1.0e-300;
#endif
#ifdef __STDC__
double fd_tanh(double x)
#else
double fd_tanh(x)
double x;
#endif
{
double t,z;
int jx,ix;
/* High word of |x|. */
jx = __HI(x);
ix = jx&0x7fffffff;
/* x is INF or NaN */
if(ix>=0x7ff00000) {
if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */
else return one/x-one; /* tanh(NaN) = NaN */
}
/* |x| < 22 */
if (ix < 0x40360000) { /* |x|<22 */
if (ix<0x3c800000) /* |x|<2**-55 */
return x*(one+x); /* tanh(small) = small */
if (ix>=0x3ff00000) { /* |x|>=1 */
t = fd_expm1(two*fd_fabs(x));
z = one - two/(t+two);
} else {
t = fd_expm1(-two*fd_fabs(x));
z= -t/(t+two);
}
/* |x| > 22, return +-1 */
} else {
z = one - tiny; /* raised inexact flag */
}
return (jx>=0)? z: -z;
}

55
js/src/fdlibm/w_acos.c Normal file
Просмотреть файл

@ -0,0 +1,55 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)w_acos.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* wrap_acos(x)
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_acos(double x) /* wrapper acos */
#else
double fd_acos(x) /* wrapper acos */
double x;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_acos(x);
#else
double z;
z = __ieee754_acos(x);
if(_LIB_VERSION == _IEEE_ || fd_isnan(x)) return z;
if(fd_fabs(x)>1.0) {
return __kernel_standard(x,x,1); /* acos(|x|>1) */
} else
return z;
#endif
}

55
js/src/fdlibm/w_acosh.c Normal file
Просмотреть файл

@ -0,0 +1,55 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)w_acosh.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/*
* wrapper acosh(x)
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_acosh(double x) /* wrapper acosh */
#else
double fd_acosh(x) /* wrapper acosh */
double x;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_acosh(x);
#else
double z;
z = __ieee754_acosh(x);
if(_LIB_VERSION == _IEEE_ || fd_isnan(x)) return z;
if(x<1.0) {
return __kernel_standard(x,x,29); /* acosh(x<1) */
} else
return z;
#endif
}

57
js/src/fdlibm/w_asin.c Normal file
Просмотреть файл

@ -0,0 +1,57 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)w_asin.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/*
* wrapper asin(x)
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_asin(double x) /* wrapper asin */
#else
double fd_asin(x) /* wrapper asin */
double x;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_asin(x);
#else
double z;
z = __ieee754_asin(x);
if(_LIB_VERSION == _IEEE_ || fd_isnan(x)) return z;
if(fd_fabs(x)>1.0) {
return __kernel_standard(x,x,2); /* asin(|x|>1) */
} else
return z;
#endif
}

56
js/src/fdlibm/w_atan2.c Normal file
Просмотреть файл

@ -0,0 +1,56 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)w_atan2.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/*
* wrapper atan2(y,x)
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_atan2(double y, double x) /* wrapper atan2 */
#else
double fd_atan2(y,x) /* wrapper atan2 */
double y,x;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_atan2(y,x);
#else
double z;
z = __ieee754_atan2(y,x);
if(_LIB_VERSION == _IEEE_||fd_isnan(x)||fd_isnan(y)) return z;
if(x==0.0&&y==0.0) {
return __kernel_standard(y,x,3); /* atan2(+-0,+-0) */
} else
return z;
#endif
}

58
js/src/fdlibm/w_atanh.c Normal file
Просмотреть файл

@ -0,0 +1,58 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)w_atanh.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* wrapper atanh(x)
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_atanh(double x) /* wrapper atanh */
#else
double fd_atanh(x) /* wrapper atanh */
double x;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_atanh(x);
#else
double z,y;
z = __ieee754_atanh(x);
if(_LIB_VERSION == _IEEE_ || fd_isnan(x)) return z;
y = fd_fabs(x);
if(y>=1.0) {
if(y>1.0)
return __kernel_standard(x,x,30); /* atanh(|x|>1) */
else
return __kernel_standard(x,x,31); /* atanh(|x|==1) */
} else
return z;
#endif
}

54
js/src/fdlibm/w_cosh.c Normal file
Просмотреть файл

@ -0,0 +1,54 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)w_cosh.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* wrapper cosh(x)
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_cosh(double x) /* wrapper cosh */
#else
double fd_cosh(x) /* wrapper cosh */
double x;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_cosh(x);
#else
double z;
z = __ieee754_cosh(x);
if(_LIB_VERSION == _IEEE_ || fd_isnan(x)) return z;
if(fd_fabs(x)>7.10475860073943863426e+02) {
return __kernel_standard(x,x,5); /* cosh overflow */
} else
return z;
#endif
}

