зеркало из https://github.com/mozilla/pjs.git
Backed out changeset cb4f078cc8cb (bug 512865)
Was causing crashes on the leak test box.
This commit is contained in:
Родитель
3e6ae7aba0
Коммит
c7bff917c3
|
@ -15,17 +15,6 @@ EXPORTS = qcms.h qcmstypes.h
|
|||
|
||||
CSRCS = iccread.c transform.c
|
||||
|
||||
ifeq (86,$(findstring 86,$(OS_TEST)))
|
||||
CSRCS += transform-sse2.c transform-sse1.c
|
||||
ifdef GNU_CC
|
||||
SSE1_FLAGS=-msse
|
||||
SSE2_FLAGS=-msse2
|
||||
else
|
||||
SSE1_FLAGS=
|
||||
SSE2_FLAGS=
|
||||
endif
|
||||
endif
|
||||
|
||||
FORCE_STATIC_LIB = 1
|
||||
# This library is used by other shared libs
|
||||
FORCE_USE_PIC = 1
|
||||
|
@ -33,15 +22,3 @@ FORCE_USE_PIC = 1
|
|||
include $(topsrcdir)/config/rules.mk
|
||||
|
||||
CFLAGS += -DMOZ_QCMS
|
||||
|
||||
|
||||
# special rules for transform-sse*.c to get the right cflags. (taken from pixman/src/Makefile.in)
|
||||
transform-sse1.$(OBJ_SUFFIX): transform-sse1.c Makefile Makefile.in
|
||||
$(REPORT_BUILD)
|
||||
@$(MAKE_DEPS_AUTO_CC)
|
||||
$(ELOG) $(CC) $(OUTOPTION)$@ -c $(COMPILE_CFLAGS) $(SSE1_FLAGS) $(_VPATH_SRCS)
|
||||
|
||||
transform-sse2.$(OBJ_SUFFIX): transform-sse2.c Makefile Makefile.in
|
||||
$(REPORT_BUILD)
|
||||
@$(MAKE_DEPS_AUTO_CC)
|
||||
$(ELOG) $(CC) $(OUTOPTION)$@ -c $(COMPILE_CFLAGS) $(SSE2_FLAGS) $(_VPATH_SRCS)
|
||||
|
|
|
@ -141,20 +141,3 @@ static inline s15Fixed16Number double_to_s15Fixed16Number(double v)
|
|||
|
||||
void precache_release(struct precache_output *p);
|
||||
qcms_bool set_rgb_colorants(qcms_profile *profile, qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries);
|
||||
|
||||
void qcms_transform_data_rgb_out_lut_sse2(qcms_transform *transform,
|
||||
unsigned char *src,
|
||||
unsigned char *dest,
|
||||
size_t length);
|
||||
void qcms_transform_data_rgba_out_lut_sse2(qcms_transform *transform,
|
||||
unsigned char *src,
|
||||
unsigned char *dest,
|
||||
size_t length);
|
||||
void qcms_transform_data_rgb_out_lut_sse1(qcms_transform *transform,
|
||||
unsigned char *src,
|
||||
unsigned char *dest,
|
||||
size_t length);
|
||||
void qcms_transform_data_rgba_out_lut_sse1(qcms_transform *transform,
|
||||
unsigned char *src,
|
||||
unsigned char *dest,
|
||||
size_t length);
|
||||
|
|
|
@ -1,253 +0,0 @@
|
|||
#include <xmmintrin.h>
|
||||
|
||||
#include "qcmsint.h"
|
||||
|
||||
/* pre-shuffled: just load these into XMM reg instead of load-scalar/shufps sequence */
|
||||
#define FLOATSCALE 65536.0f
|
||||
#define CLAMPMAXVAL ( ((float) (65536 - 1)) / 65536.0f )
|
||||
static const ALIGN float floatScaleX4[4] =
|
||||
{ FLOATSCALE, FLOATSCALE, FLOATSCALE, FLOATSCALE};
|
||||
static const ALIGN float clampMaxValueX4[4] =
|
||||
{ CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL};
|
||||
|
||||
void qcms_transform_data_rgb_out_lut_sse1(qcms_transform *transform,
|
||||
unsigned char *src,
|
||||
unsigned char *dest,
|
||||
size_t length)
|
||||
{
|
||||
unsigned int i;
|
||||
float (*mat)[4] = transform->matrix;
|
||||
char input_back[32];
|
||||
/* Ensure we have a buffer that's 16 byte aligned regardless of the original
|
||||
* stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
|
||||
* because they don't work on stack variables. gcc 4.4 does do the right thing
|
||||
* on x86 but that's too new for us right now. For more info: gcc bug #16660 */
|
||||
float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
|
||||
/* share input and output locations to save having to keep the
|
||||
* locations in separate registers */
|
||||
uint32_t const * output = (uint32_t*)input;
|
||||
|
||||
/* deref *transform now to avoid it in loop */
|
||||
const float *igtbl_r = transform->input_gamma_table_r;
|
||||
const float *igtbl_g = transform->input_gamma_table_g;
|
||||
const float *igtbl_b = transform->input_gamma_table_b;
|
||||
|
||||
/* deref *transform now to avoid it in loop */
|
||||
const uint8_t *otdata_r = &transform->output_table_r->data[0];
|
||||
const uint8_t *otdata_g = &transform->output_table_g->data[0];
|
||||
const uint8_t *otdata_b = &transform->output_table_b->data[0];
|
||||
|
||||
/* input matrix values never change */
|
||||
const __m128 mat0 = _mm_load_ps(mat[0]);
|
||||
const __m128 mat1 = _mm_load_ps(mat[1]);
|
||||
const __m128 mat2 = _mm_load_ps(mat[2]);
|
||||
|
||||
/* these values don't change, either */
|
||||
const __m128 max = _mm_load_ps(clampMaxValueX4);
|
||||
const __m128 min = _mm_setzero_ps();
|
||||
const __m128 scale = _mm_load_ps(floatScaleX4);
|
||||
|
||||
/* working variables */
|
||||
__m128 vec_r, vec_g, vec_b, result;
|
||||
|
||||
/* CYA */
|
||||
if (!length)
|
||||
return;
|
||||
|
||||
/* one pixel is handled outside of the loop */
|
||||
length--;
|
||||
|
||||
/* setup for transforming 1st pixel */
|
||||
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
|
||||
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
|
||||
