зеркало из https://github.com/mozilla/pjs.git
[not part of build] interior pointer detection, cycle detection.
This commit is contained in:
Родитель
83bad5d9c0
Коммит
b1758848ed
|
@ -1,86 +0,0 @@
|
||||||
public class QuickSort {
|
|
||||||
public interface Comparator {
|
|
||||||
int compare(Object obj1, Object obj2);
|
|
||||||
}
|
|
||||||
|
|
||||||
Comparator itsComparator;
|
|
||||||
|
|
||||||
public QuickSort(Comparator comparator) {
|
|
||||||
itsComparator = comparator;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** This is a generic version of C.A.R Hoare's Quick Sort
|
|
||||||
* algorithm. This will handle arrays that are already
|
|
||||||
* sorted, and arrays with duplicate keys.<BR>
|
|
||||||
*
|
|
||||||
* If you think of a one dimensional array as going from
|
|
||||||
* the lowest index on the left to the highest index on the right
|
|
||||||
* then the parameters to this function are lowest index or
|
|
||||||
* left and highest index or right. The first time you call
|
|
||||||
* this function it will be with the parameters 0, a.length - 1.
|
|
||||||
*
|
|
||||||
* @param a an Object array
|
|
||||||
* @param lo0 left boundary of array partition
|
|
||||||
* @param hi0 right boundary of array partition
|
|
||||||
*/
|
|
||||||
private void qsort(Object[] a, int lo0, int hi0) {
|
|
||||||
int lo = lo0;
|
|
||||||
int hi = hi0;
|
|
||||||
|
|
||||||
if ( hi0 > lo0) {
|
|
||||||
/* Arbitrarily establishing partition element as the midpoint of
|
|
||||||
* the array.
|
|
||||||
*/
|
|
||||||
Object mid = a[ ( lo0 + hi0 ) / 2 ];
|
|
||||||
|
|
||||||
// loop through the array until indices cross
|
|
||||||
while ( lo <= hi ) {
|
|
||||||
/* find the first element that is greater than or equal to
|
|
||||||
* the partition element starting from the left Index.
|
|
||||||
*/
|
|
||||||
while (( lo < hi0 ) && ( itsComparator.compare(a[lo], mid) < 0 ))
|
|
||||||
++lo;
|
|
||||||
|
|
||||||
/* find an element that is smaller than or equal to
|
|
||||||
* the partition element starting from the right Index.
|
|
||||||
*/
|
|
||||||
while (( hi > lo0 ) && ( itsComparator.compare(a[hi], mid) > 0 ))
|
|
||||||
--hi;
|
|
||||||
|
|
||||||
// if the indexes have not crossed, swap
|
|
||||||
if ( lo <= hi ) {
|
|
||||||
swap(a, lo, hi);
|
|
||||||
|
|
||||||
++lo;
|
|
||||||
--hi;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* If the right index has not reached the left side of array
|
|
||||||
* must now sort the left partition.
|
|
||||||
*/
|
|
||||||
if ( lo0 < hi )
|
|
||||||
qsort( a, lo0, hi );
|
|
||||||
|
|
||||||
/* If the left index has not reached the right side of array
|
|
||||||
* must now sort the right partition.
