This commit is contained in:
Nicholas Nethercote 2010-08-19 16:46:27 -07:00
Родитель 1091f01f76 57d52f247f
Коммит ae36e47d28
21 изменённых файлов: 384 добавлений и 290 удалений

Просмотреть файл

@ -1,12 +1,12 @@
ptr = allocp 8 ptr = allocp 8
a = immi 65 a = immi 65
sti a ptr 0 sti2c a ptr 0
b = immi 66 b = immi 66
sti b ptr 1 sti2c b ptr 1
c = immi 67 c = immi 67
sti c ptr 2 sti2c c ptr 2
zero = immi 0 zero = immi 0
sti zero ptr 3 sti2c zero ptr 3
ss = calli puts cdecl ptr ss = calli puts cdecl ptr
nn = gei ss zero nn = gei ss zero
reti nn reti nn

Просмотреть файл

@ -1,13 +1,13 @@
.begin a .begin a
ptr = allocp 8 ptr = allocp 8
a = immi 65 a = immi 65
sti a ptr 0 sti2c a ptr 0
b = immi 66 b = immi 66
sti b ptr 1 sti2c b ptr 1
c = immi 67 c = immi 67
sti c ptr 2 sti2c c ptr 2
zero = immi 0 zero = immi 0
sti zero ptr 3 sti2c zero ptr 3
ss = calli puts cdecl ptr ss = calli puts cdecl ptr
nn = gei ss zero nn = gei ss zero
reti nn reti nn

Просмотреть файл

@ -1 +1 @@
982cd218ddb049bdbbcdda4fa3a9d7e40e45e0be c7009f5cd83ea028b98f59e1f8830a76ba27c1dd