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
|
||||
src += 3;
|
||||
|
||||
/* transform all but final pixel */
|
||||
|
||||
for (i=0; i<length; i++)
|
||||
{
|
||||
/* position values from gamma tables */
|
||||
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
|
||||
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
|
||||
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
|
||||
|
||||
/* gamma * matrix */
|
||||
vec_r = _mm_mul_ps(vec_r, mat0);
|
||||
vec_g = _mm_mul_ps(vec_g, mat1);
|
||||
vec_b = _mm_mul_ps(vec_b, mat2);
|
||||
|
||||
/* crunch, crunch, crunch */
|
||||
vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
|
||||
vec_r = _mm_max_ps(min, vec_r);
|
||||
vec_r = _mm_min_ps(max, vec_r);
|
||||
result = _mm_mul_ps(vec_r, scale);
|
||||
|
||||
/* store calc'd output tables indices */
|
||||
*((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
|
||||
result = _mm_movehl_ps(result, result);
|
||||
*((__m64 *)&output[2]) = _mm_cvtps_pi32(result) ;
|
||||
|
||||
/* load for next loop while store completes */
|
||||
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
|
||||
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
|
||||
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
|
||||
src += 3;
|
||||
|
||||
/* use calc'd indices to output RGB values */
|
||||
dest[0] = otdata_r[output[0]];
|
||||
dest[1] = otdata_g[output[1]];
|
||||
dest[2] = otdata_b[output[2]];
|
||||
dest += 3;
|
||||
}
|
||||
|
||||
/* handle final (maybe only) pixel */
|
||||
|
||||
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
|
||||
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
|
||||
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
|
||||
|
||||
vec_r = _mm_mul_ps(vec_r, mat0);
|
||||
vec_g = _mm_mul_ps(vec_g, mat1);
|
||||
vec_b = _mm_mul_ps(vec_b, mat2);
|
||||
|
||||
vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
|
||||
vec_r = _mm_max_ps(min, vec_r);
|
||||
vec_r = _mm_min_ps(max, vec_r);
|
||||
result = _mm_mul_ps(vec_r, scale);
|
||||
|
||||
*((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
|
||||
result = _mm_movehl_ps(result, result);
|
||||
*((__m64 *)&output[2]) = _mm_cvtps_pi32(result);
|
||||
|
||||
dest[0] = otdata_r[output[0]];
|
||||
dest[1] = otdata_g[output[1]];
|
||||
dest[2] = otdata_b[output[2]];
|
||||
|
||||
_mm_empty();
|
||||
}
|
||||
|
||||
void qcms_transform_data_rgba_out_lut_sse1(qcms_transform *transform,
|
||||
unsigned char *src,
|
||||
unsigned char *dest,
|
||||
size_t length)
|
||||
{
|
||||
unsigned int i;
|
||||
float (*mat)[4] = transform->matrix;
|
||||
char input_back[32];
|
||||
/* Ensure we have a buffer that's 16 byte aligned regardless of the original
|
||||
* stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
|
||||
* because they don't work on stack variables. gcc 4.4 does do the right thing
|
||||
* on x86 but that's too new for us right now. For more info: gcc bug #16660 */
|
||||
float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
|
||||
/* share input and output locations to save having to keep the
|
||||
* locations in separate registers */
|
||||
uint32_t const * output = (uint32_t*)input;
|
||||
|
||||
/* deref *transform now to avoid it in loop */
|
||||
const float *igtbl_r = transform->input_gamma_table_r;
|
||||
const float *igtbl_g = transform->input_gamma_table_g;
|
||||
const float *igtbl_b = transform->input_gamma_table_b;
|
||||
|
||||
/* deref *transform now to avoid it in loop */
|
||||
const uint8_t *otdata_r = &transform->output_table_r->data[0];
|
||||
const uint8_t *otdata_g = &transform->output_table_g->data[0];
|
||||
const uint8_t *otdata_b = &transform->output_table_b->data[0];
|
||||
|
||||
/* input matrix values never change */
|
||||
const __m128 mat0 = _mm_load_ps(mat[0]);
|
||||
const __m128 mat1 = _mm_load_ps(mat[1]);
|
||||
const __m128 mat2 = _mm_load_ps(mat[2]);
|
||||
|
||||
/* these values don't change, either */
|
||||
const __m128 max = _mm_load_ps(clampMaxValueX4);
|
||||
const __m128 min = _mm_setzero_ps();
|
||||
const __m128 scale = _mm_load_ps(floatScaleX4);
|
||||
|
||||
/* working variables */
|
||||
__m128 vec_r, vec_g, vec_b, result;
|
||||
unsigned char alpha;
|
||||
|
||||
/* CYA */
|
||||
if (!length)
|
||||
return;
|
||||
|
||||
/* one pixel is handled outside of the loop */
|
||||
length--;
|
||||
|
||||
/* setup for transforming 1st pixel */
|
||||
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
|
||||
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
|
||||
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
|
||||
alpha = src[3];
|
||||
src += 4;
|
||||
|
||||
/* transform all but final pixel */
|
||||
|
||||
for (i=0; i<length; i++)
|
||||
{
|
||||
/* position values from gamma tables */
|
||||
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
|
||||
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
|
||||
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