|
|
||||||
*/
|
|
||||||
if ( lo < hi0 )
|
|
||||||
qsort( a, lo, hi0 );
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
private static void swap(Object[] a, int i, int j) {
|
|
||||||
Object temp = a[i];
|
|
||||||
a[i] = a[j];
|
|
||||||
a[j] = temp;
|
|
||||||
}
|
|
||||||
|
|
||||||
public void sort(Object[] a) {
|
|
||||||
qsort(a, 0, a.length - 1);
|
|
||||||
}
|
|
||||||
|
|
||||||
public void sort(Object[] a, int length) {
|
|
||||||
qsort(a, 0, length - 1);
|
|
||||||
}
|
|
||||||
}
|
|
|
@ -62,7 +62,7 @@ class Type {
|
||||||
return "<A HREF=\"#" + mName + "_" + mSize + "\"><" + mName + "></A> (" + mSize + ")";
|
return "<A HREF=\"#" + mName + "_" + mSize + "\"><" + mName + "></A> (" + mSize + ")";
|
||||||
}
|
}
|
||||||
|
|
||||||
static class Comparator implements QuickSort.Comparator {
|
static class Comparator extends QuickSort.Comparator {
|
||||||
public int compare(Object obj1, Object obj2) {
|
public int compare(Object obj1, Object obj2) {
|
||||||
Type t1 = (Type) obj1, t2 = (Type) obj2;
|
Type t1 = (Type) obj1, t2 = (Type) obj2;
|
||||||
return (t1.mSize - t2.mSize);
|
return (t1.mSize - t2.mSize);
|
||||||
|
|
|
@ -90,7 +90,7 @@ public class bloatsoup {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static class ByTypeBloat implements QuickSort.Comparator {
|
static class ByTypeBloat extends QuickSort.Comparator {
|
||||||
Histogram hist;
|
Histogram hist;
|
||||||
|
|
||||||
ByTypeBloat(Histogram hist) {
|
ByTypeBloat(Histogram hist) {
|
||||||
|
@ -108,7 +108,7 @@ public class bloatsoup {
|
||||||
* Sorts the bins of a histogram by (count * typeSize) to show the
|
* Sorts the bins of a histogram by (count * typeSize) to show the
|
||||||
* most pressing leaks.
|
* most pressing leaks.
|
||||||
*/
|
*/
|
||||||
static class HistComparator implements QuickSort.Comparator {
|
static class HistComparator extends QuickSort.Comparator {
|
||||||
Histogram hist;
|
Histogram hist;
|
||||||
|
|
||||||
HistComparator(Histogram hist) {
|
HistComparator(Histogram hist) {
|
||||||
|
@ -124,7 +124,7 @@ public class bloatsoup {
|
||||||
static void printHistogram(PrintWriter out, Histogram hist, String dir) throws IOException {
|
static void printHistogram(PrintWriter out, Histogram hist, String dir) throws IOException {
|
||||||
// sort the types by histogram count.
|
// sort the types by histogram count.
|
||||||
Object[] types = hist.objects();
|
Object[] types = hist.objects();
|
||||||
QuickSort sorter = new QuickSort(new leaksoup.HistComparator(hist));
|
QuickSort sorter = new QuickSort(new HistComparator(hist));
|
||||||
sorter.sort(types);
|
sorter.sort(types);
|
||||||
|
|
||||||
out.println("<PRE>");
|
out.println("<PRE>");
|
||||||
|
|
|
@ -37,24 +37,26 @@
|
||||||
import java.io.*;
|
import java.io.*;
|
||||||
import java.util.*;
|
import java.util.*;
|
||||||
|
|
||||||
class Leak {
|
class Leak extends Reference {
|
||||||
String mAddress;
|
String mName;
|
||||||
Type mType;
|
|
||||||
Object[] mReferences;
|
|
||||||
long mCrawlOffset;
|
long mCrawlOffset;
|
||||||
int mCrawlCount;
|
short mCrawlCount;
|
||||||
int mRefCount;
|
short mRefCount;
|
||||||
|
short mChildCount;
|
||||||
Leak[] mParents;
|
Leak[] mParents;
|
||||||
int mTotalSize;
|
int mTotalSize;
|
||||||
|
boolean mMarked;
|
||||||
|
|
||||||
Leak(String addr, Type type, Object[] refs, long crawlOffset, int crawlCount) {
|
Leak(String addr, Type type, Object[] refs, long crawlOffset, short crawlCount) {
|
||||||
mAddress = addr;
|
super(addr, type, refs);
|
||||||
mReferences = refs;
|
mName = addr;
|
||||||
mCrawlOffset = crawlOffset;
|
mCrawlOffset = crawlOffset;
|
||||||
mCrawlCount = crawlCount;
|
mCrawlCount = crawlCount;
|
||||||
mRefCount = 0;
|
mRefCount = 0;
|
||||||
mType = type;
|
mChildCount = 0;
|
||||||
|
mParents = null;
|
||||||
mTotalSize = 0;
|
mTotalSize = 0;
|
||||||
|
mMarked = false;
|
||||||
}
|
}
|
||||||
|
|
||||||
void setParents(Vector parents) {
|
void setParents(Vector parents) {
|
||||||
|
@ -100,21 +102,114 @@ class Leak {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
public String toString() {
|
void clearMarks() {
|
||||||
return ("<A HREF=\"#" + mAddress + "\">" + mAddress + "</A> [" + mRefCount + "] " + mType + "{" + mTotalSize + "}");
|
// first, clear mark.