65
js/src/fdlibm/w_exp.c Normal file
Просмотреть файл

@ -0,0 +1,65 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)w_exp.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* wrapper exp(x)
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
u_threshold= -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */
#ifdef __STDC__
double fd_exp(double x) /* wrapper exp */
#else
double fd_exp(x) /* wrapper exp */
double x;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_exp(x);
#else
double z;
z = __ieee754_exp(x);
if(_LIB_VERSION == _IEEE_) return z;
if(fd_finite(x)) {
if(x>o_threshold)
return __kernel_standard(x,x,6); /* exp overflow */
else if(x<u_threshold)
return __kernel_standard(x,x,7); /* exp underflow */
}
return z;
#endif
}

55
js/src/fdlibm/w_fmod.c Normal file
Просмотреть файл

@ -0,0 +1,55 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)w_fmod.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* wrapper fmod(x,y)
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_fmod(double x, double y) /* wrapper fmod */
#else
double fd_fmod(x,y) /* wrapper fmod */
double x,y;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_fmod(x,y);
#else
double z;
z = __ieee754_fmod(x,y);
if(_LIB_VERSION == _IEEE_ ||fd_isnan(y)||fd_isnan(x)) return z;
if(y==0.0) {
return __kernel_standard(x,y,27); /* fmod(x,0) */
} else
return z;
#endif
}

62
js/src/fdlibm/w_gamma.c Normal file
Просмотреть файл

@ -0,0 +1,62 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)w_gamma.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* double gamma(double x)
* Return the logarithm of the Gamma function of x.
*
* Method: call gamma_r
*/
#include "fdlibm.h"
extern int signgam;
#ifdef __STDC__
double fd_gamma(double x)
#else
double fd_gamma(x)
double x;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_gamma_r(x,&signgam);
#else
double y;
y = __ieee754_gamma_r(x,&signgam);
if(_LIB_VERSION == _IEEE_) return y;
if(!fd_finite(y)&&fd_finite(x)) {
if(fd_floor(x)==x&&x<=0.0)
return __kernel_standard(x,x,41); /* gamma pole */
else
return __kernel_standard(x,x,40); /* gamma overflow */
} else
return y;
#endif
}

58
js/src/fdlibm/w_gamma_r.c Normal file
Просмотреть файл

@ -0,0 +1,58 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)w_gamma_r.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* wrapper double gamma_r(double x, int *signgamp)
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_gamma_r(double x, int *signgamp) /* wrapper lgamma_r */
#else
double fd_gamma_r(x,signgamp) /* wrapper lgamma_r */
double x; int *signgamp;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_gamma_r(x,signgamp);
#else
double y;
y = __ieee754_gamma_r(x,signgamp);
if(_LIB_VERSION == _IEEE_) return y;
if(!fd_finite(y)&&fd_finite(x)) {
if(fd_floor(x)==x&&x<=0.0)
return __kernel_standard(x,x,41); /* gamma pole */
else
return __kernel_standard(x,x,40); /* gamma overflow */
} else
return y;
#endif
}

55
js/src/fdlibm/w_hypot.c Normal file
Просмотреть файл

@ -0,0 +1,55 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)w_hypot.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* wrapper hypot(x,y)
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_hypot(double x, double y)/* wrapper hypot */
#else
double fd_hypot(x,y) /* wrapper hypot */
double x,y;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_hypot(x,y);
#else
double z;
z = __ieee754_hypot(x,y);
if(_LIB_VERSION == _IEEE_) return z;
if((!fd_finite(z))&&fd_finite(x)&&fd_finite(y))
return __kernel_standard(x,y,4); /* hypot overflow */
else
return z;
#endif
}

81
js/src/fdlibm/w_j0.c Normal file
Просмотреть файл

@ -0,0 +1,81 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)w_j0.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* wrapper j0(double x), y0(double x)
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_j0(double x) /* wrapper j0 */
#else
double fd_j0(x) /* wrapper j0 */
double x;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_j0(x);
#else
double z = __ieee754_j0(x);
if(_LIB_VERSION == _IEEE_ || fd_isnan(x)) return z;
if(fd_fabs(x)>X_TLOSS) {
return __kernel_standard(x,x,34); /* j0(|x|>X_TLOSS) */
} else
return z;
#endif
}
#ifdef __STDC__
double y0(double x) /* wrapper y0 */
#else
double y0(x) /* wrapper y0 */
double x;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_y0(x);
#else
double z;
z = __ieee754_y0(x);
if(_LIB_VERSION == _IEEE_ || fd_isnan(x) ) return z;
if(x <= 0.0){
if(x==0.0)
/* d= -one/(x-x); */
return __kernel_standard(x,x,8);
else
/* d = zero/(x-x); */
return __kernel_standard(x,x,9);
}
if(x>X_TLOSS) {
return __kernel_standard(x,x,35); /* y0(x>X_TLOSS) */
} else
return z;
#endif
}

