/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is mozilla.org code. * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 2001 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Stuart Parmenter * * Alternatively, the contents of this file may be used under the terms of * either of the GNU General Public License Version 2 or later (the "GPL"), * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #include "nsTimerImpl.h" #include "TimerThread.h" #include "nsAutoLock.h" #include "pratom.h" #include "nsIObserverService.h" #include "nsIServiceManager.h" NS_IMPL_THREADSAFE_ISUPPORTS2(TimerThread, nsIRunnable, nsIObserver) TimerThread::TimerThread() : mInitInProgress(0), mInitialized(PR_FALSE), mLock(nsnull), mCondVar(nsnull), mShutdown(PR_FALSE), mWaiting(PR_FALSE), mSleeping(PR_FALSE), mDelayLineCounter(0), mMinTimerPeriod(0), mTimeoutAdjustment(0) { } TimerThread::~TimerThread() { if (mCondVar) PR_DestroyCondVar(mCondVar); if (mLock) PR_DestroyLock(mLock); mThread = nsnull; PRInt32 n = mTimers.Count(); while (--n >= 0) { nsTimerImpl *timer = NS_STATIC_CAST(nsTimerImpl *, mTimers[n]); NS_RELEASE(timer); } } nsresult TimerThread::InitLocks() { NS_ASSERTION(!mLock, "InitLocks called twice?"); mLock = PR_NewLock(); if (!mLock) return NS_ERROR_OUT_OF_MEMORY; mCondVar = PR_NewCondVar(mLock); if (!mCondVar) return NS_ERROR_OUT_OF_MEMORY; return NS_OK; } nsresult TimerThread::Init() { if (mInitialized) { if (!mThread) return NS_ERROR_FAILURE; return NS_OK; } if (PR_AtomicSet(&mInitInProgress, 1) == 0) { nsresult rv; mEventQueueService = do_GetService("@mozilla.org/event-queue-service;1", &rv); if (NS_SUCCEEDED(rv)) { nsCOMPtr observerService (do_GetService("@mozilla.org/observer-service;1", &rv)); if (NS_SUCCEEDED(rv)) { // We hold on to mThread to keep the thread alive. rv = NS_NewThread(getter_AddRefs(mThread), NS_STATIC_CAST(nsIRunnable*, this), 0, PR_JOINABLE_THREAD, PR_PRIORITY_NORMAL, PR_GLOBAL_THREAD); if (NS_FAILED(rv)) { mThread = nsnull; } else { // We'll be released at xpcom shutdown observerService->AddObserver(this, "sleep_notification", PR_FALSE); observerService->AddObserver(this, "wake_notification", PR_FALSE); } } } PR_Lock(mLock); mInitialized = PR_TRUE; PR_NotifyAllCondVar(mCondVar); PR_Unlock(mLock); } else { PR_Lock(mLock); while (!mInitialized) { PR_WaitCondVar(mCondVar, PR_INTERVAL_NO_TIMEOUT); } PR_Unlock(mLock); } if (!mThread) return NS_ERROR_FAILURE; return NS_OK; } nsresult TimerThread::Shutdown() { if (!mThread) return NS_ERROR_NOT_INITIALIZED; { // lock scope nsAutoLock lock(mLock); mShutdown = PR_TRUE; // notify the cond var so that Run() can return if (mCondVar && mWaiting) PR_NotifyCondVar(mCondVar); nsTimerImpl *timer; for (PRInt32 i = mTimers.Count() - 1; i >= 0; i--) { timer = NS_STATIC_CAST(nsTimerImpl*, mTimers[i]); RemoveTimerInternal(timer); } } mThread->Join(); // wait for the thread to die return NS_OK; } // Keep track of how early (positive slack) or late (negative slack) timers // are running, and use the filtered slack number to adaptively estimate how // early timers should fire to be "on time". void TimerThread::UpdateFilter(PRUint32 aDelay, PRIntervalTime aTimeout, PRIntervalTime aNow) { PRInt32 slack = (PRInt32) (aTimeout - aNow); double smoothSlack = 0; PRUint32 i, filterLength; static PRIntervalTime kFilterFeedbackMaxTicks = PR_MillisecondsToInterval(FILTER_FEEDBACK_MAX); if (slack > 0) { if (slack > (PRInt32)kFilterFeedbackMaxTicks) slack = kFilterFeedbackMaxTicks; } else { if (slack < -(PRInt32)kFilterFeedbackMaxTicks) slack = -(PRInt32)kFilterFeedbackMaxTicks; } mDelayLine[mDelayLineCounter & DELAY_LINE_LENGTH_MASK] = slack; if (++mDelayLineCounter < DELAY_LINE_LENGTH) { // Startup mode: accumulate a full delay line before filtering. PR_ASSERT(mTimeoutAdjustment == 0); filterLength = 0; } else { // Past startup: compute number of filter taps based on mMinTimerPeriod. if (mMinTimerPeriod == 0) { mMinTimerPeriod = (aDelay != 0) ? aDelay : 1; } else if (aDelay != 0 && aDelay < mMinTimerPeriod) { mMinTimerPeriod = aDelay; } filterLength = (PRUint32) (FILTER_DURATION / mMinTimerPeriod); if (filterLength > DELAY_LINE_LENGTH) filterLength = DELAY_LINE_LENGTH; else if (filterLength < 4) filterLength = 4; for (i = 1; i <= filterLength; i++) smoothSlack += mDelayLine[(mDelayLineCounter-i) & DELAY_LINE_LENGTH_MASK]; smoothSlack /= filterLength; // XXXbe do we need amplification? hacking a fudge factor, need testing... mTimeoutAdjustment = (PRInt32) (smoothSlack * 1.5); } #ifdef DEBUG_TIMERS if (PR_LOG_TEST(gTimerLog, PR_LOG_DEBUG)) { PR_LOG(gTimerLog, PR_LOG_DEBUG, ("UpdateFilter: smoothSlack = %g, filterLength = %u\n", smoothSlack, filterLength)); } #endif } /* void Run(); */ NS_IMETHODIMP TimerThread::Run() { nsAutoLock lock(mLock); while (!mShutdown) { PRIntervalTime waitFor; if (mSleeping) { // Sleep for 0.1 seconds while not firing timers. waitFor = PR_MillisecondsToInterval(100); } else { waitFor = PR_INTERVAL_NO_TIMEOUT; PRIntervalTime now = PR_IntervalNow(); nsTimerImpl *timer = nsnull; if (mTimers.Count() > 0) { timer = NS_STATIC_CAST(nsTimerImpl*, mTimers[0]); if (!TIMER_LESS_THAN(now, timer->mTimeout + mTimeoutAdjustment)) { next: // NB: AddRef before the Release under RemoveTimerInternal to avoid // mRefCnt passing through zero, in case all other refs than the one // from mTimers have gone away (the last non-mTimers[i]-ref's Release // must be racing with us, blocked in gThread->RemoveTimer waiting // for TimerThread::mLock, under nsTimerImpl::Release. NS_ADDREF(timer); RemoveTimerInternal(timer); // We release mLock around the Fire call to avoid deadlock. lock.unlock(); #ifdef DEBUG_TIMERS if (PR_LOG_TEST(gTimerLog, PR_LOG_DEBUG)) { PR_LOG(gTimerLog, PR_LOG_DEBUG, ("Timer thread woke up %dms from when it was supposed to\n", (now >= timer->mTimeout) ? PR_IntervalToMilliseconds(now - timer->mTimeout) : -(PRInt32)PR_IntervalToMilliseconds(timer->mTimeout-now)) ); } #endif // We are going to let the call to PostTimerEvent here handle the // release of the timer so that we don't end up releasing the timer // on the TimerThread instead of on the thread it targets. timer->PostTimerEvent(); timer = nsnull; lock.lock(); if (mShutdown) break; // Update now, as PostTimerEvent plus the locking may have taken a // tick or two, and we may goto next below. now = PR_IntervalNow(); } } if (mTimers.Count() > 0) { timer = NS_STATIC_CAST(nsTimerImpl *, mTimers[0]); PRIntervalTime timeout = timer->mTimeout + mTimeoutAdjustment; // Don't wait at all (even for PR_INTERVAL_NO_WAIT) if the next timer // is due now or overdue. if (!TIMER_LESS_THAN(now, timeout)) goto next; waitFor = timeout - now; } #ifdef DEBUG_TIMERS if (PR_LOG_TEST(gTimerLog, PR_LOG_DEBUG)) { if (waitFor == PR_INTERVAL_NO_TIMEOUT) PR_LOG(gTimerLog, PR_LOG_DEBUG, ("waiting for PR_INTERVAL_NO_TIMEOUT\n")); else PR_LOG(gTimerLog, PR_LOG_DEBUG, ("waiting for %u\n", PR_IntervalToMilliseconds(waitFor))); } #endif } mWaiting = PR_TRUE; PR_WaitCondVar(mCondVar, waitFor); mWaiting = PR_FALSE; } return NS_OK; } nsresult TimerThread::AddTimer(nsTimerImpl *aTimer) { nsAutoLock lock(mLock); // Add the timer to our list. PRInt32 i = AddTimerInternal(aTimer); if (i < 0) return NS_ERROR_OUT_OF_MEMORY; // Awaken the timer thread. if (mCondVar && mWaiting && i == 0) PR_NotifyCondVar(mCondVar); return NS_OK; } nsresult TimerThread::TimerDelayChanged(nsTimerImpl *aTimer) { nsAutoLock lock(mLock); // Our caller has a strong ref to aTimer, so it can't go away here under // ReleaseTimerInternal. RemoveTimerInternal(aTimer); PRInt32 i = AddTimerInternal(aTimer); if (i < 0) return NS_ERROR_OUT_OF_MEMORY; // Awaken the timer thread. if (mCondVar && mWaiting && i == 0) PR_NotifyCondVar(mCondVar); return NS_OK; } nsresult TimerThread::RemoveTimer(nsTimerImpl *aTimer) { nsAutoLock lock(mLock); // Remove the timer from our array. Tell callers that aTimer was not found // by returning NS_ERROR_NOT_AVAILABLE. Unlike the TimerDelayChanged case // immediately above, our caller may be passing a (now-)weak ref in via the // aTimer param, specifically when nsTimerImpl::Release loses a race with // TimerThread::Run, must wait for the mLock auto-lock here, and during the // wait Run drops the only remaining ref to aTimer via RemoveTimerInternal. if (!RemoveTimerInternal(aTimer)) return NS_ERROR_NOT_AVAILABLE; // Awaken the timer thread. if (mCondVar && mWaiting) PR_NotifyCondVar(mCondVar); return NS_OK; } // This function must be called from within a lock PRInt32 TimerThread::AddTimerInternal(nsTimerImpl *aTimer) { PRIntervalTime now = PR_IntervalNow(); PRInt32 count = mTimers.Count(); PRInt32 i = 0; for (; i < count; i++) { nsTimerImpl *timer = NS_STATIC_CAST(nsTimerImpl *, mTimers[i]); // Don't break till we have skipped any overdue timers. Do not include // mTimeoutAdjustment here, because we are really trying to avoid calling // TIMER_LESS_THAN(t, u), where the t is now + DELAY_INTERVAL_MAX, u is // now - overdue, and DELAY_INTERVAL_MAX + overdue > DELAY_INTERVAL_LIMIT. // In other words, we want to use now-based time, now adjusted time, even // though "overdue" ultimately depends on adjusted time. // XXX does this hold for TYPE_REPEATING_PRECISE? /be if (TIMER_LESS_THAN(now, timer->mTimeout) && TIMER_LESS_THAN(aTimer->mTimeout, timer->mTimeout)) { break; } } if (!mTimers.InsertElementAt(aTimer, i)) return -1; aTimer->mArmed = PR_TRUE; NS_ADDREF(aTimer); return i; } PRBool TimerThread::RemoveTimerInternal(nsTimerImpl *aTimer) { if (!mTimers.RemoveElement(aTimer)) return PR_FALSE; // Order is crucial here -- see nsTimerImpl::Release. aTimer->mArmed = PR_FALSE; NS_RELEASE(aTimer); return PR_TRUE; } void TimerThread::DoBeforeSleep() { mSleeping = PR_TRUE; } void TimerThread::DoAfterSleep() { for (PRInt32 i = 0; i < mTimers.Count(); i ++) { nsTimerImpl *timer = NS_STATIC_CAST(nsTimerImpl*, mTimers[i]); // get and set the delay to cause its timeout to be recomputed PRUint32 delay; timer->GetDelay(&delay); timer->SetDelay(delay); } // nuke the stored adjustments, so they get recalibrated mTimeoutAdjustment = 0; mDelayLineCounter = 0; mSleeping = PR_FALSE; } /* void observe (in nsISupports aSubject, in string aTopic, in wstring aData); */ NS_IMETHODIMP TimerThread::Observe(nsISupports* /* aSubject */, const char *aTopic, const PRUnichar* /* aData */) { if (strcmp(aTopic, "sleep_notification") == 0) DoBeforeSleep(); else if (strcmp(aTopic, "wake_notification") == 0) DoAfterSleep(); return NS_OK; }