Просмотреть файл

@ -41,7 +41,7 @@
#ifdef FEATURE_NANOJIT #ifdef FEATURE_NANOJIT
#ifdef VTUNE #ifdef VMCFG_VTUNE
#include "../core/CodegenLIR.h" #include "../core/CodegenLIR.h"
#endif #endif
@ -50,6 +50,18 @@
#pragma warning(disable:4310) // cast truncates constant value #pragma warning(disable:4310) // cast truncates constant value
#endif #endif
#ifdef VMCFG_VTUNE
namespace vtune {
using namespace nanojit;
void vtuneStart(void*, NIns*);
void vtuneEnd(void*, NIns*);
void vtuneLine(void*, int, NIns*);
void vtuneFile(void*, void*);
}
using namespace vtune;
#endif // VMCFG_VTUNE
namespace nanojit namespace nanojit
{ {
/** /**
@ -74,8 +86,8 @@ namespace nanojit
#if PEDANTIC #if PEDANTIC
, pedanticTop(NULL) , pedanticTop(NULL)
#endif #endif
#ifdef VTUNE #ifdef VMCFG_VTUNE
, cgen(NULL) , vtuneHandle(NULL)
#endif #endif
, _config(config) , _config(config)
{ {
@ -186,10 +198,11 @@ namespace nanojit
void Assembler::registerResetAll() void Assembler::registerResetAll()
{ {
nRegisterResetAll(_allocator); nRegisterResetAll(_allocator);
_allocator.managed = _allocator.free;
// At start, should have some registers free and none active. // At start, should have some registers free and none active.
NanoAssert(0 != _allocator.free); NanoAssert(0 != _allocator.free);
NanoAssert(0 == _allocator.countActive()); NanoAssert(0 == _allocator.activeMask());
#ifdef NANOJIT_IA32 #ifdef NANOJIT_IA32
debug_only(_fpuStkDepth = 0; ) debug_only(_fpuStkDepth = 0; )
#endif #endif
@ -273,14 +286,6 @@ namespace nanojit
verbose_only( nBytes += (end - start) * sizeof(NIns); ) verbose_only( nBytes += (end - start) * sizeof(NIns); )
NanoAssert(uintptr_t(end) - uintptr_t(start) >= (size_t)LARGEST_UNDERRUN_PROT); NanoAssert(uintptr_t(end) - uintptr_t(start) >= (size_t)LARGEST_UNDERRUN_PROT);
eip = end; eip = end;
#ifdef VTUNE
if (_nIns && _nExitIns) {
//cgen->jitAddRecord((uintptr_t)list->code, 0, 0, true); // add placeholder record for top of page
cgen->jitCodePosUpdate((uintptr_t)list->code);
cgen->jitPushInfo(); // new page requires new entry
}
#endif
} }
void Assembler::reset() void Assembler::reset()
@ -360,23 +365,26 @@ namespace nanojit
void Assembler::registerConsistencyCheck() void Assembler::registerConsistencyCheck()
{ {
RegisterMask managed = _allocator.managed; RegisterMask managed = _allocator.managed;
for (Register r = FirstReg; r <= LastReg; r = nextreg(r)) { for (Register r = lsReg(managed); managed; r = nextLsReg(managed, r)) {
if (rmask(r) & managed) { // A register managed by register allocation must be either
// A register managed by register allocation must be either // free or active, but not both.
// free or active, but not both. if (_allocator.isFree(r)) {
if (_allocator.isFree(r)) { NanoAssertMsgf(_allocator.getActive(r)==0,
NanoAssertMsgf(_allocator.getActive(r)==0, "register %s is free but assigned to ins", gpn(r));
"register %s is free but assigned to ins", gpn(r));
} else {
// An LIns defining a register must have that register in
// its reservation.
LIns* ins = _allocator.getActive(r);
NanoAssert(ins);
NanoAssertMsg(r == ins->getReg(), "Register record mismatch");
}
} else { } else {
// A register not managed by register allocation must be // An LIns defining a register must have that register in
// neither free nor active. // its reservation.
LIns* ins = _allocator.getActive(r);
NanoAssert(ins);
NanoAssertMsg(r == ins->getReg(), "Register record mismatch");
}
}
RegisterMask not_managed = ~_allocator.managed;
for (Register r = lsReg(not_managed); not_managed; r = nextLsReg(not_managed, r)) {
// A register not managed by register allocation must be
// neither free nor active.
if (r <= LastReg) {
NanoAssert(!_allocator.isFree(r)); NanoAssert(!_allocator.isFree(r));
NanoAssert(!_allocator.getActive(r)); NanoAssert(!_allocator.getActive(r));
} }
@ -1108,6 +1116,15 @@ namespace nanojit
// save entry point pointers // save entry point pointers
frag->fragEntry = fragEntry; frag->fragEntry = fragEntry;
frag->setCode(_nIns); frag->setCode(_nIns);
#ifdef VMCFG_VTUNE
if (vtuneHandle)
{
vtuneEnd(vtuneHandle, codeEnd);
vtuneStart(vtuneHandle, _nIns);
}
#endif
PERFM_NVPROF("code", CodeAlloc::size(codeList)); PERFM_NVPROF("code", CodeAlloc::size(codeList));
#ifdef NANOJIT_IA32 #ifdef NANOJIT_IA32
@ -1120,15 +1137,14 @@ namespace nanojit
void Assembler::releaseRegisters() void Assembler::releaseRegisters()
{ {
for (Register r = FirstReg; r <= LastReg; r = nextreg(r)) RegisterMask active = _allocator.activeMask();
for (Register r = lsReg(active); active; r = nextLsReg(active, r))
{ {
LIns *ins = _allocator.getActive(r); LIns *ins = _allocator.getActive(r);
if (ins) { // Clear reg allocation, preserve stack allocation.
// Clear reg allocation, preserve stack allocation. _allocator.retire(r);
_allocator.retire(r); NanoAssert(r == ins->getReg());
NanoAssert(r == ins->getReg()); ins->clearReg();
ins->clearReg();
}
} }
} }
@ -1731,7 +1747,7 @@ namespace nanojit
// Out of range indices aren't allowed or checked. // Out of range indices aren't allowed or checked.
// Code after this jtbl instruction is unreachable. // Code after this jtbl instruction is unreachable.
releaseRegisters(); releaseRegisters();
NanoAssert(_allocator.countActive() == 0); NanoAssert(_allocator.activeMask() == 0);
uint32_t count = ins->getTableSize(); uint32_t count = ins->getTableSize();
bool has_back_edges = false; bool has_back_edges = false;
@ -1756,7 +1772,7 @@ namespace nanojit
// to reconcile registers. So, frontends *must* insert LIR_regfence at labels of // to reconcile registers. So, frontends *must* insert LIR_regfence at labels of
// forward jtbl jumps. Check here to make sure no registers were picked up from // forward jtbl jumps. Check here to make sure no registers were picked up from
// any forward edges. // any forward edges.
NanoAssert(_allocator.countActive() == 0); NanoAssert(_allocator.activeMask() == 0);
if (has_back_edges) { if (has_back_edges) {
handleLoopCarriedExprs(pending_lives); handleLoopCarriedExprs(pending_lives);
@ -1928,27 +1944,28 @@ namespace nanojit
asm_call(ins); asm_call(ins);
break; break;
#ifdef VTUNE #ifdef VMCFG_VTUNE
case LIR_file: { case LIR_file: {
// we traverse backwards so we are now hitting the file // we traverse backwards so we are now hitting the file
// that is associated with a bunch of LIR_lines we already have seen // that is associated with a bunch of LIR_lines we already have seen
ins->oprnd1()->setResultLive(); if (vtuneHandle) {
uintptr_t currentFile = ins->oprnd1()->immI(); void * currentFile = (void *) ins->oprnd1()->immI();
cgen->jitFilenameUpdate(currentFile); vtuneFile(vtuneHandle, currentFile);
}
break; break;
} }
case LIR_line: { case LIR_line: {
// add a new table entry, we don't yet knwo which file it belongs // add a new table entry, we don't yet knwo which file it belongs
// to so we need to add it to the update table too // to so we need to add it to the update table too
// note the alloc, actual act is delayed; see above // note the alloc, actual act is delayed; see above
ins->oprnd1()->setResultLive(); if (vtuneHandle) {
uint32_t currentLine = (uint32_t) ins->oprnd1()->immI(); uint32_t currentLine = (uint32_t) ins->oprnd1()->immI();
cgen->jitLineNumUpdate(currentLine); vtuneLine(vtuneHandle, currentLine, _nIns);
cgen->jitAddRecord((uintptr_t)_nIns, 0, currentLine, true); }
break; break;
} }
#endif // VTUNE #endif // VMCFG_VTUNE
} }
#ifdef NJ_VERBOSE #ifdef NJ_VERBOSE
@ -1968,10 +1985,6 @@ namespace nanojit
if (error()) if (error())
return; return;
#ifdef VTUNE
cgen->jitCodePosUpdate((uintptr_t)_nIns);
#endif
// check that all is well (don't check in exit paths since its more complicated) // check that all is well (don't check in exit paths since its more complicated)
debug_only( pageValidate(); ) debug_only( pageValidate(); )
debug_only( resourceConsistencyCheck(); ) debug_only( resourceConsistencyCheck(); )
@ -2073,24 +2086,23 @@ namespace nanojit
VMPI_sprintf(s, "RR"); VMPI_sprintf(s, "RR");
s += VMPI_strlen(s); s += VMPI_strlen(s);
for (Register r = FirstReg; r <= LastReg; r = nextreg(r)) { RegisterMask active = _allocator.activeMask();
for (Register r = lsReg(active); active != 0; r = nextLsReg(active, r)) {
LIns *ins = _allocator.getActive(r); LIns *ins = _allocator.getActive(r);
if (ins) { NanoAssertMsg(!_allocator.isFree(r),
NanoAssertMsg(!_allocator.isFree(r), "Coding error; register is both free and active! " );
"Coding error; register is both free and active! " ); RefBuf b;
RefBuf b; const char* n = _thisfrag->lirbuf->printer->formatRef(&b, ins);
const char* n = _thisfrag->lirbuf->printer->formatRef(&b, ins);
if (ins->isop(LIR_paramp) && ins->paramKind()==1 && if (ins->isop(LIR_paramp) && ins->paramKind()==1 &&
r == Assembler::savedRegs[ins->paramArg()]) r == Assembler::savedRegs[ins->paramArg()])
{ {
// dont print callee-saved regs that arent used // dont print callee-saved regs that arent used
continue; continue;
}
VMPI_sprintf(s, " %s(%s)", gpn(r), n);
s += VMPI_strlen(s);
} }
VMPI_sprintf(s, " %s(%s)", gpn(r), n);
s += VMPI_strlen(s);
} }
output(); output();
} }
@ -2236,26 +2248,23 @@ namespace nanojit
Register tosave[LastReg-FirstReg+1]; Register tosave[LastReg-FirstReg+1];
int len=0; int len=0;
RegAlloc *regs = &_allocator; RegAlloc *regs = &_allocator;
for (Register r = FirstReg; r <= LastReg; r = nextreg(r)) { RegisterMask evict_set = regs->activeMask() & GpRegs & ~ignore;
if (rmask(r) & GpRegs & ~ignore) { for (Register r = lsReg(evict_set); evict_set; r = nextLsReg(evict_set, r)) {
LIns *ins = regs->getActive(r); LIns *ins = regs->getActive(r);
if (ins) { if (canRemat(ins)) {
if (canRemat(ins)) { NanoAssert(ins->getReg() == r);
NanoAssert(ins->getReg() == r); evict(ins);
evict(ins); }
} else {
else { int32_t pri = regs->getPriority(r);
int32_t pri = regs->getPriority(r); // add to heap by adding to end and bubbling up
// add to heap by adding to end and bubbling up int j = len++;
int j = len++; while (j > 0 && pri > regs->getPriority(tosave[j/2])) {
while (j > 0 && pri > regs->getPriority(tosave[j/2])) { tosave[j] = tosave[j/2];
tosave[j] = tosave[j/2]; j /= 2;
j /= 2;
}
NanoAssert(size_t(j) < sizeof(tosave)/sizeof(tosave[0]));
tosave[j] = r;
}
} }
NanoAssert(size_t(j) < sizeof(tosave)/sizeof(tosave[0]));
tosave[j] = r;
} }
} }
@ -2297,24 +2306,12 @@ namespace nanojit
evictSomeActiveRegs(~(SavedRegs | ignore)); evictSomeActiveRegs(~(SavedRegs | ignore));
} }
void Assembler::evictAllActiveRegs() // Generate code to restore any registers in 'regs' that are currently active,
{
// generate code to restore callee saved registers
// @todo speed this up
for (Register r = FirstReg; r <= LastReg; r = nextreg(r)) {
evictIfActive(r);
}
}
void Assembler::evictSomeActiveRegs(RegisterMask regs) void Assembler::evictSomeActiveRegs(RegisterMask regs)
{ {
// generate code to restore callee saved registers RegisterMask evict_set = regs & _allocator.activeMask();
// @todo speed this up for (Register r = lsReg(evict_set); evict_set; r = nextLsReg(evict_set, r))
for (Register r = FirstReg; r <= LastReg; r = nextreg(r)) { evict(_allocator.getActive(r));
if ((rmask(r) & regs)) {
evictIfActive(r);
}
}
} }
/** /**
@ -2337,19 +2334,13 @@ namespace nanojit
// Do evictions and pops first. // Do evictions and pops first.
verbose_only(bool shouldMention=false; ) verbose_only(bool shouldMention=false; )
// The obvious thing to do here is to iterate from FirstReg to LastReg. // The obvious thing to do here is to iterate from FirstReg to LastReg.
// viz: for (Register r = FirstReg; r <= LastReg; r = nextreg(r)) ...
// However, on ARM that causes lower-numbered integer registers // However, on ARM that causes lower-numbered integer registers
// to be be saved at higher addresses, which inhibits the formation // to be be saved at higher addresses, which inhibits the formation
// of load/store multiple instructions. Hence iterate the loop the // of load/store multiple instructions. Hence iterate the loop the
// other way. The "r <= LastReg" guards against wraparound in // other way.
// the case where Register is treated as unsigned and FirstReg is zero. RegisterMask reg_set = _allocator.activeMask() | saved.activeMask();
// for (Register r = msReg(reg_set); reg_set; r = nextMsReg(reg_set, r))
// Note, the loop var is deliberately typed as int (*not* Register)
// to outsmart compilers that will otherwise report
// "error: comparison is always true due to limited range of data type".
for (int ri = LastReg; ri >= FirstReg && ri <= LastReg; ri = int(prevreg(Register(ri))))
{ {
Register const r = Register(ri);
LIns* curins = _allocator.getActive(r); LIns* curins = _allocator.getActive(r);
LIns* savedins = saved.getActive(r); LIns* savedins = saved.getActive(r);
if (curins != savedins) if (curins != savedins)
@ -2403,7 +2394,8 @@ namespace nanojit
// Do evictions and pops first. // Do evictions and pops first.
verbose_only(bool shouldMention=false; ) verbose_only(bool shouldMention=false; )
for (Register r = FirstReg; r <= LastReg; r = nextreg(r)) RegisterMask reg_set = _allocator.activeMask() | saved.activeMask();
for (Register r = lsReg(reg_set); reg_set; r = nextLsReg(reg_set, r))
{ {
LIns* curins = _allocator.getActive(r); LIns* curins = _allocator.getActive(r);
LIns* savedins = saved.getActive(r); LIns* savedins = saved.getActive(r);
@ -2453,15 +2445,14 @@ namespace nanojit
NanoAssert(allow); NanoAssert(allow);
LIns *ins, *vic = 0; LIns *ins, *vic = 0;
int allow_pri = 0x7fffffff; int allow_pri = 0x7fffffff;
for (Register r = FirstReg; r <= LastReg; r = nextreg(r)) RegisterMask vic_set = allow & _allocator.activeMask();
for (Register r = lsReg(vic_set); vic_set; r = nextLsReg(vic_set, r))
{ {
if ((allow & rmask(r)) && (ins = _allocator.getActive(r)) != 0) ins = _allocator.getActive(r);
{ int pri = canRemat(ins) ? 0 : _allocator.getPriority(r);
int pri = canRemat(ins) ? 0 : _allocator.getPriority(r); if (!vic || pri < allow_pri) {
if (!vic || pri < allow_pri) { vic = ins;
vic = ins; allow_pri = pri;
allow_pri = pri;
}
} }
} }
NanoAssert(vic != 0); NanoAssert(vic != 0);