82
js/src/fdlibm/w_j1.c Normal file
Просмотреть файл

@ -0,0 +1,82 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)w_j1.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* wrapper of j1,y1
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_j1(double x) /* wrapper j1 */
#else
double fd_j1(x) /* wrapper j1 */
double x;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_j1(x);
#else
double z;
z = __ieee754_j1(x);
if(_LIB_VERSION == _IEEE_ || fd_isnan(x) ) return z;
if(fd_fabs(x)>X_TLOSS) {
return __kernel_standard(x,x,36); /* j1(|x|>X_TLOSS) */
} else
return z;
#endif
}
#ifdef __STDC__
double y1(double x) /* wrapper y1 */
#else
double y1(x) /* wrapper y1 */
double x;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_y1(x);
#else
double z;
z = __ieee754_y1(x);
if(_LIB_VERSION == _IEEE_ || fd_isnan(x) ) return z;
if(x <= 0.0){
if(x==0.0)
/* d= -one/(x-x); */
return __kernel_standard(x,x,10);
else
/* d = zero/(x-x); */
return __kernel_standard(x,x,11);
}
if(x>X_TLOSS) {
return __kernel_standard(x,x,37); /* y1(x>X_TLOSS) */
} else
return z;
#endif
}

104
js/src/fdlibm/w_jn.c Normal file
Просмотреть файл

@ -0,0 +1,104 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)w_jn.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* wrapper jn(int n, double x), yn(int n, double x)
* floating point Bessel's function of the 1st and 2nd kind
* of order n
*
* Special cases:
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
* Note 2. About jn(n,x), yn(n,x)
* For n=0, j0(x) is called,
* for n=1, j1(x) is called,
* for n<x, forward recursion us used starting
* from values of j0(x) and j1(x).
* for n>x, a continued fraction approximation to
* j(n,x)/j(n-1,x) is evaluated and then backward
* recursion is used starting from a supposed value
* for j(n,x). The resulting value of j(0,x) is
* compared with the actual value to correct the
* supposed value of j(n,x).
*
* yn(n,x) is similar in all respects, except
* that forward recursion is used for all
* values of n>1.
*
*/
#include "fdlibm.h"
#ifdef __STDC__
double fd_jn(int n, double x) /* wrapper jn */
#else
double fd_jn(n,x) /* wrapper jn */
double x; int n;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_jn(n,x);
#else
double z;
z = __ieee754_jn(n,x);
if(_LIB_VERSION == _IEEE_ || fd_isnan(x) ) return z;
if(fd_fabs(x)>X_TLOSS) {
return __kernel_standard((double)n,x,38); /* jn(|x|>X_TLOSS,n) */
} else
return z;
#endif
}
#ifdef __STDC__
double yn(int n, double x) /* wrapper yn */
#else
double yn(n,x) /* wrapper yn */
double x; int n;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_yn(n,x);
#else
double z;
z = __ieee754_yn(n,x);
if(_LIB_VERSION == _IEEE_ || fd_isnan(x) ) return z;
if(x <= 0.0){
if(x==0.0)
/* d= -one/(x-x); */
return __kernel_standard((double)n,x,12);
else
/* d = zero/(x-x); */
return __kernel_standard((double)n,x,13);
}
if(x>X_TLOSS) {
return __kernel_standard((double)n,x,39); /* yn(x>X_TLOSS,n) */
} else
return z;
#endif
}

62
js/src/fdlibm/w_lgamma.c Normal file
Просмотреть файл

@ -0,0 +1,62 @@
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* The contents of this file are subject to the Netscape Public License
* Version 1.0 (the "NPL"); you may not use this file except in
* compliance with the NPL. You may obtain a copy of the NPL at
* http://www.mozilla.org/NPL/
*
* Software distributed under the NPL is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL
* for the specific language governing rights and limitations under the
* NPL.
*
* The Initial Developer of this code under the NPL is Sun Microsystems,
* Inc. Portions created by Netscape are Copyright (C) 1998 Netscape
* Communications Corporation. All Rights Reserved.
*/
/* @(#)w_lgamma.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* double lgamma(double x)
* Return the logarithm of the Gamma function of x.
*
* Method: call __ieee754_lgamma_r
*/
#include "fdlibm.h"
extern int signgam;
#ifdef __STDC__
double fd_lgamma(double x)
#else
double fd_lgamma(x)
double x;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_lgamma_r(x,&signgam);
#else
double y;
y = __ieee754_lgamma_r(x,&signgam);
if(_LIB_VERSION == _IEEE_) return y;
if(!fd_finite(y)&&fd_finite(x)) {
if(fd_floor(x)==x&&x<=0.0)
return __kernel_standard(x,x,15); /* lgamma pole */
else
return __kernel_standard(x,x,14); /* lgamma overflow */
} else
return y;
#endif
}

Некоторые файлы не были показаны из-за слишком большого количества измененных файлов Показать больше