|
||||
|
||||
/* gamma * matrix */
|
||||
vec_r = _mm_mul_ps(vec_r, mat0);
|
||||
vec_g = _mm_mul_ps(vec_g, mat1);
|
||||
vec_b = _mm_mul_ps(vec_b, mat2);
|
||||
|
||||
/* store alpha for this pixel; load alpha for next */
|
||||
dest[3] = alpha;
|
||||
alpha = src[3];
|
||||
|
||||
/* crunch, crunch, crunch */
|
||||
vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
|
||||
vec_r = _mm_max_ps(min, vec_r);
|
||||
vec_r = _mm_min_ps(max, vec_r);
|
||||
result = _mm_mul_ps(vec_r, scale);
|
||||
|
||||
/* store calc'd output tables indices */
|
||||
*((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
|
||||
result = _mm_movehl_ps(result, result);
|
||||
*((__m64 *)&output[2]) = _mm_cvtps_pi32(result);
|
||||
|
||||
/* load gamma values for next loop while store completes */
|
||||
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
|
||||
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
|
||||
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
|
||||
src += 4;
|
||||
|
||||
/* use calc'd indices to output RGB values */
|
||||
dest[0] = otdata_r[output[0]];
|
||||
dest[1] = otdata_g[output[1]];
|
||||
dest[2] = otdata_b[output[2]];
|
||||
dest += 4;
|
||||
}
|
||||
|
||||
/* handle final (maybe only) pixel */
|
||||
|
||||
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
|
||||
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
|
||||
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
|
||||
|
||||
vec_r = _mm_mul_ps(vec_r, mat0);
|
||||
vec_g = _mm_mul_ps(vec_g, mat1);
|
||||
vec_b = _mm_mul_ps(vec_b, mat2);
|
||||
|
||||
dest[3] = alpha;
|
||||
|
||||
vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
|
||||
vec_r = _mm_max_ps(min, vec_r);
|
||||
vec_r = _mm_min_ps(max, vec_r);
|
||||
result = _mm_mul_ps(vec_r, scale);
|
||||
|
||||
*((__m64 *)&output[0]) = _mm_cvtps_pi32(result);
|
||||
result = _mm_movehl_ps(result, result);
|
||||
*((__m64 *)&output[2]) = _mm_cvtps_pi32(result);
|
||||
|
||||
dest[0] = otdata_r[output[0]];
|
||||
dest[1] = otdata_g[output[1]];
|
||||
dest[2] = otdata_b[output[2]];
|
||||
|
||||
_mm_empty();
|
||||
}
|
|
@ -1,243 +0,0 @@
|
|||
#include <emmintrin.h>
|
||||
|
||||
#include "qcmsint.h"
|
||||
|
||||
/* pre-shuffled: just load these into XMM reg instead of load-scalar/shufps sequence */
|
||||
#define FLOATSCALE 65536.0f
|
||||
#define CLAMPMAXVAL ( ((float) (65536 - 1)) / 65536.0f )
|
||||
static const ALIGN float floatScaleX4[4] =
|
||||
{ FLOATSCALE, FLOATSCALE, FLOATSCALE, FLOATSCALE};
|
||||
static const ALIGN float clampMaxValueX4[4] =
|
||||
{ CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL};
|
||||
|
||||
void qcms_transform_data_rgb_out_lut_sse2(qcms_transform *transform,
|
||||
unsigned char *src,
|
||||
unsigned char *dest,
|
||||
size_t length)
|
||||
{
|
||||
unsigned int i;
|
||||
float (*mat)[4] = transform->matrix;
|
||||
char input_back[32];
|
||||
/* Ensure we have a buffer that's 16 byte aligned regardless of the original
|
||||
* stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
|
||||
* because they don't work on stack variables. gcc 4.4 does do the right thing
|
||||
* on x86 but that's too new for us right now. For more info: gcc bug #16660 */
|
||||
float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
|
||||
/* share input and output locations to save having to keep the
|
||||
* locations in separate registers */
|
||||
uint32_t const * output = (uint32_t*)input;
|
||||
|
||||
/* deref *transform now to avoid it in loop */
|
||||
const float *igtbl_r = transform->input_gamma_table_r;
|
||||
const float *igtbl_g = transform->input_gamma_table_g;
|
||||
const float *igtbl_b = transform->input_gamma_table_b;
|
||||
|
||||
/* deref *transform now to avoid it in loop */
|
||||
const uint8_t *otdata_r = &transform->output_table_r->data[0];
|
||||
const uint8_t *otdata_g = &transform->output_table_g->data[0];
|
||||
const uint8_t *otdata_b = &transform->output_table_b->data[0];
|
||||
|
||||
/* input matrix values never change */
|
||||
const __m128 mat0 = _mm_load_ps(mat[0]);
|
||||
const __m128 mat1 = _mm_load_ps(mat[1]);
|
||||
const __m128 mat2 = _mm_load_ps(mat[2]);
|
||||
|
||||
/* these values don't change, either */
|
||||
const __m128 max = _mm_load_ps(clampMaxValueX4);
|
||||
const __m128 min = _mm_setzero_ps();
|
||||
const __m128 scale = _mm_load_ps(floatScaleX4);
|
||||
|
||||
/* working variables */
|
||||
__m128 vec_r, vec_g, vec_b, result;
|
||||
|
||||
/* CYA */
|
||||
if (!length)
|
||||
return;
|
||||
|
||||
/* one pixel is handled outside of the loop */
|
||||
length--;
|
||||
|
||||
/* setup for transforming 1st pixel */
|
||||
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
|
||||
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
|
||||
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
|
||||
src += 3;
|
||||
|
||||
/* transform all but final pixel */
|
||||