|
||||||
|
mMarked = false;
|
||||||
|
|
||||||
|
// then, visit all nodes that haven't been visited,
|
||||||
|
// and clear each one's mark.
|
||||||
|
int count = mReferences.length;
|
||||||
|
for (int i = 0; i < count; ++i) {
|
||||||
|
Object ref = mReferences[i];
|
||||||
|
if (ref instanceof Leak) {
|
||||||
|
Leak leak = (Leak) ref;
|
||||||
|
if (leak.mMarked)
|
||||||
|
leak.clearMarks();
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static class ByCount implements QuickSort.Comparator {
|
static final char INDENT = '\t';
|
||||||
|
|
||||||
|
void printGraph(PrintWriter out) {
|
||||||
|
printGraph(out, 0);
|
||||||
|
clearMarks();
|
||||||
|
}
|
||||||
|
|
||||||
|
private void printGraph(PrintWriter out, int indent) {
|
||||||
|
// first, mark this node as having been visited.
|
||||||
|
// we only want to include nodes that haven't been
|
||||||
|
// visited in our total size.
|
||||||
|
mMarked = true;
|
||||||
|
for (int i = 0; i < indent; ++i)
|
||||||
|
out.print(INDENT);
|
||||||
|
out.println(toString());
|
||||||
|
|
||||||
|
// then, visit all nodes that haven't been visited,
|
||||||
|
// and include their total size in ours.
|
||||||
|
int count = mReferences.length;
|
||||||
|
if (count > 0) {
|
||||||
|
int subIndent = indent + 1;
|
||||||
|
for (int i = 0; i < count; ++i) {
|
||||||
|
Object ref = mReferences[i];
|
||||||
|
if (ref instanceof Leak) {
|
||||||
|
Leak leak = (Leak) ref;
|
||||||
|
if (!leak.mMarked)
|
||||||
|
leak.printGraph(out, subIndent);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void printCycle(PrintWriter out) {
|
||||||
|
printCycle(out, 0);
|
||||||
|
clearMarks();
|
||||||
|
}
|
||||||
|
|
||||||
|
private void printCycle(PrintWriter out, int indent) {
|
||||||
|
// first, mark this node as having been visited.
|
||||||
|
// we only want to include nodes that haven't been
|
||||||
|
// visited in our total size.
|
||||||
|
mMarked = true;
|
||||||
|
|
||||||
|
// then, visit all nodes that haven't been visited,
|
||||||
|
// and include their total size in ours.
|
||||||
|
if (mChildCount > 0) {
|
||||||
|
// don't print leaf nodes in a cycle. they aren't interesting.
|
||||||
|
for (int i = 0; i < indent; ++i)
|
||||||
|
out.print(INDENT);
|
||||||
|
out.println(toString());
|
||||||
|
int subIndent = indent + 1;
|
||||||
|
int count = mReferences.length;
|
||||||
|
for (int i = 0; i < count; ++i) {
|
||||||
|
Object ref = mReferences[i];
|
||||||
|
if (ref instanceof Leak) {
|
||||||
|
Leak leak = (Leak) ref;
|
||||||
|
if (!leak.mMarked)
|
||||||
|
leak.printCycle(out, subIndent);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
public String toString() {
|
||||||
|
return ("<A HREF=\"#" + mName + "\">" + mName + "</A> [" + mRefCount + "] " + mType + "{" + mTotalSize + "}");
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Sorts in order of increasing reference count.