Просмотреть файл

@ -196,7 +196,7 @@ namespace nanojit
typedef HashMap<uint64_t, uint64_t*> ImmDPoolMap; typedef HashMap<uint64_t, uint64_t*> ImmDPoolMap;
#endif #endif
#ifdef VTUNE #ifdef VMCFG_VTUNE
class avmplus::CodegenLIR; class avmplus::CodegenLIR;
#endif #endif
@ -271,8 +271,8 @@ namespace nanojit
#endif // NJ_VERBOSE #endif // NJ_VERBOSE
public: public:
#ifdef VTUNE #ifdef VMCFG_VTUNE
avmplus::CodegenLIR *cgen; void* vtuneHandle;
#endif #endif
Assembler(CodeAlloc& codeAlloc, Allocator& dataAlloc, Allocator& alloc, AvmCore* core, LogControl* logc, const Config& config); Assembler(CodeAlloc& codeAlloc, Allocator& dataAlloc, Allocator& alloc, AvmCore* core, LogControl* logc, const Config& config);
@ -315,7 +315,11 @@ namespace nanojit
Register registerAlloc(LIns* ins, RegisterMask allow, RegisterMask prefer); Register registerAlloc(LIns* ins, RegisterMask allow, RegisterMask prefer);
Register registerAllocTmp(RegisterMask allow); Register registerAllocTmp(RegisterMask allow);
void registerResetAll(); void registerResetAll();
void evictAllActiveRegs(); void evictAllActiveRegs() {
// The evicted set will be be intersected with activeSet(),
// so use an all-1s mask to avoid an extra load or call.
evictSomeActiveRegs(~RegisterMask(0));
}
void evictSomeActiveRegs(RegisterMask regs); void evictSomeActiveRegs(RegisterMask regs);
void evictScratchRegsExcept(RegisterMask ignore); void evictScratchRegsExcept(RegisterMask ignore);
void intersectRegisterState(RegAlloc& saved); void intersectRegisterState(RegAlloc& saved);

Просмотреть файл

@ -47,7 +47,11 @@
namespace nanojit namespace nanojit
{ {
static const bool verbose = false; static const bool verbose = false;
#if defined(NANOJIT_ARM) #ifdef VMCFG_VTUNE
// vtune jit profiling api can't handle non-contiguous methods,
// so make the allocation size huge to avoid non-contiguous methods
static const int pagesPerAlloc = 128; // 1MB
#elif defined(NANOJIT_ARM)
// ARM requires single-page allocations, due to the constant pool that // ARM requires single-page allocations, due to the constant pool that
// lives on each page that must be reachable by a 4kb pcrel load. // lives on each page that must be reachable by a 4kb pcrel load.
static const int pagesPerAlloc = 1; static const int pagesPerAlloc = 1;