|
||||
for (i=0; i<length; i++)
|
||||
{
|
||||
/* position values from gamma tables */
|
||||
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
|
||||
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
|
||||
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
|
||||
|
||||
/* gamma * matrix */
|
||||
vec_r = _mm_mul_ps(vec_r, mat0);
|
||||
vec_g = _mm_mul_ps(vec_g, mat1);
|
||||
vec_b = _mm_mul_ps(vec_b, mat2);
|
||||
|
||||
/* crunch, crunch, crunch */
|
||||
vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
|
||||
vec_r = _mm_max_ps(min, vec_r);
|
||||
vec_r = _mm_min_ps(max, vec_r);
|
||||
result = _mm_mul_ps(vec_r, scale);
|
||||
|
||||
/* store calc'd output tables indices */
|
||||
_mm_store_si128((__m128i*)output, _mm_cvtps_epi32(result));
|
||||
|
||||
/* load for next loop while store completes */
|
||||
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
|
||||
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
|
||||
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
|
||||
src += 3;
|
||||
|
||||
/* use calc'd indices to output RGB values */
|
||||
dest[0] = otdata_r[output[0]];
|
||||
dest[1] = otdata_g[output[1]];
|
||||
dest[2] = otdata_b[output[2]];
|
||||
dest += 3;
|
||||
}
|
||||
|
||||
/* handle final (maybe only) pixel */
|
||||
|
||||
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
|
||||
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
|
||||
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
|
||||
|
||||
vec_r = _mm_mul_ps(vec_r, mat0);
|
||||
vec_g = _mm_mul_ps(vec_g, mat1);
|
||||
vec_b = _mm_mul_ps(vec_b, mat2);
|
||||
|
||||
vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
|
||||
vec_r = _mm_max_ps(min, vec_r);
|
||||
vec_r = _mm_min_ps(max, vec_r);
|
||||
result = _mm_mul_ps(vec_r, scale);
|
||||
|
||||
_mm_store_si128((__m128i*)output, _mm_cvtps_epi32(result));
|
||||
|
||||
dest[0] = otdata_r[output[0]];
|
||||
dest[1] = otdata_g[output[1]];
|
||||
dest[2] = otdata_b[output[2]];
|
||||
}
|
||||
|
||||
void qcms_transform_data_rgba_out_lut_sse2(qcms_transform *transform,
|
||||
unsigned char *src,
|
||||
unsigned char *dest,
|
||||
size_t length)
|
||||
{
|
||||
unsigned int i;
|
||||
float (*mat)[4] = transform->matrix;
|
||||
char input_back[32];
|
||||
/* Ensure we have a buffer that's 16 byte aligned regardless of the original
|
||||
* stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
|
||||
* because they don't work on stack variables. gcc 4.4 does do the right thing
|
||||
* on x86 but that's too new for us right now. For more info: gcc bug #16660 */
|
||||
float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
|
||||
/* share input and output locations to save having to keep the
|
||||
* locations in separate registers */
|
||||
uint32_t const * output = (uint32_t*)input;
|
||||
|
||||
/* deref *transform now to avoid it in loop */
|
||||
const float *igtbl_r = transform->input_gamma_table_r;
|
||||
const float *igtbl_g = transform->input_gamma_table_g;
|
||||
const float *igtbl_b = transform->input_gamma_table_b;
|
||||
|
||||
/* deref *transform now to avoid it in loop */
|
||||
const uint8_t *otdata_r = &transform->output_table_r->data[0];
|
||||
const uint8_t *otdata_g = &transform->output_table_g->data[0];
|
||||
const uint8_t *otdata_b = &transform->output_table_b->data[0];
|
||||
|
||||
/* input matrix values never change */
|
||||
const __m128 mat0 = _mm_load_ps(mat[0]);
|
||||
const __m128 mat1 = _mm_load_ps(mat[1]);
|
||||
const __m128 mat2 = _mm_load_ps(mat[2]);
|
||||
|
||||
/* these values don't change, either */
|
||||
const __m128 max = _mm_load_ps(clampMaxValueX4);
|
||||
const __m128 min = _mm_setzero_ps();
|
||||
const __m128 scale = _mm_load_ps(floatScaleX4);
|
||||
|
||||
/* working variables */
|
||||
__m128 vec_r, vec_g, vec_b, result;
|
||||
unsigned char alpha;
|
||||
|
||||
/* CYA */
|
||||
if (!length)
|
||||
return;
|
||||
|
||||
/* one pixel is handled outside of the loop */
|
||||
length--;
|
||||
|
||||
/* setup for transforming 1st pixel */
|
||||
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
|
||||
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
|
||||
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
|
||||
alpha = src[3];
|
||||
src += 4;
|
||||
|
||||
/* transform all but final pixel */
|
||||
|
||||
for (i=0; i<length; i++)
|
||||
{
|
||||
/* position values from gamma tables */
|
||||
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
|
||||
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
|
||||
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
|
||||
|
||||
/* gamma * matrix */
|
||||
vec_r = _mm_mul_ps(vec_r, mat0);
|
||||
vec_g = _mm_mul_ps(vec_g, mat1);
|
||||
vec_b = _mm_mul_ps(vec_b, mat2);
|
||||
|
||||
/* store alpha for this pixel; load alpha for next */
|
||||
dest[3] = alpha;
|
||||
alpha = src[3];
|
||||
|
||||
/* crunch, crunch, crunch */
|
||||
vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
|
||||
vec_r = _mm_max_ps(min, vec_r);
|
||||
vec_r = _mm_min_ps(max, vec_r);
|
||||
result = _mm_mul_ps(vec_r, scale);
|
||||
|
||||
/* store calc'd output tables indices */
|
||||
_mm_store_si128((__m128i*)output, _mm_cvtps_epi32(result));
|
||||
|
||||
/* load gamma values for next loop while store completes */
|
||||
vec_r = _mm_load_ss(&igtbl_r[src[0]]);
|
||||
vec_g = _mm_load_ss(&igtbl_g[src[1]]);
|
||||
vec_b = _mm_load_ss(&igtbl_b[src[2]]);
|
||||
src += 4;
|
||||
|
||||
/* use calc'd indices to output RGB values */
|
||||
dest[0] = otdata_r[output[0]];
|
||||
dest[1] = otdata_g[output[1]];
|
||||
dest[2] = otdata_b[output[2]];
|
||||
dest += 4;
|
||||
}
|
||||
|
||||
/* handle final (maybe only) pixel */
|
||||
|
||||
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
|
||||
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
|
||||
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
|
||||
|
||||
vec_r = _mm_mul_ps(vec_r, mat0);
|
||||
vec_g = _mm_mul_ps(vec_g, mat1);
|
||||
vec_b = _mm_mul_ps(vec_b, mat2);
|
||||
|
||||
dest[3] = alpha;
|
||||
|
||||
vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
|
||||
vec_r = _mm_max_ps(min, vec_r);
|
||||
vec_r = _mm_min_ps(max, vec_r);
|
||||
result = _mm_mul_ps(vec_r, scale);
|
||||
|
||||
_mm_store_si128((__m128i*)output, _mm_cvtps_epi32(result));
|
||||
|
||||
dest[0] = otdata_r[output[0]];
|
||||
dest[1] = otdata_g[output[1]];
|
||||
dest[2] = otdata_b[output[2]];
|
||||
}
|
||||
|
||||
|
|
@ -25,10 +25,9 @@
|
|||
#include <assert.h>
|
||||
#include "qcmsint.h"
|
||||
|
||||
/* for MSVC, GCC, and Intel compilers */
|
||||
#if defined(_M_IX86) || defined(__i386__) || defined(_M_AMD64) || defined(__x86_64__)
|
||||
#if defined(_M_IX86) || defined(__i386__) || defined(__x86_64__) || defined(_M_AMD64)
|
||||
#define X86
|
||||
#endif /* _M_IX86 || __i386__ || _M_AMD64 || __x86_64__ */
|
||||
#endif
|
||||
|
||||
//XXX: could use a bettername
|
||||
typedef uint16_t uint16_fract_t;
|
||||
|
@ -735,6 +734,352 @@ static void qcms_transform_data_graya_out_precache(qcms_transform *transform, un
|
|||
}
|
||||
}
|
||||
|
||||
static const ALIGN float floatScale = 65536.0f;
|
||||
static const ALIGN float * const floatScaleAddr = &floatScale; // Win32 ASM doesn't know how to take addressOf inline
|
||||
|
||||
static const ALIGN float clampMaxValue = ((float) (65536 - 1)) / 65536.0f;
|
||||
|
||||
#ifdef X86
|
||||
#if 0
|
||||
#include <emmintrin.h>
|
||||
void qcms_transform_data_rgb_out_lut_sse_intrin(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
||||
{
|
||||
int i;
|
||||
float (*mat)[4] = transform->matrix;
|
||||
char input_back[32];
|
||||
/* Ensure we have a buffer that's 16 byte aligned regardless of the original
|
||||
* stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
|
||||
* because they don't work on stack variables. gcc 4.4 does do the right thing
|
||||
* on x86 but that's too new for us right now. For more info: gcc bug #16660 */
|
||||
float *input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
|
||||
/* share input and output locations to save having to keep the
|
||||
* locations in separate registers */
|
||||
uint32_t* output = (uint32_t*)input;
|
||||
for (i=0; i<length; i++) {
|
||||
const float *clampMax = &clampMaxValue;
|
||||
|
||||
unsigned char device_r = *src++;
|
||||
unsigned char device_g = *src++;
|
||||
unsigned char device_b = *src++;
|
||||
|
||||
__m128 xmm1 = _mm_load_ps(mat[0]);
|
||||
__m128 xmm2 = _mm_load_ps(mat[1]);
|
||||
__m128 xmm3 = _mm_load_ps(mat[2]);
|
||||
|
||||
__m128 vec_r = _mm_load_ss(&transform->input_gamma_table_r[device_r]);
|
||||
vec_r = _mm_shuffle_ps(vec_r, vec_r, 0);
|
||||
__m128 vec_g = _mm_load_ss(&transform->input_gamma_table_r[device_g]);
|
||||
vec_g = _mm_shuffle_ps(vec_g, vec_g, 0);
|
||||
__m128 vec_b = _mm_load_ss(&transform->input_gamma_table_r[device_b]);
|
||||
vec_b = _mm_shuffle_ps(vec_b, vec_b, 0);
|
||||
|
||||
vec_r = _mm_mul_ps(vec_r, xmm1);
|
||||
vec_g = _mm_mul_ps(vec_g, xmm2);
|
||||
vec_b = _mm_mul_ps(vec_b, xmm3);
|
||||
|
||||
vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b));
|
||||
|
||||
__m128 max = _mm_load_ss(&clampMax);
|
||||
max = _mm_shuffle_ps(max, max, 0);
|
||||
__m128 min = _mm_setzero_ps();
|
||||
|
||||
vec_r = _mm_max_ps(min, vec_r);
|
||||
vec_r = _mm_min_ps(max, vec_r);
|
||||
|
||||
__m128 scale = _mm_load_ss(&floatScale);
|
||||
scale = _mm_shuffle_ps(scale, scale, 0);
|
||||
__m128 result = _mm_mul_ps(vec_r, scale);
|
||||
|
||||
__m128i out = _mm_cvtps_epi32(result);
|
||||
_mm_store_si128((__m128i*)input, out);
|
||||
|
||||
*dest++ = transform->output_table_r->data[output[0]];
|
||||
*dest++ = transform->output_table_g->data[output[1]];
|
||||
*dest++ = transform->output_table_b->data[output[2]];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER) && defined(_M_AMD64)