|
||||||
|
*/
|
||||||
|
static class ByRefCount extends QuickSort.Comparator {
|
||||||
public int compare(Object obj1, Object obj2) {
|
public int compare(Object obj1, Object obj2) {
|
||||||
Leak l1 = (Leak) obj1, l2 = (Leak) obj2;
|
Leak l1 = (Leak) obj1, l2 = (Leak) obj2;
|
||||||
return (l1.mRefCount - l2.mRefCount);
|
return (l1.mRefCount - l2.mRefCount);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Sorts in order of decreasing number of children.
|
||||||
|
*/
|
||||||
|
public static class ByChildCount extends QuickSort.Comparator {
|
||||||
|
public int compare(Object obj1, Object obj2) {
|
||||||
|
Leak l1 = (Leak) obj1, l2 = (Leak) obj2;
|
||||||
|
return (l2.mChildCount - l1.mChildCount);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Sorts in order of decreasing total size.
|
* Sorts in order of decreasing total size.
|
||||||
*/
|
*/
|
||||||
static class ByTotalSize implements QuickSort.Comparator {
|
static class ByTotalSize extends QuickSort.Comparator {
|
||||||
public int compare(Object obj1, Object obj2) {
|
public int compare(Object obj1, Object obj2) {
|
||||||
Leak l1 = (Leak) obj1, l2 = (Leak) obj2;
|
Leak l1 = (Leak) obj1, l2 = (Leak) obj2;
|
||||||
return (l2.mTotalSize - l1.mTotalSize);
|
return (l2.mTotalSize - l1.mTotalSize);
|
||||||
|
@ -218,7 +313,7 @@ public class leaksoup {
|
||||||
|
|
||||||
// record the offset of the stack crawl, which will be read in and formatted at the end, to save memory.
|
// record the offset of the stack crawl, which will be read in and formatted at the end, to save memory.
|
||||||
long crawlOffset = reader.offset;
|
long crawlOffset = reader.offset;
|
||||||
int crawlCount = 0;
|
short crawlCount = 0;
|
||||||
for (line = reader.readLine(); line != null && !line.startsWith("Leaked "); line = reader.readLine())
|
for (line = reader.readLine(); line != null && !line.startsWith("Leaked "); line = reader.readLine())
|
||||||
++crawlCount;
|
++crawlCount;
|
||||||
|
|
||||||
|
@ -248,14 +343,14 @@ public class leaksoup {
|
||||||
Leak leak = (Leak) e.nextElement();
|
Leak leak = (Leak) e.nextElement();
|
||||||
Object[] refs = leak.mReferences;
|
Object[] refs = leak.mReferences;
|
||||||
int count = refs.length;
|
int count = refs.length;
|
||||||
for (int i = 0; i < count; i++) {
|
for (int r = 0; r < count; ++r) {
|
||||||
String addr = (String) refs[i];
|
String addr = (String) refs[r];
|
||||||
Leak ref = (Leak) leakTable.get(addr);
|
Leak ref = (Leak) leakTable.get(addr);
|
||||||
if (ref != null) {
|
if (ref != null) {
|
||||||
// increase the ref count.
|
// increase the ref count.
|
||||||
ref.mRefCount++;
|
ref.mRefCount++;
|
||||||
// change string to ref itself.
|
// change string to ref itself.
|
||||||
refs[i] = ref;
|
refs[r] = ref;
|
||||||
// add leak to ref's parents vector.
|
// add leak to ref's parents vector.
|
||||||
Vector parents = (Vector) parentTable.get(ref);
|
Vector parents = (Vector) parentTable.get(ref);
|
||||||
if (parents == null) {
|
if (parents == null) {
|
||||||
|
@ -272,6 +367,44 @@ public class leaksoup {
|
||||||
// be nice to the GC.