Просмотреть файл

@ -1976,13 +1976,16 @@ namespace nanojit
m_capNL[LIns3] = 16; m_capNL[LIns3] = 16;
m_capNL[LInsCall] = 64; m_capNL[LInsCall] = 64;
for (NLKind nlkind = LInsFirst; nlkind <= LInsLast; nlkind = nextNLKind(nlkind)) for (NLKind nlkind = LInsFirst; nlkind <= LInsLast; nlkind = nextNLKind(nlkind)) {
m_listNL[nlkind] = new (alloc) LIns*[m_capNL[nlkind]]; m_listNL[nlkind] = new (alloc) LIns*[m_capNL[nlkind]];
m_usedNL[nlkind] = 1; // Force memset in clearAll().
}
// Note that this allocates the CONST and MULTIPLE tables as well. // Note that this allocates the CONST and MULTIPLE tables as well.
for (CseAcc a = 0; a < CSE_NUM_USED_ACCS; a++) { for (CseAcc a = 0; a < CSE_NUM_USED_ACCS; a++) {
m_capL[a] = 16; m_capL[a] = 16;
m_listL[a] = new (alloc) LIns*[m_capL[a]]; m_listL[a] = new (alloc) LIns*[m_capL[a]];
m_usedL[a] = 1; // Force memset(0) in first clearAll().
} }
clearAll(); clearAll();
@ -2484,7 +2487,7 @@ namespace nanojit
// this function. // this function.
AccSet a = storesSinceLastLoad & ((1 << EMB_NUM_USED_ACCS) - 1); AccSet a = storesSinceLastLoad & ((1 << EMB_NUM_USED_ACCS) - 1);
while (a) { while (a) {
int acc = msbSet(a); int acc = msbSet32(a);
clearL((CseAcc)acc); clearL((CseAcc)acc);
a &= ~(1 << acc); a &= ~(1 << acc);
} }
@ -3038,7 +3041,7 @@ namespace nanojit
case LIR_file: case LIR_file:
case LIR_line: case LIR_line:
// XXX: not sure about these ones. Ignore for the moment. // These will never get hit since VTUNE implies !DEBUG. Ignore for the moment.
nArgs = 0; nArgs = 0;
break; break;

Просмотреть файл

@ -289,32 +289,9 @@ namespace nanojit
struct MiniAccSet { MiniAccSetVal val; }; struct MiniAccSet { MiniAccSetVal val; };
static const MiniAccSet MINI_ACCSET_MULTIPLE = { 99 }; static const MiniAccSet MINI_ACCSET_MULTIPLE = { 99 };
#if defined(_WIN32) && (_MSC_VER >= 1300) && (defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64))
extern "C" unsigned char _BitScanReverse(unsigned long * Index, unsigned long Mask);
# pragma intrinsic(_BitScanReverse)
// Returns the index of the most significant bit that is set.
static int msbSet(uint32_t x) {
unsigned long idx;
_BitScanReverse(&idx, (unsigned long)(x | 1)); // the '| 1' ensures a 0 result when x==0
return idx;
}
#elif (__GNUC__ >= 4) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
static int msbSet(uint32_t x) {
return 31 - __builtin_clz(x | 1);
}
#else
static int msbSet(uint32_t x) { // slow fallback version
for (int i = 31; i >= 0; i--)
if ((1 << i) & x)
return i;
return 0;
}
#endif
static MiniAccSet compressAccSet(AccSet accSet) { static MiniAccSet compressAccSet(AccSet accSet) {
if (isSingletonAccSet(accSet)) { if (isSingletonAccSet(accSet)) {
MiniAccSet ret = { uint8_t(msbSet(accSet)) }; MiniAccSet ret = { uint8_t(msbSet32(accSet)) };
return ret; return ret;
} }
@ -1143,8 +1120,12 @@ namespace nanojit
// Nb: the types of these bitfields are all 32-bit integers to ensure // Nb: the types of these bitfields are all 32-bit integers to ensure
// they are fully packed on Windows, sigh. Also, 'loadQual' is // they are fully packed on Windows, sigh. Also, 'loadQual' is
// unsigned to ensure the values 0, 1, and 2 all fit in 2 bits. // unsigned to ensure the values 0, 1, and 2 all fit in 2 bits.
int32_t disp:16; //
int32_t miniAccSetVal:8; // Nb: explicit signed keyword for bitfield types is required,
// some compilers may treat them as unsigned without it.
// See Bugzilla 584219 comment #18
signed int disp:16;
signed int miniAccSetVal:8;
uint32_t loadQual:2; uint32_t loadQual:2;
LIns* oprnd_1; LIns* oprnd_1;

Просмотреть файл

@ -99,15 +99,6 @@
namespace nanojit { namespace nanojit {
inline Register nextreg(Register r) {
return Register(r+1);
}
inline Register prevreg(Register r) {
return Register(r-1);
}
class Fragment; class Fragment;
struct SideExit; struct SideExit;
struct SwitchInfo; struct SwitchInfo;
@ -152,9 +143,9 @@ namespace nanojit {
#define asm_output(...) do { \ #define asm_output(...) do { \
if (_logc->lcbits & LC_Native) { \ if (_logc->lcbits & LC_Native) { \
outline[0]='\0'; \ outline[0]='\0'; \
VMPI_sprintf(outline, "%p ", _nIns); \ VMPI_sprintf(outline, "%p ", _nIns); \
sprintf(&outline[13], ##__VA_ARGS__); \ VMPI_sprintf(outline+VMPI_strlen(outline), ##__VA_ARGS__); \
output(); \ output(); \
} \ } \
} while (0) /* no semi */ } while (0) /* no semi */
#define gpn(r) regNames[(r)] #define gpn(r) regNames[(r)]