|
||||
#include <emmintrin.h>
|
||||
#endif
|
||||
|
||||
static void qcms_transform_data_rgb_out_lut_sse(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
||||
{
|
||||
unsigned int i;
|
||||
float (*mat)[4] = transform->matrix;
|
||||
char input_back[32];
|
||||
/* Ensure we have a buffer that's 16 byte aligned regardless of the original
|
||||
* stack alignment. We can't use __attribute__((aligned(16))) or __declspec(align(32))
|
||||
* because they don't work on stack variables. gcc 4.4 does do the right thing
|
||||
* on x86 but that's too new for us right now. For more info: gcc bug #16660 */
|
||||
float *input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
|
||||
/* share input and output locations to save having to keep the
|
||||
* locations in separate registers */
|
||||
uint32_t* output = (uint32_t*)input;
|
||||
for (i = 0; i < length; i++) {
|
||||
const float *clampMax = &clampMaxValue;
|
||||
|
||||
unsigned char device_r = *src++;
|
||||
unsigned char device_g = *src++;
|
||||
unsigned char device_b = *src++;
|
||||
|
||||
input[0] = transform->input_gamma_table_r[device_r];
|
||||
input[1] = transform->input_gamma_table_g[device_g];
|
||||
input[2] = transform->input_gamma_table_b[device_b];
|
||||
|
||||
#ifdef __GNUC__
|
||||
__asm(
|
||||
"movaps (%0), %%xmm1;\n\t" // Move the first matrix column to xmm1
|
||||
"movaps 16(%0), %%xmm2;\n\t" // Move the second matrix column to xmm2
|
||||
"movaps 32(%0), %%xmm3;\n\t" // move the third matrix column to xmm3
|
||||
"movaps (%3), %%xmm0;\n\t" // Move the vector to xmm0
|
||||
|
||||
// Note - We have to copy and then shuffle because of the weird
|
||||
// semantics of shufps
|
||||
//
|
||||
"movaps %%xmm0, %%xmm4;\n\t" // Copy the vector to xmm4
|
||||
"shufps $0, %%xmm4, %%xmm4;\n\t" // Shuffle to repeat the first vector element repeated 4 times
|
||||
"mulps %%xmm4, %%xmm1;\n\t" // Multiply the first vector element by the first matrix column
|
||||
"movaps %%xmm0, %%xmm5; \n\t" // Copy the vector to xmm5
|
||||
"shufps $0x55, %%xmm5, %%xmm5;\n\t" // Shuffle to repeat the second vector element repeated 4 times
|
||||
"mulps %%xmm5, %%xmm2;\n\t" // Multiply the second vector element by the seccond matrix column
|
||||
"movaps %%xmm0, %%xmm6;\n\t" // Copy the vector to xmm6
|
||||
"shufps $0xAA, %%xmm6, %%xmm6;\n\t" // Shuffle to repeat the third vector element repeated 4 times
|
||||
"mulps %%xmm6, %%xmm3;\n\t" // Multiply the third vector element by the third matrix column
|
||||
|
||||
"addps %%xmm3, %%xmm2;\n\t" // Sum (second + third) columns
|
||||
"addps %%xmm2, %%xmm1;\n\t" // Sum ((second + third) + first) columns
|
||||
|
||||
"movss (%1), %%xmm7;\n\t" // load the floating point representation of 65535/65536
|
||||
"shufps $0, %%xmm7, %%xmm7;\n\t" // move it into all of the four slots
|
||||
"minps %%xmm7, %%xmm1;\n\t" // clamp the vector to 1.0 max
|
||||
"xorps %%xmm6, %%xmm6;\n\t" // get us cleared bitpatern, which is 0.0f
|
||||
"maxps %%xmm6, %%xmm1;\n\t" // clamp the vector to 0.0 min
|
||||
"movss (%2), %%xmm5;\n\t" // load the floating point scale factor
|
||||
"shufps $0, %%xmm5, %%xmm5;\n\t" // put it in all four slots
|
||||
"mulps %%xmm5, %%xmm1;\n\t" // multiply by the scale factor
|
||||
"cvtps2dq %%xmm1, %%xmm1;\n\t" // convert to integers
|
||||
"movdqa %%xmm1, (%3);\n\t" // store
|
||||
|
||||
:
|
||||
: "r" (mat), "r" (clampMax), "r" (&floatScale), "r" (input)
|
||||
: "memory"
|
||||
/* older versions of gcc don't know about these registers so only include them as constraints
|
||||
if gcc knows about them */
|
||||
#ifdef __SSE2__
|
||||
, "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7"
|
||||
#endif
|
||||
);
|
||||
#elif defined(_MSC_VER) && defined(_M_IX86)
|
||||
__asm {
|
||||
mov eax, mat
|
||||
mov ecx, clampMax
|
||||
mov edx, floatScaleAddr
|
||||
mov ebx, input
|
||||
|
||||
movaps xmm1, [eax]
|
||||
movaps xmm2, [eax + 16]
|
||||
movaps xmm3, [eax + 32]
|
||||
movaps xmm0, [ebx]
|
||||
|
||||
movaps xmm4, xmm0
|
||||
shufps xmm4, xmm4, 0
|
||||
mulps xmm1, xmm4
|
||||
movaps xmm5, xmm0
|
||||
shufps xmm5, xmm5, 0x55
|
||||
mulps xmm2, xmm5
|
||||
movaps xmm6, xmm0
|
||||
shufps xmm6, xmm6, 0xAA
|
||||
mulps xmm3, xmm6
|
||||
|
||||
addps xmm2, xmm3
|
||||
addps xmm1, xmm2
|
||||
|
||||
movss xmm7, [ecx]
|
||||
shufps xmm7, xmm7, 0
|
||||
minps xmm1, xmm7
|
||||
xorps xmm6, xmm6
|
||||
maxps xmm1, xmm6
|
||||
movss xmm5, [edx]
|
||||
shufps xmm5, xmm5, 0
|
||||
mulps xmm1, xmm5
|
||||
cvtps2dq xmm1, xmm1
|
||||
movdqa [ebx], xmm1
|
||||
}
|
||||
#elif defined(_MSC_VER) && defined(_M_AMD64)
|
||||
{
|
||||
__m128 xmm0, xmm1, xmm2, xmm3, xmm5, xmm6, xmm7;
|
||||
|
||||
xmm1 = _mm_load_ps((__m128*)mat);
|
||||
xmm2 = _mm_load_ps(((__m128*)mat) + 1);
|
||||
xmm3 = _mm_load_ps(((__m128*)mat) + 2);
|
||||
xmm0 = _mm_load_ps((__m128*)input);
|
||||
|
||||