|
// be nice to the GC.
|
||||||
leakTable.clear();
|
leakTable.clear();
|
||||||
leakTable = null;
|
leakTable = null;
|
||||||
|
|
||||||
|
// sort the leaks by address, and find interior pointers.
|
||||||
|
{
|
||||||
|
QuickSort byAddress = new QuickSort(new Reference.ByAddress());
|
||||||
|
byAddress.sort(leaks);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < leakCount; ++i) {
|
||||||
|
Leak leak = leaks[i];
|
||||||
|
Object[] refs = leak.mReferences;
|
||||||
|
int count = refs.length;
|
||||||
|
short childCount = 0;
|
||||||
|
for (int r = 0; r < count; ++r) {
|
||||||
|
if (refs[r] instanceof String) {
|
||||||
|
String addr = (String) refs[r];
|
||||||
|
if (addr.equals("0x00000000")) continue;
|
||||||
|
int address = (int) Long.parseLong(addr.substring(2), 16);
|
||||||
|
Leak ref = (Leak) Reference.findNearest(leaks, address);
|
||||||
|
if (ref != null) {
|
||||||
|
// increase the ref count.
|
||||||
|
ref.mRefCount++;
|
||||||
|
// change string to ref itself.
|
||||||
|
refs[r] = ref;
|
||||||
|
// add leak to ref's parents vector.
|
||||||
|
Vector parents = (Vector) parentTable.get(ref);
|
||||||
|
if (parents == null) {
|
||||||
|
parents = new Vector();
|
||||||
|
parentTable.put(ref, parents);
|
||||||
|
}
|
||||||
|
parents.addElement(leak);
|
||||||
|
++childCount;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
++childCount;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
leak.mChildCount = childCount;
|
||||||
|
}
|
||||||
|
|
||||||
// set the parents of each leak.
|
// set the parents of each leak.
|
||||||
e = parentTable.keys();
|
e = parentTable.keys();
|
||||||
|
@ -292,32 +425,22 @@ public class leaksoup {
|
||||||
Date now = new Date();
|
Date now = new Date();
|
||||||
out.println("<TITLE>Leaks as of " + now + "</TITLE>");
|
out.println("<TITLE>Leaks as of " + now + "</TITLE>");
|
||||||
|
|
||||||
// print leak summary.
|
// print leak summary.
|
||||||
out.println("<H2>Leak Summary</H2>");
|
out.println("<H2>Leak Summary</H2>");
|
||||||
out.println("total objects leaked = " + leakCount + "<BR>");
|
out.println("total objects leaked = " + leakCount + "<BR>");
|
||||||
out.println("total memory leaked = " + totalSize + " bytes.<BR>");
|
out.println("total memory leaked = " + totalSize + " bytes.<BR>");
|
||||||
|
|
||||||
// sort the leaks by reference count. then compute each root leak's total size.
|
printLeakHistogram(out, hist);
|
||||||
QuickSort byCount = new QuickSort(new Leak.ByCount());
|
printLeakStructure(out, leaks);
|
||||||
byCount.sort(leaks);
|
|
||||||
for (int i = 0; i < leakCount; ++i) {
|
|
||||||
Leak leak = leaks[i];
|
|
||||||
if (leak.mTotalSize == 0)
|
|
||||||
leak.computeTotalSize();
|
|
||||||
}
|
|
||||||
|
|
||||||
// print the object histogram report.
|
|
||||||
out.println("<H2>Leak Histogram:</H2>");
|
|
||||||
printHistogram(out, hist);
|
|
||||||
|
|
||||||
// open original file again, as a RandomAccessFile, to read in stack crawl information.
|
// open original file again, as a RandomAccessFile, to read in stack crawl information.
|
||||||
RandomAccessFile in = new RandomAccessFile(inputName, "r");
|
|
||||||
|
|
||||||
// print the leak report.
|
// print the leak report.