Просмотреть файл

@ -43,7 +43,6 @@
#ifdef UNDER_CE #ifdef UNDER_CE
#include <cmnintrin.h> #include <cmnintrin.h>
extern "C" bool blx_lr_broken();
#endif #endif
#if defined(FEATURE_NANOJIT) && defined(NANOJIT_ARM) #if defined(FEATURE_NANOJIT) && defined(NANOJIT_ARM)
@ -114,13 +113,14 @@ Assembler::CountLeadingZeroes(uint32_t data)
// ARMCC can do this with an intrinsic. // ARMCC can do this with an intrinsic.
leading_zeroes = __clz(data); leading_zeroes = __clz(data);
// current Android GCC compiler incorrectly refuses to compile 'clz' for armv5 #elif defined(__GNUC__) && (NJ_COMPILER_ARM_ARCH >= 5)
// (even though this is a legal instruction there). Since we currently only compile for ARMv5
// for emulation, we don't care too much (but we DO care for ARMv6+ since those are "real"
// devices).
#elif defined(__GNUC__) && !(defined(ANDROID) && __ARM_ARCH__ <= 5)
// GCC can use inline assembler to insert a CLZ instruction. // GCC can use inline assembler to insert a CLZ instruction.
__asm ( __asm (
#if defined(ANDROID) && (NJ_COMPILER_ARM_ARCH < 7)
// On Android gcc compiler, the clz instruction is not supported with a
// target smaller than armv7, despite it being legal for armv5+.
" .arch armv7-a\n"
#endif
" clz %0, %1 \n" " clz %0, %1 \n"
: "=r" (leading_zeroes) : "=r" (leading_zeroes)
: "r" (data) : "r" (data)
@ -463,11 +463,6 @@ Assembler::asm_eor_imm(Register rd, Register rn, int32_t imm, int stat /* =0 */)
void void
Assembler::nInit(AvmCore*) Assembler::nInit(AvmCore*)
{ {
#ifdef UNDER_CE
blx_lr_bug = blx_lr_broken();
#else
blx_lr_bug = 0;
#endif
nHints[LIR_calli] = rmask(retRegs[0]); nHints[LIR_calli] = rmask(retRegs[0]);
nHints[LIR_hcalli] = rmask(retRegs[1]); nHints[LIR_hcalli] = rmask(retRegs[1]);
nHints[LIR_paramp] = PREFER_SPECIAL; nHints[LIR_paramp] = PREFER_SPECIAL;
@ -628,7 +623,7 @@ Assembler::asm_arg(ArgType ty, LIns* arg, Register& r, int& stkd)
// pre-assign registers R0-R3 for arguments (if they fit) // pre-assign registers R0-R3 for arguments (if they fit)
if (r < R4) { if (r < R4) {
asm_regarg(ty, arg, r); asm_regarg(ty, arg, r);
r = nextreg(r); r = Register(r + 1);
} else { } else {
asm_stkarg(arg, stkd); asm_stkarg(arg, stkd);
stkd += 4; stkd += 4;
@ -662,14 +657,14 @@ Assembler::asm_arg_64(LIns* arg, Register& r, int& stkd)
// R3 if r is R3 to start with, and will force the argument to go on // R3 if r is R3 to start with, and will force the argument to go on
// the stack. // the stack.
if ((r == R1) || (r == R3)) { if ((r == R1) || (r == R3)) {
r = nextreg(r); r = Register(r + 1);
} }
#endif #endif
if (r < R3) { if (r < R3) {
Register ra = r; Register ra = r;
Register rb = nextreg(r); Register rb = Register(r + 1);
r = nextreg(rb); r = Register(rb + 1);
#ifdef NJ_ARM_EABI #ifdef NJ_ARM_EABI
// EABI requires that 64-bit arguments are aligned on even-numbered // EABI requires that 64-bit arguments are aligned on even-numbered
@ -692,12 +687,8 @@ Assembler::asm_arg_64(LIns* arg, Register& r, int& stkd)
// We only have one register left, but the legacy ABI requires that we // We only have one register left, but the legacy ABI requires that we
// put 32 bits of the argument in the register (R3) and the remaining // put 32 bits of the argument in the register (R3) and the remaining
// 32 bits on the stack. // 32 bits on the stack.
Register ra = r; Register ra = r; // R3
r = nextreg(r); r = R4;
// This really just checks that nextreg() works properly, as we know
// that r was previously R3.
NanoAssert(r == R4);
// We're splitting the argument between registers and the stack. This // We're splitting the argument between registers and the stack. This
// must be the first time that the stack is used, so stkd must be at 0. // must be the first time that the stack is used, so stkd must be at 0.
@ -912,26 +903,17 @@ Assembler::asm_call(LIns* ins)
outputf(" %p:", _nIns); outputf(" %p:", _nIns);
) )
// Direct call: on v5 and above (where the calling sequence doesn't
// corrupt LR until the actual branch instruction), we can avoid an
// interlock in the "long" branch sequence by manually loading the
// target address into LR ourselves before setting up the parameters
// in other registers.
BranchWithLink((NIns*)ci->_address); BranchWithLink((NIns*)ci->_address);
} else { } else {
// Indirect call: we assign the address arg to LR since it's not // Indirect call: we assign the address arg to LR
// used for regular arguments, and is otherwise scratch since it's #ifdef UNDER_CE
// clobberred by the call. On v4/v4T, where we have to manually do // workaround for msft device emulator bug (blx lr emulated as no-op)
// the equivalent of a BLX, move LR into IP before corrupting LR underrunProtect(8);
// with the return address. BLX(IP);
if (blx_lr_bug) { MOV(IP, LR);
// workaround for msft device emulator bug (blx lr emulated as no-op) #else
underrunProtect(8); BLX(LR);
BLX(IP); #endif
MOV(IP,LR);
} else {
BLX(LR);
}
asm_regarg(ARGTYPE_I, ins->arg(--argc), LR); asm_regarg(ARGTYPE_I, ins->arg(--argc), LR);
} }
@ -981,8 +963,6 @@ Assembler::nRegisterResetAll(RegAlloc& a)
rmask(R10) | rmask(LR); rmask(R10) | rmask(LR);
if (_config.arm_vfp) if (_config.arm_vfp)
a.free |= FpRegs; a.free |= FpRegs;
debug_only(a.managed = a.free);
} }
static inline ConditionCode static inline ConditionCode
@ -1925,17 +1905,19 @@ Assembler::BLX(Register addr, bool chk /* = true */)
NanoAssert(_config.arm_arch >= 5); NanoAssert(_config.arm_arch >= 5);
NanoAssert(IsGpReg(addr)); NanoAssert(IsGpReg(addr));
#ifdef UNDER_CE
// There is a bug in the WinCE device emulator which stops "BLX LR" from // There is a bug in the WinCE device emulator which stops "BLX LR" from
// working as expected. Assert that we never do that! // working as expected. Assert that we never do that!
if (blx_lr_bug) { NanoAssert(addr != LR); } NanoAssert(addr != LR);
#endif
if (chk) { if (chk) {
underrunProtect(4); underrunProtect(4);
} }
// BLX IP // BLX reg
*(--_nIns) = (NIns)( (COND_AL) | (0x12<<20) | (0xFFF<<8) | (0x3<<4) | (addr) ); *(--_nIns) = (NIns)( (COND_AL) | (0x12<<20) | (0xFFF<<8) | (0x3<<4) | (addr) );
asm_output("blx ip"); asm_output("blx %s", gpn(addr));
} }
// Emit the code required to load a memory address into a register as follows: // Emit the code required to load a memory address into a register as follows:
@ -2777,14 +2759,13 @@ Assembler::asm_cmov(LIns* ins)
Register rf = findRegFor(iffalse, allow & ~rmask(rr)); Register rf = findRegFor(iffalse, allow & ~rmask(rr));
// If 'iftrue' isn't in a register, it can be clobbered by 'ins'.
Register rt = iftrue->isInReg() ? iftrue->getReg() : rr;
if (ins->isop(LIR_cmovd)) { if (ins->isop(LIR_cmovd)) {
NIns* target = _nIns; NIns* target = _nIns;
asm_nongp_copy(rr, rf); asm_nongp_copy(rr, rf);
asm_branch(false, condval, target); asm_branch(false, condval, target);
// If 'iftrue' isn't in a register, it can be clobbered by 'ins'.
Register rt = iftrue->isInReg() ? iftrue->getReg() : rr;
if (rr != rt) if (rr != rt)
asm_nongp_copy(rr, rt); asm_nongp_copy(rr, rt);
freeResourcesOf(ins); freeResourcesOf(ins);
@ -2795,9 +2776,6 @@ Assembler::asm_cmov(LIns* ins)
return; return;
} }
// If 'iftrue' isn't in a register, it can be clobbered by 'ins'.
Register rt = iftrue->isInReg() ? iftrue->getReg() : rr;
// WARNING: We cannot generate any code that affects the condition // WARNING: We cannot generate any code that affects the condition
// codes between the MRcc generation here and the asm_cmp() call // codes between the MRcc generation here and the asm_cmp() call
// below. See asm_cmp() for more details. // below. See asm_cmp() for more details.