xmm1 = _mm_mul_ps(xmm1, _mm_shuffle_ps(xmm0, xmm0, _MM_SHUFFLE(0,0,0,0)));
|
||||
xmm2 = _mm_mul_ps(xmm2, _mm_shuffle_ps(xmm0, xmm0, _MM_SHUFFLE(1,1,1,1)));
|
||||
xmm3 = _mm_mul_ps(xmm3, _mm_shuffle_ps(xmm0, xmm0, _MM_SHUFFLE(2,2,2,2)));
|
||||
|
||||
xmm1 = _mm_add_ps(xmm1, _mm_add_ps(xmm2, xmm3));
|
||||
|
||||
xmm7 = _mm_load_ss(clampMax);
|
||||
xmm7 = _mm_shuffle_ps(xmm7, xmm7, _MM_SHUFFLE(0,0,0,0));
|
||||
xmm1 = _mm_min_ps(xmm1, xmm7);
|
||||
xmm6 = _mm_xor_ps(xmm6, xmm6);
|
||||
xmm1 = _mm_max_ps(xmm1, xmm6);
|
||||
xmm5 = _mm_load_ss(&floatScale);
|
||||
xmm5 = _mm_shuffle_ps(xmm5, xmm5, _MM_SHUFFLE(0,0,0,0));
|
||||
xmm1 = _mm_mul_ps(xmm1, xmm5);
|
||||
_mm_store_si128((__m128i*)input, _mm_cvtps_epi32(xmm1));
|
||||
}
|
||||
#else
|
||||
#error "Unknown platform"
|
||||
#endif
|
||||
|
||||
*dest++ = transform->output_table_r->data[output[0]];
|
||||
*dest++ = transform->output_table_g->data[output[1]];
|
||||
*dest++ = transform->output_table_b->data[output[2]];
|
||||
}
|
||||
}
|
||||
|
||||
static void qcms_transform_data_rgba_out_lut_sse(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
||||
{
|
||||
unsigned int i;
|
||||
float (*mat)[4] = transform->matrix;
|
||||
char input_back[32];
|
||||
/* align input on 16 byte boundary */
|
||||
float *input = (float*)(((uintptr_t)&input_back[16]) & ~0xf);
|
||||
/* share input and output locations to save having to keep the
|
||||
* locations in separate registers */
|
||||
uint32_t* output = (uint32_t*)input;
|
||||
for (i = 0; i < length; i++) {
|
||||
const float *clampMax = &clampMaxValue;
|
||||
|
||||
unsigned char device_r = *src++;
|
||||
unsigned char device_g = *src++;
|
||||
unsigned char device_b = *src++;
|
||||
unsigned char alpha = *src++;
|
||||
|
||||
input[0] = transform->input_gamma_table_r[device_r];
|
||||
input[1] = transform->input_gamma_table_g[device_g];
|
||||
input[2] = transform->input_gamma_table_b[device_b];
|
||||
|
||||
#ifdef __GNUC__
|
||||
__asm(
|
||||
"movaps (%0), %%xmm1;\n\t" // Move the first matrix column to xmm1
|
||||
"movaps 16(%0), %%xmm2;\n\t" // Move the second matrix column to xmm2
|
||||
"movaps 32(%0), %%xmm3;\n\t" // move the third matrix column to xmm3
|
||||
"movaps (%3), %%xmm0;\n\t" // Move the vector to xmm0
|
||||
|
||||
// Note - We have to copy and then shuffle because of the weird
|
||||
// semantics of shufps
|
||||
//
|
||||
"movaps %%xmm0, %%xmm4;\n\t" // Copy the vector to xmm4
|
||||
"shufps $0, %%xmm4, %%xmm4;\n\t" // Shuffle to repeat the first vector element repeated 4 times
|
||||
"mulps %%xmm4, %%xmm1;\n\t" // Multiply the first vector element by the first matrix column
|
||||
"movaps %%xmm0, %%xmm5; \n\t" // Copy the vector to xmm5
|
||||
"shufps $0x55, %%xmm5, %%xmm5;\n\t" // Shuffle to repeat the second vector element repeated 4 times
|
||||
"mulps %%xmm5, %%xmm2;\n\t" // Multiply the second vector element by the seccond matrix column
|
||||
"movaps %%xmm0, %%xmm6;\n\t" // Copy the vector to xmm6
|
||||
"shufps $0xAA, %%xmm6, %%xmm6;\n\t" // Shuffle to repeat the third vector element repeated 4 times
|
||||
"mulps %%xmm6, %%xmm3;\n\t" // Multiply the third vector element by the third matrix column
|
||||
|
||||
"addps %%xmm3, %%xmm2;\n\t" // Sum (second + third) columns
|
||||
"addps %%xmm2, %%xmm1;\n\t" // Sum ((second + third) + first) columns
|
||||
|
||||
"movss (%1), %%xmm7;\n\t" // load the floating point representation of 65535/65536
|
||||
"shufps $0, %%xmm7, %%xmm7;\n\t" // move it into all of the four slots
|
||||
"minps %%xmm7, %%xmm1;\n\t" // clamp the vector to 1.0 max
|
||||
"xorps %%xmm6, %%xmm6;\n\t" // get us cleared bitpatern, which is 0.0f
|
||||
"maxps %%xmm6, %%xmm1;\n\t" // clamp the vector to 0.0 min
|
||||
"movss (%2), %%xmm5;\n\t" // load the floating point scale factor
|
||||
"shufps $0, %%xmm5, %%xmm5;\n\t" // put it in all four slots
|
||||
"mulps %%xmm5, %%xmm1;\n\t" // multiply by the scale factor
|
||||
"cvtps2dq %%xmm1, %%xmm1;\n\t" // convert to integers
|
||||
"movdqa %%xmm1, (%3);\n\t" // store
|
||||
|
||||
:
|
||||
: "r" (mat), "r" (clampMax), "r" (&floatScale), "r" (input)
|
||||
: "memory"
|
||||
/* older versions of gcc don't know about these registers so only include them as constraints
|
||||
if gcc knows about them */
|
||||
#ifdef __SSE2__
|
||||
, "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7"
|
||||
#endif
|
||||
);
|
||||
#elif defined(_MSC_VER) && defined(_M_IX86)
|
||||
__asm {
|
||||
mov eax, mat
|
||||
mov ecx, clampMax
|
||||
mov edx, floatScaleAddr
|
||||
mov ebx, input
|
||||
|
||||
movaps xmm1, [eax]
|
||||
movaps xmm2, [eax + 16]
|
||||
movaps xmm3, [eax + 32]
|
||||
movaps xmm0, [ebx]
|
||||
|
||||
movaps xmm4, xmm0
|
||||
shufps xmm4, xmm4, 0
|
||||
mulps xmm1, xmm4
|
||||
movaps xmm5, xmm0
|
||||
shufps xmm5, xmm5, 0x55
|
||||
mulps xmm2, xmm5
|
||||
movaps xmm6, xmm0
|
||||
shufps xmm6, xmm6, 0xAA
|
||||
mulps xmm3, xmm6
|
||||
|
||||
addps xmm2, xmm3