|
||||||
if (ROOTS_ONLY)
|
if (!ROOTS_ONLY) {
|
||||||
printRootLeaks(in, out, leaks);
|
RandomAccessFile in = new RandomAccessFile(inputName, "r");
|
||||||
else
|
|
||||||
printLeaks(in, out, leaks);
|
printLeaks(in, out, leaks);
|
||||||
|
in.close();
|
||||||
|
}
|
||||||
|
|
||||||
out.close();
|
out.close();
|
||||||
} catch (Exception e) {
|
} catch (Exception e) {
|
||||||
|
@ -329,10 +452,10 @@ public class leaksoup {
|
||||||
* Sorts the bins of a histogram by (count * typeSize) to show the
|
* Sorts the bins of a histogram by (count * typeSize) to show the
|
||||||
* most pressing leaks.
|
* most pressing leaks.
|
||||||
*/
|
*/
|
||||||
static class HistComparator implements QuickSort.Comparator {
|
static class ByTypeBinSize extends QuickSort.Comparator {
|
||||||
Histogram hist;
|
Histogram hist;
|
||||||
|
|
||||||
HistComparator(Histogram hist) {
|
ByTypeBinSize(Histogram hist) {
|
||||||
this.hist = hist;
|
this.hist = hist;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -342,12 +465,13 @@ public class leaksoup {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static void printHistogram(PrintWriter out, Histogram hist) throws IOException {
|
static void printLeakHistogram(PrintWriter out, Histogram hist) throws IOException {
|
||||||
// sort the types by histogram count.
|
// sort the types by histogram count.
|
||||||
Object[] types = hist.objects();
|
Object[] types = hist.objects();
|
||||||
QuickSort sorter = new QuickSort(new HistComparator(hist));
|
QuickSort byTypeBinSize = new QuickSort(new ByTypeBinSize(hist));
|
||||||
sorter.sort(types);
|
byTypeBinSize.sort(types);
|
||||||
|
|
||||||
|
out.println("<H2>Leak Histogram</H2>");
|
||||||
out.println("<PRE>");
|
out.println("<PRE>");
|
||||||
int index = types.length;
|
int index = types.length;
|
||||||
while (index > 0) {
|
while (index > 0) {
|
||||||
|
@ -358,6 +482,60 @@ public class leaksoup {
|
||||||
out.println("</PRE>");
|
out.println("</PRE>");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void printLeakStructure(PrintWriter out, Leak[] leaks) {
|
||||||
|
// print root leaks. consider only leaks with a reference
|
||||||
|
// count of 0, which when fixed, will hopefully reclaim
|
||||||
|
// all of the objects below them in the graph.
|
||||||
|
{
|
||||||
|
QuickSort byRefCount = new QuickSort(new Leak.ByRefCount());
|
||||||
|
byRefCount.sort(leaks);
|
||||||
|
}
|
||||||
|
|
||||||
|
int rootCount = 0;
|
||||||
|
int leakCount = leaks.length;
|
||||||
|
for (int i = 0; i < leakCount; ++i) {
|
||||||
|
Leak leak = leaks[i];
|
||||||
|
if (leak.mRefCount > 0)
|
||||||
|
break;
|
||||||
|
++rootCount;
|
||||||
|
leak.computeTotalSize();
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
QuickSort byTotalSize = new QuickSort(new Leak.ByTotalSize());
|
||||||
|
byTotalSize.sort(leaks, rootCount);
|
||||||
|
}
|
||||||
|
|
||||||
|
out.println("<H2>Leak Roots</H2>");
|
||||||
|
out.println("<PRE>");
|
||||||
|
for (int i = 0; i < rootCount; ++i) {
|
||||||
|
Leak leak = leaks[i];
|
||||||
|
leak.printGraph(out);
|
||||||
|
}
|
||||||
|
out.println("</PRE>");
|
||||||
|
|
||||||
|
// print leak cycles. traverse the leaks from objects with most number
|
||||||
|
// of children to least, so that leaf objects will be printed after
|
||||||
|
// their parents.