Просмотреть файл

@ -240,7 +240,6 @@ verbose_only( extern const char* shiftNames[]; )
inline uint32_t CountLeadingZeroes(uint32_t data); \ inline uint32_t CountLeadingZeroes(uint32_t data); \
int * _nSlot; \ int * _nSlot; \
int * _nExitSlot; \ int * _nExitSlot; \
bool blx_lr_bug; \
int max_out_args; /* bytes */ int max_out_args; /* bytes */
#define IMM32(imm) *(--_nIns) = (NIns)((imm)); #define IMM32(imm) *(--_nIns) = (NIns)((imm));

Просмотреть файл

@ -481,8 +481,8 @@ namespace nanojit
// where we are // where we are
if (stkd & 4) { if (stkd & 4) {
if (stkd < 16) { if (stkd < 16) {
r = nextreg(r); r = Register(r + 1);
fr = nextreg(fr); fr = Register(fr + 1);
} }
stkd += 4; stkd += 4;
} }
@ -496,11 +496,11 @@ namespace nanojit
// Move it to the integer pair // Move it to the integer pair
Register fpupair = arg->getReg(); Register fpupair = arg->getReg();
Register intpair = fr; Register intpair = fr;
MFC1(mswregpair(intpair), nextreg(fpupair)); // Odd fpu register contains sign,expt,manthi MFC1(mswregpair(intpair), Register(fpupair + 1)); // Odd fpu register contains sign,expt,manthi
MFC1(lswregpair(intpair), fpupair); // Even fpu register contains mantlo MFC1(lswregpair(intpair), fpupair); // Even fpu register contains mantlo
} }
r = nextreg(nextreg(r)); r = Register(r + 2);
fr = nextreg(nextreg(fr)); fr = Register(fr + 2);
} }
else else
asm_stkarg(arg, stkd); asm_stkarg(arg, stkd);
@ -1578,8 +1578,8 @@ namespace nanojit
NanoAssert(ty == ARGTYPE_I || ty == ARGTYPE_UI); NanoAssert(ty == ARGTYPE_I || ty == ARGTYPE_UI);
if (stkd < 16) { if (stkd < 16) {
asm_regarg(ty, arg, r); asm_regarg(ty, arg, r);
fr = nextreg(fr); fr = Register(fr + 1);
r = nextreg(r); r = Register(r + 1);
} }
else else
asm_stkarg(arg, stkd); asm_stkarg(arg, stkd);
@ -1684,7 +1684,6 @@ namespace nanojit
regs.free = GpRegs; regs.free = GpRegs;
if (cpu_has_fpu) if (cpu_has_fpu)
regs.free |= FpRegs; regs.free |= FpRegs;
debug_only(regs.managed = regs.free;)
} }
#define signextend16(s) ((int32_t(s)<<16)>>16) #define signextend16(s) ((int32_t(s)<<16)>>16)

Просмотреть файл

@ -736,7 +736,7 @@ namespace nanojit
// GP arg // GP arg
if (r <= R10) { if (r <= R10) {
asm_regarg(ty, arg, r); asm_regarg(ty, arg, r);
r = nextreg(r); r = Register(r + 1);
param_size += sizeof(void*); param_size += sizeof(void*);
} else { } else {
// put arg on stack // put arg on stack
@ -746,11 +746,11 @@ namespace nanojit
// double // double
if (fr <= F13) { if (fr <= F13) {
asm_regarg(ty, arg, fr); asm_regarg(ty, arg, fr);
fr = nextreg(fr); fr = Register(fr + 1);
#ifdef NANOJIT_64BIT #ifdef NANOJIT_64BIT
r = nextreg(r); r = Register(r + 1);
#else #else
r = nextreg(nextreg(r)); // skip 2 gpr's r = Register(r + 2); // skip 2 gpr's
#endif #endif
param_size += sizeof(double); param_size += sizeof(double);
} else { } else {
@ -1040,11 +1040,11 @@ namespace nanojit
} }
} }
void Assembler::asm_dasq(LIns *ins) { void Assembler::asm_dasq(LIns*) {
TODO(asm_dasq); TODO(asm_dasq);
} }
void Assembler::asm_qasd(LIns *ins) { void Assembler::asm_qasd(LIns*) {
TODO(asm_qasd); TODO(asm_qasd);
} }
@ -1390,7 +1390,6 @@ namespace nanojit
void Assembler::nRegisterResetAll(RegAlloc &regs) { void Assembler::nRegisterResetAll(RegAlloc &regs) {
regs.clear(); regs.clear();
regs.free = SavedRegs | 0x1ff8 /* R3-12 */ | 0x3ffe00000000LL /* F1-13 */; regs.free = SavedRegs | 0x1ff8 /* R3-12 */ | 0x3ffe00000000LL /* F1-13 */;
debug_only(regs.managed = regs.free);
} }
#ifdef NANOJIT_64BIT #ifdef NANOJIT_64BIT

Просмотреть файл

@ -234,7 +234,6 @@ namespace nanojit
{ {
a.clear(); a.clear();
a.free = GpRegs | FpRegs; a.free = GpRegs | FpRegs;
debug_only( a.managed = a.free; )
} }
void Assembler::nPatchBranch(NIns* branch, NIns* location) void Assembler::nPatchBranch(NIns* branch, NIns* location)
@ -537,7 +536,7 @@ namespace nanojit
return at; return at;
} }
NIns* Assembler::asm_branch_ov(LOpcode, NIns* targ) NIns* Assembler::asm_branch_ov(LOpcode op, NIns* targ)
{ {
NIns* at = 0; NIns* at = 0;
underrunProtect(32); underrunProtect(32);
@ -552,7 +551,10 @@ namespace nanojit
} }
NOP(); NOP();
BVS(0, tt); if( op == LIR_mulxovi || op == LIR_muljovi )
BNE(0, tt);
else
BVS(0, tt);
return at; return at;
} }
@ -645,7 +647,7 @@ namespace nanojit
Register rb = deprecated_UnknownReg; Register rb = deprecated_UnknownReg;
RegisterMask allow = GpRegs; RegisterMask allow = GpRegs;
bool forceReg = (op == LIR_muli || op == LIR_mulxovi || !rhs->isImmI()); bool forceReg = (op == LIR_muli || op == LIR_mulxovi || op == LIR_muljovi || !rhs->isImmI());
if (lhs != rhs && forceReg) if (lhs != rhs && forceReg)
{ {
@ -679,8 +681,14 @@ namespace nanojit
ADDCC(rr, rb, rr); ADDCC(rr, rb, rr);
else if (op == LIR_subi || op == LIR_subxovi) else if (op == LIR_subi || op == LIR_subxovi)
SUBCC(rr, rb, rr); SUBCC(rr, rb, rr);
else if (op == LIR_muli || op == LIR_mulxovi) else if (op == LIR_muli)
MULX(rr, rb, rr); SMULCC(rr, rb, rr);
else if (op == LIR_mulxovi || op == LIR_muljovi) {
SUBCC(L4, L6, L4);
SRAI(rr, 31, L6);
RDY(L4);
SMULCC(rr, rb, rr);
}
else if (op == LIR_andi) else if (op == LIR_andi)
AND(rr, rb, rr); AND(rr, rb, rr);
else if (op == LIR_ori) else if (op == LIR_ori)