|
||||
addps xmm1, xmm2
|
||||
|
||||
movss xmm7, [ecx]
|
||||
shufps xmm7, xmm7, 0
|
||||
minps xmm1, xmm7
|
||||
xorps xmm6, xmm6
|
||||
maxps xmm1, xmm6
|
||||
movss xmm5, [edx]
|
||||
shufps xmm5, xmm5, 0
|
||||
mulps xmm1, xmm5
|
||||
cvtps2dq xmm1, xmm1
|
||||
movdqa [ebx], xmm1
|
||||
}
|
||||
#elif defined(_MSC_VER) && defined(_M_AMD64)
|
||||
{
|
||||
__m128 xmm0, xmm1, xmm2, xmm3, xmm5, xmm6, xmm7;
|
||||
|
||||
xmm1 = _mm_load_ps((__m128*)mat);
|
||||
xmm2 = _mm_load_ps(((__m128*)mat) + 1);
|
||||
xmm3 = _mm_load_ps(((__m128*)mat) + 2);
|
||||
xmm0 = _mm_load_ps((__m128*)input);
|
||||
|
||||
xmm1 = _mm_mul_ps(xmm1, _mm_shuffle_ps(xmm0, xmm0, _MM_SHUFFLE(0,0,0,0)));
|
||||
xmm2 = _mm_mul_ps(xmm2, _mm_shuffle_ps(xmm0, xmm0, _MM_SHUFFLE(1,1,1,1)));
|
||||
xmm3 = _mm_mul_ps(xmm3, _mm_shuffle_ps(xmm0, xmm0, _MM_SHUFFLE(2,2,2,2)));
|
||||
|
||||
xmm1 = _mm_add_ps(xmm1, _mm_add_ps(xmm2, xmm3));
|
||||
|
||||
xmm7 = _mm_load_ss(clampMax);
|
||||
xmm7 = _mm_shuffle_ps(xmm7, xmm7, _MM_SHUFFLE(0,0,0,0));
|
||||
xmm1 = _mm_min_ps(xmm1, xmm7);
|
||||
xmm6 = _mm_xor_ps(xmm6, xmm6);
|
||||
xmm1 = _mm_max_ps(xmm1, xmm6);
|
||||
xmm5 = _mm_load_ss(&floatScale);
|
||||
xmm5 = _mm_shuffle_ps(xmm5, xmm5, _MM_SHUFFLE(0,0,0,0));
|
||||
xmm1 = _mm_mul_ps(xmm1, xmm5);
|
||||
_mm_store_si128((__m128i*)input, _mm_cvtps_epi32(xmm1));
|
||||
}
|
||||
#else
|
||||
#error "Unknown platform"
|
||||
#endif
|
||||
|
||||
*dest++ = transform->output_table_r->data[output[0]];
|
||||
*dest++ = transform->output_table_g->data[output[1]];
|
||||
*dest++ = transform->output_table_b->data[output[2]];
|
||||
*dest++ = alpha;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
static void qcms_transform_data_rgb_out_lut_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length)
|
||||
{
|
||||
unsigned int i;
|
||||
|
@ -1035,7 +1380,7 @@ qcms_bool compute_precache(struct curveType *trc, uint8_t *output)
|
|||
return true;
|
||||
}
|
||||
|
||||
#ifdef X86
|
||||
|
||||
// Determine if we can build with SSE2 (this was partly copied from jmorecfg.h in
|
||||
// mozilla/jpeg)
|
||||
// -------------------------------------------------------------------------
|
||||
|
@ -1078,43 +1423,31 @@ static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t
|
|||
}
|
||||
#endif
|
||||
|
||||
// -------------------------Runtime SSEx Detection-----------------------------
|
||||
// -------------------------Runtime SSE2 Detection-----------------------------
|
||||
|
||||
/* MMX is always supported per
|
||||
* Gecko v1.9.1 minimum CPU requirements */
|
||||
#define SSE1_EDX_MASK (1UL << 25)
|
||||
#define SSE2_EDX_MASK (1UL << 26)
|
||||
#define SSE3_ECX_MASK (1UL << 0)
|
||||
|
||||
static int sse_version_available(void)
|
||||
static qcms_bool sse2_available(void)
|
||||
{
|
||||
#if defined(__x86_64__) || defined(_M_AMD64)
|
||||
/* we know at build time that 64-bit CPUs always have SSE2
|
||||
* this tells the compiler that non-SSE2 branches will never be
|
||||
* taken (i.e. OK to optimze away the SSE1 and non-SIMD code */
|
||||
return 2;
|
||||
return true;
|
||||
#elif defined(HAS_CPUID)
|
||||
static int sse_version = -1;
|
||||
uint32_t a, b, c, d;
|
||||
uint32_t function = 0x00000001;
|
||||
static int has_sse2 = -1;
|
||||
uint32_t a, b, c, d;
|
||||
uint32_t function = 0x00000001;
|
||||
|
||||
if (sse_version == -1) {
|
||||
sse_version = 0;
|
||||
cpuid(function, &a, &b, &c, &d);
|
||||
if (c & SSE3_ECX_MASK)
|
||||
sse_version = 3;
|
||||
else if (d & SSE2_EDX_MASK)
|
||||
sse_version = 2;
|
||||
else if (d & SSE1_EDX_MASK)
|
||||
sse_version = 1;
|
||||
}
|
||||
if (has_sse2 == -1) {
|
||||
has_sse2 = 0;
|
||||
cpuid(function, &a, &b, &c, &d);
|
||||
if (d & SSE2_EDX_MASK)
|
||||
has_sse2 = 1;
|
||||
else
|
||||
has_sse2 = 0;
|
||||
}
|
||||
|
||||
return sse_version;
|
||||
#else
|
||||
return 0;
|
||||
return has_sse2;
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
void build_output_lut(struct curveType *trc,
|
||||
uint16_t **output_gamma_lut, size_t *output_gamma_lut_length)
|
||||
|
@ -1220,18 +1553,11 @@ qcms_transform* qcms_transform_create(
|
|||
}
|
||||
if (precache) {
|
||||
#ifdef X86
|
||||
if (sse_version_available() >= 2) {
|
||||
if (sse2_available()) {
|
||||
if (in_type == QCMS_DATA_RGB_8)
|
||||
transform->transform_fn = qcms_transform_data_rgb_out_lut_sse2;
|
||||
transform->transform_fn = qcms_transform_data_rgb_out_lut_sse;
|
||||
else
|
||||
transform->transform_fn = qcms_transform_data_rgba_out_lut_sse2;
|
||||
|
||||
} else
|
||||
if (sse_version_available() >= 1) {
|
||||
if (in_type == QCMS_DATA_RGB_8)
|
||||
transform->transform_fn = qcms_transform_data_rgb_out_lut_sse1;
|
||||
else
|
||||
transform->transform_fn = qcms_transform_data_rgba_out_lut_sse1;
|
||||
transform->transform_fn = qcms_transform_data_rgba_out_lut_sse;
|
||||
|
||||
} else
|
||||
#endif
|
||||
|
|
Загрузка…
Ссылка в новой задаче