|
||||||
|
{
|
||||||
|
QuickSort byChildCount = new QuickSort(new Leak.ByChildCount());
|
||||||
|
byChildCount.sort(leaks);
|
||||||
|
}
|
||||||
|
|
||||||
|
out.println("<H2>Leak Cycles</H2>");
|
||||||
|
out.println("<PRE>");
|
||||||
|
for (int i = 0; i < leakCount; ++i) {
|
||||||
|
Leak leak = leaks[i];
|
||||||
|
// if an object's total size isn't known yet, then it must
|
||||||
|
// be a member of a cycle, since it wasn't reached when traversing roots.
|
||||||
|
if (leak.mTotalSize == 0) {
|
||||||
|
leak.computeTotalSize();
|
||||||
|
leak.printCycle(out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
out.println("</PRE>");
|
||||||
|
}
|
||||||
|
|
||||||
static StringBuffer appendChar(StringBuffer buffer, int ch) {
|
static StringBuffer appendChar(StringBuffer buffer, int ch) {
|
||||||
if (ch > 32 && ch < 0x7F) {
|
if (ch > 32 && ch < 0x7F) {
|
||||||
switch (ch) {
|
switch (ch) {
|
||||||
|
@ -400,21 +578,11 @@ public class leaksoup {
|
||||||
QuickSort bySize = new QuickSort(new Leak.ByTotalSize());
|
QuickSort bySize = new QuickSort(new Leak.ByTotalSize());
|
||||||
bySize.sort(leaks);
|
bySize.sort(leaks);
|
||||||
|
|
||||||
out.println("<H2>Leak Roots</H2>");
|
|
||||||
|
|
||||||
out.println("<PRE>");
|
|
||||||
|
|
||||||
int leakCount = leaks.length;
|
|
||||||
for (int i = 0; i < leakCount; i++) {
|
|
||||||
Leak leak = leaks[i];
|
|
||||||
if (leak.mRefCount == 0)
|
|
||||||
out.println(leak);
|
|
||||||
}
|
|
||||||
|
|
||||||
Type anchorType = null;
|
|
||||||
|
|
||||||
// now, print the report, sorted by type size.
|
// now, print the report, sorted by type size.
|
||||||
for (int i = 0; i < leakCount; i++) {
|
out.println("<PRE>");
|
||||||
|
Type anchorType = null;
|
||||||
|
int leakCount = leaks.length;
|
||||||
|
for (int i = 0; i < leakCount; ++i) {
|
||||||
Leak leak = leaks[i];
|
Leak leak = leaks[i];
|
||||||
if (anchorType != leak.mType) {
|
if (anchorType != leak.mType) {
|
||||||
anchorType = leak.mType;
|
anchorType = leak.mType;
|
||||||
|
@ -422,10 +590,10 @@ public class leaksoup {
|
||||||
out.println("<A NAME=\"" + anchorType.mName + "_" + anchorType.mSize + "\"></A>");
|
out.println("<A NAME=\"" + anchorType.mName + "_" + anchorType.mSize + "\"></A>");
|
||||||
out.println("<H3>" + anchorType + " Leaks</H3>");
|
out.println("<H3>" + anchorType + " Leaks</H3>");
|
||||||
}
|
}
|
||||||
out.println("<A NAME=\"" + leak.mAddress + "\"></A>");
|
out.println("<A NAME=\"" + leak.mName + "\"></A>");
|
||||||
if (leak.mParents != null) {
|
if (leak.mParents != null) {
|
||||||
out.print(leak);
|
out.print(leak);
|
||||||
out.println(" <A HREF=\"#" + leak.mAddress + "_parents\">parents</A>");
|
out.println(" <A HREF=\"#" + leak.mName + "_parents\">parents</A>");
|
||||||
} else {
|
} else {
|
||||||
out.println(leak);
|
out.println(leak);
|
||||||
}
|
}
|
||||||
|
@ -436,7 +604,7 @@ public class leaksoup {
|
||||||
printField(out, refs[j]);
|
printField(out, refs[j]);
|
||||||
// print object's stack crawl:
|
// print object's stack crawl:
|
||||||
in.seek(leak.mCrawlOffset);
|
in.seek(leak.mCrawlOffset);
|
||||||
int crawlCount = leak.mCrawlCount;
|
short crawlCount = leak.mCrawlCount;
|
||||||
while (crawlCount-- > 0) {
|
while (crawlCount-- > 0) {
|
||||||
String line = in.readLine();
|
String line = in.readLine();
|
||||||
String location = FileLocator.getFileLocation(line);
|
String location = FileLocator.getFileLocation(line);
|
||||||
|
@ -444,7 +612,7 @@ public class leaksoup {
|
||||||
}
|
}
|
||||||
// print object's parents.