Просмотреть файл

@ -737,10 +737,10 @@ namespace nanojit
asm_output("movvs %d, %s", simm11, gpn(rd)); \ asm_output("movvs %d, %s", simm11, gpn(rd)); \
} while (0) } while (0)
#define MULX(rs1, rs2, rd) \ #define SMULCC(rs1, rs2, rd) \
do { \ do { \
Format_3_1(2, rd, 0x9, rs1, 0, rs2); \ Format_3_1(2, rd, 0x1b, rs1, 0, rs2); \
asm_output("mul %s, %s, %s", gpn(rs1), gpn(rs2), gpn(rd)); \ asm_output("smulcc %s, %s, %s", gpn(rs1), gpn(rs2), gpn(rd)); \
} while (0) } while (0)
#define NOP() \ #define NOP() \
@ -773,6 +773,12 @@ namespace nanojit
asm_output("andcc %s, %s, %s", gpn(rs1), gpn(rs2), gpn(rd)); \ asm_output("andcc %s, %s, %s", gpn(rs1), gpn(rs2), gpn(rd)); \
} while (0) } while (0)
#define RDY(rd) \
do { \
Format_3_1(2, rd, 0x28, 0, 0, 0); \
asm_output("rdy %s", gpn(rd)); \
} while (0)
#define RESTORE(rs1, rs2, rd) \ #define RESTORE(rs1, rs2, rd) \
do { \ do { \
Format_3_1(2, rd, 0x3D, rs1, 0, rs2); \ Format_3_1(2, rd, 0x3D, rs1, 0, rs2); \
@ -809,6 +815,12 @@ namespace nanojit
asm_output("sra %s, %s, %s", gpn(rs1), gpn(rs2), gpn(rd)); \ asm_output("sra %s, %s, %s", gpn(rs1), gpn(rs2), gpn(rd)); \
} while (0) } while (0)
#define SRAI(rs1, shcnt32, rd) \
do { \
Format_3_6(2, rd, 0x27, rs1, shcnt32); \
asm_output("sra %s, %d, %s", gpn(rs1), shcnt32, gpn(rd)); \
} while (0)
#define SRL(rs1, rs2, rd) \ #define SRL(rs1, rs2, rd) \
do { \ do { \
Format_3_5(2, rd, 0x26, rs1, 0, rs2); \ Format_3_5(2, rd, 0x26, rs1, 0, rs2); \

Просмотреть файл

@ -966,7 +966,7 @@ namespace nanojit
else if (ty == ARGTYPE_D && fr < XMM8) { else if (ty == ARGTYPE_D && fr < XMM8) {
// double goes in next available XMM register // double goes in next available XMM register
asm_regarg(ty, arg, fr); asm_regarg(ty, arg, fr);
fr = nextreg(fr); fr = Register(fr + 1);
} }
#endif #endif
else { else {
@ -1119,14 +1119,13 @@ namespace nanojit
Register rf = findRegFor(iffalse, allow & ~rmask(rr)); Register rf = findRegFor(iffalse, allow & ~rmask(rr));
// If 'iftrue' isn't in a register, it can be clobbered by 'ins'.
Register rt = iftrue->isInReg() ? iftrue->getReg() : rr;
if (ins->isop(LIR_cmovd)) { if (ins->isop(LIR_cmovd)) {
NIns* target = _nIns; NIns* target = _nIns;
asm_nongp_copy(rr, rf); asm_nongp_copy(rr, rf);
asm_branch(false, cond, target); asm_branch(false, cond, target);
// If 'iftrue' isn't in a register, it can be clobbered by 'ins'.
Register rt = iftrue->isInReg() ? iftrue->getReg() : rr;
if (rr != rt) if (rr != rt)
asm_nongp_copy(rr, rt); asm_nongp_copy(rr, rt);
freeResourcesOf(ins); freeResourcesOf(ins);
@ -1137,9 +1136,6 @@ namespace nanojit
return; return;
} }
// If 'iftrue' isn't in a register, it can be clobbered by 'ins'.
Register rt = iftrue->isInReg() ? iftrue->getReg() : rr;
// WARNING: We cannot generate any code that affects the condition // WARNING: We cannot generate any code that affects the condition
// codes between the MRcc generation here and the asm_cmp() call // codes between the MRcc generation here and the asm_cmp() call
// below. See asm_cmp() for more details. // below. See asm_cmp() for more details.
@ -1905,7 +1901,6 @@ namespace nanojit
#else #else
a.free = 0xffffffff & ~(1<<RSP | 1<<RBP); a.free = 0xffffffff & ~(1<<RSP | 1<<RBP);
#endif #endif
debug_only( a.managed = a.free; )
} }
void Assembler::nPatchBranch(NIns *patch, NIns *target) { void Assembler::nPatchBranch(NIns *patch, NIns *target) {

Просмотреть файл

@ -1112,7 +1112,6 @@ namespace nanojit
a.free = SavedRegs | ScratchRegs; a.free = SavedRegs | ScratchRegs;
if (!_config.i386_sse2) if (!_config.i386_sse2)
a.free &= ~XmmRegs; a.free &= ~XmmRegs;
debug_only( a.managed = a.free; )
} }
void Assembler::nPatchBranch(NIns* branch, NIns* targ) void Assembler::nPatchBranch(NIns* branch, NIns* targ)
@ -2059,14 +2058,13 @@ namespace nanojit
Register rf = findRegFor(iffalse, allow & ~rmask(rr)); Register rf = findRegFor(iffalse, allow & ~rmask(rr));
// If 'iftrue' isn't in a register, it can be clobbered by 'ins'.
Register rt = iftrue->isInReg() ? iftrue->getReg() : rr;
if (ins->isop(LIR_cmovd)) { if (ins->isop(LIR_cmovd)) {
NIns* target = _nIns; NIns* target = _nIns;
asm_nongp_copy(rr, rf); asm_nongp_copy(rr, rf);
asm_branch(false, condval, target); asm_branch(false, condval, target);
// If 'iftrue' isn't in a register, it can be clobbered by 'ins'.
Register rt = iftrue->isInReg() ? iftrue->getReg() : rr;
if (rr != rt) if (rr != rt)
asm_nongp_copy(rr, rt); asm_nongp_copy(rr, rt);
freeResourcesOf(ins); freeResourcesOf(ins);
@ -2077,9 +2075,6 @@ namespace nanojit
return; return;
} }
// If 'iftrue' isn't in a register, it can be clobbered by 'ins'.
Register rt = iftrue->isInReg() ? iftrue->getReg() : rr;
NanoAssert(ins->isop(LIR_cmovi)); NanoAssert(ins->isop(LIR_cmovi));
// WARNING: We cannot generate any code that affects the condition // WARNING: We cannot generate any code that affects the condition

Просмотреть файл

@ -45,14 +45,6 @@ namespace nanojit
#ifdef _DEBUG #ifdef _DEBUG
uint32_t RegAlloc::countActive()
{
int cnt = 0;
for(Register i=FirstReg; i <= LastReg; i = nextreg(i))
cnt += active[i] ? 1 : 0;
return cnt;
}
bool RegAlloc::isConsistent(Register r, LIns* i) const bool RegAlloc::isConsistent(Register r, LIns* i) const
{ {
NanoAssert(r != deprecated_UnknownReg); NanoAssert(r != deprecated_UnknownReg);

Просмотреть файл

@ -120,9 +120,13 @@ namespace nanojit
return active[r]; return active[r];
} }
debug_only( uint32_t countActive(); ) // Return a mask containing the active registers. For each register
// in this set, getActive(register) will be a nonzero LIns pointer.
RegisterMask activeMask() const {
return ~free & managed;
}
debug_only( bool isConsistent(Register r, LIns* v) const; ) debug_only( bool isConsistent(Register r, LIns* v) const; )
debug_only( RegisterMask managed; ) // the registers managed by the register allocator
// Some basics: // Some basics:
// //
@ -171,10 +175,41 @@ namespace nanojit
// //
LIns* active[LastReg + 1]; // active[r] = LIns that defines r LIns* active[LastReg + 1]; // active[r] = LIns that defines r
int32_t usepri[LastReg + 1]; // used priority. lower = more likely to spill. int32_t usepri[LastReg + 1]; // used priority. lower = more likely to spill.
RegisterMask free; RegisterMask free; // Registers currently free.
RegisterMask managed; // Registers under management (invariant).
int32_t priority; int32_t priority;
DECLARE_PLATFORM_REGALLOC() DECLARE_PLATFORM_REGALLOC()
}; };
// Return the lowest numbered Register in mask.
inline Register lsReg(RegisterMask mask) {
// This is faster than it looks; we rely on the C++ optimizer
// to strip the dead branch and inline just one alternative.
if (sizeof(RegisterMask) == 4)
return (Register) lsbSet32(mask);
else
return (Register) lsbSet64(mask);
}
// Return the highest numbered Register in mask.
inline Register msReg(RegisterMask mask) {
// This is faster than it looks; we rely on the C++ optimizer
// to strip the dead branch and inline just one alternative.
if (sizeof(RegisterMask) == 4)
return (Register) msbSet32(mask);
else
return (Register) msbSet64(mask);
}
// Clear bit r in mask, then return lsReg(mask).
inline Register nextLsReg(RegisterMask& mask, Register r) {
return lsReg(mask &= ~rmask(r));
}
// Clear bit r in mask, then return msReg(mask).
inline Register nextMsReg(RegisterMask& mask, Register r) {
return msReg(mask &= ~rmask(r));
}
} }
#endif // __nanojit_RegAlloc__ #endif // __nanojit_RegAlloc__

Просмотреть файл

@ -41,13 +41,6 @@
typedef void *maddr_ptr; typedef void *maddr_ptr;
#endif #endif
#if defined(AVMPLUS_ARM) && defined(UNDER_CE)
extern "C" bool
blx_lr_broken() {
return false;
}
#endif
using namespace avmplus; using namespace avmplus;
nanojit::Config AvmCore::config; nanojit::Config AvmCore::config;

Просмотреть файл

@ -189,6 +189,121 @@ static inline bool isU32(uintptr_t i) {
#define alignTo(x,s) ((((uintptr_t)(x)))&~(((uintptr_t)s)-1)) #define alignTo(x,s) ((((uintptr_t)(x)))&~(((uintptr_t)s)-1))
#define alignUp(x,s) ((((uintptr_t)(x))+(((uintptr_t)s)-1))&~(((uintptr_t)s)-1)) #define alignUp(x,s) ((((uintptr_t)(x))+(((uintptr_t)s)-1))&~(((uintptr_t)s)-1))
namespace nanojit
{
// Define msbSet32(), lsbSet32(), msbSet64(), and lsbSet64() functions using
// fast find-first-bit instructions intrinsics when available.
// The fall-back implementations use iteration.
#if defined(_WIN32) && (_MSC_VER >= 1300) && (defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64))
extern "C" unsigned char _BitScanForward(unsigned long * Index, unsigned long Mask);
extern "C" unsigned char _BitScanReverse(unsigned long * Index, unsigned long Mask);
# pragma intrinsic(_BitScanForward)
# pragma intrinsic(_BitScanReverse)
// Returns the index of the most significant bit that is set.
static inline int msbSet32(uint32_t x) {
unsigned long idx;
_BitScanReverse(&idx, (unsigned long)(x | 1)); // the '| 1' ensures a 0 result when x==0
return idx;
}
// Returns the index of the least significant bit that is set.
static inline int lsbSet32(uint32_t x) {
unsigned long idx;
_BitScanForward(&idx, (unsigned long)(x | 0x80000000)); // the '| 0x80000000' ensures a 0 result when x==0
return idx;
}
#if defined(_M_AMD64) || defined(_M_X64)
extern "C" unsigned char _BitScanForward64(unsigned long * Index, unsigned __int64 Mask);
extern "C" unsigned char _BitScanReverse64(unsigned long * Index, unsigned __int64 Mask);
# pragma intrinsic(_BitScanForward64)
# pragma intrinsic(_BitScanReverse64)
// Returns the index of the most significant bit that is set.
static inline int msbSet64(uint64_t x) {
unsigned long idx;
_BitScanReverse64(&idx, (unsigned __int64)(x | 1)); // the '| 1' ensures a 0 result when x==0
return idx;
}
// Returns the index of the least significant bit that is set.
static inline int lsbSet64(uint64_t x) {
unsigned long idx;
_BitScanForward64(&idx, (unsigned __int64)(x | 0x8000000000000000LL)); // the '| 0x80000000' ensures a 0 result when x==0
return idx;
}
#else
// Returns the index of the most significant bit that is set.
static int msbSet64(uint64_t x) {
return (x & 0xffffffff00000000LL) ? msbSet32(uint32_t(x >> 32)) + 32 : msbSet32(uint32_t(x));
}
// Returns the index of the least significant bit that is set.
static int lsbSet64(uint64_t x) {
return (x & 0x00000000ffffffffLL) ? lsbSet32(uint32_t(x)) : lsbSet32(uint32_t(x >> 32)) + 32;
}
#endif
#elif (__GNUC__ >= 4) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
// Returns the index of the most significant bit that is set.
static inline int msbSet32(uint32_t x) {
return 31 - __builtin_clz(x | 1);
}
// Returns the index of the least significant bit that is set.
static inline int lsbSet32(uint32_t x) {
return __builtin_ctz(x | 0x80000000);
}
// Returns the index of the most significant bit that is set.
static inline int msbSet64(uint64_t x) {
return 63 - __builtin_clzll(x | 1);
}
// Returns the index of the least significant bit that is set.
static inline int lsbSet64(uint64_t x) {
return __builtin_ctzll(x | 0x8000000000000000LL);
}
#else
// Slow fall-back: return most significant bit set by searching iteratively.
static int msbSet32(uint32_t x) {
for (int i = 31; i >= 0; i--)
if ((1 << i) & x)
return i;
return 0;
}
// Slow fall-back: return least significant bit set by searching iteratively.
static int lsbSet32(uint32_t x) {
for (int i = 0; i < 32; i++)
if ((1 << i) & x)
return i;
return 31;
}
// Slow fall-back: return most significant bit set by searching iteratively.
static int msbSet64(uint64_t x) {
for (int i = 63; i >= 0; i--)
if ((1LL << i) & x)
return i;
return 0;
}
// Slow fall-back: return least significant bit set by searching iteratively.
static int lsbSet64(uint64_t x) {
for (int i = 0; i < 64; i++)
if ((1LL << i) & x)
return i;
return 63;
}
#endif // select compiler
} // namespace nanojit
// ------------------------------------------------------------------- // -------------------------------------------------------------------
// START debug-logging definitions // START debug-logging definitions
// ------------------------------------------------------------------- // -------------------------------------------------------------------