|
// print object's parents.
|
||||||
if (leak.mParents != null) {
|
if (leak.mParents != null) {
|
||||||
out.println("<A NAME=\"" + leak.mAddress + "_parents\"></A>");
|
out.println("<A NAME=\"" + leak.mName + "_parents\"></A>");
|
||||||
out.println("\nLeak Parents:");
|
out.println("\nLeak Parents:");
|
||||||
Leak[] parents = leak.mParents;
|
Leak[] parents = leak.mParents;
|
||||||
count = parents.length;
|
count = parents.length;
|
||||||
|
@ -452,56 +620,6 @@ public class leaksoup {
|
||||||
out.println("\t" + parents[j]);
|
out.println("\t" + parents[j]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
out.println("</PRE>");
|
|
||||||
}
|
|
||||||
|
|
||||||
static void printRootLeaks(RandomAccessFile in, PrintWriter out, Leak[] leaks) throws IOException {
|
|
||||||
// sort the leaks by total size.
|
|
||||||
QuickSort bySize = new QuickSort(new Leak.ByTotalSize());
|
|
||||||
bySize.sort(leaks);
|
|
||||||
|
|
||||||
out.println("<H2>Leak Roots Only</H2>");
|
|
||||||
|
|
||||||
out.println("<PRE>");
|
|
||||||
|
|
||||||
int leakCount = leaks.length;
|
|
||||||
for (int i = 0; i < leakCount; i++) {
|
|
||||||
Leak leak = leaks[i];
|
|
||||||
if (leak.mRefCount == 0)
|
|
||||||
out.println(leak);
|
|
||||||
}
|
|
||||||
|
|
||||||
Type anchorType = null;
|
|
||||||
|
|
||||||
// now, print just the root leaks.
|
|
||||||
for (int i = 0; i < leakCount; i++) {
|
|
||||||
Leak leak = leaks[i];
|
|
||||||
if (leak.mRefCount > 0)
|
|
||||||
continue;
|
|
||||||
if (anchorType != leak.mType) {
|
|
||||||
anchorType = leak.mType;
|
|
||||||
out.println("\n<HR>");
|
|
||||||
out.println("<A NAME=\"" + anchorType.mName + "_" + anchorType.mSize + "\"></A>");
|
|
||||||
out.println("<H3>" + anchorType + " Leaks</H3>");
|
|
||||||
}
|
|
||||||
out.println("<A NAME=\"" + leak.mAddress + "\"></A>");
|
|
||||||
out.println(leak);
|
|
||||||
// print object's fields:
|
|
||||||
Object[] refs = leak.mReferences;
|
|
||||||
int count = refs.length;
|
|
||||||
for (int j = 0; j < count; j++)
|
|
||||||
printField(out, refs[j]);
|
|
||||||
// print object's stack crawl:
|
|
||||||
in.seek(leak.mCrawlOffset);
|
|
||||||
int crawlCount = leak.mCrawlCount;
|
|
||||||
while (crawlCount-- > 0) {
|
|
||||||
String line = in.readLine();
|
|
||||||
String location = FileLocator.getFileLocation(line);
|
|
||||||
out.println(location);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
out.println("</PRE>");
|
out.println("</PRE>");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
Загрузка…
Ссылка в новой задаче